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Abstract

In this paper we consider the stochastic sequence {P;}ien defined recur-
sively by the linear relation P;; = AP, + B; in a random environment which
is described by the non-stationary process ¥ = {(A¢, By) }ten. We formulate
sufficient conditions on v which ensure that the finite-dimensional distributions
of {P,}en converge weakly to the finite-dimensional distribution of a unique
stationary process. If the driving sequence 1) has a “nice” tail behaviour, then
we can establish a global convergence result. This extends results of Brandt
(1986) and Borovkov (1998) from the stationary to the non-stationary case.
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1 Introduction

In this paper we consider the stochastic sequence {P,}n defined recursively by the
linear relation
B—H = AtPt + Bt (t 2 O) (1)

in a random environment which is described by the stochastic process {(A;, B;) }en
defined on some probability space (2, F,P). We formulate sufficient conditions on
¥ := {(Ay, Bt) }ten which guarantee asymptotic stability of the solution of (1) in the
sense that the sequence {P,};en converges in distribution as ¢t — oo.

Dynamics of the form (1) have been extensively investigated under a contrac-
tion condition and under the assumption that the environment ¢ is stationary. For
example, Vervaat (1979) considers the case where the environment consists of i.i.d.
random variables. Brandt (1986) and Borovkov (1998) assume that the environment
1) is stationary and ergodic under the measure P.

Our purpose is to replace this stationarity assumption by an asymptotic stability
condition on the driving sequence . This is essential for applications where a sta-
tionarity condition on 1 seems too restrictive. For example, the process { P, };cn could
be a sequence of temporary equilibrium prices of a risky asset generated by the inter-
action of different types of economic agents; see, e.g., Horst (1999a) or Horst (1999b)
for models in this direction. In such a model the sequence 1 describes the evolution
of the empirical distribution of individual agents’ characteristics, i.e., the “mood” of
the market. In that setting, it seems natural to investigate the asymptotic dynamics
of the price process { P, };en under the assumption that the environment 1) is is out of
equilibrium, i.e., a non-stationary sequence. However, given that the “mood” of the
market settles down in the long run, it is desirable to have sufficient conditions which
ensure that the “mood” drives the price process into equilibrium.

For a non-stationary process 1, ergodic theorems based on the existence of station-
ary renovation events for { P;};cn can be proved, if the driving sequence {(A;, B;) }ien
converges in the sense of a strong coupling to a stationary process; see Borovkov
(1998), Chapter 3. However, for many applications, for example in the model anal-
ysed in Horst (1999b), this condition is too strong or too hard to verify.

In this paper we formulate conditions on the non-stationary environment 7 which
guarantee that the solution of (1) settles down to a unique equilibrium in the long
run. In a first step we will analyse the dynamics of the process {P;};en governed
by (1) under the assumption that ¢ has a “nice” tail structure. More precisely, we
assume that there exists a probability measure P* such that the driving sequence v is
ergodic under P* and which coincides with the original measure P on 7T, the tail-field
generated by ¢. This assumption is satisfied if, for example, the environment is driven
by some underlying Markov process which converges in the total variation norm to a
unique invariant distribution. In this case we establish a “global” convergence result
under the measure P, namely convergence in law of the sequence { P, }in governed by
(1) to the uniquely determined stationary solution of (1) under the measure P*. The
results of Brandt (1986) correspond to the case P = P*, and in this case one can prove



almost sure convergence.

In a second step we will weaken the regularity condition that the measures P* and PP
coincide on 7. Instead, we shall assume that the environment v can be approximated
in law by a sequence of “nice” processes. In this more general case we establish weak
convergence of the finite-dimensional distributions of the process { P;};eny under P to
the finite-dimensional distributions of the uniquely determined stationary solution of
(1) under P*, i.e., a “local” version of the convergence result.

The paper is organised as follows. In Section 2 we formulate our main results.
Section 3 analyses solutions of (1) driven by non-stationary but “nice” sequences
1. In Section 4 we study the case where v itself does not satisfy this regularity
condition but can be approximated in law by “nice” processes. Section 5 is devoted
to a Markovian case study, where the assumption that the environment i can be
approximated by “nice” processes can indeed be verified.

2 Assumptions and the Main Results

Let ¢ := {¥; }sen = {(A¢, B;) hien be a sequence of R?-valued random variables defined
on some probability space (€2, F,Py) which satisfy P4 — a.s. the relation (Ag, By) = ¢.

In this section we formulate conditions which guarantee that the finite-dimensional
distributions of the sequence {P;};cn governed by (1) and driven by the “input”
converge to the finite-dimensional distributions of a uniquely determined stationary
process as t — 00.

Assumption 1 There exists a probability measure pu* on R? such that the environ-
ment 1 is stationary and ergodic under the law

P'() = / P, ()" (d9).

This assumption is satisfied if, for example, the “input” 1) is driven by some underlying
Markov process M which admits a unique invariant measure, c.f. Examples 3.7 and
3.8 below.

Throughout this paper we denote by Ey the expectation with respect to the mea-
sure Py and by E* the expectation with respect to the measure P*. We impose the
following integrability conditions with respect to the measure P*.

Assumption 2 We assume E*(In By)™ < oo and
—o00 < E* In |A4y| < 0. (2)

Here, (2) may be viewed as a mean contraction condition for the dynamics defined by
(1). Such a contraction condition has also been imposed by, e.g., Vervaat (1979).



Remark 2.1 If the driving process ¥ is already in equilibrium, i.e., if we work under
the measure P*, then we find ourselves in the setting analysed in Brandt (1986). In
this case Assumption 2 coincides with condition (0.4) in Brandt (1986), and there
erists a unique stationary solution { P} }ien of (1) (c.f. Theorem 3.5 below).

Let us introduce the following o-fields. For ¢,/ € N we put

Fir =0 ({Wshes<t)s,  Fri=0 ({Wshsst) - (3)

Furthermore, we denote by Law(Y,P) the distribution of a random variable ¥ under
the measure P. For example, by Law (¢, P;) we mean the distribution of the process
1) on the path space (R?)N induced by the measure P.

In a first step we extend the results of Brandt (1986) from the stationary to the
non-stationary setting under the assumption that the driving sequence 1 is “nice” in
the following sense.

Definition 2.2 A driving sequence v is called “nice” if the following assumption
about its asymptotic behaviour is satisfied. For any initial condition ¢ € R?, we have
that

Law(¢,Py) = Law(¢),P*) on T, (4)

where T := (V,en F, denotes the tail-o-field generated by the sequence 1.

We introduce some additional notation. For a given driving sequence 1) we put

( i:[ Ai) B, ;1 + (tl:[ Ai) p (5)

i=t—j

t—1
pt(pa 1/1) = Z

=0
and denote by {p;(p,¥)}ten the governed by (1) with initial value p. Thus, p(p, 1)

can be interpreted as the state at time ¢ of a system governed by (1) and by the
“Input” 1 if it starts at the (random) state p.

Theorem 2.3 Suppose that the driving sequence ¢ satisfies Assumptions 1 and 2 and
that v is “nice” in the sense of Definition 2.2. Then for any initial condition ¢ € R?
of ¥ and for any p € R, the process {pi(p,¥)}en converges in law to the unique
stationary solution { P} }ien of (1) defined on (0, F,P*). More precisely, we have that

Law ({pe+1(p, ¥) }ren, Py) % Law({ P} }sen, P*) on RY (T — o00). (6)

Here, by Law ({pi+1(p, ¥) }ten, Pp) we mean the distribution of the “shifted” sequence
{pi+7(p, V) }ien on the path space RY under the measure Py.

Section 3 is devoted to the proof of this theorem.
Let us now consider the case where the environment itself does not have a “nice”
tail structure. Theorem 2.5 below states that the finite-dimensional distributions



of the process {p:(p,¥)}en under the measure P, converge weakly to the finite-
dimensional distributions of the unique stationary solution of (1) under P* as soon
as the driving sequence ¥ can be approximated in law by a suitable sequence of pro-
cesses {Y" }nen which are “nice” in the sense defined above. In particular, the process
{p+(p, ) }+en converges in law to to a unique stationary measure V.

The approximating sequence {¢"},en, ¥™ = {(A}, B}') }ien, is defined as follows.
Let {€:}ten and {m:}1en be sequences of random variables defined on (€2, ) which are
independent, which satisfy Law((e,70),Pg) = Law((€o,m0),P;) for all ¢, ¢’ € R* and
independent of all (A;, B;) (t € N). We put

Ay == A +on,e, and B = B+ o,m

for a sequence o,, | 0. Thus, the sequences 9" := {(A}, B}') }ten (n € N) are stationary
and ergodic under P*, and the process {1"},en converges in distribution to ¢ both in
the stationary and in the non-stationary setting. Furthermore, for each ¢ € N we set

Jt = (|As| + o1le, | Be| + o1|me|) and {/; = {Jt}tEN-

Assumption 3 The sequences @Z, W2, ... are nice in the sense of Definition 2.2
and satisfy the following reqularity conditions:

E*(In|A3)*t = E*(In|Ao))*, E(In|Bj))" — E*(In|By|])" (n — o). (7)
E*(In|Af]) = E*(In|4|), E'(In|Bf|) = E*(In|By|) (n — o0). (8)

Moreover, we impose the following integrability condition:
E*(In(|Ao| + o1]€0]) < 00,  E*(In(|By| + o1|mo|) < oco. 9)

In Section 5 we shall verify this assumption if the environment 1) is driven by a certain
class of underlying Markov processes.

Remark 2.4 Under the measure P*, i.e., if all driving sequences are already in equi-
librium, (7) and (8) coiincide with conditions (0.11) and (0.10) respectively in Brandt
(1986).

Let us now state our main result.

Theorem 2.5 Suppose that Assumptions 1-8 are satisfied. Then the finite dimen-
sional distributions of the process {pi(p, V) }ten under P, converge weakly to the finite
dimensional distributions of the unique stationary solution of (1) under P*. More
precisely, for any m € N and for all t; < --- < t,, we have that

Law((pt,+7(0, %), - - -, P17 (0, V), Py) = Law((P(t1),..., P(tm)),P")

as T — oo. In particular, there exists a unique probability measure v, on R such that

Law (p:(p, ), Py) s Vg (t— 00).



The proof of this theorem is given in Section 4.

Our results should be compared to Theorem 1 in Brandt (1986), see also Theo-
rem 3.5 below. There, the author shows that the process {p;(p,?¥)}ien governed by
the input ¢ becomes stationary in the long run assuming that the driving sequence
{(A¢t, Bt) }1en is stationary and ergodic. More precisely, it is verified that

P lim [p:(p,¢) = P| = 0] = 1, (10)

where {P/},cn denotes the unique stationary solution of (1) under P*. Theorem
2.3 above shows that in case of non-stationary but “nice” driving sequences, we can
still establish a “global” result, namely convergence in distribution of the process
{p+(p, ) }ten to the unique stationary solution of (1) under the measure P* instead
of almost sure convergence. Furthermore, if the governing sequence 1 can be ap-
proximated in law by “nice” processes, then we can prove a “local” version of the
convergence result, i.e., convergence of the finite-dimensional distributions of the se-

quence {p:(p, 1) hen under Py.

3 Linear Stochastic Sequences Driven by Nice Pro-
cesses

This section is devoted to the proof of Theorem 2.3. Thus, throughout this section
we assume that the driving sequence v is “nice” in the sense of Definition 2.2. In a
first step we shall analyse the sequence {p;(p,®)}ien given a stationary “input” ),
i.e., we will study the long run dynamics of this process under the measure P*. In
a second step we will demonstrate that for any initial value ¢ = (Ag, By) of v, the
asymptotic distribution for t — oo of the process {p:(p, ¢) }ten is the same under Py
and P*. More precisely, we shall verify that

Law (p;(p, 1), Py) — Law (P, P*)  (t — o).

In a final step we establish the “global” convergence result stated in Theorem 2.3.

Let us start with some preliminaries. First, we shall establish a condition on the
driving sequence which turns out to be equivalent to (4). Below, we will verify this
assumption for a certain class of Markovian models.

Remark 3.1 As the o-fields {F, }sen decrease to T, we have that

Jim [[Law(, ) = Law(es, P15, = [|Law(w, By) = Law(w, P)llr =0, (11)

where ||-||¢ denotes the total variation of a signed measure on E. A simple martingale
proof can be found in, e.g., Follmer (1979), Remark 2.1.



Assumption 4 There exists a sequence c; — 0 such that, for anyl € N, the following
holds true:

||Law (e, P,) — Law (¢, P*)

7, S e (12)

Proposition 3.2 A driving sequence ¥ is “nice” in the sense of Definition 2.2 if and
only if it satisfies Assumption /.

Proof: Due to (11), a “nice” sequence v satisfies Assumption 4. Thus, we just have
to verify the “only if” part. By Remark 3.1 it suffices to show that Assumption 4
implies
lim ||Law(¢, Py) — Law(e), P*)
t—00

.73}: =Y
This, however, can be verified using a monotone class argument. To this end, let
A€ Fy (t <1). We have that

Py [t € xigR? x A x (R*)"] - /IP’¢ [ € xIiR* x A x (R®)V] u*(do)| < e (13)

by Assumption 4. Thus (13) holds true for any A € G, := 5, .7:}71.
Let us denote by G the system of all sets A € B((R?)N) which satisfy (13). It is
eAasily seen that G is a monotone class including G;. As G; generates the o—algebra

F; and because G; C G, our assertion follows immediately from the Monotone Class
Theorem. O

Next, observe that for any measurable function F' : R? — R which satisfies
E*|F(11)| < oo, the event

{tlggo . 2: F() = E*F(wl)}

is a tail event. Therefore, the following proposition follows immediately from Assump-
tion 1 and Assumption 3.

Proposition 3.3 For any initial value ¢ € R?, the sequence v satisfies the strong
law of large numbers under the measure Pg.

Remark 3.4 Whenever we are working under the measure P*, we may without loss
of generality assume that the stationary sequence ¥ = {(As, By) }en is defined for all
integers t € Z due to Kolmogorov’s extension theorem.

We are going to use the following result which appears as Theorem 1 in Brandt (1986).

Theorem 3.5 In the stationary situation, i.e., under the measure P*, the following
holds true as soon as Assumption 2 is satisfied.

6



1. There ezists a unique stationary solution of (1) for the input 1, i.e., there exists

a unique stationary process { P; }ien which obeys the relation P*t + 1 = AP} +
B;. Furthermore, P; takes the form Pf =372 (Ht LA ) Bi ;1 (t€N).

i=—j

2. The process {pi(p,¥)}ten converges almost surely to the stationary solution.
More precisely, lim;_, |p:(p, ) — Pf| =0 P* — a.s.

3. In particular, under the measure P* the sequence {p;(p, V) }1en converges in dis-
tribution to the almost surely finite random variable

[e7e] —1
-3 (I 4) e
7=0 \i=—j
as t — oo.

Let us now establish convergence in distribution for the process {p;(p, ¥) }1en driven
by a non-stationary but “nice” sequence 1. As a first step we shall prove convergence
of the one-dimensional distributions.

Theorem 3.6 We have that
Law (pi(p, ¥), Py) — Law(P5,P*)  (t — 00).
Proof: In analogy to Brandt (1986) we define for each [ € N the following random

variable:
Z(HA)BHHL(HA) (14)

Jj=0 1=t—j

Obviously, pl(p, 1) can be interpreted as the state at time ¢ of a system governed by
(1) and by the “input” 1 if it starts at time [ at the (random) state p. In particular,
p}(p,v) does not depend on the random variables {A;, By, ..., 4;_1, B;_1 }. Therefore,
we have that

pe(p, ¥) — ph(p, ¥)| <

t—1 t—1
=t—1 i=l

Jj= i=t—j
-1
1 — ln|B0‘
< — 1 A;
t—2
N 1 HIIA i+ 1n|B1|
exp _9 n A 9
i=1
+...
t—1-1 t=i-1
1 ln|Bl|
- In | A; =
+exp t—l—1i2:1: nlAinl+7—




t—1 t
1
(o (5 miaa) )
| t=l
. (exp (—t LS |Ai|)) "

Observe that the strong law of large numbers — see Proposition 3.3 above — yields
lim |py(p,¥) = pi(p,¥)| =0 Py — and P* - a.s. (15)

Indeed, for any 7 € N we have that
| it
— D InfAiy[ = E|Indg| <0 Py— and P* —a.s. (t— oo)
—J i

by Assumption 2, and therefore

1
exp | ——

which yields (15).
Let € > 0 and F', a bounded continuous real valued function with compact support,
be given. According to Theorem 3.5 there exists T; = T3 (e) € N such that

1 t=J
In|B;
In|A;y;] + %) —0 Py,— and P* —a.s. (t — o0)

‘ / Fpi(p, ))dP* — yoo(F)‘ <e/4 forallt> T, (16)

where vy, := Law(P§, P*).

Observe now that the event {pl(p,)) € A}, A € B(R), belongs to the o—algebra
F; defined in (3). As the sequence ¥ is “nice” we deduce from (11) that there exist a
sequence ¢; — 0 such that

sup [Py[p}(p,v) € Al — P*[p}(p, ) € A]| < 1. (17)

A>1

In particular, as Py —P* is a signed measure on F, this yields the following inequality.

sup

t>1 /F(pé(p, ¢)) (dP¢ — d]P’*)

< |Flue sup [Blpl(p,¥) € 4]~ Ppi(p, ) € 4]

S ‘F|oocl

€
< - 18
< (19)

for [ sufficiently large by (17) and because 1) is “nice”.

8



For the rest of the proof we fix I € N such that (18) holds true. Using (15) we can
easily deduce that there exists a constant To = T5(!) € N such that

[ P60 - o)} ars| <5 for 127 (19)

and that

< for t>T,. (20)

¢
4

‘/{F(pi(wﬁ)) F(pi(p,v))} dP*

Therefore, for ¢ > max{T},T>} we obtain the following inequality:

/ F(p(p, ) {dPy — dP*}

+/{F(pi(p,w — F(p(p, )} dP*

_|_

[ Pt - uoo(m\

< €+6+6+6
T T T
-4 4 4 4

by (19), (18), (20) and by (16). As € > 0 is arbitrary, this proves our assertion. O

Now we are able to establish the “global” convergence result stated in Theorem
2.3.

Proof of Theorem 2.3:

From the proof of Theorem 3.6 we can easily deduce that the finite dimensional dis-
tributions of the shifted process {pii7(p, 1) }ten under the measure P, converge weakly
to the finite dimensional distributions of the unique stationary solution { P} }+en of (1)
under the measure P* as 7" — oo. Indeed, let m e Nand t; <ty3 < --- < t, € Nbe
given. For t; > [ we put

Pyt (p, w) = (ptl (pa 1/)); - Dy, (pa ¢))a

and

Py s, (0, 0) = (0}, (0, 0), ..., 1}, (D))
As in the proof of Theorem 3.6 we have that

hm Hptl, Yt (pa 7/’) - pfh,---,tm(p? w)H =0 ]P¢ — and P* — a.s.,

t1—



where || - || denotes the Euclidian distance. Now let A € B(R™) be given. The event
{pl, ... (p,1) € A} belongs to the o-algebra F;. Therefore, we can use exactly the
same arguments as in the proof of Theorem 3.6 to verify weak convergence of the
finite-dimensional distributions.

Thus, in order to prove our assertion it suffices to show that the family of random
variables ({p;17(p, ¥) }ten)ren — viewed as random variables taking values in the space
RN — is tight. For this, we have to verify that for any € > 0 and for all t € N there
exists a compact set K; C R such that

Sl%p ]P¢[pt+T(p: ¢) € Kt] Z 1- €,

see, e.g., Ethier and Kurtz (1986), Theorem 3.7.2. To this end, let € > 0 and ¢t € N
be given. As the driving sequence % is “nice” we can choose [ € N such that

sup [Pylpt,r(p, ¥) € Al — P*[p} r(p,) € A]| <

AT>I 4

€

due to (11). Furthermore, we can choose a constant k£ € R such that
PP <K =P[P|<k>1-7 (T€N)

because the random variable Pj is P*-a.s. finite. Due to (15) there exists a constant
Ty = To(e, k) which satisfies

Bollperr(p, )] < k+ 26 = Pyllphyr(p, ¥)| < k+e| < 5

for all T" > Tj and for a given € > 0. Now recall that in the stationary setting, i.e.,
under the measure P*, the process {pii1(p,¥)}ren — and therefore, by (15), also the
process {p},(p,¥)}ren — converges P*-a.s. to the stationary process { P} }ren. In
particular, we deduce that

* * * €
P*[[p} (0, ¥)| < Kk + ¢ > P[P < k] — ~
for all T sufficiently large, say for T > Ty(e, K). Altogether, we obtain that

Byllpesr(p, )| < k+2d > Pollplir(p ) < k+d -5

* €
> Pplr(p )| <k+e — 3

> PR <H-5
3
= PRI <H-T>1-

for all T > Ty(e, K). Now we can obviously choose a compact set K = K (¢) C R such
that

sup Py[pir(p, ¥) € K] >1-2e

10



This proves the theorem. O

Let us now consider two case studies, where we can verify the assumption that the
environment v has a “nice” asymptotic behaviour. We assume that v is driven by
some underlying Markov process M = {m;}icny with transition operator U and with
state space X C R. The sequence M is defined on some probability space (Q2, F,P,,).
We assume that for any initial distribution pg of m the distributions u; of m; converge
weakly to a unique stationary measure p* as t — oco. Uniqueness of the stationary
probability measure implies that the Markov chain M is ergodic under the measure
P*(-) := [ Pm(-)p*(dm). Furthermore, we suppose that

A= f(my) and By := g(my)

for some bounded measurable real-valued functions f and g on R. It follows that the
sequence ¥ = {(f(my), g(my)) }ien is also stationary and ergodic by Propositions 4.1
and 4.3 in Krengel (1988).

Example 3.7 Suppose that the distribution u; of m; converge to u* in the norm of
total variation. This assumption is satisfied if, for example, M satisfies Doeblin’s
condition.r In this case we have that

U = pllo= sup  |U'F—p*(F)lo =0 (t— o00). (21)

FEB(X),|Floo<1
Here, Ut denotes the t-fold iteration of the operator U. Thus, Assumption 4 holds
true as the mapping m — Pp[{t1, ..., 0} € A'] (1 € N, A' € B(R?)) is bounded and
measurable. Indeed, for any | € N we have that

USB, ([, ... ) € Al — /Pm[wl, € Al (dm)

< ||[Law(eh,Ppn) — Law (¥, P, |
U = plloo =0 (t — 00)

o0

N

by (21). Hence the environment ¢ = {(f(m:), g(my)) hen has a “nice” tail structure.

Example 3.8 Let f and g be continuous and suppose that the transition operator U
of M maps C(X) into itself. Let the sequence {u;en be uniformly weakly convergent
to p* in the sense that

sup \U'F — 5*(F)|oo = 0 (t — 00).
FeC(X),|F|e0<1
Suppose furthermore, that the transition kernel P of the Markov chain M is strongly
continuous, i.e., for any event A € B(R), the mapping m — P(m, A) is continuous.
Using the same arguments as above, it is easily verified that Assumption 4 is satisfied
and that the sequence v is “nice” in the sense of Definition 2.2.

'For a discussion of uniformly ergodic Markov chains and Markov chains satisfying Doeblin’s
condition we refer the reader to Meyn and Tweedie (1993), Chapter 16.

11



4 The General Case

This section is devoted to the proof of Theorem 2.4. Let us first sketch the basic
idea. Recall that we introduced a sequence of “perturbed” random environments
Y™ (n € N) defined on a common probability space with the sequence 1, such that
Law (4", Pg) — Law(¢),P4) as n — co. Each of the sequences ¢ is stationary and
ergodic under P* and “nice” by Assumption 3. The following simple result implies
for any n € N the existence of a unique stationary solution { P}*}icn of (1) under the
measure P* driven by the process ¥".

Remark 4.1 Due to (8) we may assume that there exists a negative constant 3, such
that
supE* In |[Af| < 8 < 0. (22)
n

Moreover we have that sup, E*(In|Bf|)* < oo. Thus, each sequence ¥" (n € N)
satisfies Assumption 2.

As each of the sequences 9" (n € N) satisfies Assumptions 1 and 2 we know by
Theorem 2.3 that for any n € N the following holds true:

Law(p:(p, v"), Py) LN Law(Py,P*) := vl (t = o0).

Using an approximation result provided in Brandt (1986) we will deduce that the
sequence {p¢(p, ¥) }en, driven by the non-stationary input v, converges in law to the
unique weak limit vy, of the sequence {v2 },en. Establishing weak convergence of the
finite-dimensional distributions will then be an easy task.

The following result, which is an immediate consequence of Theorem 2 in Brandt
(1986), shows that the asymptotic distribution of the processes {p;(p, ") }+en converge
in distribution to Law(P;,P*) as n — 0.

Remark 4.2 Suppose that the Assumptions of Theorem 2.5 are satisfied. In the
stationary setting we have the following “global” stability result:

Law({P"}sen, P*) — Law({P; }ien, P*) (0 — 00). (23)

In particular,
Law(PJ',P*) = Law(P§,P*) (n — 00).

Furthermore, we can easily verify another “global” approximation result.

Remark 4.3 The following “global” approximation result holds true:

Law ({p(p, ¥") }ten, Ps) — Law({pe(p,¥) }ten, Py) on R (n — o0)

12



Proof: The assertion follows immediately from the continuous mapping theorem
because Law(y", Py) — Law(t, Ps) and since the mapping ¢ +— {p(t,%)}sen from
R?N to RN is continuous in the product topology. O

The rest of this section is devoted to the analysis of the asymptotic distribution
of the random variable p,(p, 1) under the measure P,. The next proposition yields
a uniform approximation result, which will turn out to be the key for the proof of
Theorem 2.5.

Proposition 4.4 For any Lipschitz continuous function F with compact support we
have

Jim supE, [F(pe(p, ) — F(pe(p,¥"))| = 0.

Proof: Let F' be a Lipschitz continuous function on R with compact support and
with Lipschitz constant m(F) = 1. Without loss of generality we may assume that
diam(supp F)=1. In this case |F(z) — F(y)| < G(|x —y|), where G(z) := |z| A 1, and
it suffices to show that

limy, o0 sup By G(Ipi(p. %) — pu(p, ")) = 0.
To this end, we can proceed as follows. Without loss of generality we choose o, =
for some constant n > 0. Thus we can write

t—1

pi(p,¥") Z Z HA H QGZ (Bt—l—j+%77t—1—j)

j=0 \ ZCZ; 1€T 1€Z; \I
> (T IT e
ICT: \i€T zEIt\I
where Z; := {t — j,...,t — 1} and Z; := (). This gives us

pe(p, ) — pe(p, ¥")|

< Y3 (DAL T el ) 1Byl

,_.

7=0 I;I 1€L 1€EI\Z;
7
- n U
+ZZ H|Ai\ H E‘€i| ﬁmt—j—l‘
j=0ICZ; \i€Z i€I\I;
n
+ZH|Az’| H ;|6i|
I;I i€ 1€TN\T
1 t—1
= ZZ H‘A‘ H n|€z‘ |Bt —j— 1‘+77‘77t i— 1‘)
j=0 ZCZ; \i€T i€I\Z;
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+> (1Tl IT nlel
ICI: \i€Z 1€ELN\L

Thus, it suffices to show that

t n

To this end, we proceed in several steps. B
Step 1: Suppose that under some measure ) the sequence {p;(p, ) }en is sta-
tionary and that p;(p, ) is @ — a.s. finite. In this case we have

) 1 ~ ) 1 ~
lim Sl;p]EQ [G (;pt(p, w))} = lim Eq [G <ﬁp1(p, 1/)))] =G(0)=0
by Lebesque’s theorem. B
Step 2: Suppose now that the process {p:(p, ¥) }1en itself is not stationary under
the measure (). Instead, suppose that this sequence converges with probability one
to an almost surely finite process { P, };cn which is stationary under @), i.e., let
lim [p,(p, TZ) - ﬁt' =0 @-as
t—00
hold true. In this case we know by Step 1 above that
. 1 -
11mn—>oo Slip EQG ﬁpt (p, ¢)
1 ~ 1~ . 1~
G| -p(p,¥) ) =G| =P, || + lim supEgG | — P,
n n n—oco ¢ n

1 ~ 1~
¢ (a09) - (1)

n n
Now let € > 0 be given. As G is bounded an Lipschitz continuous we can choose
T =T(e) € N such that

Eq ‘G (%pt(p, J)) -G (%E)

As G(0) = 0, and since the random variables p;(p,v) (t € N) are @ — a.s. finite we
have that

< En—>c>o sup EQ
t

= lim,_,o sup Eq
t

<2e¢ forallt>T and for all n € N.

— 1 ~ 1~
hmn—)oo sup ]EQ ‘G (_pt(pa ?/1)) -G <_Pt)
t n n
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< 2

by Lebesque’s Theorem. As € > 0 is arbitrary we conclude that

I 1 it
limy, 00 sup EoG <;pt(p, @D)) =0.

Step 3: For a given ¢ > 0 we can choose | € N such that for all n € N the
following holds true:

1 ~ 1 ~
s, (7)) < s G (1oi.0)) + (24)
t>1 n t>1 n

where pl(p,v) is defined as in (14). Indeed, as Py, — P* is a signed measure on F we
have that

/ e (%pi(p, J)) (dP, — dP")

< sup  [Py[pi(p,¥) € Al — P*[pl(p, ¢) € A]|.
AEB(R)1>1
Now observe that the event {pL(p, IZ)NE A}, A € B(R), belongs to the o—field G, =
o({¥s}s>1). Thus, as the sequence 1 has a “nice” tail structure, we deduce from
Proposition 3.2 that there exists a sequence ¢; — 0 such that

supEG (1440, ) < w6 (Lpl0. ) +
t>1 n t>1 n
which yields (24) for [ sufficiently large.

Our aim is now to control the left hand side of inequality (24), and to this end,
we apply Step 2 with @ = P* in order to control the right hand side of (24) for I
sufficiently large. Note that we can apply Theorem 3.5 to the sequence {p;(p, {ﬁv)}teN
as soon as

E* In[|Ao| + n]eo|] < 0.

This, however, follows immediately from a monotone convergence argument as soon
as 7 is sufficiently small due to (9). Thus, there exists a process {P;};en which is
stationary under the measure P* such that

lim |py(p,¥) — B| =0 P* —a.s.
t—00
Using Proposition 3.3 we can proceed as in the proof of Theorem 3.6 to show that

lim |} (p, V) —pe(p,¥)| =0 Psy— and P* —as. (I€N) (25)
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for 7 sufficiently small. In particular, we have, for any [ € N, that
tliglo P (p,¥) — P =0 P*—a.s.

Therefore, we can apply Step 2 in order to control the right hand side of (24). We
obtain that

. 1 ~ _ 1 ~
lim,, 0 sup E, G (Epi(p, 1[1)) < e+ lim, o supE'G (;pé(p, ¢)> =€ (26)

t>1 >l

for [ sufficiently large.
Step 4: Let € > 0 be given. We choose [ € N such that (26) holds true and deduce
from Step 3 and from G(0) = 0 that

I 1 o

lim,, o0 sgp E,G (ﬁpt(pa W)

I 1 o
= lim, o supE,G (Ept(pa 1/)))

. Ey {G <%pt(p, J)) -G (%pi(p, J)) H +e

Now, by (25) and as G is bounded and Lipschitz continuous, we can choose T' = T'(¢, 1)
such that T > [ and such that

E, {G (%pt(p, J)) e (%pi(p, J)) H <e

As G(0) = 0 we can now proceed as in Step 2 to conclude that

< limy o SUp
>l

sup
t>T

_ 1 ~
lim,,_, o sup E, G (—pt(p, 1/))) < 2e.
t n

As € > 0 is arbitrary we deduce that lim,, , sup; EsG (%pt(p, {Z)) = (. This proves
our assertion. O

Corollary 4.5 Let m € N be given. For any Lipschitz continuous function F' on R™
with compact support we have that

lim sup E4|F(py, (p, %), Dt (0, 0")) — F(py, (0,%), - - -, Pe (D5 90))| = 0.

N=00 ¢y, ....tm

Proof: Without loss of generality we may again assume that m(F) = 1 and that
diam(supp F)=1. Thus, Jensen’s inequality yields

E¢|F(pt1(p7 'an)v te 7ptm(p: ¢’n)) - F(pt1 (p: ¢)7 .- :ptm(pv 1/1))|
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< SUEIpa(p, o) — pi(p, ) A1
=1

< S E(Ipn(pv") — pup,w) A1
=1
< msgplE;/zGQ(lpt(pﬂﬁ”)—pt(p,w)l)-

Therefore, the assertion follows by the same arguments as in the proof of Proposition
4.4. O

As an easy consequence of Proposition 4.4 and Theorem 3.6, we can now establish
weak convergence of the finite dimensional distributions of the process {p;(p, ¥) }ten
under P, to the finite-dimensional distributions of the unique stationary solution of
(1) under the measure P*.

Proof of Theorem 2.5:
Let us first establish convergence of the one-dimensional distributions, i.e., let us
show that
Law (p:(p, 1), Py) — Voo := Law(P;,P*)  (t — 00).

To this end, let F' be a real valued Lipschitz continuous function on R with compact
support. According to Proposition 4.4 we know that

Tim sup Ey [F(pi(p, ¥)) — F(pe(p,¥"™))| =0 (27)

for a suitable sequence o, | 0 (n — o0). As each of the sequences ¢¥" (n € N) is
“nice” in the sense of Definition 2.2 we can proceed as follows. We have that

By F(pe(p, V) — veo (F)]

< By F(pi(p, ¥)) — Es F(pe(p, ")) (28)
+Eg F(pe(p, ¥")) — v (F)] (29)
+[15 (F) = veo (F)] (30)

where we put v, = Law(PJ', P*). Obviously, (28) can be estimated by
(28) < sup By [|F (pe(p, ¥)) — F(pe(p: v")] (31)
Now let € > 0 be given. By (27) there exists N € N such that

€
28) < —
(28) < ¢
By Remark 4.2 we also have that (30) < ¢/3 for n > N. Now let n > N be fixed. By
Theorem 2.3 there exists a constant 7'(n) such that

forall n>N andforall teN.

(29) = |v7(F) — gg(F)|<§ for all ¢ > T(n)
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where v} ;= Law(p,(p, ¥"), Py). In particular we get

By F'(pe(p, ¥)) — voo(F)| < €

for all t > T'(n). This shows vage convergence of the sequence {Law(p;(p, ¥), Ps) }ren
to the probability measure v, and therefore we have

Law(p:(p, ), Py) D v (t = 00).

Now convergence of the finite-dimensional distributions follows immediately from
Corollary 4.5 and from Remark 4.2 in analogy to the proof of Theorem 2.3. O

5 A Markovian Case Study

Let us now study a class of Markovian models where our Assumption 3 that the driving
process 9 can be approximated in law by sequence of “nice” processes {1" }en can
indeed be verified.

We assume that the random variables €;,7; (¢ € N) are N(0,1) distributed and
that M = {m,;}en is a Markov process associated to a random system with complete
connections? defined on a probability space (2, F,P,,). More precisely, we suppose
that there exists a measurable space (E,&), a compact set X C R, a measurable
function v : X x E — X and a stochastic kernel K on (X, &) such that the random
variables {m;}icn obey the relation

myr1 = u(my,e;) where e ~ K(my;-). (32)

In particular, the transition operator U of the process M acts on the set of all bounded
measurable functions F' on X according to the equation

UF(m) = /EF(u(m, e)) K (m,de).

We are going to consider the driving sequence

Y= {(f(mt), g(mt))}teN,

where f and g are Lipschitz continuous functions which are assumed to be bounded
away from zero.

Assumption 5 The kernel K satisfies the Lipschitz condition

K(m,A) — K(m', A
o sy KM ) = K (o', A)

AeE m#Em! ‘m - m,|

<C (C<o0),

2For a detailed discussion of random systems with complete connections we refer the reader to
the books of Iosefescu and Theodorescu (1968) and Iosefescu and Gregorescu (1993).
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and the mapping u has the mean contraction property, i.e.,

[ (wtme) = utm', ) m, e < o —

for some constant 0 < 1.

In Norman (1963), Chapters 3 and 4, several criteria are given, which ensure that the
process M governed by (32) converges in distribution to a unique equilibrium measure
1*, and that for any Lipschitz continuous function F' on X we have that

U'F = " (F)lso < c(F)a! (33)

for some o < 1. Here, the constant ¢(F) depends on F' only through its Lipschitz
constant and through its global maximum |F'|,. For the rest of this section we shall
assume that (33) holds true.

Let us now verify Assumption 3. First, we will show that the sequences ibv and ¥"
(n € N) have a “nice” tail structure.

Lemma 5.1 Let f,g: X — R be Lipschitz continuous and suppose that Assumption
5 is satisfied. For any fized n € N there exists a constant C(n) < oo such that

‘Qn’l(ma Al) — Qn’l(mla Al)‘

sup  sup - < C(n),
Ale B(R2) m#£m/ [ — m'|
and - ~
1, Al _ Nl /Al
s 19 A) = QM A

)
AleB(R2!) m#Am/ im —m

uniformly in | € N. Here, we defined Q"'(m, A') == Py [{¢7,..., 4]} € A and
QU (m, A) == Pu[{thr, ..., i} € AY.

Proof: Without loss of generality we may assume that n = 1. Let us first consider
the case [ = 1. For m,m’ € X and for A € B(R?) we have that

QY (m, A) — QY (m/, A)]
\/%cn fA exp (_ﬁ{(xl — f(m)) + (22 — g(m))}) dz,dzs

— [, exp (—ﬁ{(xl — f(m) + (x2 — g(m’))}) dz1dzy

For m € X we put
M (m) = {(z1,22) €R® 1 21 > [f(m)], 22 > |g(m)[},

M (m) = {(z1,22) €R® 1 21 < —|f(m)], 22 < —[g(m)[}.
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For A € B(RZ) we get
QY (m, A) — QU (!, A)|
< | faep (=l = 1Fm)) + @2 — lgm)D}) Tacrm (@, 22)dradas
— [yexp (={(z1 = | F(m)]) + (z2 = |g(m"))}) Lagt ey (@1, T2)d1 ds |
~vexp (=g (o + 11 + (@2 + [gm))}) Tar- (a1, 22)dard
Iy (~ el [FO)) + (a2 + l90m) D) Lua- ooy o4, 22) s

An easy calculation shows that the assertion follows from the Lipschitz continuity of
the functions f and g. Thus for any n € N there exists a constant ¢(n) such that

‘Q”’l (ma Al) - Qn,l(mla Al)‘

sup < ¢(n)
AleB(R)
and such that _ _
1,1 AL — OV (m!. AL
wp 1€ A =@ A _
AlEB(R) im —m/|

Now we can proceed as in the proof of Lemma 2.1.63 in losefescu and Theodorescu
(1968) to verify that the constant C'(n) defined by C(n) := C+c(") yields the desired
result. Indeed, let us put
" |Q"’l(m; Al) _ Q"’l(m';Al)‘
o' := sup sup - .
AleB(R2) m#£m/ lm — m/|

In particular, of = c¢(n). We shall now demonstrate that o] < Cifg") uniformly in

I € N. To this end, we can proceed as follows. Let A”' € B(R?*(H1) be given and
note that

‘Q”’H—l(m, AH—I) . Qn,l—f—l(m/’Al—f—l)‘

/ / {Q™" (m;dn) ® Q™ (u(m, e); d¢) ® K (m; de)
At Jg

—Q™H (m'; dn) © Q™ (u(m', e); d¢) ® K (m'; de) }|

< N {[E{Q"’Z(U(m, e); A') ® K (m;de) — Q™ (u(m', e); A') ®K(m';d6)}}
+c(n)|m — m/|
< (¢(n) +C)m — m'\+sup Q"l u(m,e); A') — Q™ (u(m', e); A)} K (m; de)

< (c(n)+0+9al)|m—m\,

where the last inequality follows from the mean contraction property of the mapping
u and from the definition of . In particular, we have that

ayy <c(n) +C+ 6o,
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and from this it is easily seen that
- C
of < (c(n) +C) Y6 < %

1€EN

The same arguments remain valid if we replace Q™' by @” in the above calculations.
This proves our assertion. O

Corollary 5.2 Under the assumptions of Lemma 5.1 the approzimating sequences Y™
(n € N) and ¢ are “nice”.

Proof: For each n € N the mappings

m o Po[{y", ... 4ty € A, m— Pu[{tn, ..., 0} € Al

are Lipschitz continuous uniformly in [ € N and in A' € B(R?) by Lemma 5.1. Thus,
from (33) we deduce that there exists a constant o < 1 such that

sup |[Law (", Pg) — Law (", P*)|| £,

< sup sup |Uth[{¢3>---a¢?_1}€Al]
I AleB(R2)

_/Xpm[{wg,...,wf_l} € A'lu*(dm)
< 5(n)at

o0

for some constant C(n) depending only on C(n). Of course, the same arguments
remain valid if we replace ¥" by {ﬂv in the above calculations. Thus we verified As-
sumption 4 and deduce that the sequences ¢ and ¥™ (n € N) are “nice” in the sense
of Definition 2.2. O

Let us now consider the integrability conditions (7), (8) and (9).
Remark 5.3 In our present setting (7), (8) and (9) hold true.

Proof: Observe first, that (9) holds true as the functions f and g are bounded. To
verify (7), let ¢ > 0 be such that |f|s < e. Observe that the mapping

(m, 2) = (In|f(m) +o.2))" Ac
is bounded and continuous. Thus,
E* [(In|f(m1) + oner)t Ac] = EF [(In|f(m1)])T]  (n — o0).

As
{(n]f(m1) + ones )t > ¢} € {61 > %}

On
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we have that
B [(In |f(m1) + oner )T Ac] =B [(In]f(m1) + oner|)] |
< [ @+lfkane
— Oc /0(—:1 — 00).
Here, we put ¢’ = % Of course, the same arguments remain valid, if we replace
f by g in the above calculations.

As the functions f and g bounded away from zero, (8) follows from an uniform
integrability argument. o

In our present Markovian setting Theorem 2.5 yields the following result.

Theorem 5.4 Suppose that the Markov chain M = {m;};en admits a unique invari-
ant measure pu* and that Assumptions 2 and 5 are satisfied. Let f and g be Lipschitz
continuous functions on X which are bounded away from zero and consider the input

Y = {(f(me), 9(ms)) }sen-

In this case the finite dimensional distributions of the sequence {p;(p, ) }ten under
the measure Py (¢ € R?) converge weakly to the finite dimensional distributions of the
unique stationary solution of (1) in the sense described in Theorem 2.5.

Proof: The assertion follows immediately from Theorem 2.5, from Corollary 5.2 and
from our above considerations. O

Remark 5.5 1. Suppose that the functions f and g are not bounded away from
zero. In this case our result remains valid as soon as the convergence condition
(8) is satisfied, i.e., as soon as the invariant probability p* of M is “sufficiently
reqular”.

2. The random variables ¢; and n, (t € N) in our approzrimation scheme do not need
to be normally distributed. This was only used for convenience in order to obtain
an easy proof of Lemma 5.1. Furthermore, some straightforward modifications
show that the random variables m; may take values in any compact metric space.
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