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Abstract

Single index models are frequently used in econometrics and biometrics. Logit
and Probit models are special cases with fixed link functions. In this paper we
consider a bootstrap specification test that detects nonparametric deviations of the

link function.

The bootstrap is used with the aim to find a more accurate distribution under
the null than the normal approximation. We prove that the statistic and its boot-
strapped version have the same asymptotic distribution. In a simulation study we
show that the bootstrap is able to capture the negative bias and the skewness of
the test statistic. It yields better approximations to the true critical values and

consequently it has a more accurate level than the normal approximation.
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1 Introduction

Single index models are frequently used in econometrics and biometrics. They are defined
by the equation
Y = F(X70) +¢, (1)

where the “link function” F' is a known function that operates possibly nonlinearly on
the “linear index” X7T#. For the error term ¢ we assume that E(¢|X = x) = 0. Model (1)
can be rewritten as

EY|X =z)=F(X"0). (2)

Single index models are natural generalizations of the linear model Y = X7 + €. They
allow modelling of a variety of situations, e.g., binary responses, multinomial and ordered
discrete responses, censored and truncation responses. In the context of binary choice
models equation (2) can have the probit formulation

EY|X=2)=PY =1X =2) = ®("9)
(with & the standard normal distribution), or the logit formulation
EY|X=2)=PY =1|X =2) = {1 +exp(—z"6)}".

McCullagh and Nelder (1989) give a survey with several applications in biometrics.
Fahrmeier and Tutz (1994) apply this model in credit scoring. Stoker (1992) and Horowitz
(1998) describe econometric applications with a view towards semiparametric approaches.
Examples are labour supply (Stoker, 1992), work-trip mode choice (Horowitz, 1993), mi-
gration on the labour market (Burda, 1993) and innovative behaviour of firms (Bertschek
and Entorf, 1996). Furthermore, some models from survival analysis are single index
models, see (Cox and Oakes, 1984).

In this paper we consider the following model that is slightly more general than (2)
EY|X = z) = F{v(z,0)} (3)

where Y is a real valued response variable and where the covariable X takes values in IRF.
The link function F' : IR — IR and the index function v : IR¥*? — IR are known. The
parameter 6 is assumed to lie in a subset © of IR%. Note that model (3) differs from (2)
by allowing nonlinear indices v(X, 6).

An important step in the use of single index models is the choice of the link function
F. There are often purely practical reasons for choosing a certain functional form for F.
Consider e.g. the case that model (3) is motivated by the stochastic utility approach,
see Maddala (1983). In this approach the form of the index stems from theoretical con-
siderations whereas the link function is the distribution function of some error variables.
Typically only for convenience the error variables are assumed to have normal or logit
distribution.

On the other hand, empirical evidence has shown that such a parametric specification
of F'is not always adequate, see e.g. the transportation choice example in Horowitz (1993).
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It is therefore important to have a test for the specification of the link F'. Horowitz and
Hérdle (1994) have developed such a test. Their HH test is different from procedures
proposed by Azzalini, Bowman and Hérdle (1989), Hardle and Mammen (1993), or le
Cessie and van Houwelingen (1991). These latter tests are constructed for arbitrary
nonparametric alternatives. If X is highdimensional such overall tests can have a poor
power. The HH test avoids this ”curse of dimensionality” by assuming that also on the
alternative the conditional expectation of Y depends on the covariable X only via the
index function v(X, #).

Horowitz and Hérdle (1994) propose to use normal approximations for the calculation
of critical values. Simulations have shown that the accuracy of the normal approximation
is affected by a negative bias of the HH statistic, see Proenca (1993) and Proenca and
Ritter (1993). Here, we study bootstrap procedures. Our aim is to get approximations
that work better in finite samples than the normal distribution. We will discuss several
bootstrap approaches. We will study the performance of these bootstrap tests by asymp-
totics (see Section 3) and by simulations (see Section 4). In the next section we will give
a short description of the HH test.

2 The model and the test statistic

Let {(X1,Y1),..., (X, Y,)} be a random i.i.d. sample of (X,Y") that follows model (3).
We assume that there exists a y/n—consistent estimator 6, of 6. Typically, such a Vn—
consistent estimate is given e.g. by the method of (weighted) least squares or by the
(quasi) maximum likelihood approach, see McCullagh and Nelder (1989) and Severini

and Staniswalis (1994).

We come now to the description of the HH test. The test is constructed for the test
hypotheses

Hy, : E{Y|X}=F(v(X,0))
Hy : E{Y[X)} = H(v(X,90)) (4)

where H (o) is an unknown function. Note that under Hy and H; we have that E{Y | X} =
E{Y|v(X,0)}. The HH statistic is motivated by conditional moment tests, see Newey
(1985). The main idea relies on the intuition that on the hypothesis a nonparametric
estimate of F' should be close to F. On the other hand, if the link F' is not correctly
specified then the nonparametric estimate should significantly differ from F. The HH
statistic has the form

T, = ﬁﬁ;w(@»m — F@Fub) — F(6)) (5)

where v; = v(Xj, én) and where w is a non-negative weight function. Often the weight
function w is defined as the indicator function of an appropriately chosen set. F;(7;) is
a leave-one-out kernel regression estimate of E{Y |v(X,#)}. For asymptotic unbiasedness
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it is defined according to the proposal of Bierens (1987). It is a linear combination of two
regression kernel smoothers with different bandwidths (h and s, respectively)

~ N h T h r
Fra(v) = {Fnhi(v)— (g) Fm,-(v)} / {1— (;) } (6)
£ ViRl ~ o0}/
Fri(v) = #fz - ) fort=handt=s (7)
£ Kl — X, 61/
J#i
where h = cn @+ s = n=%Cr+1) with ¢,¢’ > 0,0 < § < 1 and a kernel K(e) of
order r > 2.

Horowitz and Hérdle (1994) show that 7, has an asymptotic normal distribution
N(0,02) where

o2 = 20k / w(v)?o”(v)dv, (8)
Ck = /K(u)Zdu, 9)
o?(v) = V{Y|u(X,0) =v}. (10)

With an estimator for 02 the normal limit of the test statistic can be used for the
calculation of approximate critical values, see Horowitz and Hérdle (1994). However this
approach can lead to very poor level accuracy, see Proenca (1993) and Proenga and Ritter
(1993). Bootstrap is an alternative approach for getting approximate critical values. In
the next section we introduce several bootstrap procedures and discuss their asymptotic
properties.

3 The bootstrap approach

The main idea of the bootstrap approach is to mimic the model under the hypothesis Hj.
Bootstrap gives an approximation for the distribution of the HH statistic when model (3)
is true. We will see that it produces critical values that are more reliable than the critical
values of the normal approximation.

We will consider a class of resampling schemes that work according to the following
steps.

Step 1. Calculate variables 67 that approximate the conditional variances o*[v(X;, 0)] =
var[Y;|v(X;, 0)] of the responses Y;. [Which choices of 67 are possible will
be discussed below.]



Step 2. Generate n conditionally [given the original sample| independent random
variables €], ..., € with conditional mean 0 and conditional variances
6%,...,02. [Choices of the conditional distributions of &} will be discussed
below.]

Step 3. Put R

V' =F{v(X;,0,)} +¢; (11)
fori=1,...,n. Wewill use (X;,Y;*), i = 1,...,n as bootstrap sample. Note
that in these resampling schemes the covariables X; are not resampled.

Step 4. Calculate an estimate é;i that is based on the bootstrap sample (and the
original sample).

Step 5. The bootstrap version of the HH statistic is now

Ty = Vh Y w()Y; — F@)IE @) = F(5))], (12)
i=1
where 97 = v(X;, 0%), where w(e) is defined as above and where F%(e) is
calculated as F;;(e) but with ¥; replaced by ¥;*. (The covariables X; are
not replaced in the definition of F;(e)).
For the choice of the variables 62 (i = 1,...,7n) and % and of the distributions of &
(1=1,...,n) we make the following assumptions:
B 1. It holds that
1 w(wi) 2K ([vi —vil/B) 1 2 2242
— o*(vi)o*(v;) — 6765 = op(1)
hn 5% Py (vi) | ’ g
where v; = v(Xj, 8) and where pj is the density of v(X,0).
B 2. For the bootstrap error variables we have that there exists a p > 1 with
n'~?h=?’log(n)?* = O(1) and
*14p _
max F [e71%] X1,.., Xa] = Op(1).
B 3. The estimate 87 fulfills

0: =0, + Op(n=/?),

i.e. 0% is \/n consistent in the bootstrap world.



Condition B1 holds if 67 are consistent estimates of o%(v;), i.e.

max |67 — o?(v;)

1<i<n

= op(1). (13)

But condition (13) is not necessary. Note that B1 holds if certain local and global averages
of 67 are asymptotically equivalent to the corresponding averages of o%(v;). In particular,
we will apply our results to a resampling scheme (wild bootstrap, see below), where 62 is
equal to a squared single residual. Then under appropriate conditions B1 holds whereas
(13) is not fullfilled.

In B2 we consider the conditional expectation given only the covariables (and not the
responses). It can be easily verified that this condition implies that

E* [|e71"] = 0r(1), (14)

where E* denotes the conditional expectation given the whole sample X1,Y7, ..., X,,Y,.
We will consider a resampling scheme (wild bootstrap) that fulfills B2 but not (14).

We now come to a discussion of the choice of the parametric estimate 0:. An obvious
choice that fulfills our condition B3 is #;, = 6,. Then the parametric estimation step
is not mimicked in the resampling. This choice of 6] works asymptotically because the
first order asymptotic distribution of our test statistic is not affected by the choice of
the estimate 6,. However we expect for finite samples and asymptotically in second
order that bootstrap performs more accurately if an estimate é; is used that mimics 6,.
This estimate has to be calculated in each cycle of the resampling algorithm. For most
estimates én, calculation is lengthy because it requires an iterative algorithm. In the
bootstrap world we know the true underlying parameter, namely f,. So there we can
use the same iterative algorithm with 0, as starting value. Theoretical considerations for
many estimates (quasi-likelihood, weighted least squares) suggest that one iteration in
the algorithm suffices, see e.g. Mosbach (1992).

We will discuss the validity of these assumptions for several resampling schemes after
the statement of the following theorem. This theorem states that on the hypothesis T
has the same asymptotic distribution as 7. This implies that bootstrap gives a consistent
estimate of the critical values of T},. So the bootstrap test has asymptotically correct level.
The theorem uses assumptions A1-A9 that are stated in the appendix.

Theorem 1 Suppose that the HH test is used with bandwidths h = cn= YY) gnd s =
cA’n_‘s/(Q’““) (for constants ¢, > 0 and 0 < § < 1) and with a \/n consistent estimate
0, = 0—|—Op(n_1/2). Under assumptions B1-B3 stated above and A1-A9 from the appendix
we get that

doo (L (T3}),N(0,0%)) = 0

wn probability. Here L* denotes the conditional distribution given the sample X1,Y1, ..., Xy,
Y,. Furthermore, dy denotes the Kolmogorov distance (i.e. the supremum norm between
the corresponding distribution functions.)



We now discuss Assumptions B1-B3 for several bootstrap resampling schemes. We
will discuss wild bootstrap and parametric bootstrap. For a discussion of bootstrap in
a related model, see also Mammen and van de Geer (1997) and Hérdle, Mammen and
Miiller (1998).

Wild bootstrap is related to proposals of Wu (1986) and Beran (1986) and was first
proposed by Hérdle and Mammen (1993) and Mammen (1992) in nonparametric setups.
In the wild bootstrap one generates an i.i.d. sample 7y, ..., n, with mean 0 and variance
1 and one puts f = &;m;. The choice of 6; depends on our assumptions on o?(v) =
Var[Y|v(X,60) =wv)]. We discuss here two types of choices for 4;.

- If we make no smoothness assumptions on o?(v) then an appropriate choice of 62 is
[Y; — F(4;)]? or [V; — ﬁ’m(@z)]z, respectively (where, as above, 0; = v(X;,0,).) It can
be checked that Assumptions B1 and B2 are fulfilled if the distribution of 7, ..., 7,
have compact support. In particular then B2 follows from A7 and boundedness of
F, see Ab.

- Under smoothness assumptions on ¢?(v) estimates &; can be used that are based
on smoothing of squared residuals [see e.g. Gasser, Sroka, and Jennen-Steinmetz
(1986)]. Suppose that estimates ; are available such that

= op(1)

max |57 — o2(v;)

1<i<n

and such that 6; is uniformly bounded (a.s.). Then wild bootstrap fullfills Conditions
B1, B2 as long as 7, ...,n, have a bounded 4p-th moment.This is easy to check.

Another modification of wild bootstrap is the moment oriented bootstrap of Bunke
(1997). In this resampling also higher order moments of the data are mimicked by the
resampling. Again it is easy to see that, under appropriate conditions, this approach fits
into our framework B1-B2.

In the case of binary responses the (conditional) distribution of the response Y (given
the covariable X) is determined by the value of F'(X7#). Then it makes sense to generate
Y;* that have (conditional) distribution according to the parameter F(X76,). This is an
example of the parametric bootstrap. It can be applied for the whole class of generalized
linear models where the conditional distribution of the response belongs to an exponential
family. The conditions A1 and A2 are fullfilled for parametric bootstrap if the 4p-th
moments of the responses are uniformly bounded for parameters in a neighborhood of 6.
For the case of a generalized model this holds if F(X76) lies almost shurely in the interior
of the natural parameter space of the exponential family.

The statement of Theorem 1 can be extended to the case of local alternatives. Suppose
that
EY;|v(X;,0,) = v] = F,(v)

a.s. for a sequence of functions F;, and parameters 6,,. Furthermore, denote the conditional
variance Var [V;|v(X;,0,) =v] by 02(v). The parameter 6, now depends on n and is
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chosen such that 8, = 6, +Op(n /2). (Note that ), is the estimate of  on the hypothesis
H, where F,, = F. On the alternative where F,, differs from F' the center 6, of the
distribution of 6,, may change. It is too restrictive to assume that 6,, = 6.) If one assumes
now that F,, 6, and o2 converge to F, 6 or o2, respectively, and that our smoothness
assumptions on F', § and o? hold for F,,, 6, and o2 then one can show that also on the
alternative 7* has the same asymptotic normal limit as stated in Theorem 1. Then also
on the altenative bootstrap gives a consistent estimate of the critical values of 7,,. So on
the alternative the bootstrap test has asymptotically the same power function as the test
that uses correct critical values.

The HH test requires the choice of two bandwidth A and s. It is needed that the
bandwidth A is of order n~'/("*1 and that s is of smaller order, see Theorem 1. This
choice of h is motivated by estimation problems where this rate of convergence is optimal.
However for testing also other choices of h make sense. A test with large h looks for
more global deviations of the link function from F', whereas small choices of h make the
test more powerful for local deviations. So the assumption that h is of order n=/+1)
is too restrictive. For the HH test this assumption has been made to guarantee that the
estimate F),; is asymptotically unbiased. We propose now a modification of the HH test
that works for all choices h with h = o(1). We put

[Y; — F{o;}] K([0; — w:]/h)
;‘l:l,jgéi K([ﬁj - @z]/h) .

Tmod = VY w(®;)[V; — F(;)) Z2=02
=1

In this test statistic the smoother

Fons(8:) = Y1z ViK (05 — 0i]/h)
- g1, K ([0 — 0l/h)

is compared with an estimate of its (conditional) expectation on the hypothesis:

Z?:Lj;éi F{@j}K([@j B @z]/h)
g1, K ([0 = 0il/h)

This test statistic has the same asymptotic limit as the HH test. This asymptotic limit
holds under weaker conditions. In particular, it is not required that A is of order n~*/(+1)
and that F' and the density of v(X;,#) have higher order derivatives. If h is of order
n~ /@1 then the modified test is asymptotically equivalent to the HH test. This is the
content of the following theorem.

Theorem 2 Suppose that h fullfills h = o(1) and n *h*logn = o(1), that 6, = 6 +
Op(n=Y?) and that conditions A1-A8 from the appendiz apply. Then it holds that

Tmod £y N(0,02).

Under the additional assumption of A9 and that h = cn™"/?™+Y) and s = n=%/Cr+Y (for
constants ¢,d >0 and 0 < § < 1) we get that

Tmd =T, + op(1).



The next theorem states that also for this test bootstrap can be used for the approx-
imate determination of critical values.

Theorem 3 Suppose that h fullfills h = o(1) and n~'h*logn = o(1), that 6, = 6 +
Op(n~/?) and that assumptions B1-B3 stated above and conditions A1-A8 from the
appendiz apply. Then we get that

doo (L7 (T"***) ,N(0,0%)) = 0

in probability, where T™%* is the bootstrap version of T2

We have carried out a small simulation study for binary responses. The response
variables took values from {0, 1} with

P{Y =1jv(X,0) = v} = E{Y|v(X,0) = v} = F(v).
We considered the HH test 7}, for the null hypothesis Hy:
Hy : F(v) = {1+ exp(-v)}™"
with linear index v(z,0) = 1 + 270 where 0 = (—1,2)".

The covariables X had a two dimensional standard normal distribution and the gen-
erated samples had size n = 200. We have checked the test for the alternative Logit with
a bump:

. G a

EIY[o(X, 6) = o] = {1+ exp(-0)} " = %0 (%)
with ¢(e) the standard normal density and a = 0.5,0.75,1,1.25. In our simulation the
HH test was performed with bandwidths h = 0.5, h = 1 and A = 1.5. These choices
were made after a graphical inspection of the kernel regression estimates. These band-
widths corresponds to undersmoothing, nearly optimal smoothing and oversmoothing,
respectively. The bandwidth s was determined according to s = hn'=9/% with § = 0.1.
The weight function w(v) was defined as the indicator function between the 5% and the
95% percentiles of the fitted index v. The critical values were calculated by parametric
bootstrap. The bootstrap used 199 replications. In Table 1 the rejection probabilities are
compared for the bootstrap test and for the HH test with critical values from the nor-
mal approximation. The normal approximation does not work. The levels are too small.
The test is too conservative. Because of the inaccurate critical values this test achieves
no power for the different alternatives. On the other hand, the bootstrap test performs
reasonable well. Its level does not differ too much from the nominal level and it achieves
remarkably better power.



Table I: Percentages of rejections using critical values from the normal approrimation and
bootstrap critical values. Nominal size is 5% or 10%, respectively.

nominal size 5% nominal size 10%
normal bootstrap normal bootstrap
logit link
h=20.5 1.6 4.8 2.2 9.8
h=1.0 0.2 5.0 0.6 10.8
h=15 0.0 7.4 0.0 14.6
logit link with bump a=1
h=1.0 0.4 35.6 2.6 66.6
h=15 0.8 34.4 3.0 48.8
logit link with bump a=1.25
h=1.0 1.2 49.2 2.6 66.6
h=15 2.2 42.4 6.4 60.8
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A Conditions

For a neigbourhood Ny of 6, for an open subset S, of the support of v(z,0), and for a
compact subset S, of S, we make use of the following assumptions.

Al - The covariable X has compact support S,.

A2 - There exists a constant M such that for every z € S, and 7 € Ny

() [v(z, 1) < M,

(b) v(z,7) is continuously differentiable with respect to 7 and

|Ov(z,T)/0Tj| < M,j=1,---,k.
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A3 - The variable v(z,6) has a density py w.r.t. Lebesgue measure. For v € S, the
density is bounded from below and from above.

A4 - The weight function w(e) has compact support S,, C int(S,) and satisfies for some
constants M,, and M:

a
b

w(v) < My, for all v € S,,.
o) —w(vy)| < M}|vg — vy for all vy, vy € S,

A5 - (a

(
(
(
(b

) 0
) (
) |F{v(z,7)}| is uniformly bounded over z € S, and 7 € Nj.
) [F(v

|
|F(v1) — F(vg)| < Mp|vy — vy for a constant Mg and for all ve,v; € S,,.

A6 - o%(v) = V{Y|v(z,0) = v} is a uniformly bounded, continuous function of v € S,,.
AT - There exists a p > 1 with n!=?h=?log(n)* = O(1) such that

sup E [\Y — E{Y|X = :C}|4p] < 00 a.s.
v(x,0)ESy

A8 - K has bounded support, it is symmetrical about 0 and it has a bounded derivative
K'.

A9 - (a) K is an r’'th order kernel.
(

b) F(v) has r continuous derivatives for v € S,,.

(c) pe(v) has r continuous derivatives for v € S, that are uniformly bounded for
v

)
€8s,
B Proofs

We start by giving a proof that T}, has an asymptotic normal distribution N(0,0%). We
show that this result holds under Assumptions A1-A9. These assumptions are slightly
weaker than the assumptions used in Horowitz and Héardle (1994). The only exception is
our additional Assumption A7 that we use to show that the quadratic statistic A, 1(7)
converges uniformly for 7 with |7 — 8| < Cn~/2 to 0 (in probability), see (17). This
implies that An,l(én) converges to 0 (in probability). In Horowitz and Héardle (1994) it
is only shown that A, ;(6,) converges to 0 (in probability) for deterministic sequences 6,
with [|0, — 0]] < Cn~'/2, see the proof of Lemma 6 in Horowitz and Hirdle (1994).

Our proof of the asymptotic normality of 7T, differs slightly from the proof given in
Horowitz and Hérdle (1994). It has an appropriate form that we can easily explain how
the proof has to be modified to get the statements of Theorems 1-3.

Write

To(r) = VA wiv(X,, )} [Y; - F{o(X;, )} [Fuifv(Xi, 1)} = F{v(X;,7)}] .

i=1

13



Then it holds that T, = Tn(én) In a first step of the proof one shows that
T, = T,(0) 4+ op(1). (15)
This follows from

sup |Tn(7) — Th(0,)| = 0p(1). (16)
-0l <Cn-1/2

The proof of (16) requires several steps. Most steps use uniform stochastic convergence

of terms that are linear in &1, ..., &,, where ¢; = Y; — E[Y;|X;]. At one point one has to
check a term that is quadratic in €4, ...,e,. This term has the form
S wpuger 3 of|FlieD oG} Kifu-u)
] 1,]#1 pTL,h,T{U(-Xz, T)} p'fl h,G{Uz}

() RS S - (T
where

Prprv(Xi, 7)) = Kh{v Xiy ) = (X, 1)}

5|'—‘ SI'—‘

Kfo(Xi,7) — (X, )} = K3 (0).

We will discuss the quadratic term

=:ngézﬂﬂvﬁfi éé i [Kn{v(Xi, 7) — v(Xj, 1)} — Kn{vi — v;}]

= =15
ﬁn,h,T{U(Xia 7_)}—1’

and the linear terms

An,l(T)
n

Ana(r)
= Vi S w e [P{0(507) — P} Do)
Ang(rz)_

—Zw{vl}a S [F{vi} - Flu)]

J=Lj#4
[Kh{U(Xia T) - (Xj’ 7_)} - Kh{vi - Uj}] ﬁn,h,T{’U(Xi’ T)}il’

We will show that

sup |An,l(7—)| = OP(1)7 (17)
lIT—|<Cn—1/2
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for l =1,1 =2 and | = 3. The other linear and quadratic terms can be treated similarly.
Proof of (17) for 1 = 1. Choose d,, — 0 such that
Yo = 6, 0t PR~ log(n)*E [e?”I {|£Z| > 6,n*h/? log(n)*l/z}] — 0.
Such a §,, exists because of Condition A7. Note that
E [e?pl {|ez| > §,n'/*h!/? log(n)_l/Q}] —0
for n — oco. Put

el = gl {|ez| < 6t/ ht? log(n)_m} — s,

Mty = Eé'z]: {|€z| < 5nn1/4h’1/2 log(n)_lﬂ} ’
Anin (1) = Y ang;(7)eies,
JjFi

Apap(r) = 22%,@]-(7)%89’
j#i

Apis(T) = D anyj(T)pips;,
i

On,ij(T) = \2/—5 {w{v} [Kn{o(Xi,7) = v(Xj,7)} = Kn{vi — 03} B {0(Xi, 7)1

+w{v;} [Kn{v(X;,7) = v(Xi, 7)} — Kn{v; — v} Pupr{o(X5,7)} '}
Note now that for all constants C' > 0
P{An1(7) = An11(7) + Apia(7) + A s(7) for all |7 — 0] < Cn~/2}
> P{e;=¢, 4 p; forall 1 <i < n}
> P {\az\ < §,nt*Rt/? log(n)’l/2 forall1 <:< n}
> 1—nP{|e1| > 6,n'/*h/ log(n) 72}
>1—7,—1

So for our claim (17) it suffices to show for all constants C' > 0

sup |Ay1,(7)| = op(1), (18)
[r—6|<Cn=1/2

for j = 1,2 and 3. For the proof of (18) for j = 1 note first that there exists a constant
C, such that for all C' > 0, for all £ > 2, and for all 7 with |7 — || < Cn~'/?

k/2
E (| A (MFIX, -, Xa] < CERIE [()* (X, X, {Zan,z-,j(f)z} . (19
i£]
This bound follows by a slight modification of a bound of Whittle (1960), see also Lemma
4 and equation (3.23) in Mammen (1989). We use now
E[E)*( Xy, .., Xa| < 2%k hFlog(n) * as. (20)
sup > anii(1)? = Op(h™?n"). (21)

IT=0l|<Cn=1/2 i
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The bound (20) follows by definition of the variables . For the proof of (21) one uses
standard kernel smoothing theory. With the help of (19)-(21) we now get the following
bound for ¢ > 0 and for all 7 with ||7 — || < Cn~/2

sup E [eXp {t log(n)An,l,l(T)} ‘Xla ] Xn]
llr—6]|<Cn=1/2

- k/2
<14 Cft*log(n)*E [(6'1)2’“\X1, . ,Xn] { sup Zan,i,j(7)2}

k=2 l7—0l|<Cn=1/2 j£4

= Op(1).
With a similar bound on E [exp {—tlog(n)A,11(7)} | X1, ..., X,] we get that

sup / E [exp {tlog(n)|An11(T)|} | X1, ..., Xn] = Op(1). (22)
||7—8]|[<Cn—1/2

(From inequality (22) we get the following bound for all ¢,C,C" > 0

sup PllApi1(7)] > C'| X1, ..., X
IT—6||<Cn—1/2

< sup expl=Ctlog(nm)]E [exp {tlog(m)] Anaa (D)} X X
[l[7—0]|<Cn—1/2

= O0p(n~c"). (23)

Consider now finite subsets I, of {7 : ||[T—0|| < Cn~'/?} with number of elements bounded
by n®" (for a constant C"). Then we get from (23)

sup |Ap11(7)] = op(1). (24)

TEL,

We use now the following crude bound

sup |An,1,1(7'1) - A71,1,1(7'2)\
[IT1—=6]|<Cn=1/2 |2 —6||<Cn=1/2 |11 —72||<n—3/2h1/2
= sup |1 — 72| Op((San?’/?h’l/Q)
[lm1—0]|<Cn=1/2||72—6||<Cn~=1/2 |11 —Ta||<n—3/2h1/2
= op(1). (25)

Claim (18) with j =1 follows now from (24) and (25) with an appropriate choice of I,.

For the proof of (18) with j = 2 and j = 3 we use the following estimate of y;:

| = |Bed{lei] < ,n'/"h!/?log(n) "2}
—EBeil{lei] > 6,n'/*h!/? log(n)~"/?}|
< 6,:(4”_1)n_(4p_1)/4h_(4”_1)/2 log(n)—(4p—1)/2
Elei|*I{|&;| > 6,n'/*h'/*log(n)~'/?}
= Yan 0,0 *h? log(n)? Elei *I{|e;| > 6,n'/*h? log(n)~V/?}
o(n~**n'*log(n)'/?). (26)
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Claim (18) with j = 2 now follows from the following bound

sup Y |an (1) = Op(h™'/?n'/?), (27)
[|[T—0]|<Cn—1/2 j£;
!
7

E

el = 0O(1).

For the proof of (18) with j = 3 one applies (26) and (27).

Proof of (17) for | = 2. Note that
Ano(T) =) ani(1)e;
i=1

with
an,i(T) = \/E’UJ{’UZ} [F{U(Xz, 7') — F{’UZ}] ﬁn’h,g(’l)i)_l.

We define now

n
Angi(t) = D ani(r)e),
=1

Anaa(r) = D ani(7)m,
i=1

where €} and pu; are defined as in the proof of (17) for [ = 1. We get now that for all
C > 0 with probability tending to 1 for all 7 with |7 — 6|| < Cn~'/2 it holds that

An,Z (7') = An,Z,l(T) + An,Z’Q(T).

So it remains to show for all C > 0

sup  |App,;(7)| = op(1), (28)
|Ir—0l|<Cn=1/2

for j =1 and j = 2. Claim (28) for j = 2 follows easily from (26) and
> lani(7)| = O(hn~*(logn)*/?) = o(1). (29)
i=1

For the treatment of A, ;(7) note that under our conditions it holds for all C' > 0 that

sup |6ni(T)| = Op(h'/*n7/?).
[[T—8||<Cn=1/2,1<i<n

Put a;m-(T) = 0y i (T){|an i (7)| < h/4n=1/2} and



Then A, 21(7) = A, 2,3(7) with probability tending to 1. It remains to show for all C > 0

sup |Ap23(T)| = op(1). (30)

|[r—0]|<Cn=1/2

We argue now that there exists a constant Cy such that for £ > 0, 1 <1¢ < n and n large
enough

sup  E [exp{tlog(n)aj, (1)} X1, ..., X
Ir—6l|<Cn-1/2 ’
< 1+ Cot*log(n)’ay, ;(1)°E [(5;)2|Xla e Xn]
< exp {Cot2 log(n)*ay, ;(T)*E [(e;)Q\Xl, e ,Xn]} : (31)

This follows by using the fact that for a constant C'y

sup llog(n)al, ,(7)e!
IT—6]|<Cn—1/2,1<i<n ’

S Clnil/ll.

With the help of (31) we now get the following bound for ¢ > 0 and for all 7 with
|7 — 0| < Cn~1/2

sup  Elexp{tlog(n)A,23(7)}|X1,. .., X5
[|7—6][<Cn-1/2

S sSup exXp {C()t2 lOg(TL)2 Z a’;z,i(T)zE [(6;)2|X17 cee 7Xn] }

llr—6]|<Cn=1/2 i=1
< exp {Cot2 log(n)th/zOp(l)}
= Op(1).
Claim (17) for [ = 2 follows now with the same arguments as for [ =1

Proof of (17) for | = 3. Note that

with

i) = ey ¥ (P} - Pl

j=1,j#i

[Kn{v(Xi,7) = v(X;,7)} = Kn{vi = ;}] P {0(Xi, 7)} 7

By standard kernel smoothing theory one shows first that under our conditions for all
C > 0 it holds that

sup |byi(T)] = Op(hl/Qn_lﬂ).

[r—0]|<Cn=1/2,1<i<n
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One considers Y, b, ;(7)e} where b, ;(T) = by i(7)I{|bni(7)| < AH*n"1/2}. Claim (17) for
[ = 3 follows now with the same arguments as for [ = 2.

We come now to the second step of the proof of the asymptotic normality of 7;,. Note
that

T,0) = Th1+...+Tha,

where

n
Thy = Y Cnuj€icis

i#]
Cnjij = gw{vi}Kh{Uz’_”j}ﬁn,h,e{vi}_l
T, = T L 1
|
Vh & —(h/s)" " 1
Tn,3 = — WA Y; EiirKs Vi — Vjs€iPn,s,01 Vi )
v 2 e g e = u)epso{vd)
Tog = [1- (h/s)T]‘lx/ﬁgw{vi}siq [F{v;} — F{vi}]

[Kn{vi = vi}pnno{vi} " = (h/s) Ko{vi = vi}pnso{vi} ]
We now argue that
Tn,j = OP(]_) (32)

for j = 2,3,4. This can be shown by calculation of the second moments of T}, 5, T;, 3 and
T,4. We would like to mention that the proof of (32) for j = 4 is the only point of the
proof where we need Condition A9. With (15) and (32) we get that

Tn =1ipa + OP(]_). (33)

It remains to show that 7},; has an asymptotic N(0,0%) distribution. For this claim we
show that

E*[T?, = var™ [T, 1] = 07 + op(1), (34)
doo (L5 (Tn1), N (0, E¥[TZ,])) = 0p(1). (35)
Here £ denotes the conditional distribution given the covariables X, ..., X, and var*

denotes the (conditional) variance w.r.t. £T.
Claim (34) follows by standard kernel smoothing arguments. So it remains to show
(35). According to Theorem 2.1 in de Jong (1987) for this claim it suffices to show
max Y var’ [cngjei€;]fvart[T,1] = op(1), (36)

1<i<n , &~ .
- j=LiA

EF(T, )/ {var* [Taa]} = 3+o0p(1), (37)
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where E* denotes the (conditional) expectation w.r.t. £*. Claim (36) follows from
n ) B
lngl%}; _ Z .Cn,i,j = Op(1/n)
J=1j#1
and

sup F [|Y —FE{Y|X = x}|2] < 00 a.s. ,
v(z,0)€Sy

see A7. For the proof of (37) note that
E*[T, ] — 3{vart[Th]} = 84,1 + 484, 4+ 1924, 5,
where

_ 4 + 41+ 4
Any = D d,,; ;ETe;ETej,

1#£]
_ + 20+ 20+ 2+ 2
Ang = > A jln g kln il B e B e BT ey B ey,
i.5,k,l pairwise different
_ 2 + 37+ 2+ 3
An’3 - Z dnai’jdn,i,kdnzjvkE 8zE S]E ek’

i,k pairwise different
dnzi’j = (Cn’i’j + Cnvj;i) /2

Claim (37) follows from

Ap1 > 0, (38)
Ao > 0, (39)
E A,; = ol), (40)
E A,, = ol), (41)
E A3 < 3 E [dn,ijd? ; il 1 E e PE €1 B ey ]
ij,k pairwise different
= o(1). (42)

Here (38) and (39) follow from d,;; > 0. Claims (40)-(42) can be shown by using A7
and simple bounds, see the proof of Theorem 1 in Hérdle und Mammen (1993) for similar
calculations.

Proof of Theorem 1. Define Tyqas Thy but with ¢; replaced by €;. The statement of
the theorem follows from

T =T +op(1), (43)
doo (L*(Tn1), N (0,0%)) = 0p(1), (44)

Note that (43) implies that for all 6 > 0

PHT =T, > 6] = op(1),
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because of E P*[|T; — Ty ,| > ] = P[|T; —T;,| > ] = o(1). Here P* denotes the
conditional distribution given the sample X;,Y},..., X, Y,.

Claims (43) and (44) can be shown with essentially the same arguments as above. For
the proof of (44) one has to show e.g. that

Zan] 4E*( *) _OP(l)'

i#£]
This follows from
E+A;,1 = Zan] 4E+( )
i#£]
= OP(l) di,i,j?
1#£]

see B2, and

;lz g OP(l)

i#]

because of

E Y dy,;=

1£]
Proof of Theorem 2. Define
Trod(r) = VA wlo(X, )} [Y; — F{o(X, )]
i=1

Y1,z Y5 — Flo(X5, 1)} K([v(X;, 7) — v(X5, 7)]/h)
j=1,52 K ([0(X5,7) = 0(X5,7)]/h)
Then it holds that 7% = T(4,,). Again in a first step one shows that
Tmod = Tmed(9) + op(1). (45)

n

This can be done with the same arguments as above by proving

T (r) = T (6)| = op(1).

sup

[r=ll<Cn=1/2

All steps of the proof work for bandwidth h with h = o(1) and n~'h*(logn)?) = o(1).

The latter condition is used in (29). Now we have that 7™¢(9) = T, ;. Furthermore,

because T, ; converges in distribution to N(0,0%) we get that 7% has the asymptotic

limit N(0,0%) (in distribution). Note that we do not need Assumption A9 for the asymp-

totic treatment of 77¢. In particular the term 7,4 does not appear in the asymptotic

expansion of 74, Under the additional assumption of A9 and that h = cn~ '/ +1) and

s = dn 79+ we have T, = T,,; + op(1), see (33). This immediately shows the claim
TmOd T + Op(l)

Proof of Theorem 3. See the proof of Theorem 1.
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