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ADAPTIVE ESTIMATION FOR A TIME INHOMOGENEOUS
STOCHASTIC-VOLATILITY MODEL

HARDLE, W., SPOKOINY, V.G., AND TEYSSIERE, G.

Humboldt- Universitat zu Berlin,
Spandauer Strafle 1, 10178 Berlin, Germany
and
University Wirzburg

Sanderring 2, 97070, Wirzburg, Germany

ABSTRACT. Let a process Si,..., St obey the conditionally heteroskedastic equation
St = vier where & is a random noise and v; is the volatility coefficient which in turn
obeys an autoregression type equation logv; = w + aSi_, + n; with an additional
noise 7. We consider the situation when the parameters w and a might also depend
on the ‘time’ ¢, and we study the problem of online estimation of current values of
w=w(T) and a = a(T) from the observations Si,...,StT. We propose an adaptive
method of estimation which does not use any information about time homogeneity
of the observed process. We apply this model to two series of FX daily returns on
DEM/USD and GBP/USD.

1. Introduction

Standard models of finance theory assume time homogeneous dynamics of the considered
asset. Numerous empirical papers for various stock markets have questioned such a ho-
mogeneity. A time-varying risk premium has been considered by e.g. Engle et al. (1987),
time varying covariances have been investigated by e.g. Bollerslev et al. (1988), Hafner
and Herwartz (1988) and Campbell et al. (1997). The provided empirical evidence has
shown that time homogeneous dynamic models such as a discrete version of the geomet-
ric Brownian motion may be outperformed by models with varying volatility parameters.
The dominating models in this respect are the GARCH (Engle, 1982 and Bollerslev, 1986)
and stochastic volatility (Taylor, 1986) models. These models are designed to reflect the
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stylized fact of time inhomogeneous volatility clustering by a suitable presentation of the
variance function as a function of lagged values of (external) parameters.

So far these stylized facts were mainly attributed to time-varying behavior of condi-
tional second moments. For the capital asset pricing model, for example, time-varying
betas may be obtained by multivariate GARCH and ARCH-M models that naturally
link to inhomogeneous risk premium. The increasing applications of GARCH models
has led to more adequate specifications, The consistency of a model specification over
time, however, is questionable. One might argue that, despite more flexible modelling of
covariance patterns more adequate specifications and predictions may be given through
identification of interval of homogeneity of a model as time increases.

By the very definition of the time varying covariance models, they are as models also
time homogeneous. The model equation contains elements reflecting time inhomogeneous
clustering but the mechanism of these volatility patterns stays the same over the observa-
tion period. Changes in the volatility parameters are not considered although structural
changes are practically relevant. In empirical investigations of financial returns one is
very interested in identifying intervals of homogeneity where a certain estimated approx-
imation reflects the market situation well. Identified intervals of homogeneity may lead
to certain investment patterns in asset management.

In this paper we present an adaptive estimation technique for intervals of homogeneity
in the context of stochastic volatility models. Our approach is adaptive in the sense
that we identify intervals of homogeneity without making assumptions on their length or
location. The empirical evidence we provide is for the DEM/USD and BPD/USD time
series of exchange rate data.

We define an interval of homogeneity for a model as a time interval in which the model
parameters do not vary very much relative to the estimation error of these parameters in
the considered time interval. This setting seems at first sight to be related with change-
point detection. Note, however, that the change-point approach allows only for structural
breaks at few separated time moment and assumes the time-homogeneous model structure
between changes, see e.g. Antoch, Huskovd, and Praskova (1997), Csorgé and Horvath
(1997), Kokoszka and Leipus (1998), Spokoiny (1998), Dufour and Ghysels (1996), and
Hackl and Westlund (1991) among others.

Our approach is more general since we allow for changing parameters at any time point
but we do not consider these changes as time inhomogeneous if they do not appear to be
significantly bigger than the expected variation in the considered interval.

The paper is organized as follows. In the next section we formulate the theoreti-
cal setup of time-homogeneous stochastic volatility systems. Section 4 introduces time-

inhomogeneous models and gives the description of the estimation procedure and their
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theoretical properties. In Section 4 we present the adaptive estimation technique. Sec-
tion 5 discusses theoretical properties of the proposed procedure. Section 6 gives simula-
tion results showing that the procedure works. Estimation results on two samples of FX
rates returns at daily frequency are given in Section 7. The proofs are postponed to the

Appendix.

2. Time homogeneous stochastic volatility

models

Let S1,...,S7T be the returns of an asset price process obeying the conditional het-

eroskedasticity equation
St = V&t (21)

where ¢; is a multiplicative random noise and wv; is the volatility scaling coefficient, ¢ =

1,2,.... Assume that the errors e; are i.i.d. random variables satisfying the condition
Ee¢=1

The aim is to infer about the structure of the volatility process v;. We use another
representation of this model obtained by transformation to the log-scale, Y; = logS?.
Applying the function log(z?) to both sides of (2.1) leads to

Y; = log v} +loge? = 2 + & (2.2)
with
2z = logvl +v,
& = logef —v,
v = E logel.

Standard modelling approach for the process (2.1) or the transformed model (2.2), see
Gourieroux (1997), is based on certain parametric assumptions about the scaling process
v . One specific example studied in this paper is given by a stochastic-volatility model.

In its simplest from with autoregressive term it reads as follows:

2z =w+aY 1+ n, t=2,3,... (2.3)

where 7, is a noise process, and w, a are unknown coefficients. If we knew the joint
distribution of the noise processes &; and 7, then the properties of the volatility pro-
cess v; and the asset price process Y; are completely determined by the coefficients w

and «. This reduces the original problem to the problem of estimating w,a, and well
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developed theory applies in this situation: the maximum likelihood estimate (MLE) is
root-n consistent and asymptotically efficient, see e.g. Gourieroux (1997).

In practical applications, however, this approach might be too restrictive and being
applied to real time series, it may lead to a considerable modelling bias. One possibility to
make this kind of modelling more flexible is to allow for flexible high order autoregression

and moving averaging structures as e.g.

z=wt+a1Yi_1+ -+ opYi—p+ Brze—1 + - - + Byzi—q + M- (2.4)

Then the coefficients a1,... ,ap, B1,...,0; and also the dimensionality parameters p, g
could be estimated from data with a reasonable accuracy. This type of modelling will
certainly fit better to real data but it is still restricted to the class of time homogeneous
processes since the structure of the equation (2.4) is time homogeneous, that is, the
involved coeflicients do not depend on the time index ¢.

Dahlhaus (1997), Neumann and von Sachs (1997), Dahlhaus et al. (1999) picked up
this point and studied the problem of statistical inference for locally stationary time
series. In the case of the simplest model (2.3) their approach allows the coefficients w
and «a for time dependence of the form a = a(t/m) and w = w(t/m). Here «a(-) and
w(-) are smooth unknown functions and the parameter m controls the degree of time
homogeneity: the processes S and v are almost stationary inside each time interval of
length smaller (in order) than m.

Here we consider the situation when the coefficients w and « in (2.3) are varying
piecewise smooth functions, w = w(t) and a = a(t). This means that for every point s,
there exists a number m = m(s) such that the parameters w(¢) and a(t) do not change
significantly within the interval [s—m, s]. The difference between our modelling approach
and that of Dahlhaus (1997) is that we also allow the parameter m (controlling the degree
of local homogeneity) to vary from point to point. This particularly helps to include
the case of spontaneous change in parameters raised by exogeneous (e.g. non stochastic
political) perturbations. In our approach the statistical inference focuses on estimation of

the “current”

values of parameters at the 777 observation 7' and the primary objective
is to determine in a data driven way the largest interval of local homogeneity [T —
m,T] corresponding to the time point 7'. The values w(T) «(T) can be estimated
from the observations in this interval. The parameter m describing the degree of local
homogeneity before the time point 7", can be viewed as a “smoothness” parameter. In
this sense the problem can be interpreted as choosing a smoothness parameter at the
right boundary of the interval of observations. Our aim is to adapt our estimate to this
unknown parameter. The proposed method to be presented in Section 4 is led by the

ideas of the pointwise adaptive estimation in Spokoiny (1998) for the regression model.
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3. Time Heterogeneous Stochastic Volatil-
ity Models

A time heterogeneous stochastic-volatility model is described by the following two equa-
tions
St = v,

logv; = w(t)+a1(t)logSE, + -+ ap(t) logSf_p + 14, t=p+1,p+2,....
The goal is to estimate the current values w(7T) and oy (T),..., ap(T) from the obser-
vations Si,...,S7 and to determine intervals of homogeneity in which the parameters
are not varying too much.

In the sequel we will use the representation (2.2) and treat Y; = logS? as our ob-
servations. In order to outline the proposed procedure, it is useful to introduce vec-

tor notation. Let X; be the vector in RPT! with X; = (1,Y; 1,...,Y; ,)T and
0(t) = (6o(t), ... ,9p(t))T be the vector of parameters where

0o(t) = w(t)+p,
Oc(t) = ag(t), k=1,...,p.
The model equation (2.2) reads then as:
Y= X[ 0(t) + G (3.1)
with
(¢t =& +n = loge; — E loge; +

so that (; is an i.i.d. ‘noise’ process with E (; =0 and 02 =E (} = E (& +m)?.
In order to construct a consistent estimation of 8(T") we need to specify the assumption

of local homogeneity of the process Y;.

3.1. Local homogeneity assumption

Local time homogeneity means that the parameter vector-function 6(¢) does not differ
too much from a constant vector € within some interval I of the form I = [t;,T].
Here t; denotes the left end point and T the right end-point of the interval of homo-
geneity. The time heterogeneous model (3.1) is approximated within this interval by a

homogeneous model
Y = X100+ G, tel (3.2)

Given this situation, we construct an estimate of 6 from the observations Y; for ¢t € I

and use this value for estimating 6(7'). We consider the pseudo maximum likelihood
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estimate (pseudo MLE)

-1
0r = Bor,...,0,0)" = (Z X xt ) > Xy, (3.3)

tel tel

which is the ML estimate for the case of Gaussian errors (;. The interval I here has
to be interpreted as the parameter of the method. If no information about the degree of
homogeneity of the process Y; is available, then this approach leads to the problem of
adaptive estimation: given a family of estimates {51} indexed by the parameter I (or,
equivalently, by the corresponding left end-point ¢; ) one has to select in a data-driven
way one of them which leads to the minimal possible risk of estimation.

Before presenting our adaptive procedure, we need to study the properties of the

estimate 51 in a little more detail.

3.2. Properties of 51

Due to our assumption of local homogeneity, the vector €(t) is close to a constant vector
0 for all ¢t € I. This means that the value

Aj =suplf(t) — 6(T)]
tel

is small. (Here |v| denotes the Euclidean norm of the vector v € RPT!.) Define also the

random matrices V; and Wy as:

Vi = 02 X X[,
tel
wr = viL

The elements of these matrices will be denoted by v;;; and w;j; respectively, 4,7 =
0,1,... ,p. We also use the notation 012’1 for the diagonal elements of Wy, 1 =0,...,p.

In the case of a regression model of the form (3.2) with deterministic design X;,... , Xp,
the estimate g] is the least squares estimate and W7 is its covariance matrix. In par-
ticular, each diagonal element w;; ; = 01-2’ ; of this matrix is the variance of the estimate
5,-71 , ©=20,1,...,p. In our situation the design points X;’s are random and correlated
with the errors (;’s. By analogy with the regression case, we call the value 01-2, ; the
conditional variance of 51-,1, 1=0,...,p.

Since the V7 matrix is random, we introduce a random set where certain regularity

conditions are satisfied and in the sequel restrict our consideration to this set. Given
positive numbers b >0, B> 1, r > 1 and § <1, denote by 4,7, i =0,...,p, the
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random set where the following conditions are fulfilled:
( b<wy} <bB,

Aip =4 wig1|| Vil <, |

Wij,1

Wig,I

<p, Vj=0,...,p

7

\
Here ||M|| denotes the sup-norm of the matrix M : |[M|| = supycga+1;zj=1 |MA|. Note

that under usual stationarity assumptions, the normalized matrix |I|*V; = o 2|I| 71 Y X; X[
tel
converges to a deterministic matrix V' as |I| grows, see e.g. Anderson and Walker (1964).

If in addition this limit matrix is non-degenerated, the inverse matrix |I|W; converges to
V=1 which obviously provides for properly selected constants b, B,r and p that P(A; )

is close to one if the interval I contains sufficiently many observations.

Theorem 3.1. Let Yi,...,Yr obey (3.1) and let the errors (; be i.i.d. N(0,02)-
distributed. Then it holds for the estimate 51

P <|§i,1 — 0,(T)| > A[ + )\Ui,[,AZ',[) S PB,r,p,p(A) €Xp (—)\2/2) y 3 = 0, B
where Pg . ,5(A) is the following polynom of X of degree p+1
Py pp(A) = de (1+ log B) (1 + 20\/TpA)P A. (3.4)

Remark 3.1. In Theorem 3.1 we assumed Gaussian errors (;. In principle, this and the
following results may be obtained also for the case of i.i.d. errors fulfilling Cramér’s
condition: E exp k|(;| < oo for some k > 0. We restrict ourselves here to the Gaussian
case for the sake of exposition simplicity. We also comment on the extensions using

Cramér’s conditions in Section 5.3.

4. Adaptive choice of the interval of ho-
mogeneity

Let us recall the problem setting again. Given observations Yi,...,Yr from the time-
inhomogeneous model (3.1), we aim to estimate the current value of the vector-parameter
0(T') using the estimate 0; witha properly selected time interval I of the form [T'—m,T]
to minimize the corresponding estimation error. Due to Theorem 3.1, the loss of every
estimate 51‘,1, 1 = 0,...p, can be bounded with a high probability by the sum of two
terms: Ay and Ao, @ = 0,1,...,p (provided that X is large enough). The first
term Aj characterizes the variability of the function #(-) within the interval I and it is

typically small if |I| is small, where |I| denotes the number of points X; in I, i.e., for
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I =[T—m,T], wehave |I| = m+1. By contrast, the term o; 1 is relatively large for small

|I| and it decreases with |I|. This can be illustrated in the stationary case where the
-1

values 02-2,1, i=0,...,p — the diagonal elements of the matrix W; = o2 (Z XtXtT)

tel
— decrease in the order of |I|71.

Therefore, the choice of the interval I or equivalently the parameter m relies on
minimization of the sum of two terms, one of them (Aj) increases with m while the
other one decreases. It is well known from nonparametric estimation theory that a
reasonable choice of the “smoothing parameter” m is defined by balancing the terms
Ar and o7, 1 =0,1,... ,p. One remarkable fact here is that all values o; 7 may be
directly calculated from the data, since they depend only on the observations Yi,... ,Yr
and on the variance o2 of the innovations ¢;. If 02 is unknown, it may also be estimated
from the data, see Section 4.3 below.

The main problem in selecting m is that the “bias” term A; depends on the unknown
target function #(¢) and is usually unknown a priori. Below we discuss one adaptive (data
driven) approach which goes back to the idea of pointwise adaptive estimation, see Lepski
(1990), Lepski and Spokoiny (1997) and Spokoiny (1998). The idea of the method can
be explained as follows. Suppose a family Z of intervals of the form I = [T — m,T]
is fixed. This family is naturally ordered via the values |I| = m + 1. With every
such interval we associate the estimate 0; of the vector-parameter 6(T) from (3.3) with
the corresponding standard deviations o;7, ¢ = 0,1,... ,p. We now check successfully
the intervals from the family 7 starting from the smallest one whether they fulfill the
hypothesis of homogeneity. The testing of homogeneity is done by comparison of the
estimate 51 based on the observations from I with similar estimates constructed on
the base of observations falling in some subintervals of the interval . If the hypothesis
of homogeneity is not rejected we continue with the next larger interval from the given
family. Otherwise we stop and utilize for the final estimation the largest non-rejected
interval.

Let us present a formal description. Suppose we are given a family Z of interval-
candidates. Also, for every I € T, we also suppose to be given a set J(I) of testing
subintervals J of I (one example of these sets Z and J(I) is given in the next section).
For every I € T (resp. every J € J(I)) we construct the corresponding estimate 6;
(resp. ;) from the observations Y; with t € I (resp. t € J) according to (3.3).

Given I € T, we also define Z; as the set of all intervals I"” € 7 containing I, that
is, Iy ={I"€Z:1C1I"}, and set

of r = max{o; m : I'" € I1}.
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Typically o;,; decreases with [I| so that o} ; = 0;7. Now, with two constants A and
i, define the adaptive choice of the interval of homogeneity by the following iterative

procedure:

Initialization: Select the smallest interval in 7.
Iteration: Select the next interval I in 7 and calculate the corresponding estimate
51 and the conditional variances 01-27 7, 1<p.

Testing homogeneity: Reject I, if there exists one J € J(I) and i < p such that
|0i,I — 9i7J| > )\O'Z',J + MUZI;

Loop: If I is not rejected, then continue with the iteration step by choosing a larger

interval. Otherwise, set T = "the latest non rejected 17.

The adaptive estimate a(T) of 6(T) is defined by applying this selected interval I:

It is supposed that the procedure is independently carried out at each time point 7',
that is T = I(T) and similarly for 8. Some other possibilities allowing to reduce the

computational effort are discussed in the next section.

4.1. Choice of the sets Z, J(I) and the parameters A and pu

The presented algorithm involves the sets Z and J(I) of considered intervals and two
numeric parameters A and . We now discuss how these parameters can be selected
starting from the set of intervals Z. The simplest proposal is to introduce a regular grid
ty = mok with some natural number mg and to consider the intervals I = [tx,T] for
all ¢, <T. The value mg can be selected, e.g., between 10 and 30.

Next, for every such interval I = [tx, I], we define the set J(I) of testing intervals J
by taking all smaller intervals I' = [y, T] with the right end-point 7' and similarly all
smaller intervals [tg,t;] with the left end-point #, k < k' < kg:

j(Ik) = {J = [tkl,T] or J= [tk,tkl] k<K < k‘o}.

Let Ny stand for the number of subintervals J in J(I). Clearly, J(I;) contains at
most 2(ky — k) elements, that is, Ny, < 2(ko — k).

In the light of Theorem 5.1 below, parameter A should be chosen to make the value
(X rez Ni) P,g,’,ryp,p()\)e”?/2 sufficiently small, which leads to the choice A = /(2 + §) log M
with M =} ;.; N; and some § > 0. The simulations we carried out showed that the
choice of A between 3 and 3.5 provides a good quality of estimation.

There is a higher degree of freedom for the choice of y. The theoretical recommen-
dation is 1 > A. Note, however, that if I is essentially larger than J, then o;r is

essentially smaller than o; ; for all ¢ < p and in such a situation the contribution of
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the term po; 7 in the critical value Ao; ; + po;; can be compensated by a slight in-
crease of A in the first term Ao; ;. This consideration prompts to take p = 0 which is
in agreement with arguments presented in Lepski and Spokoiny (1997) and Lepski and

Levit (1997). Our simulation results are also in agreement with the latter proposal.

4.2. Computational issues

To realize the procedure at one point 7', one should calculate an estimate 6 ; for every
interval J from J;c; J(I), that is, the total number of estimates to be calculated is
of order ) ;.; Nr. This may lead to a serious computational effort. To reduce the
computation time, we recommend, as in the definition of the sets Z and J(I) to apply
the adaptive procedure only at points t; = kmg of the same arithmetic grid. For every
point T between two neighbor points of the grid, one may keep the left end-point of the
latest adaptively selected interval. This means that the procedure is carried over only
at successful points ¢1,%9,... and hence, when determining the next adaptive interval of
homogeneity at a point T' = %, we have to calculate only the estimates with the right

end-point T, keeping the estimates calculated at previous time-moments.

4.3. Variance estimation

The previously described procedure requires to know the variance o2 of the errors ¢;. In
practical applications this information is typically lacking which leads to the problem of
variance estimation from the data. There is a number of proposals in the literature. We
refer to Fan and Yao (1998) for an overview. The regression-like representation (3.1) and
our local time-homogeneity prompts to apply the residuals-based estimate from Gasser
et al. (1986) developed for the nonparametric regression: first, given m > p, one set
I = [t—m, 1] and construct the estimate 8; of the vector 8(t) due to (3.3) from the data
Xs,Ys, t —m < t < t. Next the pseudo-residuals €; are defined as e; = Y; — XtTaf.

Finally, the variance estimator 52 is defined by averaging these pseudo-residuals squared:

Here t( is a starting point which should satisfy ¢y > m. It is known in the regression
context that such an estimator slightly overestimates the true variance and the pseudo-
residuals e; should be properly weighted to avoid these overestimation, see e.g. Gasser
et al. (1986). However, the proposed procedure performs suitably if m is sufficiently
large. We apply this estimate with m = p 4+ 12 which shows a reasonable performance

for the simulated data sets.
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5. Theoretical properties

In this section we collect some results describing the quality of the proposed adaptive

procedure.

5.1. Accuracy of the adaptive estimate

Let I be the interval selected by our adaptive procedure. We also define the “ideal”
choice I as the largest interval for which the variability of the vector-function 6(t)
is not essentially bigger than the conditional standard deviation of the corresponding

estimate:
I = argmax {|I|: I € Z, A; < Do}, i=0,1,... ,p}. (5.1)

For this ‘ideal’ choice I = II we have the balance between the accuracy of approximation
(which is controlled by Aj;) and the stochastic error characterized by the stochastic
variance o7 ;. This, due to Theorem 3.1, allows us to bound with a high probability the
losses of the “ideal” estimate @,,1 by (D + )\)J;“J[ provided that X is sufficiently large,
1 =20,1,...,p. The next assertion claims that the risk of the adaptive estimate is of the
same order o7 ;.
Let the random events A;; be introduced before Theorem 3.1 and
A=) At
Iez

Theorem 5.1. Let errors (y,...,(r be i.i.d. Gaussian r.v.’s with zero mean and the
variance o?. Then it holds for the adaptive estimate 6 = 5f defined in Section 4 with
w>A+2D:

P (16— 6:(T)| > 2\ + D + poly, ;)

< {14+ > Ni| Poppp()) exp (—X°/2) (5.2)
I€Z(n)

with Ppy,p(X) from (3.4).

5.2. Sensitivity to change-points

Here we briefly discuss the behaviour of the proposed adaptive estimate in the situation
when the underlying parameter 6 is a piecewise constant function of time, that is, this
vector spontaneously changes at some time moments t.,,, £=1,2,.... To simplify the
exposition, we suppose that all ., ,’s coincide with points ?; of the grid defining the
intervals I from Z . This assumption does not restrict generality provided that the grid
ty, is dense enough. In this situation, for each time moment 7', the corresponding interval

of homogeneity coincides with [tc,,T] where t., is the latest change-point before T'.
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Due to the result of Theorem 5.1, the quality of estimating the vector 6 is of the same
order as for the “ideal” estimate 51[ . We now can show a slightly stronger assertion: the
adaptively selected interval T is essentially as [tcp, 7" provided that the amplitude of
the change is sufficiently large compared to the noise level.

Note first, that the arguments used in the proof of Theorem 5.1 yield that the proba-
bility to reject an interval I € 7 which is strictly contained in [¢¢p, T is small (provided
that X is large enough). Now it remains to show that, if I € 7 is larger than [t.p,T] in
the sense that there is an interval J € Z(I) lying from the left of t.,, then such I will
be rejected with a probability close to one.

Let 6 denote the parameter vector describing the process Y; immediately after the

change-point t., and let #' be the similar parameter vector before i, .

Proposition 5.1. Let I = [t.p,T] be the interval of homogeneity between the change-
point tcp, and the point of estimation T . Let next I = [T}, T) be a larger interval from
Z for some Ty < tep. If, for some i <p, it holds with J = [Ty, tcp]

10; — 0;] > 2Xai, 7 + 2(A + p)o; g, (5.3)
then
P (I is rejected, A;) > 1 —2Ppy ,»(\) exp (—A2/2) (5.4)
with Ppy,p(X) from (3.4).

We now specify the previous results for the most important situation when we estimate
the parameters immediately after a change point .

Let T be the point of estimation which is close to t.,. The corresponding interval
of homogeneity is I = [tcp,T]. We are interested to describe the delay in detecting
the change-point by the adaptive procedure. The fact of detecting the change-point can
be treated as rejecting all the intervals I which are essentially larger than I, like in

Proposition 5.1.

Corollary 5.1. Let the process Y; follow the autoregression equation (2.1) with some
vector of coefficients 0' before the time moment te, and with another vector 0 after tcp
so that

|6; — 65| > b

for some i < p and some b> 0. Let then the conditional variances O'ZI satisfy
O',L'Q,I S C|I|71

forall I €T and for all 1 <p. If

m = Cb™2(4\ + 2u)?
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then the adaptively selected interval T fulfills for T > tep +m with I = [tep, T :

P(ICTCltey—m,T])>1-2 (1 + ZNI> Pp . pp(N) exp (—22/2)
Ien

with Ppy,p(A) from (3.4).

Remark 5.1. Let b= max;<,|0;— ;| be the amplitude of the change point. The message
of Corollary 5.1 is that the procedure detects this change point (in the sense that it starts
to select T~ I = [tm,T]) when the distance T — t., between the point of estimation

and the change point becomes of order A?b~2.

5.3. Extensions

The proposed approach is based on the local ARCH(p)-assumption (3.1) which gener-
alizes usual ARCH-models to the case of time varying coefficients. It is however well
known that an ARCH-assumption is quite restrictive and it is required to take a large
order p to get a reasonable fit to real data. A GARCH-type modelling which allows
for ARMA-type representation (2.4) for the log-returns Y; = log S? is more flexible in
mimicking the long-range dependence structure of high frequency data.

Here we shortly discuss how the proposed approach can be applied to the more com-

plicated situation of GARCH-type modelling. One typical example is given by the model

Y, = z»+ fta
ze = w+ fize—1+
Its time heterogeneous analog is
Yi = z+ gta
ze = w(t)+ Pi(t)z—1 + . (5.5)

The proposed approach can be extended to such modelling in several ways. One possibil-
ity is to construct the pseudo maximum-likelihood estimates of the underlying parameters
w(t) and B(t) and then to analyze the variability in time of these estimates. One techni-
cal problem here is that the corresponding pseudo maximum-likelihood estimates are not
linear w.r.t. the observations Y; and their variance depends on the unknown parameter
values. This makes more delicate to carry over the adaptive procedure this way.
Another possibility is based on the the idea of equivalent AR-representation. Indeed,
by the Wold Theorem (Wold, 1954) every stationary process can be represented as an
infinite order autoregressive process. This also applies for the model (5.5) provided that
|w|+[8] < 1. As a consequence, the previously proposed procedure applies here as well if
the order of autoregression p is taken sufficiently large. A disadvantage of considering a

large p is that we need to estimate a large number of parameters at each time point which
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makes the procedure computationally extensive and unstable. In addition, this requires
to consider larger intervals in the sets Z and J(I)’s which decreases the sensitivity to
change-points.

One more possibility which can be recommended for practical application is to perform
the same procedure as described having in mind that we estimate only few parameters
among others. The underlying idea is that the estimated autoregressive coefficients are
strongly correlated and a change of even one of them leads to some variation in all
estimates.

The delivered information cannot be used for forecasting the process Y; but it can be
useful for a qualitative analysis of time homogeneity of this process. This can be illus-
trated by our example from Section 7 where we observe structural breaks simultaneously

in all considered parameters.

Another important assumption on the model (3.1) is normality of the innovations (; .
This assumption is essentially used to prove the large deviation bound in Theorem 3.1.
In practical applications these innovations (; are far from being normally distributed.
Usually the multiplicative errors e; in the conditional heteroscedastic model (2.1) are
assumed normal, so that (; are log-normal. Nevertheless, the result of Theorem 3.1 can
be extended to the case of non-normal variables (; under some moment conditions so

that the procedure applies in that case as well.

6. Simulations

We test our method by generating processes with controlled change point and check
whether the method is able to detect that change point and to estimate the parameters
of the process. For both simulations and estimations, the parameter mg for the grid size
is set to 50.

We consider two DGP: one threshold model, i.e., the transition between the two mod-
els is immediate after the change point, and a smooth transition model with gradual

transition.

6.1. Threshold model DGP
We consider the following DGP:
Yi=wt+a1Yi1+ @Y o+e e~ N(0,1) (6.1)
where
w = 01 o =015 ay=045 for 1<t<500 (6.2)
w = 02 a3 =055 ay=0.15 for 501 <¢ (6.3)
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The three pictures below report the pointwise estimated parameter, the dark line. The
pointwise confidence bands are given by the grey lines. These confidence bands are equal
to the averaged L; errors S;(f) = N~ 13X _, |§§K) — G-

Thes pictures show that the procedure estimates the parameter with sufficient accuracy

and is very sensitive to the change point which is very quickly detected.
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6.2. Smooth transition model DGP
We consider the following DGP:

Vi =w+w'G(tc) + (a1 + afG(t,¢) Vi1 + (ag + a5G(t,c)) Yi_a + & &4~ N(0,1)

(6.4)
where
G(t,e) = (1+exp{—y(t—c)}),v=0.025,c = 500, (6.5)
w = 01 a; =015 ay =045 (6.6)
Wt = 02 of =020 of=-025 (6.7)

In this transition model, the parameters are time varying between two extremes w,
and w+w*, aq and a1 + af, ae and as + o5. The degree of smoothness of the transition
is controlled by the parameter v, when v tends to oo, this model reduces to the threshold
model presented above.

The three pictures below report the estimated parameters (the dark line), the theoret-
ical curve (the thick line), and the confidence bands estimated from L; errors. It clearly
apppears that the procedure estimates the parameters with a good accuracy and detects

the smooth transition with some delay.

FIGURE 4. Constant term w
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7. Applications

In this section we illustrate the performance of the proposed procedure for real data.

7.1. Practical implementation

Before starting with applications, let us point out some specific features of the finance
data:

e real data are characterized by the large noise level which typically exceeds the level
of the signal:

e real data contains outliers which come from missing data; in the case of a missing
observation one usually utilizes the previous value of the considered process which
means zero return and hence, the log-return is not defined or it is very large in the
absolute value;

e lastly, the statistical theory of this paper has been developed for normal error terms.
Given that the class of stochastic volatility models uses a log transformation, we

are working with log-normal error terms.

The problem with outliers can be handled in the following way. Let (Y;) be the set of
log-returns and &7 is the variance estimate, see Section 4.3. Assuming continuity of the
trend of the process Y;, we classify Y; as outlier if Y; does not belong to the interval
[Yi-1 — 30,Y;_1 + 30|, In such case, it is replaced by the forecast from the previous
observations.

Although the innovations of the log-return process certainly are not normally dis-

tributed we proceed as if they were Gaussian, see Section 5.3.

7.2. The effects of European Monetary System inception on USD-DEM
and USD-GBP exchange rates

We consider in this section the adaptive estimation of the stochastic volatility model on
the series of DEM/USD and Pound-USD daily Foreign Exchange (FX) rates returns.

We consider the period after April 1979, which coincides with the inception of a new
limited variation exchange rate system: the European Monetary System. The effects
of the EMS on the volatility of European currencies have been studied by Bollerslev
(1990) in a multivariate ARCH framework, and by Teyssiere (1997) in a long-memory
framework. Recently, Kokoszka and Leipus (1998) have devised a test for structural
change in an ARCH framework.

All these studies have concluded that the EMS has affected the volatility structure of
the European currencies. Qur purpose is to analyze the change in the volatility through

our model.
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Since both currencies belongs to the same “target zone”, it is expected that both
volatilities share some common features. The EMS implies that each currency has a
fluctuation band of +2.25%. All EMS participants intervene in the FX market if these
bounds are reached. This limited variation mechanism implies of course some interde-
pendencies between the currencies.

We concentrate here on the two most frequently currencies, although Great Britain

joined the EMS one month later and withdrew six months afterwards.

FIGURE 7. Constant term w USD/DEM
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FIGURE 9. «; USD/DEM
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F1GURE 11. a2 USD/DEM
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These picture show that the model is able to detect changes in regime in the volatility
equation. What is more interesting is the similarity in the changes of regime in the

volatility of both FX rates returns.

Appendix: Proofs
Here we collect the proofs of the assertions from Sections 3.2 and 5.

7.3. Proof of Theorem 3.1

The model equation (3.1) and the definition of A; imply

-1
0, —0(T)| = (Z x x> (X - o)X, X])
tel tel

_ (Z X,XT) 3 (X + [0(2) — 60T)) X, XT)

tel tel

-1
< (ZXtXtT ZXtCt + Ag.

tel tel

This bound constitutes the decomposition of the difference 6 — O(T) into a bias and a
stochastic component. Denote by & = (&.1,... ,&.1)7 the stochastic component of 51,

l.e.

1
&= (Z XtXtT) pp.e

tel tel
The assertion of Theorem 3.1 follows from a martingale inequality given in from Liptser

and Spokoiny (1999), under the conditions of the theorem,
P (|&.1] > Moir, Ai1) < 4e (1 +1og B) (1 + 2py/rpA)P Aexp (—A?/2)
= Pirpp(A) exp (—2?/2) .

7.4. Proof of Theorem 5.1

Let I be the “ideal” interval from (5.1). Obviously

P

0, — 0:(T)| > A+ i+ D)oy, Ar)

<P(

0; —Oi(T)‘ > @A+ p+D)ojy, Ai, I C f) + P (I is rejected, A;) .

We evaluate separately each summand in the right side of this inequality. It holds on the

event {I C T} in view of the definition of I and ol

10: = 0:(T)| = 16, 7 — 01| < Aoip + po? 7 < (A + ).
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On the “ideal” interval I we have Ay < Do; . An application of Theorem 3.1 then
yields

P (|§M —6;(T)| > (A + D)oi.p, Ai) < P (\5,-,,, — 0;(T)| > Aowr + Ax, AZ-)

)\2
S PB,’I‘,p,p(A) €xp (_?) °

Coupled with the previous inequality the latter implies

~ K 2
P (|0Z —0{(T)| > 2A+p+ D)o} g, Ay, I C I) < P pp(A)exp (—7> . (7.1)
It remains to evaluate P(I is rejected). Due to the definition
{I is rejected} = U U {|§Z~,1 — (9;,]| > A\oig + /w;if} . (7.2)

Ieg(@) JeJ(I)

Note also that for every I € J(I) and every J € J(I), it holds

A;r < Ar< Doy < Do},

Ay < Ap<Dog< DO’,ZI.

Hence, by Theorem 3.1, using u > A+ 2D and 0,5 <07,

P (|§zl —0;.4] > Ao g+ 1o, Ai)
<P <|§,’,[ — Hi(T)| > Aoj 1+ DUZIa Ai) +P (|§Z’,J — ei(T)| > Ao g+ DO’ZI, Ai)

<P (|§i,I —0;(T)| > Ao, 1 + AIaAi) +P (|§i,J —6;(T)| > Aoy g + AJaAi)

AQ
< 2Pprpp(X) exp <—7> :

In view of (7.2)

P (I is rejected) < Z Z P (|§i,l - az‘,J| > Ao,y + /‘U;'k,[>
Iez(nm) JeJg)

)\2
< Z 2N1PB,T,p,p()\) exXp (_7) .

1€7(I)

This along with (7.1) yields the assertion.

7.5. Proof of Proposition 5.1
Clearly the event {I is not rejected} includes

|§z’,l — gi,ﬂ < Aoip+poi < (A+p)og

0;1 — 051 < Aoig+poip < Ao g+ pol g
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Next, by Theorem 5.1, using homogeneity within  and J
P (\51',11 —0;] > )\Uz',JI,Ai) +P (lau —0; > /\Ui,J,Ai)

Since also o7 ; < o], the inequality (5.3) implies (5.4).

7.6. Proof of Corollary 5.1
Let I = [tcp,T]. The arguments from the proof of Theorem 5.1 lead to the bound

P (I is rejected) < > 2N/ Pp,pp(A) exp (—A?/2).
TeZ(I)

Next, set I = [tep —m,T] and J = [tep —m, tep] . The conditions of the corollary provide
for all ¢ <p

UZ-Q,J <Cm™! and UZH <Cm™!

so that condition (5.3) is fulfilled for m satisfying m > Cb~2(4\+2u)?. An application
of Proposition 5.1 yields

P (I is not rejected) < 2Pp ;. ,p(A) exp (—A?/2)

and the assertion follows.
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