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Bootstrapping Impulse Responses in VAR
Analyses

Helmut Liitkepohl®

Humboldt-Universitit, Institut fiir Statistik und Okonometrie, Spandauer
Strafle 1, D-10178 Berlin, Germany, email: luetke@wiwi.hu-berlin.de

Abstract. Because the parameters of vector autoregressive processes are of-
ten difficult to interpret directly, econometricians use quantities derived from
the parameters to disentangle the relationships between the variables. Boot-
strap methods are often used for inference on the derived quantities. Alterna-
tive bootstrap methods for this purpose are discussed, some related problems
are pointed out and proposals are presented to overcome the difficulties at
least partly. Some remaining problems are presented.

Keywords. Impulse response, bootstrap, vector autoregression, confidence
interval

1 Introduction

In econometric analyses vector autoregressive (VAR) models are established
tools for describing the generation process of a set of time series variables. The
advantage of these models is that their statistical analysis can be done with
standard methods. On the other hand, the direct interpretation of the VAR
parameters is often difficult. Therefore, to reveal the interaction between
the variables involved, impulse responses and related quantities are used.
They are usually determined from the estimated process parameters and
are therefore also estimates. Their estimation uncertainty is often visualized
by plotting confidence intervals (CIs) together with the impulse response
coefficients. These CIs are frequently determined by bootstrap methods. The
objective of this lecture is to discuss this practice, present some alternative
bootstrap methods and also draw attention to the problems related to the
application of these methods in the present context.

Before a more formal treatment of the objects of interest is presented in the
next section it may be useful to discuss some characteristics of the variables
for which the models are constructed. Economic time series typically have
nonzero means, stochastic and/or deterministic trends and seasonal compo-
nents. Such components have to be allowed for in the models used to describe
the data generation process (DGP). For simplicity I will occasionally call vari-
ables I(0) if they are generated by a process with stationary stochastic part.
If they are not I(0) but become I(0) upon taking first differences, they will
be called I(1) variables. In principle I(0) and I(1) variables can have polyno-
mial trends and other deterministic components. Because these components
do not affect the quantities of interest in the present context, I will ignore
them for simplicity in most of the discussion. Also, some economic variables
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pean Commission under the Training and Mobility of Researchers Programme
(contract No. ERBFMRXCT980213) provided financial support.



cannot be reduced to I(0) variables upon differencing once. Such variables are
not considered here again for simplicity, although some of the problems are
equally valid or even more so for variables with higher order of integration.

The lecture is organized as follows. I will first present some quantities of in-
terest. Then I will consider alternative bootstrap methods that have been pro-
posed in the recent literature and I will also point out some related problems
which are relevant in the present context. Moreover, attempts to overcome
the problems will be considered. Most of this discussion is based on systems
of I(0) variables generated by purely stochastic stationary processes. Admit-
tedly, this set-up is quite unrealistic. The advantage is, however, that the
main problems are most easily presented in this framework. Moreover, it will
become apparent that the problems are not mainly due to unusual properties
of the variables but arise for the simplest cases as well. In the last section
extensions will be discussed.

A word on the notation: The symbol £(X) will be used to denote the

distribution of the random variable or random vector X. The symbol 4
signifies convergence in distribution. The (K x K) identity matrix is denoted
by Ix and vec is the column stacking operator which stacks the columns of
a matrix in a column vector.

2 Quantities of Interest

For a given set of K time series variables y; = [y1t,...,yk¢), I consider a
VAR process of the form
Aoye = A1y 1+ -+ Apy p +us (2.1)

as the basic model in the following. Here the 4; (i = 0,1,...,p) are (K x K)
coefficient matrices which are restricted in a suitable way so that they can
be estimated. The disturbances u; = [ugy, ..., uk:] are assumed to be white
noise, that is, the u; are serially independent or at least uncorrelated with
zero mean and positive definite covariance matrix X,.

As mentioned in the introduction, in practice there will usually also be
other components necessary to describe the DGP of a given set of time series
in a suitable manner. For example, there may be deterministic terms such as
intercepts, seasonal dummy variables or polynomial trend terms. In addition
there may be unmodelled stochastic explanatory variables. For the moment I
will not consider those terms because the issues of central importance in the
following can be discussed without taking such additional terms into account.

The model (2.1) summarizes the instantaneous and intertemporal relations
between the variables. The interactions between the variables are usually
difficult to infer directly from the coefficient matrices. Therefore impulse re-
sponses and other quantities are often computed from the A; and X, which
help in the interpretation of the model. The following examples are of interest
in this context:

— Forecast error impulse responses
Defining
h

B =Ag" Y ApBhg, h=12,..., (2.2)
k=1

with &y = Ay ! The ijth elements of the matrices &, regarded as a func-
tion of s, trace out the expected response of y; ;15 to a unit change in y;;



holding constant all past values of y;. If Ag = Ik, (2.1) is a reduced form
model. In that case the change in y;; given {y¢—1, Y12, ...} is measured by
the innovation u;; and the elements of @, represent the impulse responses
of the components of y; with respect to the u; innovations. These impulse
responses are sometimes called forecast error impulse responses because,
for a reduced form model, the u; are the 1-step ahead forecast errors.
Note that generally the ¢;; 5 are sums of products of the elements of the
A;. For instance, if p = 1 and Ag = I it is easily seen that &, = AR,

— Orthogonalized impulse responses
Denoting by P a lower triangular matrix such that X, = PP’, the or-
thogonalized shocks are given by €, = P~'u; which have unit covariance
matrix, that is, E(ese}) = Ix. The orthogonalized impulse responses are
the elements of the ¥; = &;P (1 =0,1,2,...).

— Structural impulse responses
Since many matrices P exist which satisfy PP’ = X, considering the
orthogonalized impulse responses is to some extent arbitrary. If a priori
hypotheses are used to choose a matrix P such that u; = Pe; results in
so-called structural impulse responses ¥; = ;P (i =0,1,2,...).

— Forecast error variance decomposition
Let yr4nr be the optimal h-step forecast in period T'. Then the corre-
sponding forecast error can be written as

Y1+h — Y1r4uT = Yoerrn +VieTih—1 + -+ +¥h_ 16741
Denoting the ijth element of ¥ by 1);; s, the kth element of the forecast
error vector becomes

h—1
Yk T4h — Uk T+hT = D (Pk1,s81,Thh—s + - + VK sEK.Th—s)-
s=0

Using that the e, are contemporaneously and serially uncorrelated and
have unit variances by construction, it follows that the corresponding
forecast error variance is

h—1 K
on(h) = Z(‘ﬁlzcl,s +--- ¢129K,s) = Z(‘/’ij,O +---+ ¢12¢j,h71)-
s=0 7j=1

The term (¢7;0 + -~ + ¥5;,_1) is interpreted as the contribution of
variable j to the h-step forecast error variance of variable k. This inter-
pretation makes sense if the €;; can be interpreted as shocks in variable
i. Dividing the above terms by oZ(h) gives the percentage contribution
of variable j to the h-step forecast error variance of variable k.

For detailed discussions of these and further quantities of interest in the
present context see Sims (1980, 1981, 1992), Liitkepohl (1990, 1991), Watson
(1994), Liitkepohl & Breitung (1997). A crucial property of these quantities
from the point of view of our analysis is that they are particular nonlinear
functions of the parameters of the model (2.1), say,

Gijn = Gij (Ao, A1, ..., Ap) or Yiin = Yijn(Ao, A1, ..., Ap, X)), (2.3)

where ¢;; , or 1);;, represents the response of variable ¢ to an impulse in
variable 7, h periods ago.



3 Bootstrap Inference

Usually the coefficients of model (2.1) are estimated by some standard pro-
cedure such as (pseudo) maximum likelihood (ML), feasible generalized least
squares (GLS) or generalized method of moments (GMM). Estimators of the
impulse responses are then, for example, obtained as

Gij.n = dijn(Ao, ..., Ap), (3.1)
where the /io, . ,/ip are the estimated VAR parameter matrices. The prop-
erties of the estimator ¢;; 5 then follow from those of Ay, ..., A,. To assess the

sampling uncertainty of the quantities of interest, confidence intervals (CIs)
are sometimes determined on the basis of the asymptotic distributions. Al-
ternatively, bootstrap methods are often used for this purpose, because these
methods occasionally lead to more reliable small sample inference than CIs
based on standard asymptotic theory. It may be worth noting, however, that
the bootstrap is also justified by asymptotic arguments only. In the follow-
ing, alternative bootstrap approaches will be considered for setting up CIs for
impulse responses. They are all residual based bootstraps using the following
general algorithm which assumes a sample of size T plus some presample
values.

(1) Estimate the parameters of the model in (2.1) and denote the estimation
residuals by ;.

(2) Compute centered residuals @, — 4., ...,4r — @, where 4, = T—1 3" i,
and generate bootstrap residuals uj,...,ur by randomly drawing with
replacement from the centered residuals.

(3) Compute bootstrap time series recursively as

y::Aal(Aly;fl'i_"'_'_fipyz;p_i_u:)a t=1,....T,

where (yip—i-l: .. 7y6) = (y—IJ+17 .- 73/0)-
(4) Reestimate the parameters Ao, ..., A, based on the bootstrap time series.
(5) Based on the parameter estimates obtained in Stage (4), calculate a boot-

strap version of the statistic of interest, say ¢*.
(6) Repeat Steps (2) - (5) a large number of times (say N times).

This algorithm is based on an assumed VAR(p) model. If there is uncer-
tainty with respect to specific aspects of the model like, for instance, the
VAR order, a block bootstrap may be used which is based on the original
observations rather than the model residuals (see, e.g., Li & Maddala (1996)
for details). Because construction of a suitable model for the DGP is often
the main purpose of an analysis, using the block bootstrap is not an obvious
procedure in the present context, however, and will not be discussed further.

In the following I use the symbols ¢, ¢ and ¢* to denote some general
impulse response coefficient, its estimator implied by the estimators of the
model coefficients and the corresponding bootstrap estimator, respectively.
The following bootstrap CIs have, for instance, been considered in the liter-
ature:



— Standard percentile interval
The most common method in setting up CIs for impulse responses in
practice is to use the interval

Ols = [832,501-172)

where s>, and s, __ , are the 7/2- an (1 — /2)-quantiles, respec-

tively, of the bootstrap distribution £(¢* | y—pt+1,---,Y%0,---,y7). The
interval C'Ig is the percentile confidence interval described, e.g., by Efron
& Tibshirani (1993).

— Hall’s percentile interval
Hall (1992) uses the usual bootstrap analogy,

£(¢;_¢) %;C(QAS* _$|y—p+13'-'7y07"'3yT)7

to derive the interval

~

CVIH = I:é_tz(l—’y/2)7¢_tf;/2 )

where t7 , and tf, _ ., are the v/2- and (1 — y/2)-quantiles of L(d*—¢ |
Y—ptis - -5 Yo, ---,YT), respectively.

— Hall’s studentized interval . R
In some situations, using a studentized statistic (¢ — ¢)/(¥ar(¢))'/? for
constructing confidence intervals may be advantageous. In that case boot-

strap quantiles from the distribution of (¢* — @)/ (var(¢*))!/2 are used to
construct an interval

Clsu = [QE - t?f77/2)(‘7a\‘1‘(<5))1/27 ¢ — t§72(@($))1/2 .

In this approach the variances are estimated by a bootstrap within each
bootstrap replication.

A number of refinements and modifications of these intervals exist. Some
of them will be mentioned in the next section where important properties of
the present intervals are discussed.

4 Properties and Problems

A desirable property of a CI is that it has the nominal confidence con-
tent at least asymptotically. The bootstrap CIs mentioned in the previous
section have this property under certain conditions. Roughly speaking, if

L(VT(¢ — ¢)) converges as T = 00, LVT($* = @) | y—pt1,--->Yo0s- -, Y1)
converges to the same limit distribution under suitable conditions (e.g., Hall
(1992)). It follows immediately that in this case CIg has the correct size
asymptotically, that is, Pr (¢ € CIg) — 1 —~ as T — oo and, hence, Hall’s
percentile method is asymptotically correct. Similar arguments can be used
to establish the asymptotic validity of the CIgy interval. The same can also

be shown for CIg if the limiting distribution corresponding to £(v/T (¢ — ¢))
is symmetric about zero, for instance, if it is zero mean normal. Roughly



speaking, C'Is works with an implicit unbiasedness assumption for qS How-

ever, if the distribution of ¢ is not centered at ¢, C'Is will generally not have
the desired confidence content even asymptotically (see also Efron & Tibshi-
rani (1993) and Benkwitz, Liitkepohl & Neumann (2000) for a more detailed
discussion of this point). Hence, we have to consider the distribution of the
quantities of interest.

Assuming that the A; have an asymptotic normal distribution,
VTvec([Ao, ..., Ayl = [Ao, ..., A]) 5 N(0,54), (4.1)

using the delta method (e.g., Serfling (1980)), ¢ can be shown to have an
asymptotic normal distribution as well,

VT($ - ¢) 5 N(0,02), (4.2)
where 06 96

with a = vec[Ag, ..., Ap], and d¢/da denotes a vector of first order partial
derivatives. The result (4.2) holds if 033 is nonzero which is a crucial condition

for asymptotic inference to work in the usual way. Note that X'; may be
singular if there are constraints on the coefficients or if the variables are
integrated and/or cointegrated (see Liitkepohl (1991, Chapter 11)). However,
even if Y4 is nonsingular, ‘73‘5 may be zero because the partial derivatives in

(4.3) may be zero. In fact, they will usually be zero in parts of the parameter
space because an impulse response coefficient ¢ generally consists of sums of
products of the VAR parameters and, hence, the partial derivatives will also
be sums of products of such coefficients which may be zero, of course.

To see this consider a simple, stable, univariate AR(1) process y; = ay; 1+
uy with |a| < 1. In that case, forecast error impulse responses are of the form

én = aP. If & is the usual LS estimator, it is well-known that /T(& —
@) 4N (0,1 — a?) under general conditions (Anderson (1959)) and, hence,
VT($n — ¢n) > N(0,h2a2h-D(1 — a?)) for a # 0. If a = 0, however,

VT($n — én) = VT&" % 0 for h > 1. In other words, (¢r, — ¢r) converges to

zero more rapidly than 7—'/2 so that the convergence rate is not constant for
all points in the parameter space. This problem is aggravated for integrated
processes with a = 1 and for higher order or higher dimensional processes.

In fact, in the simple AR(1) example it is easy to see that CIs has zero
coverage probability for @ = 0 and even h, because in that case, denoting
by &* the estimator of a based on the bootstrap time series, we have that
(&*)" will be strictly positive with probability 1. Consequently, using simply
the relevant lower and upper percentage points of the bootstrap distribution
results in an interval which cannot include zero. Hence, a” = ¢, = 0 is not
included. Although the other bootstrap CIs do not have this problem, they
may not have the correct coverage probability asymptotically (see Benkwitz,
Liitkepohl & Neumann (2000) for details).

The latter authors have also performed a Monte Carlo experiment to in-
vestigate the performance of bootstrap CIs in finite samples. Some of their



Table 4.1. Relative coverage frequencies of nominal 95% CIs for impulse
responses ¢p

a=0a=.20a=.50a=.90a=.99

h=1

Cls | 954 953 953  .891 176
Clg | 933 929 937 890 .929
Clsg| 942 942 945 915  .928

h=2

Cls | 000 982 953 .891 776
Clg | 982 .703  .876  .882  .925
Clsg| 979 788 956 920 .933

h=3

ClIs | 954 953 .953  .891  .776
CIg |1.000 .676 .821 .866  .919
Clsi|1.000 .764 958  .924  .935

h=4

CIs | .000 .982 .953 .891  .776
Clg | 976 .620 .786  .855  .905
Clsg| 979 764 962 929  .937

(CIsy figures extracted from Tables IIT - VI of Benkwitz, Liitkepohl &
Neumann (2000). Other figures simulate(% based on the same generated time
series.

simulation results are replicated in Table 4.1 together with own results. The
figures are based on the AR(1) example, a sample size T = 100 and N = 2000
bootstrap replications in each simulation run. The relative coverage frequen-
cies shown in Table 4.1 are obtained for 1000 replications of the experiment.

Obviously, CIg fails completely for & = 0 and h = 2 and 4, that is, the true
¢p, never falls in Clg in these cases. For odd h or a > 0, the coverage of CIg
improves considerably. It deteriorates, however, if a approaches 1 and, hence,
the instability region. In contrast, CIy and ClIgy perform well in terms of
coverage for a = 0 and h = 1,2,3,4. They sometimes even have a larger
coverage probability than desired. They do not perform very well in some
of the other cases, however. For example for h = 4 and a = .20, the actual
coverage frequencies of around 60% for CIyx and of 76.4% of CIsg are not
satisfactory, although it is apparent that CIsy performs better than C'Ig in
general. For a close to 1, both CIg and CIgy have a better coverage than
Cls.

In summary, the three types of CIs considered here suffer from both asymp-
totic as well as small sample deficiencies. In particular, there are points in
the parameter space where the asymptotic theory fails and, thus, it cannot



be used to justify the bootstrap. Moreover, some intervals perform poorly in
small samples even for asymptotically unproblematic true parameter values.
For cases where the coverage is correct asymptotically, small sample adjust-
ments have been proposed in the literature. For instance, Hall (1992) argues
that an iterative bootstrap procedure may result in more accurate CIs. In
that method a further layer of bootstrap samples is drawn from each origi-
nal bootstrap sample. Then CIs are computed from each of the second stage
bootstrap samples and these CIs are used to estimate the actual coverage by
checking how often the original estimate falls within these intervals. Then
the original CI is furnished with a correction factor to adjust the coverage.
This procedure can be used iteratively by repeating it more than once.
Small sample distortions of C'Ig may also reflect biased estimation proce-
dures. In those cases a bias correction may be used. A possible procedure
for the presently considered cases was proposed and investigated by Kilian
(1998a). Although these modifications help to improve the coverage prob-
abilities in some small sample situations which are such that the standard
asymptotic theory works, they do not overcome the problems for those cases

where the usual v/T-asymptotics break down.

5 Possible Solutions

There are at least three possible strategies to overcome the problems resulting
from the different rates of convergence in the parameter space. First, one may
consider bootstrap procedures that adjust to the kind of singularity in the
asymptotic distribution which we have to deal with here. A couple of differ-
ent proposals of this sort are discussed in Benkwitz, Liitkepohl & Neumann
(2000). For instance, subsampling may be used to estimate the convergence
rate in addition to the model parameters. These and other methods were
shown to have drawbacks, however, in empirical applications. Either they
are not very practical for processes of realistic dimension and autoregressive
order or they do not perform well in samples of typical size.

A second possibility to tackle the singularity problem is to single out and
eliminate the points where problems occur before an impulse response anal-
ysis is carried out. In the present case this proposal amounts to determining
all zero coeflicients in a first stage of the analysis and enforcing the resulting
zero restrictions in the next stage where the model underlying the impulse
response analysis is estimated and used for computing impulse responses.
This solution is, for instance, considered by Benkwitz, Liitkepohl & Wolters
(2000). Problematic in this approach may be the uncertainty with respect to
the actual zero restrictions.

A third way out of the singularity problem is to consider a different type
of modelling approach based on the assumption of a potentially infinite VAR
order. So far it has been assumed that a given finite order VAR model is
considered. In practice, it is usually unknown a priori which model provides
a suitable representation of the DGP. Therefore the model order and other
restrictions are chosen by some kind of statistical procedure. Kilian (1998b)
proposes to use a bootstrap procedure at this stage as well. In any case, such
a preliminary analysis introduces additional uncertainty into the analysis. An
alternative approach is therefore to explicitly allow the original model to be
an infinite order VAR process and to integrate the model choice directly into
the estimation procedure by assuming that the model order is increased when
more sample information becomes available. In other word, the model order
is assumed to approach infinity with the sample size. A suitable asymptotic



theory is developed by Liitkepohl (1988, 1996), Liitkepohl & Poskitt (1991,
1996), Liitkepohl & Saikkonen (1997) and Saikkonen & Liitkepohl (1995,
1996) based on work by Lewis & Reinsel (1985) and Saikkonen (1992). It
turns out that this asymptotic theory avoids the kind of singularity in the
asymptotic distribution which causes the failure of the bootstrap procedures.
On the other hand, the greater generality of the model results in an ineffi-
ciency relative to the model with finite fixed order.

6 Extensions and Open Problems

As mentioned earlier, in practice deterministic terms are often used in VAR
processes. Such terms can be added without affecting the previous results be-
cause they do not enter the computation of the impulse response coefficients,
that is, impulse responses are computed for the stochastic part only anyway.
For I(0) processes, the estimates of the deterministic part will be asymptoti-
cally independent of the stochastic part if the model is specified in a suitable
way. Hence, from the point of view of asymptotic theory no new problems
arise. Of course, in small samples the inclusion of deterministic terms can
matter to some extent. Moreover, additional stochastic exogenous variables
and their impact on the endogenous variables may be of interest. In that case,
dynamic multipliers may be considered which are closely related to impulse
responses. In principle, the analysis of the former quantities can proceed in
a similar way as for impulse responses.

A different situation arises if I(1) variables are also included in the system
under consideration. In that case there may be singularities in the limiting
distribution of the VAR parameters due to unit roots. Therefore, the singular-
ity problem is aggravated. Unfortunately, in that case it cannot be overcome
simply by imposing zero restrictions on the parameters because it arises from
the superefficient estimation of cointegration parameters or, alternatively,
of certain linear combinations of VAR parameters. One possible way to get
around the resulting problems for bootstrapping impulse responses may be a
detailed modelling of the cointegration relations and taking into account the
implied singularities in the asymptotic distribution. In fact, in that case it
may be possible to estimate the cointegration relations in a first round and
fix the associated parameters in the bootstrap procedure. Such an approach
is discussed by Benkwitz, Liitkepohl & Wolters (2000) who also present de-
tailed examples. Unfortunately, a complete asymptotic justification of such a
procedure seems to be missing to date.

Sims & Zha (1999) point out that the individual impulse responses are
not independent. Consequently, reporting CIs for individual impulse response
coeflicients may give a misleading impression of the actual uncertainty in the
estimated impulse response function. In other words, the band obtained by
drawing individual (1 —v)100% CIs around each coefficient separately is not
a confidence band with confidence content (1 —+)100%. Sims & Zha propose
a method that can help in getting a better picture of the overall uncertainty
in the estimated impulse response functions.

So far I have discussed linear models only. In these models impulse re-
sponses are especially easy to analyze because the response to an innovation
does not depend on the state of the system. Moreover, the direction or the
size of a shock do not have an impact on the shape of the response. There-
fore it is easy to represent the essential features of the dynamic interactions
between the variables in a relatively small set of impulse response functions.
On the other hand, it is clear that these invariance properties are not realistic
in all situations of practical interest. As a consequence, nonlinear dynamic
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models and corresponding extensions of impulse response functions have been
proposed in the literature (e.g., Gallant, Rossi & Tauchen (1993), Pesaran &
Shin (1998)). In general the inference problems observed in the simpler linear
models will be aggravated if more complicated models are considered.
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