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Least Trimmed Squares

Pavel Cizek and Jan Amos Visek

Least trimmed squares (LTS) is a statistical technique for estimation of
unknown parameters of a linear regression model and provides a “robust” al-
ternative to the classical regression method based on minimizing the sum of
squared residuals.

This chapter helps to understand the main ideas of robust statistics that stand
behind the least trimmed squares estimator and to find out how to use XploRe
for this type of robust estimation. As it is impossible to provide a profound
introduction into this area here, we refer readers for further information to the
bibliography.

Before proceeding to the next section, please type at the XploRe command line
library("metrics")

to load the necessary quantlibs (libraries). Quantlib metrics automatically
loads xplore, kernel, glm, and multi quantlibs.

1 Robust Regression

1.1 Introduction

The classical least squares (LS) estimator is widely used in regression analysis
both because of the ease of its computation and its tradition. Unfortunately, it
is quite sensitive to higher amounts of data contamination, and this just adds
together with the fact that outliers and other deviations from the standard
linear regression model (for which the least squares method is best suited)
appear quite frequently in real data. The danger of outlying observations,
both in the direction of the dependent and explanatory variables, to the least



squares regression is that they can have a strong adverse effect on the estimate
and they may remain unnoticed, especially when higher dimensional data are
analyzed. Therefore, statistical techniques that are able to cope with or to
detect outlying observations have been developed. One of them is the least
trimmed squares estimator.

L east squares regression with outliers
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Figure 1: Least squares regression with outliers, phonecal data, @1s01.xpl

The methods designed to treat contaminated data can be based on one of two
principles. They can either detect highly influential observations first and then
apply a classical estimation procedure on the “cleaned” data, or they can be



designed so that the resulting regression estimates are not easily influenced by
contamination. Before we actually discuss them, especially the latter ones, let
us exemplify the sensitivity of the least squares estimator to outlying observa-
tions.

The data set phonecal serves well this purpose. The data set, which comes
from the Belgian Statistical Survey and was analyzed by Rousseeuw and Leroy
(1987), describes the number of international phone calls from Belgium in years
1950-1973. The result of the least squares regression is depicted on Figure 1.
Apparently, there is a heavy contamination caused by a different measurement
system in years 1964-1969 and parts of year 1963 and 1970—instead of the
number of phone calls, the total number of minutes of these calls was reported.
Moreover, one can immediately see the effect of this contamination: the esti-
mated regression line follow neither a mild upward trend in the rest of the data,
nor any other pattern that can be recognized in the data. One could argue that
the contamination was quite high and evident after a brief inspection of the
data. However, such an effect might be caused even by a single observation,
and in addition to that, the outlying observations do not have to be easily
recognizable if analyzed data are multi-dimensional. To give an example, an
artificial data set consisting of 10 observations and one outlier is used. We can
see the effect of a single outlier on Figure 2—while the blue line represents the
underlying model, the red thick line shows the least squares estimate. More-
over, the same figure shows that the residuals plot does not have to have any
outlier-detection power (the blue thin lines represent interval (—o, o) and the
blue thick lines correspond to +30).

As most statisticians are aware of the described threats caused by very influen-
tial observations for a long time, they have been trying to develop procedures
that would help to identify these influential observations and provide “outlier-
resistant” estimates. There are actually two ways how this goal can be achieved.
First one relies on some kind of regression diagnostics to identify highly influ-
ential data points. Having identified suspicious data points, one can remove
them, and subsequently, apply classical regression methods. These methods
are not in the focus of this chapter. Another strategy, which will be discussed
here, is to utilize estimation techniques based on the so-called robust statis-
tics. These robust estimation methods are designed so that they are not easily
endangered by contamination of data. Furthermore, a subsequent analysis of
regression residuals coming from such a robust regression fit can then hint on
outlying observations. Consequently, such robust regression methods can serve
as diagnostic tools as well.



Least squares regression with an outlier Least squares residua plot
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Figure 2: Least squares regression with one outlier and the corresponding resid-
ual plot, @1s02.xpl

1.2 High Breakdown Point Estimators

Within the theory of robustness, several concepts exist. They range from the
original minimax approach introduced in Huber (1964) and the approach based
on the influence function (Hampel et al. 1986) to high breakdown point pro-
cedures (Hampel 1971), that is the procedures that are able to handle highly
contaminated data. The last one will be of interest here as the least trimmed
squares estimator belongs to and was developed as a high breakdown point
method. To formalize the notion of the capability of an estimator to resist to
some amount of contamination in the data, the breakdown point was intro-
duced. For the simplicity of exposure, we present here one of its finite-sample
versions suggested by Donoho and Huber (1983): Take an arbitrary sample of
n data points, S, = (x1,...,%,), and let T,, be a regression estimator, i.e.,
applying T,, to the sample S,, produces an estimate of regression coefficients
T,.(Syn). Then the breakdown point of the estimator T, at S, is defined by

1
ex(Tn, Sp) = —max{m ‘max  sup ||Tn(z1,--.,20)| < +oo} , (1)
n Useeesbm gy, Ym
where sample (z1,. .. ,2,) 18 created from the original sample S, by replacing
observations x;,,... ,x;, by values yi1,...,yn. The breakdown point usually



does not depend on S,. To give an example, it immediately follows from
the definition that the finite-sample breakdown point of the arithmetic mean
equals to 0 in a one-dimensional location model, while for the median it is
1/2. Actually, the breakdown point equal to 1/2 is the highest one that can
be achieved at all—if the amount of contamination is higher, it is not possible
to decide which part of the data is the correct one. Such a result is proved,
for example, in Theorem 4, Chapter 3 of Rousseeuw and Leroy (1987) for the
case of regression equivariance estimators (the upper bound on £} in this case
is actually ([(n — p)/2] + 1)/n, where [z] denotes the integer part of z).

There were quite a lot of estimators intended to have a high breakdown point,
that is close to the upper bound, although some of them were not entirely
successful in achieving this point because of their sensitivity to a specific kind
of data contamination. One of truly high breakdown point estimators that
reached the above mentioned upper bound of the breakdown point were the
least median of squares (LMS) estimator (Rousseeuw 1984), which mini-
mizes the median of squared residuals, and the least trimmed squares (LTS)
estimator (Rousseeuw 1985), which takes as its objective function the sum of
h smallest squared residuals and was indeed proposed as a remedy to the low
asymptotic efficiency of LMS.

Before proceeding to the definition and a more detailed discussion of the least
trimmed squares estimator, let us show the behavior of this estimator when
applied to phonecal data used in the previous section. On Figure 3 we can see
two estimated regression lines: the red thick line that corresponds to the LTS
estimate, and for comparison purposes, the blue thin line that depicts the least
squares regression result. While the least squares estimate is spoilt by outliers
coming from years 1963—-1970, the least trimmed squares regression line is not
affected and outlines the trend one would consider as the right one.

2 Least Trimmed Squares

In this section the least trimmed squares estimator, its robustness and asymp-
totic properties, and computational aspects will be discussed.



2.1 Definition

First of all, we will precise the verbal description of the estimator given in the
previous section. Let us consider a linear regression model for a sample (y;,z;)
with a response variable y; and a vector of p explanatory variables z;:

yi:,BTSL'i-{-E,', 1=1,...,n.

The least trimmed squares estimator 3E75) is defined as

FETS) = axgmin " 12,(6) @
BER? =1
where 72,(3) represents the i-th order statistic among r2(3),...,r2(3) with
[1] n

ri(B) = yi— BT z; (we believe that the notation is self-explaining). The so-called
trimming constant h have to satisfy § < h < n. This constant determines the
breakdown point of the LTS estimator since the definition (2) implies that n—h
observations with the largest residuals will not affect the estimator (except
of the fact that the squared residuals of excluded points have to be larger
than the h-th order statistics among the squared residuals). The maximum
breakdown point is attained for h = [n/2]+[(p+1)/2] (see Rousseeuw and Leroy
1987, Theorem 6), whereas for h = n, which corresponds to the least squares
estimator, the breakdown point equals to 0. More on the choice of the trimming
constant can be found in Subsection 3.1.

Before proceeding to the description of how such an estimate can be evaluated
in XploRe, several issues have to be discussed, namely, the existence of this
estimator and its statistical properties (a discussion of its computational as-
pects is postponed to Subsection 2.2). First, the existence of the optimum in
(2) under some reasonable assumptions can be justified in the following way:
the minimization of the objective function in (2) can be viewed as a process
in which we every time choose a subsample of h observations and find some
B minimizing the sum of squared residuals for the selected subsample. Do-
ing this for every subsample (there are (}) of them) we get (}) candidates
for the LTS estimate and the one that commands the smallest value of the
objective function is the final estimate. Therefore, the existence of the LTS
estimator is basically equivalent to the existence of the least squares estimator
for subsamples of size h.

Let us now briefly discuss various statistical properties of LTS. First, the least
trimmed squares is regression, scale, and affine equivariant (see, for exam-



ple, Rousseeuw and Leroy 1987, Lemma 3, Chapter 3). We have also al-
ready remarked that the breakdown point of LTS reaches the upper bound
([(n—p)/2]+1)/n for regression equivariant estimators if the trimming constant
h equals to [n/2] + [(p + 1)/2]. Furthermore, the y/n-consistency and asymp-
totic normality of LTS can be proved for a general linear regression model with
continuously distributed disturbances (Visek 1999b). Besides these important
statistical properties, there are also some less practical aspects. The main one
directly follows from the noncontinuity of the LTS objective function. Because
of this, the sensitivity of the least trimmed squares estimator to a change of one
or several observations might be sometimes rather high (Visek 1999a). This
property, often referred as high subsample sensitivity, is closely connected with
the possibility that a change or omission of some observations may change con-
siderably the subset of a sample that is treated as the set of “correct” data
points. It does not have to be seen necessarily as disadvantageous, the point of
view merely depends on the purpose we are using LTS for. See Visek (1999b)
and Section 3 for further information.

2.2 Computation

b = 1ts(x, y{, h, all, mult})
computes the least trimmed squares estimate of a linear regression
model

The quantlet of quantlib metrics which serves for the least trimmed squares
estimation is 1ts. To understand the function of its parameters, the algorithm
used for the evaluation of LTS has to be described. Later, the description of
the quantlet follows.

There are two possible strategies how the least trimmed squares estimate can
be determined. First one relies on the full search through all subsamples of
size h and the consecutive LS estimation as described in the previous section,
and thus, let us obtain the precise solution (neglecting ubiquitarian numerical
errors). Unfortunately, it is hardly possible to examine the total of (}) sub-
samples unless a very small sample is analyzed. Therefore, in most cases (when
the number of cases is higher) only an approximation can be computed (note,
please, that in the examples presented here we compute the exact LTS esti-
mates as described above, and thus, the computation is relatively slow). The
present algorithm does the approximation in the following way: having selected



randomly an (p + 1)-tuple of observations we apply the least squares method
on them, and for the estimated regression coefficients we evaluate residuals for
all n observations. Then h-tuple of data points with the smallest squared resid-
uals is selected and the LS estimation takes place again. This step is repeated
so long until a decrease of the sum of the h smallest squared residuals is ob-
tained. When no further improvement can be found this way, a new subsample
of h observations is randomly generated and the whole process is repeated.
The search is stopped either when we find s times the same estimate of model
(where s is an a priori given positive integer) or when an a priori given number
of randomly generated subsamples is accomplished. A more refined version of
this algorithm suitable also for large data sets was proposed and described by
Rousseeuw and Van Driessen (1999).

From now on, noninteractive quantlet 1ts is going to be described. The quant-
let expects at least two input parameters: an n X p matrix x that contains n
observations for each of p explanatory variables and an n x 1 vector y of n
observed responses. If the intercept is to be included in the regression model,
the n x 1 vector of ones can be concatenated to the matrix x in the following
way:

x = matrix(rows(x))"x

Neither the matrix x, nor the vector y should contain missing (NaN) or infinite
values (Inf,-Inf). Their presence can be identified by isNaN or isNumber and
the invalid observations should be processed before running 1ts, e.g., omitted
using paf. These two parameter are enough for the most basic use of the
quantlet. Typing

b = 1lts(x,y)

results in the approximation of the LTS estimate for the most robust choice
of h = [n/2] + [(p + 1)/2] using the default number of iterations. Though this
might suffice for some purposes, in most cases we would like to specify also
the third parameter—the trimming constant h—too. So probably the most
common use takes the form

b = 1lts(x,y,h)

The last two parameters of the quantlet, particularly all and mult, provide a
way to influence how the estimate is in fact computed. Parameter all allows



to switch from the approximation algorithm, which corresponds to all equal
to 0 and is used by default, to the precise computation of LTS, which takes
place if all is nonzero. As the precise calculation can take quite a long time
if a given sample is not really small, a warning together with a possibility to
cancel the evaluation is issued whenever the total number of iterations is too
high. Finally, the last parameter mult, which equals to 1 by default, offers
possibility to adjust the maximum number of randomly generated subsamples
in the case of the approximation algorithm—this maximum is calculated from
the size of a given sample and the trimming constant, and subsequently, it is
multiplied by mult.

To have a real example, let us show how the time trend in phonecal data set
was estimated in Section 1. The data set is two-dimensional, having only one
explanatory variable x, year, in the first column and the response variable y,
the number of international phone calls, in the second column. In order to
obtain the LTS estimate for the linear regression of y on constant term and x,
you have to type at the command line or in the editor window

= read("phonecal")
matrix(rows(z)) ~ z[,2]
= z[,3]

lts(x,y)

o o< X N
|

Q'113302.)(p1

The result of the above example should appear in the XploRe output window
as follows:

Contents of coefs
[1,] -5.6522
[2,] 0.11649

3 Supplementary Remarks

3.1 Choice of the Trimming Constant

As was already mentioned, the trimming constant h have to satisfy § <h <n
and indeed determines the breakdown point of LTS. The choice of this constant



depends mainly on the purpose for which we want to use LTS. There is, of
course, a trade-off involved: lower values of h, which are close to the optimal
breakdown point choice, lead to a higher breakdown point, while higher values
improve efficiency (if the data are not too contaminated) since more information
stored in data is utilized. The maximum breakdown point is attained for h =
[n/2] + [(p + 1)/2]. This choice is often employed when the LTS is used for
diagnostic purposes (see Subsection 3.2). The most robust choice of h may be
also favored when LTS is used for comparison with some less robust estimator,
e.g., the least squares, since comparison of these two estimators can serve as
a simple check of data and a model—if the estimates are not similar to each
other, a special care should be taken throughout the subsequent analysis. On
the other hand, it may be sensible to evaluate LTS for a wide range of values of
the trimming constant and to observe how the estimate behaves with increasing
h, because this can provide hints on the amount of contamination and possibly
on suspicious structures of a given data set (for example, that the data set
contains actually a mixture of two different populations).

3.2 LTS as a Diagnostic Tool

We have several times advocated the use of the least trimmed squares estima-
tor for diagnostic purposes. Therefore, a brief guidance regarding diagnostics
is provided in this subsection via an example. Let us look at stacklos data,
which were already analyzed many times, for example by Drapper and Smith
(1966), Daniel and Wood (1971), Carroll and Ruppert (1985), and Rousseeuw
and Leroy (1987). The data consist of 21 four-dimensional observations char-
acterizing the production of nitric acid by the oxidation of ammonia. The
stackloss (y) is assumed to depend on the rate of operation (x;), on the cooling
water inlet temperature (z3) and on the acid concentration (z3). Most of the
studies dealing with this data set found out among others that data points 1, 3,
4, 21, and maybe also 2 were outliers. First, the least square regression result

g =—39.92 4+ 0.716z1 + 1.295z2 — 0.152z3,

Q 1s03.xpl, is reported for comparison with LTS, the corresponding residual
plot is plotted on Figure 4 (once again, the blue thin lines represent +o and
the blue thick lines correspond to +3¢). There are no significantly large resid-
uals with respect to the standard deviation, so without any other diagnostic
statistics one would be tempted to believe that there are no outlying obser-
vations. On the contrary, if we inspect the least trimmed squares regression,
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which produces
g = —35.21 + 0.746z1 + 0.338z2 — 0.005z3,

@ 1ts03.xpl, our conclusion will be different. To construct a residual plot for a

robust estimator, it is necessary to use also a robust estimator of scale because
the presence of outliers is presumed. Such a robust estimator of variance can be
based in the case of LTS, for example, on the sum of the h smallest residuals or
on the absolute median deviation MAD; z; = med; |x; — med; ;| as is the case
on Figure 5. Inspecting the residual plot on Figure 5 (the blue lines represents
again +o and +30 levels, where 0 = 1.483 MAD; r;(53)), observations 1, 2, 3, 4,
and 21 become suspicious ones as their residuals are very large in the sense that
they lie outside of the interval (—3c,30). Thus, the LTS estimate provide us
at the same time with a powerful diagnostic tool. One has naturally to decide
which ratios |r;(8)/o| are already doubtable, but value 2.5 is often used as a
decisive point.

3.3 High Subsample Sensitivity

The final note on LTS concerns a broader issue that we should be aware of
whenever such a robust estimator is employed. Already mentioned high sub-
sample sensitivity is caused by the fact that high breakdown point estimators
search for a “core” subset of data that follows best a certain model (with all its
assumptions) without taking into account the rest of observations. A change
of some observations may then lead to a large swing in composition of this core
subset. This might happen, for instance, if the data are actually a mixture of
two (or several) populations of data, i.e., a part of data can be explained by
one regression line, another part of the same data by a quite different regres-
sion function, and in addition to that, some observations may suit both model
relatively well (this can happen with a real data set too, see Bendcek, Jarolim,
and Vigek 1998). In such a situation, a small change of some observations or
some parameters of the estimator can bring the estimate from one regression
function to another. Moreover, application of several (robust) estimates is likely
to introduce several rather different estimates in such a situation—see Visek
(1999b) for a detailed discussion. Still, it is necessary to have in mind that this
is not shortcoming of the discussed estimators, but of the approach taken in
this case—procedures designed to suit some theoretical models are applied to
an unknown sample and the procedures in question just try to explain it by
means of a prescribed model.
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OLS and LTS regressions with outliers
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Figure 3: Least trimmed squares regression with outliers, phonecal data,
Q1ts01.xpl
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LSresidual plot - stackloss data

o
Lr)_ —
o
Q o)
© o
o
© o
O < -
o
o o
o) o ©
o
O
Lfl)_ .
o)
T T T T T
0 5 10 15 20
X

Figure 4: The LS residual plot for stacklos data, @ 1s04.xpl
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LTS residual plot - stackloss data
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Figure 5: The LTS residual plot for stacklos data, @ 1ts04.xpl
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