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Reason-Based Choice:

A Bargaining Rationale for the Attraction and

Compromise Effects∗

Geoffroy de Clippel and Kfir Eliaz†

June 2009

Abstract

Among the most important and robust violations of rationality are the attrac-

tion and the compromise effects. The compromise effect refers to the tendency of

individuals to choose an intermediate option in a choice set, while the attraction

effect refers to the tendency to choose an option that dominates some other op-

tions in the choice set. This paper argues that both effects may result from an

individual’s attempt to overcome the difficulty of making a choice in the absence of

a single criterion for ranking the options. Moreover, we propose to view the resolu-

tion of this choice problem as a cooperative solution to an intra-personal bargaining

problem among different selves of an individual, where each self represents a dif-

ferent criterion for choosing. We first identify a set of properties that characterize

those choice correspondences that coincide with our bargaining solution, for some

pair of preference relations. Second, we provide a revealed-preference foundation to

our bargaining solution and characterize the extent to which these two preference

relations can be uniquely identified.

Alternatively, our analysis may be reinterpreted as a study of (inter-personal)

bilateral bargaining over a finite set of options. In that case, our results provide

a new characterization, as well as testable implications, of an ordinal bargaining

solution that has been previously discussed in the literature under the various names

of fallback bargaining, unanimity compromise, Rawlsian arbitration rule and Kant-

Rawls social compromise.

∗We thank Bart Lipman, Mihai Manea and Roberto Serrano for helpful comments. We also thank
Jim Campbell for his research assistance.

†Brown University, Department of Economics, Providence, Rhode Island - declippel@brown.edu,
kfir_eliaz@brown.edu.
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1. INTRODUCTION

Many of the decision problems we face are complicated by the fact that there is no

single dimension or criterion for evaluating the available alternatives. For example, when

searching for an apartment or a house, the ranking of the available options may be very

different depending on whether the criterion we use is price, size, proximity to work or

quality of schools. Similarly, when choosing a car, there are several different criteria or

dimensions that one may use such as price, safety, gas efficiency, size, color or esthetics.

Also, in deciding between academic job offers there is no one obvious criterion to use as

one may consider the ranking of the department, the number of faculty members in one’s

field, the financial terms, the location, etc.. Often there can be many different dimensions

or criteria that one may use, making it difficult, if not impossible, to take all of them into

account. This often leads us to focus only on a limited number of dimensions, which we

deem most important. However, we are still faced with the difficult task of resolving the

trade-off between these dimensions.

If we were fully rational, as is typically assumed in economics, then first, we would

be able to take into account all possible dimensions, and second, we would be able to

consistenly make the necessary trade-offs across dimensions. However, numerous studies

in economics, psychology and marketing provide overwhelming evidence that individuals

exhibit systematic departures from rational choice, especially in those situations where

there is no obvious single criterion for evaluating the available options. This suggests that

individuals often find it difficult to resolve the conflict about how much of one dimension

to trade off in favor of another, and hence, they resort to simple heuristics that lead to

systematic violations of rationality. Among the most studied and robust violations are

the attraction and the compromise effects.

The attraction effect was first demonstrated by Huber, Payne and Puto (1982), while

the compromise effect was introduced by Simonson (1989).1 The attraction effect refers to

the ability of an asymmetrically dominated or relatively inferior alternative, when added

to a set, to increase the choice probability of the dominating alternative. The compromise

effect refers to the ability of an “extreme” (but not inferior) alternative, when added to a

set, to increase the choice probability of an “intermediate” alternative. To illustrate these

two effects, consider two options,  and  Suppose there are two dimensions or criteria

for evaluating these options such that  is better than  along the first dimension while

1These studies have sprung a whole literature devoted to replicating and extending these effects to

various decision problems, including real, monetary choices. For references see Shafir, Simonson and

Tversky (1993), Kivetz, Netzer and Srinivasan (2004) and Ariely (2008).
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 is better than  along the second dimension (see Figure 1). For example, suppose 

and  are two equally priced apartments, but one is closer to work while the other has

better schools.

A
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An attraction effect

A

B
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2

C

A compromise effect

Figure 1

In a typical experimental study (which uses a between-subjects design), both  and 

are chosen - usually in equal proportions - by a control group of subjects. The attraction

effect is observed when a third alternative,  is added to the set such that it is dominated

by only one of the other two options (say,  as in Figure 1). When subjects are asked

to choose from {} the vast majority of them tend to choose . The compromise
effect occurs when  is added such that it is even better than  along the first dimension

but worse than it along the second dimension (i.e., according to the first dimension,  is

better than  which is better than  while the opposite ranking is obtained according

to the second dimension). In such a case, most subjects again tend to pick . These

findings may be interpreted as systematic violations of the Weak Axiom of Revealed

Preferences (WARP) by considering a choice correspondence that selects both  and 

from {} but chooses  alone from {}.2
The introduction of these two effects has generated a huge literature in marketing

aimed at understanding the source of the effects and their implications for positioning,

branding and advertising (see Kivetz, Netzer, and Srinivasan (2004)). One important

question that arises is whether the two effects may be viewed as just “snapshots” of a more

general choice procedure, which may lead to more significant violations of WARP across

various decision problems. This paper attempts to address this question by proposing and

characterizing a choice procedure that generates both the attraction and the compromise

effects. Our choice procedure is motivated by the interpretation of these two effects

2More specifically, this is a violation of the -axiom proposed by Sen (1971).
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as instances of “reason-based choice” (see Simonson (1989), Tversky and Shafir (1992)

and Shafir, Simonson and Tversky (1993)). According to this interpretation, in the

absence of a single criterion for ranking available options (what is often referred to as

“choice under conflict”), choices may be explained “in terms of the balance of reasons

for and against the various alternatives” (see Shafir, Simonson and Tversky (1993)).3

To formalize this interpretation, we envision the decision-maker as trying to reach a

compromise between conflicting “inner selves”, representing the different attributes or

dimensions of the available options. We then propose to view the final choice (i.e., the

“balancing of reasons for and against”) as a cooperative solution to a bargaining among

the different selves. In the spirit of the literature on dual-selves (e.g., the  −  models

of present bias, Benhabib and Bisin (2004), Eliaz and Spiegler (2006), Fudenberg and

Levine (2006)), we focus our analysis on decision problems that give rise to two selves.

We start by considering the two relevant criteria or dimensions, and their associated

rankings, as primitives of the model. This allows us to focus attention on how conflict

could be resolved in the mind of a decision maker who is subject to both the attraction

and compromise effects, while still satisfying some consistency properties. Also, it may

be reasonable in some applications to consider that these primitives are indeed known to

the modeler. As illustration, one may think for instance of the choice of product with

two attributes such as price and quality, price and size, shipping rate and date of arrival,

sugar and fat content, etc. Formally, our first model consists of a finite set of options

 and a pair of linear orderings on this set, Â= (Â1Â2). Each ordering is interpreted
as the (known) preference relation of one of the individual’s dual selves. A bargaining

problem is defined to be a non-empty subset of options  For a given preference profile

Â, a bargaining solution is a correspondence Â that associates with every bargaining
problem  a subset of .

Which cooperative bargaining solution can capture our dual-self interpretation of

reason-based choice? This solution should first of all exhibit properties that capture the

attraction and compromise effects. We interpret an attraction effect as the following

property (ATT): whenever a set of options is expanded by adding an alternative that is

Pareto dominated by some previously chosen element, then only those chosen alternatives

that dominate the new alternative are selected from the new set. We view a compromise

as an attempt to resolve conflicting preferences over a pair of alternatives by selecting an

outcome that is ranked in between the two by both bargainers. A bargaining solution,

therefore, exhibits a compromise effect, or what we call the “No Better Compromise”

3Note that reasons involving relationships to other alternatives may lead to violations of WARP.
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property (NBC), if whenever  and  are chosen from a set, then there cannot be an

element in that set that both bargainers rank between  and .

Our first main result (Theorem 1) establishes the existence of a unique bargaining

solution that satisfies the above properties, in addition to a number of other properties

that capture a notion of consistency across decision problems, the cooperative nature of

the bargaining, immunity to framing and symmetry. To describe this solution, imagine

that for every bargaining problem, each bargainer assigns each option a score equal to the

number of elements in its lower contour set. Hence, each option is associated with a pair of

scores. The bargaining solution selects the options whose minimal score is highest. This

solution has been previously discussed in the literature under various names: “Rawlsian

arbitration rule” (Sprumont (1993)), “Kant-Rawls Social Compromise” (Hurwicz and

Sertel (1997)), “fallback bargaining” (Brams and Kilgour (2001)), as well as “unanimity

compromise” (Kibris and Sertel (2007)). An appealing feature of this bargaining solution

is that it is purely ordinal and applies to any arbitrary finite set of options (in contrast

to the Nash or Kalai-Smordinsky solutions).4

Next we consider an environment in which there is no obvious way to rank the options

along two dimensions. We interpret our focus on only two dimensions as an assumption

that the decision-maker can process only a limited number of dimensions or attributes.

Thus, if the options are characterized by a large number of attributes, it may not be clear

which two dimensions the decision-maker focuses on. Hence, an outside observer may not

be able to infer what rankings the decision-maker uses to evaluate the options. Alterna-

tively, there may be only two salient dimensions or attributes, but it is not obvious how

a decision-maker would rank the options along each dimension (consider, for example,

attributes such as color, taste, smell). In such an environment the only observations we

may have about the decision-maker are the choices he makes (i.e., his choice correspon-

dence). We ask the following question: what are the necessary and sufficient conditions

for representing the decision-maker as if he has two selves (each characterized by a linear

ordering on ), which make a choice according to the fallback bargaining solution?

Our second main result (Theorem 2) identifies these conditions. This result relies on

the notions of “revealed Pareto dominance” and “revealed compromises”. An option 

is revealed to be Pareto superior to  if it is chosen over  in a pairwise comparison. An

option  is revealed to be a compromise between  and  if no option in this triplet is

revealed to be Pareto superior over another, and  is chosen uniquely from {  }. The
4Mariotti (1998) proposes an extension of the Nash bargaining solution to finite environments. How-

ever the extended solution still uses cardinal information as it is defined over sets of payoff vectors.
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necessary and sufficient conditions identified in Theorem 2 include the revealed versions

of the relevant properties characterized in Theorem 1, in addition to properties that

capture the consistency of the revealed Pareto relation and the consistency of revealed

compromises.

Because we need to simultaneously recover two preference relations, proving Theorem

2 requires a different approach than the one that is typically used in the choice theoretic

literature. The difficulty arises when we observe that both  and  were chosen from

{ } and that both  and  were chosen from { }. These choices reveal to us that
the two selves disagree on the rankings of { } and { }. The challenge we face is to
determine whether the self who ranks  above  also ranks  above 5 We overcome this

difficulty by constructing an induction argument in which the elements of  are added

in a particular order. In particular, we partition the set of options into “revealed Pareto

layers”, and the elements in each Pareto layer are further partitioned into “revealed

extreme layers” (where the most extreme layer includes elements that are never revealed

to be compromises in that Pareto layer).

This refined induction proves useful, not only in defining the selves’ orderings and

showing that they are transitive, but also in addressing the question of “identifiability”:

to what extent can we identify the set of preference profiles that are compatible with

the observed choices? Clearly, exchanging the rankings between the two selves does not

affect the bargaining solution. Theorem 3 argues that there is a sense in which any further

multiplicity is with respect to “irrelevant alternatives”. This means that for any given

bargaining problem , we can pin down the pair of preferences over the minimal set of

options that Pareto dominate any option outside this set.

So far, we have interpreted our choice procedure as a solution to an intra-personal

bargaining problem. Alternatively, we may interpret it as a solution to an inter-personal

bargaining problem where two distinct individuals need to agree on an option. While

most of the choice theoretic literature aims to characterize testable implications of mod-

els of individual decision-making, the same set of tools may be applied to models of

collective decision-making. Since many collective decisions are achieved through bargain-

ing, it seems important to identify the necessary and sufficient conditions for inferring

the bargainers’ preferences and for modelling their decisions as an outcome of coopera-

tive bargaining. This paper takes a first step in this direction by studying situations in

5Note that this difficulty does not arise in establishing the revealed-preference foundation of non-

cooperative solution concepts, such as Nash equilibrium (Sprumont (2000)). There, we can isolate the

preference relation of each player by fixing the action of the opponent.
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which two individuals bargain over some finite, arbitrary set of alternatives. We, there-

fore, focuses on ordinal bargaining solutions on finite domains. Among such solutions,

the fallback bargaining solution has received much attention in the literature. Moreoever,

this solution has a non-cooperative foundation, which is similar to the real-life bargaining

protocol, that the Federal Mediation and Conciliation Service (FMCS) recommends to

disputing parties.6 Theorem 2 and 3 then provide testable implications of the fallback so-

lution and characterize the extent to which the bargainers’ preferences may be recovered

from the data.

The rest of the paper is organized as follows. The related literature is discussed in

the next section. Section 3 defines the basic concepts and notations. This is followed by

an axiomatic characterization of the fallback solution for known preferences in Section 4

The revealed-preference analysis of this solution is presented in Section 5 Finally, Section

6 discusses possible extensions and provides some concluding remarks.

2. RELATION TO THE LITERATURE

In relation to the literature, our paper makes the following contributions. First,

we propose a single model that “explains” both the attraction and the compromise ef-

fects and characterize its testable implications. Second, we provide a revealed-preference

foundation for a dual-self model in which the selves strive to reach compromise rather

than to behave non-cooperatively. Third, our axiomatic characterization also provides

a revealed-preference foundation for a cooperative bargaining solution. To better assess

these contributions, we discuss below some of the related papers in the literature.

Explaining attraction and compromise

A number of recent papers have proposed formal models that explain either the attrac-

tion effect or the compromise effect. However, there is no single model in this literature

that generates both effects in a single-person decision problem (such as those encountered

in the experiments that document these effects). Ok, Ortoleva and Riella (2008) relax the

Weak Axiom of Revealed Preferences to allow for choice behavior that exhibits the at-

traction effect, but not the compromise effect. They propose a reference-dependent choice

model in which given a choice problem  the decision-maker maximizes a real function 

6See Section 1404.12, "Selection by Parties and Appointments of Arbitrators" in

http://www.fmcs.gov/internet/itemDetail.asp?categoryID=197&itemID=16959
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over those options that Pareto dominate a reference point () according to a sequence

of utility functions u. This choice procedure may be interpreted as a bargaining problem

with a continuum of bargainers and a disagreement point () where the solution max-

imizes a social welfare function (SWF)  over the set of options that are “individually

rational”. The authors characterize necessary and sufficient conditions on choice data

to be consistent with some bargaining model (u ). One of these conditions, labeled

“reference-dependent WARP”, rules out the compromise effect.7

Kivetz, Netzer and Srinivasan (2004) argue that individuals may exhibit the compro-

mise effect when choosing among multi-attribute options because of the rule they use to

aggregate the different subjective values they assign to the attributes. The authors pro-

pose several functional forms of aggregation rules that can generate the compromise effect

- but not the attraction effect - and test the predictions of these functions on experimental

data.

Kamenica (2008) argues that in a monopolistic market with enough uninformed but

rational consumers, there are some conditions that guarantee the existence of equilibria

in which the uninformed consumers exhibit the compromise effect, or the attraction

effect, with positive probability. While this argument suggests one interpretation of why

consumers in a market may exhibit compromise/attraction-like behavior, there are some

caveats in adopting this argument as the explanation of the attraction and compromise

effect. First, Kamenica (2008) studies a signalling game, which like all signalling games

has multiple equilibria. The equilibria of interest that the paper identifies are only those

that survive what is known as the D1 criterion.8 Second, there are many instances - such

as the numerous experiments that document the compromise and attraction effects - in

which individuals consistently exhibit these effects outside the market when they are not

engaged in a non-cooperative game against some seller.

Rationalization by multiple rationales

A number of recent papers have proposed to model systematic violations of IIA as the

result of a choice procedure that, in contrast to rational choice, takes as input multiple

orderings (“rationales”) on the set of alternatives. One set of works in this literature is

7To see this, recall that the compromise effect means that whenever the choice out of any pair in

{  } is the pair itself, then only a single element will be chosen from the triplet. Suppose  is

chosen. If the choice correspondence satisfies “reference-dependent WARP” then either  or  act as a

“potential reference point” for  meaning that  must be chosen uniquely from { } or from { }, a
contradiction.

8In addition, the existence of these equilibria require assumptions on both the seller and the consumers.

8



not concerned with deriving testable implications and focuses on a different set of ques-

tions than we do. Kalai, Rubinstein and Spiegler (2002) ask what is the minimal number

of preference relations on a set of elements, , such that the single choice from any subset

 ⊆  is the maximal element in  according to at least one of these relations. Ambrus

and Rosen (2008) are concerned with the minimal number of utility functions that are

needed to explain a choice function as the maximization of a cardinal SWF that aggre-

gates these utilities. Green and Hojman (2007) propose a welfare criterion for evaluating

irrational choices, by modeling these choices as reflecting a weighted aggregation of all

possible strict orderings on the set of options.

Another set of papers in this literature does attempt to provide a revealed-preference

characterization to decision heuristics that use multiple rationales. Manzini and Mariotti

(2007) study a "shortlisting" procedure according to which a decision-maker sequentially

applies two binary relations, 1 and 2, such that the ultimate choice from a set  is

the 2-maximal element from among the 1-maximal elements in  (see also Manzini

and Mariotti (2008)). Cherepanov, Feddersen and Sandroni (2008) propose a model in

which a decision-maker is characterized by two primitives: a single, complete preference

relation and a set of asymmetric, binary (possibly incomplete) relations. Given a set of

options , the decision-maker picks his most preferred option from among the elements

in  that are maximal according to each of the rationales. These papers all focus on

single-valued choice rules that violate IIA. In contrast, one of the key properties of our

choice rule, RA, reduces to IIA when the choice rule is required to be single-valued.

Testable implications of collective decision-making

Finally, our paper is related to a small but growing literature that aims to pro-

vide testable implications for models of collective decision-making. Among those papers

that employ a revealed-preference methodology, the most closely related are Sprumont

(2000) and Eliaz, Richter and Rubinstein (2009). The former provides a choice theoretic

characterization of Nash equilibrium and the Pareto correspondence, while the latter

characterizes the choice correspondence that selects the top element(s) of two preference

orderings.

A number of other papers explore similar questions but without employing a revealed-

preference methodology. Chiappori (1988) characterizes the conditions under which it is

possible to recover the preferences and decision process of two individuals, who con-

sume leisure and some Hicksian composite good, from observations on their labor supply
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functions. Chiappori and Ekeland (2006) extend this analysis and characterize the nec-

essary and sufficient conditions for recovering the individual preferences of a group of

individuals from observations on their aggregate consumption and the common budget

constraint that they face. Chiappori and Donni (2005) analyze the testable implications

of the Nash bargaining solution in an environment where two individuals need to agree

on the allocation of a pie among themselves and where disagreement leads each to receive

some reservation payment. In a similar vein, Chambers and Echenique (2008) study the

testable implications of the standard model of two-sided markets with transfers and char-

acterize the sets of matchings that may be generated by the model.

3. DEFINITIONS

 will denote the finite set of all potential options. A bargaining problem is a subset of

. A bargaining solution  associates to each bargaining problem  a nonempty subset

() of . A (strict) linear ordering on is a relation defined on× that is complete,

transitive, and anti-reflexive. The set of all possible linear orderings is denoted (). A

preference-based bargaining solution is a function9  that associates a bargaining solution

Â to each pair Â= (Â1Â2) of linear orderings on .

Let Â= (Â1Â2) ∈ ()×(), and let  be a bargaining problem. The score of 

in  along dimension  ( = 1 or 2) is the number of feasible options that are (strictly)

worse than  for Â:

( Â) = |{ ∈ | Â }|

The fallback bargaining solution 

Â associated toÂ associates to each bargaining problem

 the set of options in  that maximize the minimum (over  = 1 2) of the scores:



Â() = argmax

∈
min
=12

( Â)

The resulting preference-based bargaining solution will be denoted by  .

As pointed out in the introduction, the fallback bargaining solution has already ap-

peared under various names in the literature on interpersonal bargaining (Sprumont

(1993), Hurwicz and Sertel (1997), Brams and Kilgour (2001), Kibris and Sertel (2007)).

The terminology of “fallback bargaining” is taken from Brams and Kilgour (2001), where

they offer a nice reinterpretation of the solution. For each bargaining problem , and

9For notational convenience, we use the same letter, , to denote both a bargaining solution and a

preference-based bargaining solution. The context will always make it clear what the right meaning is.
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each integer between 1 and ||, let ( ) be the set of  best options in  according

to ’s preferences. Let ∗ be the smallest  such that 1( ) ∩ 2( ) 6= ∅. Then
Σ

Â() = 1( 

∗) ∩ 2( ∗).
In other words, if both criteria agree on what the best option is, then it is the solution.

Otherwise, the decision-maker looks for option(s) that would be ranked either top or

second-best by both criteria. If no option satisfies this property, then the decision-maker

iterates the procedure by allowing for third-best alternatives, and so on so forth. This

simple algorithm for deriving the elements in the solution illustrates the appeal of the

fallback solution as a descriptive model of multi-criteria decision making.

Figure 2 illustrates how the fallback solution generates the attraction and compromise

effects.

A

B
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P2

C

(0,2)

(1,1)

(1,0)

Attraction

P1 P2

B
C
A

A
B
C

A

B

P1

P2

C

(0,2)

(1,1)

(2,0)

Compromise

P1 P2

A
B
C

C
B
A

Figure 2

In both cases, both  and  would get a minimal score of 0 if  was not available.

Adding  changes the scores, and  now gets the largest minimal score in both cases. It

thus becomes selected uniquely by the fallback solution.

It is also interesting to note that in the spirit of the Nash program, fallback bargaining

has a non-cooperative foundation. The two bargainers alternate in proposing one of the

available options as a possible agreement. If the responder accepts, the game ends and

the proposed option is adopted. If the responder rejects, the proposed option is removed

from the set, and the responder now proposes one of the remaining options. The game

continues until either an agreement is reached or there remains only a single option,

which is then adopted. Anbarci (1993, 2006) shows that the unique subgame-perfect

equilibrium of this game is an element in 

Â()10

10Interestingly, Anbarci (1993) also shows that the subgame-perfect equilibrium outcome also converges
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The fallback solution applies an egalitarian criterion to a canonical representation of

the ordinal preferences. It is interesting to think about applying a utilitarian criterion

instead. The resulting solution would then be the analogue in our context to the rule that

Borda defined in the eighteenth century to select representatives. However, this solution

has two important shortcomings. First, it selects all the elements of  whenever they

are all Pareto optimal for the pair of orderings (Â1Â2), and hence does not capture the
compromise effect. Second, in contrast to the fallback solution, the Borda rule is not

robust to common monotonic transformations of the bargainers’ ordinal preferences in

the sense that it is sensitive to how the score of an option changes as it moves up in the

ranking (cf. “scoring rules”).

4. PREFERENCE-BASED AXIOMATIC CHARACTERIZATION

The aim of this section is to establish that fallback bargaining is the unique preference-

based bargaining solution that captures a number of desiderata. First, it should exhibit

properties that capture a plausible interpretation of attraction and compromise. Second,

we should be able to interpret the solution as a “procedurally-rational” heuristic. Thus,

the solution should exhibit some form of consistency across decision/bargaining problems.

Third, the solution should capture our idea that the bargaining among the selves is in

some sense “cooperative”. Finally, we wish to interpret all the options selected by the

solution (i.e., any “agreement” reached by the two selves) as being on “equal footing” in

terms of their desirability and robusteness to small changes in the bargaining prolem.

We focus our attention on a class of preference-based bargaining solutions, which sat-

isfy some basic properties from axiomatic bargaining and social choice. This would allow

us to meaningfully interpret the correspondence Â as a bargaining solution. Specifically,

a preference-based bargaining solution is regular if

1. it is neutral in the sense of not having an a priori bias in favor or against some

elements of . Let  :  →  be an isomorphism. Then (Â)(()) = Â(),

where () = {()| ∈ } and (Â) ∈ ()× () is such that (Â) if and
only if −1() Â 

−1(), for all   ∈  and both  ∈ {1 2}.

2. it treats both orderings with equal relevance: (Â2Â1)() = (Â1Â2)().

to the Area Monotonic Solution if the alternatives are uniformly distributed over the bargaining set, and

as the number of alternatives tends to infinity.
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3. options are selected using only the parts of the two orderings that are relevant to

the problem. If Â0 is an alternative pair of linear orderings (defined on ) that

coincide with Â on  × , then Â0() = Â().11

It is certainly of interest to investigate how our theory would adapt if one eliminates

some or all of these properties. Dropping neutrality would allow to accomodate some

framing effects, where the label of the available options may influence the choice (e.g.

options are presented in a list, or are offered by trademarks with varying impact, etc.).

Dropping the second property would add the possibility of having one of the two criteria

as being more relevant than the other (e.g. caring more about the size of the car than

its color). Dropping the third property would allow to consider choice procedures where

the decision maker is influenced by options he aspires to, but cannot afford. Yet, we

believe that one must first understand the attraction and compromise effects in their

purest form, in absence of all these additional features. The regularity property thus

defines a benchmark which can be used to build more elaborate theories.

The following axioms are imposed on a regular preference-based bargaining solution

, and will be assumed to be valid for each Â∈ ()× (), and each  ⊆ .

Attraction (ATT) - Let  ∈  \  be such that  Â , for some  ∈ Â(). Then

Â( ∪ {}) = { ∈ Â()| Â }.12

ATT formalizes the idea that adding a dominated alternative reinforces the appeal of

an option to the decision maker. This property is best understood by decomposing it into

two parts. First, whenever option  is added to a set  it seems reasonable to expect that

the set of options that were previously selected, and which dominate  should continue

to be chosen, i.e., { ∈ Â()| Â } ⊆ Â(∪{})We view the attraction effect as the
converse inclusion, Â( ∪ {}) ⊆ { ∈ Â()| Â } i.e., when choosing from the new

set, one’s attention is drawn to the previously selected options that dominate . Thus,

the solution to the enlarged problem obtained by adding  as a feasible option should be

the intersection of the solution to the original problem with those options that Pareto

dominate  whenever that set is nonempty.13

11Similar properties have been used repeatedly in the classical theories of bargaining and social choice

(first mentioned explicitly in Karni and Schmeidler (1975)).
12Â refers to the Pareto relation (incomplete ordering on  ×) when comparing options, i.e.  Â 

means  Â1  and  Â2 . On the other hand, the symbol Â in Â refers to the pair (Â1Â2) of linear
orderings on . We do not introduce different symbols because the right meaning is always obvious

when used in context.
13One could argue that the added element  may also increase the appeal of some options that were

chosen in , but do not Pareto dominate , because of the compromise effect. Thus, one may feel
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No Better Compromise (NBC) - If both  and  belong to Â(), then there does not

exist  ∈  and  ∈ {1 2} such that  Â  Â  and  Â−  Â− .
NBC captures the idea that the bargainers are trying to reach a compromise. If two

bargainers were not able to agree on a single option - so that both  and  are identified

as possible agreements - then it must be that there was no option  available that could

serve as a compromise between  and . By this we mean that there was no alternative

 that falls “in between”  and , in that it is better than  along the dimension where

it is worse that , and better than  along the dimension where it is worse than .14

Removing an Alternative (RA) - If Â() 6= {}, then Â( \ {}) ∩ Â() 6= ∅.
RA captures the sense in which the bargaining solution may be interpreted as a

procedurally-rational heuristic. Since both ATT and NBC are typically incompatible

with WARP, we propose a weaker consistency property. If an option (that is not the

unique choice of the decision maker) is dropped, then at least one of the options that were

chosen in the original problem belongs to the solution of the reduced problem. Observe

that RA is equivalent to IIA if the bargaining solution is single-valued, as RA can be

applied iteratively if one needs to eliminate multiple irrelevant alternatives. Yet, moving

to correspondences, the slight difference between the two properties when eliminating a

single alternative can lead to major differences in terms of choices. In addition, RA also

expresses some form of continuity in our discrete setting. Indeed, making a small change

in the set of available options (i.e. dropping only one alternative) should not modify too

much the set of selected elements (i.e. nonempty intersection) whenever this set is not a

singleton.

Efficiency (EFF) - If  ∈ Â(), then there does not exist  ∈  such that  Â .

EFF captures the cooperative nature of the bargaining. It is also a standard property

in axiomatic bargaining and social choice.

that imposing ATT is unduly restrictive, as it presumes that the attraction effect is more relevant than

the compromise effects in those configurations. It turns out that both our characterization results (see

Theorems 1 and 2 below) remain valid when ATT is weakened so as to apply only when those elements

that were selected in  but do not Pareto dominate  do not fall in between  and another alternative

of .
14Note that since we are using only ordinal information, any element  such that  Â  Â  and  Â

 Â  is interpreted a “compromise”, regardless of how it is ranked relative to other elements that are

ranked in between  and . One may question this interpretation if, for example,  Â  Â  Â  Â 

and  Â  Â  Â  Â  In this case it may seem less reasonable to consider  a compromise between

 and  since in some sense, it is “closer” to  than to . We return to this point in the concluding

section, where we discuss possible extensions.
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Symmetry (SYM) - If   ∈ Â() and there exists  ∈  \ { } such that  6∈
Â( \ {}), then there exists 0 ∈  \ { } such that  6∈ Â( \ {0}).
SYM formalizes a sense in which all the options selected by the solution are of equal

“status”. Suppose  and  are both in the solution. Imagine that one of the bargainers

makes the following argument against the inclusion of : “ is not selected when the

option  is removed from the table; but since we did not choose  we may consider it off

the table, hence, we should not select ”. Such an argument would not be convincing if

the other bargainer could counter by observing that a similar claim can be made against

 : if we remove 0 which was not chosen, then  will no longer be selected. Observe that

SYM is vacuous if the choice method is rational, but it does place a nontrivial restriction

on irrational procedures. However, this property is satisfied by some well-known social

welfare functions such as the Borda rule mentioned above.

Our main result in this section relies on the following inductive characterization of

the fallback bargaining solution (we relegate its proof to the Appendix).

Lemma 1 Let Â∈ () × (), and let  be a bargaining problem with at least four

elements. Then,

1. 

Â() = {} if and only if

(a)  ∈ 

Â( \ {}), for each  ∈  \ {}, and

(b) for each  ∈  \ {}, there exists  ∈  \ {} such that  6∈ 

Â( \ {}).

2. 

Â() = { } if and only if

(a) 

Â( \ {}) ⊆ { }, for each  ∈ , and

(b) there exists  ∈  \ { } such that 
Â( \ {}) = {} if and only if there

exists 0 ∈  \ { } such that 
Â( \ {0}) = {}.

In addition, if 

Â() = { }, and 

Â( \{}) = { }, for all  ∈  \{ }, then
 Â  and  Â , for all  ∈ \{ }. Also, if 

Â() = {}, 
Â(\{}) = { }, and



Â(\{}) = { }, then there exists  ∈ {1 2} such that  Â  Â  and  Â−  Â− .

Theorem 1  is the only regular preference-based bargaining solution that satisfies

EFF, ATT, NBC, RA, and SYM.
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Proof: We first check that  satisfies the axioms. EFF and regularity follow im-

mediately from the definition. RA and SYM follow from Lemma 1. As for ATT, ob-

serve that min=12 (  ∪ {}Â) = min=12 ( Â) + 1, for each  ∈ 

Â() such

that  Â , while the minimal score of any other option cannot increase by more than

one point. Hence any such  must belong to 

Â( ∪ {}), and any option that was

not selected for  does not belong to 

Â( ∪ {}). Now we only have to show that

 6∈ 

Â( ∪ {}) when 


Â() = { },  Â  and  ¨ . To fix the notation, suppose

that argmin=12 ( Â) = 1 and argmin=12 ( Â) = 2. Hence  Â1 , and tran-
sitivity implies that  Â1 . In turn, this implies that  Â2 . The minimal score of 
thus remains constant when adding , and  6∈ 


Â( ∪ {}). Finally for NBC, suppose

that 

Â() = { } and that there exists  ∈  such that  Â  Â  and  Â−  Â− .

Hence it must be that the minimal score for  is reached along dimension , and it is

equal to the minimal score of  that is reached along dimension −. On the other hand, 
scores at least one additional point than  (resp. ) along dimension  (resp. −). Hence
a contradiction with the fact that  and  have the largest minimal score among all the

elements of .

We now move to the more difficult part of the proof, showing the necessary condition.

Let thus  be a preference-based bargaining solution that satisfies the eight axioms. We

prove that  =  in two main steps.

Step 1 Let  be a preference-based bargaining solution that satisfies ATT, NBC, RA,

EFF, and SYM, and let Â∈ ()× (). If Â( ) = 

Â( ), for all  ⊆  with two

or three elements, then Â() = 

Â(), for all  ⊆ .

We prove that Â() = 

Â(), for all  ⊆ , by induction on the number of elements

in . By assumption, the result is true when || = 2 or 3. We assume now that the

result holds for any subset of  with at most − 1 elements, and we choose a set  with
exactly  elements ( ≥ 4). We have to prove that Â() = 


Â().

First we observe that Â() has at most two elements. Suppose on the contrary that

   ∈ Â(). EFF implies that there is no Pareto comparison between any pair of

elements in {  }. Hence one of these three options must fall “in between” the other
two, leading to a contradiction with NBC.

Suppose now that 

Â() = { }, for some   ∈ . Lemma 1 and the induction

hypothesis imply that Â( \ {}) = 

Â( \ {}) ⊆ { }, for each  ∈ . Notice that

Â() cannot include an element different from  and . Indeed, #() ≤ 2 would then
imply that Â() = {}, { }, { }, or { 0}, for some  0 ∈  \ { }, and RA
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would lead to a contradiction with Â( \ {}) ⊆ { }, for all  ∈ . So we’ll be done

after proving that Â() is equal to neither {}, nor {}. Suppose on the contrary that
Â() = {} (a similar reasoning applies for ). RA implies that  ∈ Â( \{}), for all
 ∈  \ {}. If there exists  ∈  \ {} such that  6∈ Â( \ {}), then 


Â( \ {}) =

Â( \ {}) = {}. Lemma 1 and the induction hypothesis imply that there exists
0 ∈  \ { } such that Â( \ {0}) = 


Â( \ {0}) = {}, a contradiction with the

fact that  ∈ Â( \{0}). We must conclude that 
Â( \{}) = Â( \{}) = { },

for all  ∈  \ { }. The penultimate statement of Lemma 1 implies that  Â 

and  Â , for all  ∈  \ { }, or Â({}) = {} and Â({}) = {} since
Â = 


Â on pairs. We also have Â({ }) = 


Â({ }) = { }, and applying ATT

iteratively (adding elements of \{ } one at a time), we conclude that Â() = { },
contradicting the original assumption that Â() = {}.
To conclude the proof of Step 1, suppose that 


Â() = {}, for some  ∈ . If

Â() = {}, for some  6= , then  ∈ Â( \ {}), for all  ∈  \ {}, by RA.
This leads to a contradiction with Lemma 1, since there must exist  ∈  \ {} such
that  6∈ 


Â( \ {}) = Â( \ {}). It is also impossible to have Â() = { }, for

some   different from . Indeed, RA aplied to both Â and 

Â would then imply that



Â({\{}) = { }, and 

Â({\{}) = { }. The last statement of Lemma 1 implies
that there exists  ∈ {1 2} such that  Â  Â  and  Â−  Â− , a contradiction
with NBC. Suppose now that Â() = { }, for some  different from . Lemma 1

implies that there exists  ∈  \ {} such that  6∈ 

Â( \ {}) = Â( \ {}). SYM

implies that there exists 0 ∈  \ {} such that  6∈ Â( \ {0}) = 

Â( \ {0}), which

is impossible. Hence Â() = {}, as desired. This concludes the proof of Step 1.

Step 2 Let  be a preference-based bargaining solution that satisfies ATT, NBC, RA,

EFF, NEUT, EX, and IPUA. Then Â( ) = 

Â( ) for all  ⊆  with two or three

elements, and all Â∈ ()× ().

Let Â∈ ()× (). Suppose first  = { }. If  Â , then 

Â( ) = {}. Since

Â({}) = {}, ATT implies that Â( ) = {} as well, as desired. A similar reasoning
applies if  Â . If  Â1  and  Â2 , then 

Â( ) = { }. Suppose, on the other hand,
that Â( ) = {}. Let  :  →  be the isomorphism defined by () = , () = ,

and () = , for all  ∈  \ { }. NEUT implies that (Â)(( )) = {}. Notice
though that ( ) =  , and (Â) equals (Â2Â1) when restricted to  . EX and IPUA

then imply that Â( ) = {}, a contradiction. Similarly, Â( ) = {} would lead to
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a contradiction, and we conclude that Â( ) = { }, as desired. A similar reasoning
applies if  Â1  and  Â2 .
Let now  = {  }. If one of the elements, let’s say  Pareto dominates the other

two, then

Â( ) = {} = Â( ), by EFF. If two elements, let’s say  and  are not Pareto

dominates, but both Pareto dominate the third one, then 

Â( ) = { }. The previous

paragraph implies that Â({ }) = { }, and ATT implies that Â( ) = { }, as
desired. If two pairs of elements are not Pareto comparable, let’s say ( ) and ( ),

but the third one is, let’s say  Â , then 

Â( ) = {}. The previous paragraph

implies that Â({ }) = { }, Â({ }) = { }, and Â({ }) = {}. ATT
implies that Â( ) = {} as well, as desired. Remains the last case, where there is no
Pareto comparison out of any pair in  , let’s say  Â1  Â1  and  Â2  Â2 . Then


Â( ) = {}. We already proved in Step 1 that Â( ) contains at most two elements. If
cannot be { }, because of NBC. If that Â( ) = { }, then consider the isomorphism
 :  →  defined by () = , () = , and () = , for all  ∈  \ { }.
NEUT implies that (Â)(( )) = { }. Notice though that ( ) =  , and (Â)
equals (Â2Â1) when restricted to  . EX and IPUA then imply that Â( ) = { }, a
contradiction. A similar argument shows that it is impossible to have Â( ) = { },
{}, or {}. Hence Â( ) = {}. This concludes the proof of Step 2, and hence the
proof of the theorem. ¥
Both Sprumont (1993) and Kibris and Sertel (2007) have already provided some ax-

iomatic characterizations of the fallback solution in an inter-personal bargaining context.

The main axioms in these previous papers restrict the behavior of the solution across prob-

lems that differ in the bargainers’ preferences. These axioms thus become meaningless

when preferences are unknown. In contrast, our axioms impose restrictions on how the

composition of the solution varies across different bargaining problems. As we show in

the next section, these axioms can be adapted to a setting in which preferences are not

observable.

We now prove the independence of the axioms appearing in Theorem 1.

EFF: Consider a set  with four elements, let’s say  = {   }, and let  be the

preference-based bargaining solution that coincides with  , except as follows: Â() =



Â()∪{}, for all  ∈  and all Â∈ ()×() such that Â1 and Â2 are completely
opposite on  \ {}, and  is Pareto dominated by either the Â1-optimal element or the
Â2-optimal element, but by no other element of . For instance, Â∗() = {  },
while 


Â∗() = { }, when  Â∗1  Â∗1  Â∗1  and  Â∗2  Â∗2  Â∗2 . The modification

thus amounts to add some options to the fallback solution in some cases, and will satisfy
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RA a fortiori. By construction,  is regular, but violates EFF. ATT does not apply in

those cases where  is different from  (because the Pareto dominated option falls below

an option that is not chosen in the triplet obtained by deleting that Pareto dominated

option), and hence  satisfies it (since  does). It is straightfoward to check NBC.

Finally, SYM is satisfied because  satisfies it, and a Pareto dominated option is never

selected out of any triplet.

ATT: Consider the fallback solution applied only to the set of Pareto efficient alternatives,

Â() = 

Â[Â()], where

Â() = { ∈  | for all  ∈ ,  Â  for some  ∈ {1 2}} (1)

Note that the fallback solution is applied here to a subset of options, whose score is

unaffected by dominated elements. Hence, Â violates ATT. It is straightforward to

verify that Â is regular and satisfies NBC, RA, EFF, EX and IPUA. To see that it also

satisfies SYM, suppose   ∈ Â() but  ∈ Â(\{}) for some  ∈ \{ }. Then
 ∈ Â(). Let  ≡ Â() then   ∈ 


Â( ) but  ∈ 


Â(\{}) for some

 ∈ \{ }. Then by SYM,  ∈ 

Â(\{0}) for some 0 ∈ \{ }, which implies that

 ∈ Â(\{0}).
NBC: Consider the analogue of the Borda rule in our setting:

Â() = argmax
∈

[1( Â) + 2( Â)]

for each subset  of. It is straightforward to check that this defines a regular preference-

based bargaining solution that satisfies EFF and ATT. It violates NBC. For instance, it

does not refine the set of Pareto efficient options when the two preferences are strict

opposite to each others. It remains to show that the solution satisfies both RA and

SYM. Since it satisfies EFF, the sum of the scores must decrease by at least one point for

each option that is chosen, when removing  from the original problem . Any element

of Â() such that the sum of the scores decreases by exactly one point when removing

 clearly belongs to Â( \ {}). Hence we must consider the case where the sum of

the scores decreases by two points, for each element of Â(). This implies that  is

Pareto dominated by some elements of , and the set of Pareto efficient options remains

unchanged when removing . The sum of the scores of any element of the Pareto frontier

decreases by at least one point when removing , and hence Â() ⊆ Â(\{}), and we
are done proving RA. For SYM, suppose on the contrary that one can find   ∈ Â()
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and  ∈  \ { } such that  6∈ Â( \ {}) and  ∈ Â( \ {}). Both  and 

being Pareto efficient in , it must be that the sum of the scores decreases by at least

one point for both of them when removing . Since  remains chosen, but not , it must

be that the sum of the scores of  decreases by two points while the sum of the scores

of  decreases by exactly one point. In other words,  Pareto dominates , but  does

not Pareto dominates . It is easy to check that one would get a contradiction with

  ∈ Â() if there does not exist 0 ∈  that is Pareto dominated by , but not by .

For any such 0, we’ll have  6∈ Â( \ {0}), and we are done proving SYM.
RA: Let  be the lexicographic refinement of the fallback solution,



Â() = { ∈ 


Â() | ( Â) ≥ ( Â) ∀ ∈ 


Â()}

for each  ⊆ , amd each Â∈ () × (). It is easy to check that  inherits

the properties of regularity, EFF, ATT, and NBC from  . To see that it violates RA,

consider  = {   } and the preference pair Â∗ that give rise to the following rank-
ing on :  Â∗1  Â∗1  Â∗1  and  Â∗2  Â∗2  Â∗2 . Then 


Â∗() = {} while



Â∗(\{}) = {}. All what remains is to check SYM. Suppose that   ∈ 


Â()

and that there exists  ∈  \ { } such that  6∈ 

Â( \ {}). This implies that

  ∈ 

Â(). If there exists  ∈  \ { } such that  6∈ 


Â( \ {}), then there exists

0 ∈ \{ } such that  6∈ 

Â(\{0}), by SYM. If there exists 0 ∈ \{ } such that

 6∈ 

Â(\{0}), then  6∈ 


Â(\{0}), as desired, since  refines  . Hence the last

case that could lead to a possible violation of SYM for  is when   ∈ ( \ {}),
for all  ∈  \{ }. But we know from Lemma 1 that this configuration of choice for 

is possible only if  Â  and  Â , for all  ∈  \ { }. In such cases, it is impossible
to have  6∈ 


Â( \ {}), and we are done proving SYM.

SYM: Consider a set  with five elements, let’s say  = {    }, and let 

be the preference-based bargaining solution that coincides with  , except as follows:

Â() = 

Â( \ {}), for all  ∈  and all Â∈ () × () such that Â1 and

Â2 are completely opposite on  \ {}, and  is Pareto dominated by either the Â1-
optimal element or the Â2-optimal element, but by no other element of . For in-

stance, Â∗() = { }, while 

Â∗() = {}, when  Â∗1  Â∗1  Â∗1  Â∗1  and

 Â∗2  Â∗2  Â∗2  Â∗2 . The modification thus amounts to add some options to the

fallback solution in some cases, and will satisfy RA a fortiori. By construction,  is

regular and satisfies EFF. ATT does not apply in those cases where  is different from

 (because the Pareto dominated option falls below an option that is not chosen in the
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quadruplet obtained by deleting that Pareto dominated option), and hence  satisfies it

(since  does). Finally, SYM is violated. For instance, Â∗() = { },  is selected
from any quadruple that includes it, but  ∈ Â∗(\{}).

5. REVEALED PREFERENCES

The previous two sections suggest that the fallback bargaining procedure may poten-

tially explain systematic violations of WARP in multi-criteria decision problems. One

difficulty in testing this hypothesis is that in many situations we do not directly observe

the criteria used by the decision-maker, nor do we observe how the options are ranked

according to each criterion. All we may hope to observe are the final choices across differ-

ent decision problems. A natural question that arises is, what properties of these choices

are necessary and sufficient to represent the decision-maker as if he has two criteria in

his mind for ranking the options, and he resolves the conflict between these criteria by

applying the fallback bargaining procedure? Suppose the observed choices do satisfy the

sufficient conditions of the representation, can we identify (at least partially, and, if so,

to what extent) the two underlying linear orderings? We answer both questions in this

section.

These questions are also relevant for understanding the outcomes of some real life

instances of bilateral bargaining between two distinct parties. One example that fits

our framework is the process by which parties to a labor-management dispute choose an

arbitrator from the list provided by the FMCS (see also Bloom and Cavanagh (1986)).

Our main result in this section makes a first step towards providing testable implications

of fallback bargaining, which may potentially explain the choices of arbitrators in these

disputes.15

Characterization

The approach we take is to try and adapt Theorem 1 to bargaining solutions that

are not preference-based. Note first that the three regularity conditions of the previous

section are no longer useful as they restricted the behavior of the solution across different

preference profiles. However, the main properties of Theorem 1 can be suitably adapted

15As we discuss in the concluding section, our characterization result relies on the existence of suffi-

ciently rich data, which may not be available in empirical applications.
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to the current environment.16

RA and SYM can be rephrased literally:

Removing an Alternative (RA) - If () 6= {}, then ( \ {}) ∩ () 6= ∅.
Symmetry (SYM) - If   ∈ () and there exists  ∈  \ { } such that  6∈
( \ {}), then there exists 0 ∈  \ { } such that  6∈ ( \ {0}).
To adapt ATT and EFF, we propose to interpret ({ }) = {} as the observation

that  is “revealed to be Pareto superior” to . That is, whatever dimensions or criteria

the decision-maker uses to evaluate the two options,  is better than  according to all of

them. On the other hand, ({ }) = { } means that there is a negative correlation
when comparing  and  across dimensions:  is preferred to  along one, while  is

preferred to  along the other. EFF and ATT can now be rephrased using only observed

choices:

Efficiency (EFF) - If  ∈ (), then there does not exist  ∈  such that ({ }) =
{}.
Attraction (ATT) - Let  ∈  \  be such that ({ }) = {}, for some  ∈ ().

Then ( ∪ {}) = { ∈ ()|({ }) = {}}.
To redefine NBC, we say that  is “revealed to be a compromise between  and ” if

it is chosen uniquely from {  } but no element in this triplet is revealed to be Pareto
superior to another.

No Better Compromise (NBC) - If both  and  belong to (), then there does

not exist  ∈  such that the choice out of any pair in {  } is the pair itself, and
({  }) = {}.
The above properties, however, do not guarantee the existence of two linear orderings

such that the decision maker’s choices can be explained by applying the fallback solution.

First, these properties (and in particular, RA, which weakens WARP) do not imply that

the revealed Pareto relation is transitive. Thus, to have any hope of recovering a pair of

preferences, the following condition must be met:

Pairwise Consistency (PC) - If ({ }) = {} and ({ }) = {}, then ({ }) =
{}.
Second, none of the above properties imply the compromise effect. To see this, suppose

the decision-maker has a pair of orderings in his mind (which are not observeable to us)

16For notational simplicity, we keep the same names for the axioms than in the previous section. Of

course, though their motivation is similar, their formulation is not since the models are different. We feel

this would not create any confusion since the implied meaning is clear in each section given the relevant

context.
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such that  Â1  Â1  while  Â1  Â1 . Then a choice rule that picks { } would
satisfy NBC without exhibiting the compromise effect. We must, therefore, take into

account a new testable implication: if there is no revealed Pareto comparison between

any two elements of {  }, then there must be a revealed compromise.
Existence of a Compromise (EC) - If the choice out of any pair in {  } is the pair
itself, then ({  }) is a singleton.
The next two examples motivate our final axiom. They demonstrate that none of our

axioms thus far guarantee that revealed compromises, and their interaction with revealed

Pareto dominance, are consistent with an underlying pair of preferences.

Example 1 Let  = {   } and let  be the bargaining solution that selects both ele-
ments out of any pair, and such that ({  }) = {}, ({  }) = {}, ({  }) =
{}, ({  }) = {}, and ({   }) = {}. It is not difficult to check that  sat-

isfies the seven axioms listed so far, but there is no pair (Â1Â2) of linear orderings
such  = 


Â. The inconsistency leading to this impossibility is easy to understand:

({  }) = {} reveals that  is “in between”  and , while ({  }) = {} and
({  }) = {} reveals that  is “in between” both  and , and  and .

Example 2 Let  = {   } and let (Â∗1Â∗2) be the two linear orderings defined as
follows:  Â∗1  Â∗1  Â∗1  and  Â∗1  Â∗1  Â∗1 . Let  be the bargaining solution such

that ({ }) = { } and () = 

Â∗(), for all  ⊆  different from { }. It is

not difficult to check that  satisfies the seven axioms listed so far, but there is no pair

(Â1Â2) of linear orderings such  = 

Â. The inconsistency here is rooted in the way

revealed Pareto comparisons should combine with revealed ompromises:  is revealed to be

“in between”  and ,  is revealed to be Pareto superior to both  and , yet  is revealed

non comparable to .

To rule out the inconsistencies illustrated in these examples, we introduce a property

that captures another sense in which compromises have a special status. Suppose  is

revealed to be a compromise between  and . One way to interpret this is that after a

long process of deliberation - where one party argued in favor of  while the other argued

in favor of  - the two parties agreed to settle on  Thus, the choice of  may be viewed

as internalizing all the considerations in favor of each of the alternatives. This suggests

that if a new option,  becomes available, the parties would compare  only with  and

would not ignore the previous arguments that led to the agreement on  by opening up

the discussion on all available options. Furthermore, if reaching a compromise has special
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status to the bargainers, then they would require a good enough reason to abandon it

completely in favor of a new option. In particular, the parties may replace a compromise

with a new option only when the latter Pareto dominates the former.

Overcoming a Compromise (OC) - Suppose that ({ }) = { }, ({ }) =
{ }, ({ }) = { }, and ({  }) = {}. If ({   }) = {}, then
({}) = {}.
The fallback bargaining solution satisfies an axiom of this type for all bargaining prob-

lems, but we phrased it for bargaining problems with only four elements because this is

all what is needed to establish our result, as hinted by the two previous examples.

Our second main result establishes that the testable implications we have identified

are also sufficient to guarantee the existence of two linear orderings such that the decision

maker’s choices may be explained by the fallback solution.

Theorem 2 A bargaining solution  satisfies EFF, ATT, NBC, RA, SYM, PC, EC and

OC if and only if there exists Â∈ ()× () such that  = 

Â.

We start by providing a sketch of the proof of the necessity part in Theorem 2. The

formal proof follows. The argument unfolds in two main steps. First, we show that a

choice correspondence  satisfying EFF, ATT, NBC, RA and SYM exhibits the following

property: if there exists a preference profile Â such that  coincides with 
Â on all pairs

and triplets, then this true on all subsets of . To prove this, we adapt the arguments

from the first step of the proof of Theorem 1, which established a similar claim for

preference-based bargaining solutions.

In the second step, the more challenging part of the proof, we construct a preference

profile Â such that  coincides with 

Â on all pairs and triplets. The difficulty here lies

in the requirement that two preference relations defined on one pair or triplet must be

consistent with relations defined on different pairs and triplets. For example, when we are

given ({ }) = { } we conclude that one bargainer prefers  to  while the other
bargainer has the opposite ranking. Suppose we are also given that ({ }) = { }
Then, again, we conclude that the two bargainers have opposite rankings of  and . The

question is, how do we determine whether or not the bargainer who ranks  to  also

ranks  to ?

To answer this question, we use the choice data from triplets, and construct the

two linear orderings inductively. We begin with one pair of elements and construct two

preference relations over them. We then add a third element and extend the previous

pair of preferences to cover all three elements. We then continue adding one element
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at a time and extending the relations from the previous step to cover the newly added

element until we have covered all of .

However, for this construction to succeed, the elements must be added in a particular

order. First, we partition the set of elements into “revealed Pareto layers”. The highest

Pareto layer, denoted  1, consists of all the elements in  that are not revealed

to be Pareto inferior to any other element. Similarly, the second-highest Pareto layer,

 2, is defined as the set of elements in \ 1 that are not revealed to be Pareto

inferior to any element not in  1. The next revealed Pareto layers are defined in

a similar manner. Each Pareto layer   is further partitioned into “inner” layers

defined as follows. The most extreme layer, denoted E1, contains the set of elements
(at most two) that are never revealed to be compromises within the Pareto layer  .

The next inner layer contains those elements that are never revealed to be compromises

within  \E1. Continuing this way we end with the most interior layer. Given these
partitions, the construction of the two preference relations proceeds as follows: we begin

with the highest Pareto layer from which we choose the most extreme points and move

inward. Once we cover the entire Pareto layer, we move to the next Pareto layer and

again, begin with the extreme points and move inwards. A series of lemmas in the proof

of Theorem 2 establish that the above method leads to two preference relations that are

well-defined and transitive.

To better understand the role of the particular method of constructing the preferences,

it is instructive to understand why a simpler inductive argument would not work. Let

 = {    } and suppose the two preference relations we wish to uncover are
 Â1  Â1  Â1  Â1  and  Â2  Â2  Â2  Â2  (see Figure 3).
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Assume we have data on the choices from all subsets of  such that these choices are

consistent with the above two orderings. Assume also that we do not observe the above

orderings but wish to infer them using a simple construction that proceeds in Pareto

layers but pays no attention to whether elements within a Pareto layer are “extreme

points” or not.

According to the data, we may conclude that the highest Pareto layer includes only

 and . Hence, one party ranks  above , while the other ranks  above . Since

we have no information as to which party prefers  and which party prefers , let’s

say that one guesses correctly, i.e.  Â∗2  and  Â∗1 , where Â∗ is the pair of linear
orderings that we are deriving from observing the data. We next wish to extend these

preference relations to cover the remaining elements. Note that in the second Pareto layer

there are two extreme points,  and  (i.e., E21 = { }) and a single interior point, 
(E22 = {}). Suppose that instead of starting with the extreme points,  and , we start
with . Since ({}) = {} it must be that  Â∗1  and  Â∗2 . This means that
 Â∗1 . Since ({}) = { } it must be that  Â∗2  Â∗2 . Next we add . From

({ }) = {} and ({ }) = { } it follows that  Â∗1  Â∗1  and  Â∗2  Â∗2 .
Since ({ }) = { } one preference ordering ranks  above  while another ranks
 above . The information on  and the simple induction construction we are using

do not provide us with any guidance on whether  Â∗2  or  Â∗2 . We might thus

(wrongly) assume that  Â∗2  and  Â∗1 , and then obtain that  Â∗1  Â∗1  Â∗1  and
 Â∗2  Â∗2  Â∗2 . Finally, we add . Since ({ }) = {} while ({ }) = { }
we end up with  Â∗1  Â∗1  Â∗1  Â∗1  and  Â∗2  Â∗2  Â∗2  Â∗2 . But if we now apply


Â∗ to {  }, we obtain {}, in contradiction to our observation that {} is chosen
from this triplet. Even though the data can be derived as the fallback solution to a pair

of linear orderings, the above method did not guarantee that we will be able to construct

these orderings.

The difficutly in the reasoning of the previous paragraph is that the data gave us

multiple options for defining Â∗ at some steps of the induction, while only some of
them work. Our refined inductive argument, on the other hand, provides a construction

that works if and only if the data can be generated by some pair of linear orderings.

When multiple options for defining the revealed preferences occur, it is only due to a

lack of identifiability (see Theorem 3). As an illustration, suppose we constructed the

preference relations using our “double induction” argument. When adding the elements

in  2 = {  } we begin with the extreme points, E1 = { }. Since ({ }) =
{} while ({ }) = { } we have that  Â∗1  Â∗1  and  Â∗2  Â∗2 . Since
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({ }) = { } while ({ }) = {} we obtain,  Â∗1  Â∗1  and  Â∗2  Â∗2 .

Therefore,  Â∗1  Â∗1  Â∗1  and  Â∗2  Â∗2  Â∗2 . It remains to add . Since

({}) = {} and ({}) = {} it must be that  Â∗1  Â∗1  while  Â∗2  Â∗2 .
Since ({  }) = {} it must be that  is ranked in between  and . Given our

construction, this means that  Â∗1  Â∗1  and  Â∗2  Â∗2 , and we obtain the desired
pair of orderings.

We are now ready to present the proof of Theorem 2.

Proof: We have already proved in the previous section that 

Â satisfies RA, SYM,

EFF, ATT, and NBC, for each Â∈ () × (). PC and EC are straightforward to

check, and hence only OC remains. The fallback solution generates the choice data on

{  } as in OC only if  Â  Â  and  Â−  Â− , for some  ∈ {1 2}. Hence
the minimal score of  in the quadruplet is at least 1. For  to be chosen alone, it

must be better than at least two alternatives for each ordering, and hence  Â , or



Â({ }) = {}, as desired.
Let now  be a bargaining solution that satisfies SYM, RA, PC, EFF, ATT, NBC,

EC and EXP. It is not difficult to adapt the argument from the first step in the proof of

Theorem 1 to show that  = 

Â if Â∈ ()× () is such that ( ) = 


Â( ) for all

 ⊆  with two or three elements. The difficult part is to show that there indeed exists

a pair (Â1Â2) of linear orderings such that ( ) = 

Â( ) for all  ⊆  with two or

three elements. We will proceed via an inductive argument. For each strictly positive

integer , let   be the following subset of :

  = { ∈  \ [∪−1=0
]| 6 ∃ ∈  \ [∪−1=0

] : ({ }) = {}}

(with the convention  0 = ∅).  1 is the set of elements that are -Pareto effi-

cient in .  2 is the set of alternatives that are -Pareto efficient in  \  1.

These are “second-best” options in . Notice that   is nonempty, for each  such

that  \ [∪−1=1
] is nonempty, since  is finite and  satisfies PC. Let  be the

smallest positive integer such that +1 = ∅.  is thus partitioned into a collection

( )=1 of layers of options that are constrained efficient at different levels .

Each such Pareto layer needs itself to be partitioned into subsets of one or two ele-

ments, as follows:

E = { ∈   \ [∪−1=0E]| 6 ∃  ∈   \ [∪−1=0E ] : ({  }) = {}}

for each  ∈ {1    }, and each strictly positive integer  (with the convention E0 = ∅,
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for each ). EC implies that a single element must be chosen out of any triplet in  .

E1 is the set of elements that are never chosen out of any such triplets. These can be
interpreted as extreme elements of the layer  . E2 is the set of elements that are
extreme in the sub-layer   \ E1, and so on so forth. The next lemma, whose proof
is available in the Appendix, highlights the structure of these sets.

Lemma 2 Let  ∈ {1   }, and let  be a strictly positive integer. If   \ [∪−1=1E]
has at least two elements, then E is nonempty and contains exactly two elements.

Let  be the smallest positive integer such that E +1 = ∅.   is thus par-

titioned into a collection (E)=1 of pairs of alternatives (and perhaps one singleton if
E  contains only one element). An element that belongs to a layer E for some large 
can be interpreted as not too extreme, in that it is chosen as a compromise out of more

triplets in  .

We are now ready to define Â, and prove that ( ) = 

Â( ) for every  ⊆  with

two or three elements, by induction. We start with a pair of elements in , then add

a third element, and so on so forth up to the point all the elements of  have been

considered. We have to be careful, though, to follow some special order for the argument

to work. It follows from our previous definition that each element of  belongs to a

unique atom E, for some  ∈ {1     } and some  ∈ {1   }. This fact will help
us determine the right order in which elements must be added. Indeed, let (() ())

be these two positive integer associated to . We will follow the convention that  is

added before 0 if (() ()) is lexicographically inferior to ((0) (0)). As we know

from Lemma 2, this rule does not uniquely specify the ordering, as an atom E usually
contains two elements. We do not further specify how elements are added in the inductive

argument, as this is inconsequential for the construction of Â, and the proof that  = 

Â

on pairs and triplets.17

Let  and  be the two first elements of for whichÂmust be defined. If ({ }) =
{}, then we impose that  Â1  and  Â2 . Similarly, if ({ }) = {}, then we
impose that  Â1  and  Â2 . Finally, if ({ }) = { }, then we impose that
 Â1  and  Â2 , or  Â1  and  Â2 . Either way works, and one may chooses one
of the two options arbitrarily. Of course, ({ }) = 


Â({ }), by construction.

Suppose now that Â has been defined on a subset  of , and that ( ) = 

Â( ) for

each  ⊆  with two or three elements, while the next element to be added is  ∈  \.
17Identifiability, i.e. the possibility of finding multiple pairs of ordering Â such that  = 


Â, is the

subject of the next theorem.
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We now define the extension Â∗ over  ∪ {}. Of course, Â∗ is defined so as to coincide
with Â on , i.e.  Â∗  if and only if  Â , for each   ∈  and each  = 1 2. The

important question to answer is how elements of  compare with  under Â∗. For this,
we partition  into two subsets:

 = { ∈ |({ }) = {}}

 = { ∈ |({ }) = { }}

Notice that  ∩  = ∅, and  =  ∪ , because there is no  ∈  such that

({ }) = {} (given the way we add elements in our inductive argument). For

each  ∈ , we impose  Â∗1  and  Â∗2 . As for an element  ∈ , we must

distinguish two cases. In the first case, we assume that there exists  0 ∈  such that

({  0}) = {}. Then we impose  Â∗1  and  Â∗2  when there exists  ∈  such

that  Â1  and ({ }) = {}, and  Â∗1  and  Â∗2  when there exists  ∈ 

such that  Â1  and ({ }) = {}. We need to check that this is well-defined.
This follows from the next lemma, whose proof is available in the appendix.

Lemma 3 If there exists  0 ∈  such that ({  0}) = {}, then, for each  ∈ ,

there exists  ∈  such that ({ }) = {}. In addition, if  0 ∈  are such that

({ }) = ({ 0}) = {}, then  Â  if and only if  Â 
0, for both  = 1 2.

In the second case, namely when there does not exist  0 ∈  such that({  0}) =
{}, we impose  Â∗1  and  Â∗2  if there exists  ∈  and  ∈  such that  Â1 ,
and  Â∗1  and  Â∗2  if there exists  ∈  and  ∈  such that  Â2 . If there is
no  ∈  and no  ∈  such that either  Â∗1  or  Â∗2 , then one is free to choose
either definition, i.e.  Â∗1  and  Â∗2 , for all  ∈ , or  Â∗1  and  Â∗2 , for all
 ∈ . Here too we need to check that this is well defined. This follows from the next

lemma, whose proof is available in the appendix.

Lemma 4 If there does not exist  0 ∈  such that ({  0}) = {}, then there do
not exist  0 ∈  and  

0 ∈  such that  Â2  and 0 Â1 0.

Now that the pair Â∗ of linear orderings has been defined on ∪{}, we should check
that they are transitive, i.e. for  = 1 2,  Â∗  if  Â  and  Â∗ ,  Â  if  Â∗ 
and  Â∗ , and the reverse rankings of both of these cases. We postpone the argument
to the appendix.
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We will be done with our inductive argument and the proof of Step 2 after proving

that ( ) = 

Â∗( ), for all  ⊆  ∪ {} with two or three elements. When  ∈ 

this follows directly from the inductive step. Consider some pair {}, where  ∈ .

If  ∈ , then ({}) = {} and Â∗ satisfies:  Â∗1  and  Â∗2 . Hence,



Â∗({}) = {} as well, as desired. If  ∈ , then ({}) = {} and Â∗
satisfies:  Â∗  and  Â∗−  for some  ∈ {1 2}. Hence, 

Â∗({}) = {} as well,
as desired.

Consider next a triplet {  }. If { } ⊆ , then  Â∗  and  Â∗ . The in-
ductive step and ATT imply: ({  }) = ({ }) = 


Â∗({ }) = 


Â∗({  }),

as desired.

Suppose next that only one of the alternatives in { }, say , belongs to , in

which case  ∈ . PC implies that ({ }) = {} or { }. In the former case, 
is the only -efficient (resp. Â∗-efficient) option in {  }, and hence ({  }) =
{} = 


Â∗({  }), by EFF, as desired. If ({ }) = { }, then ({  }) = {}

by ATT. The constructed preference profile Â∗ satisfies  Â∗  Â∗  and  Â∗−  Â∗− 
(here we use the fact that Â∗ is transitive, which is proven in the appendix), for some
 ∈ {1 2}. Hence 

Â∗({  }) = {} as well, as desired.
Finally, we consider the case in which neither  nor  belong to . This means

that   ∈ . Suppose that ({ }) is a singleton, say {}. Then, ({  }) =
{}, by ATT. The constructed preference profile Â∗ satisfies  Â∗  Â∗  and  Â∗−
 Â∗−  (again, remember that Â∗ and Â∗− are transitive), for some  ∈ {1 2}. Hence


Â∗({  }) = {} as well, as desired.
Now comes the last, and most difficult, case where ({ }) = { } and   ∈ .

By construction,  Â  and  Â− , for some  ∈ {1 2}. Since the choice out of any
pair in {  } is the pair itself, EC implies that ({  }) is a singleton. Assume
w.l.o.g. that  has been added before  in the induction.

If ({  }) = {}, then by construction,  Â∗  Â∗  and  Â∗  Â∗ .

Therefore, 

Â∗({  }) = {} as well, as desired.

Assume ({  }) = {}. Observe that () ≤ () ≤ (), since  is added after

, and  after . In addition, ,  and  cannot all lie in the same -Pareto layer,

i.e. ()  (). To see why, suppose on the contrary that {  } ⊆  (). Then

() ≤ () ≤ (), since  is added after ,  is added after . Hence, by the definition of

E()(), ({  }) 6= {}, a contradiction. Since ()  (), there must exist 0 ∈ 

such that (0) = () and ({0}) = {0}. Lemma 9 from the Appendix implies

that ({  0}) = {}. Hence 
Â({  0}) = {}, by the induction hypothesis, and
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we must have: 0 Â  Â  and  Â−  Â− 0. Since ({0}) = {0}, we know that
0 Â∗ . By transitivity, we get  Â∗− . Since ({}) = {}, we have  Â∗ .
Hence 


Â∗({  }) = {}, as desired.

Assume finally that ({  }) = {}. If () = () = (), then () ≤ () ≤
(), since  is added after , and  after . In order to have ({  }) = {}, it must
be that ()  (), by definition of E()(). Lemma 2 implies that there exists another
element 0 in E()(). Since ()  (), it must be that ({  0}) = {}. In order to
satisfy the induction hypothesis and the convention  Â , we must have  Â 

0. Since

()  (), it must be that ({ 0}) = {}. The second statement from Lemma

7 in the Appendix implies that ({  0}) 6= {}, since ({  }) = {}. On the
other hand, ({ 0 }) must be a singleton by EC, and cannot be {0} either, since
(0)  () ≤ (). Hence ({ 0 }) = {}, and  Â∗ , by definition. We conclude
that  Â  Â∗  and  Â∗−  Â− , which implies 

Â∗({  }) = {}, as desired.
To conclude, suppose that ()  (). Since ({}) = {} and ({ }) =

{}, we have three cases to consider:
Case 1)  Â  Â∗  and  Â∗−  Â− ,
Case 2)  Â∗  Â∗  and  Â∗−  Â∗− , and
Case 3)  Â∗  Â  and  Â−  Â∗− .
If Case 1 prevails, then 


Â∗({  }) = {}. So we will be done after proving that

Cases 2 and 3 are impossible.

In Case 2 there are elements on both sides of  according to Â∗, hence, we may apply
Lemma 3. Thus, there exists 0 ∈  such that ({ 0}) = {}. It must be that
({0 }) = {0 }, as otherwise we get a contradiction with ({  }) = {} via
Lemma 9. Since  Â∗ , it must be that  Â 

0. Transitivity of Â∗ also implies that
 Â . So we have two subcases to consider:

Case 2a:  Â  Â 
0 and vice versa for − (because the choice out of both { }

and {0 } is the pair itself), and
Case 2b:  Â 

0 Â  and vice versa for −.
Knowing that ({ 0}) = {} and ({  }) = {}, subcase 2b (leading to

({ 0 }) = {0}, by the induction hypothesis) is incompatible with RA, given that
({  0 }) contains at most two elements (see Lemma 5 in the Appendix). RA can
be satisfied in case 2a only if ({  0 }) = {} or { }. The former leads to a
contradiction with EXP. In the second case, notice that a single option must be selected

out of { 0 } by EC, and it must be  by RA and SYM. Recall that  Â 
0 in case

2a, and hence,  Â∗  by definition of Â∗, in contradiction to Case 2.
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As for Case 3, let 0 ∈  () be such that ({0}) = {0}. Hence 0 Â∗ ,

by definition, and transitivity implies that 0 Â  Â . ({0 }) = {0 } then
implies  Â−  Â− 0. On the one hand, we could conclude that ({0 }) = {0 },
and hence ({  0}) = {} by Lemma 9, or 

Â({  0}) = {}, by the induction
hypothesis. On the other hand, if one can compute 


Â({  0}) directly from Â, in

which case one gets {}, hence the contradiction. ¥

We next prove the independence of the axioms appearing in Theorem 2.

EFF: Consider the choice correspondence Â∗ introduced when showing that EFF does

not follow from the other axioms in Theorem 1. A similar argument implies that Â∗

satisfies the current versions of ATT, NBC, RA, and SYM, but violates EFF. EC and

PC are satisfied since Â∗ coincides with the fallback solution on pairs and triplets. OC

does not apply, and is thus satisfied trivially.

ATT: Let Â be a pair of linear orderings on  satisfying that there exists at least one

pair of elements,   ∈  such that  Â . Define () be a choice correspondence

defined as the fallback solution applied only to the set of Â-Pareto efficient alternatives
in , () = 


Â[Â()], where Â() is defined in (1). We’ve already shown

that this choice correspondence violates ATT, while satisfying NBC, RA, EFF and SYM.

({ }) = {} and ({ }) = {} imply that  Â  and  Â  which in turn implies

that  Â  and hence, ({ }) = {}. This verifies PC. If the choice out of any pair
in {  } is the pair itself, then Â({  }) = {  } Since 

Â({  }) is a
singleton, so is ({  }) which verifies EC. Suppose the choice out of any pair in
{  } is the pair itself and ({  }) = {}. Then both individuals must rank  in

between  and . If ({   }) = {}, then  cannot be Pareto dominated by any

of the elements. It is easy to check that, if  does not Pareto dominate  then  also

belongs to ({   }) a contradiction. Hence, it must be that  Â  confirming

OC.

NBC: Consider two orderings Â1 and Â2 that are opposite on :  Â1  if and only if
 Â2 . Let then  be the choice correspondence defined as follows: () = 


Â() if 

has exactly three elements, and () =  otherwise.  satisfies EFF and ATT trivially

since no two elements are Pareto comparable under Â. NBC is clearly violated in sets
with at least four elements.  is larger than the fallback solution applied to Â, and hence
 satisfies RA. SYM are trivially satisfied when applied to any set whose cardinality is

not equal to four. For any element in a quadruplet, there exists a triplet where that

element is available, yet not selected, and hence SYM is verified. PC and EC are satisfied
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since  coincides with the fallback on pairs and triplets. OC does not apply since 

never selects a singleton in quadruplets.

RA: As in the previous example, two orderings Â1 and Â2 that are opposite on .

Inspired by Masatlioglu et al. (2009), suppose that the decision maker can pay attention

to at most five options. Formally, he has an attention filter  :  ()→  (): () ⊂ ,

for all  ⊆  such that |()| = min{5 ||} and  ∈ ( ) if  ∈  ⊆ . We will assume

in addition that, if  and  belong to (), then there does not exist  ∈ \() that falls
in between  and  according to Â (it is easy to construct various attention filters with
this property). Let then () = 


Â(()). EFF and ATT are both satisfied because

the choice out of any pair is the pair itself. EC is satisfied because the choice out of any

triplet is a singleton. NBC is satisfied because of the second property we imposed on the

attention filter. OC is satisfied because there is no singleton choice out of quadruplets.

PC is satisfied because the choice out of any pair is the pair itself. If () contains

two elements, then it must be that  contains at most four elements, in which case 

coincides with the fallback, and hence  satisfies SYM. Finally, let’s check that  violates

RA. Indeed, let  be a set that contains six elements. Let  be the element of  that

does not belong to (). Let  be such that  is better than the element selected in 

for Â. Let then  ∈ () be an option that is worse than the element selected in  for

Â. It is easy to check that the element selected in  \ {} is different from the element

selected in , thereby showing that RA is violated.

SYM: Consider the choice correspondence Â∗ introduced when showing that SYM does

not follow from the other axioms in Theorem 1. A similar argument implies that Â∗

satisfies the current versions of EFF, ATT, NBC, and RA, but violates SYM. PC, EC

and OC are satisfied since Â∗ coincides with the fallback solution on pairs and triplets.

PC: Let  be a strict complete and transitive ordering on , and let  be the choice

obtained by maximizing this ordering, except that ({ }) = { }, where  is the
best element in  and  is the worst element in . It is easy to check that  satisfies

all the axioms of Theorem 2, except PC.

EC: Consider the analogue of the Borda rule introduced in the previous section to show

that NBC is not implied by the other axioms in Theorem 1. We already proved that

it satifies EFF, ATT, NBC, RA, and SYM, for any given pair of preferences. PC is

straightforward to check, and OC never applies because the choice out of any triplet is

the triplet itself if no two elements are Pareto comparable. For the same reason, the

choice correspondence will violate EC, as soon as there are at least three elements that
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are not Pareto comparable.

OC: See the two examples given before introducing OC.

Identifiability

There is no hope to identify uniquely the underlying preference relations on both

dimensions. Indeed, there is no way to tell which ordering should be associated to a

specific self or dimension of choice: if  = 

Â, for some pair (Â1Â2) of linear orderings

on , then we also have  = 


(Â2Â1) (cf. second regularity condition in the previous

section). One may wonder whether this is the only source of multiplicity. The answer is

not quite, but almost, as the following example and theorem illustrate.

Example 3 Consider  = {   } and  = 

Â, where  Â1  Â1  Â1  and

 Â2  Â2  Â2 . It is not difficult to check that  is also equal to 

Â0, where  Â01  Â01

 Â01  and  Â02  Â02  Â02 . The careful reader will notice that Â0 is obtained from Â by
exchanging the preferences of the two selves only as far as  and  are concerned. This

change is irrelevant as far as the fallback bargaining solution is concerned, because both 

and  Pareto dominate both  and  according to Â, implying that  and  are irrelevant
when it comes to determine the solution of any subset  of  that include either , , or

both.

A subset  of  is -dominant if it is non-empty and ({ }) = {}, for all  ∈ 

and all  ∈  \ .18 Observe that if  and 0 are both -dominant, then  ⊆ 0 or

0 ⊆ . Also  is trivially -dominant. So there exists a unique minimal -dominant

set ∗1 in . Similarly, a subset  of  \ ∗1 is -dominant in  \ ∗1 if it is non-empty
and ({ }) = {}, for all  ∈ ∗1 and all  ∈  \ ( ∪ ∗1). Let ∗2 be the minimal -
dominant set in  \∗1 . Iterating the procedure, one obtains a partition of  into a finite

sequence Π = (∗1      
∗
) of sets with the property that 

∗
 is the minimal -dominant

set in  \ ∪−1=1
∗
 .

Theorem 3 Let ÂÂ0 be two pairs of strict linear orderings. Then 

Â = 


Â0 if and

only if Â0 can be obtained from Â by permuting the two orderings over atoms of Π that

contains at least two elements.

Proof: The sufficient condition is easy to check, and we focus attention only on the

necessary condition. Let  be the common bargaining solution. Since it coincides with

18If  satisfies EFF, then  is -dominant if and only if ( ) ⊆ , for each  ⊆  such that ∩ 6= ∅.
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the fallback bargaining solution for some pair of orderings, it satisfies the axioms listed

in the previous section, and the induction we followed in the proof of Theorem 2 can

be reproduced here as well. Let Â∗denote the preference profile that is constructed in
the induction procedure, such that  = 


Â∗ (note that Â∗ may be different from Â or

Â0). For any   ∈  we write (() ()) ≤ (() ()) to mean that (() ()) is

lexicographically lower or equal to (() ()), i.e., either ()  () or () = () and

() ≤ ().

Let  and  be the first and second elements in the induction, i.e., for all  ∈ \{ },

(() ()) ≤ (() ())  (() ())

If ()  (), then there is only one profile of ranking that is consistent with : both

agents rank  above . If () = (), then both  Â∗1 ,  Â∗2  and  Â∗2 ,  Â∗1 
are consistent with  . Moreover, these are the only consistent profiles: i.e., either Â∗
and Â agree on { }, or Â∗ and Â0 agree. Fix one of these profiles. Let  be the first
element in the induction (following  and ) with the property that there exists 0 with

((0) (0)) ≤ (() ()) such that either Â∗ and Â or Â∗ and Â0 differ on {0 }.
We first establish that the following must then be true: there is no  0 ∈  such

that ({  0}) = {}, and there is no  ∈  and no  ∈  such that either  Â∗1 
or  Â∗2 . To begin, note that 0 ∈ , since then both agents must rank 0 above .

Therefore, 0 ∈ . Suppose there exist  
0 ∈  such that ({  0}) = {}. Then

by Lemma (3), there must exist 0 ∈  such that ({0  0}) = {}. Since 0 and
0 were added before  in the induction, the agents’ preferences over them has already

been determined. Moreover, having fixed the ordering of the first two elements in the

induction, our definition of  implies that there is only one preference profile over {0 0},
which is consistent with . Assume, w.l.o.g. that this profile is 0 Â∗1 0 and 0 Â∗2 0.
Then it must be that all three preference profiles, Â, Â0 and Â∗, rank  in between 0

and 0. Hence, these preference profiles all agree on the rankings of 0 relative to , in

contradiction to the definition of  and 0.

Suppose next that there exist no  0 ∈  such that ({  0}) = {}. Note
that this means that ()  (). Consider first the case in which there exists  ∈ 

and 0 ∈  such that 
0 Â∗ . Since 0 ∈ , PT implies that ({0 }) = {0 },

and hence,  Â∗− 0. By our construction of Â∗, 0 Â∗  and  Â∗− 0. By Lemma
(well-def2), either 0 Â∗  and  Â∗− 0, or  Â∗ 0. By our induction and the definition
of , the preference profile Â∗ coincides with both Â and Â0 on {0 }.
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Suppose 0 Â∗  and  Â∗− 0. Since  ∈ , it must be the case that all three profiles,

Â, Â0 and Â∗, satisfy that agent 1 and 2 rank  above . Hence, by transitivity, all three
profiles satisfy that agent  ranks 0 above  and  above . Assume w.l.o.g. that Â∗
differs from Â. Then it must be that either  Â∗− 0 Â∗−  but  Â−  Â− 0 or that
 Â− 0 Â−  but  Â∗−  Â∗− 0. But if agent − ranks 0 above  then we get that
a contradiction to 0 ∈ . Therefore, both Â∗ and Â must satisfy that agent − ranks
 above  and  above 0. But this contradicts our definition of  and 0.

Next, suppose  Â∗ 0. Then 0 Â∗  Â∗ 0 Â∗  and  Â∗−  Â∗− 0 Â∗− 0. Assume
w.l.o.g. that Â∗ differs from Â. Then it must be that  Â 

0 while 0 Â− . Since
Â∗ and Â coincide on {0 0}, we have that 0 Â∗ 0 Â∗  and  Â∗− 0 Â∗− 0 while
0 Â  Â 

0 and 0 Â∗−  Â∗− 0. But this means that 
Â∗({0 0 }) = {0} while



Â({0 0 }) = {}, a contradiction.
It follows that there are no  0 ∈  such that ({  0}) = {}, and there is no

 ∈  and no  ∈  such that either  Â∗1  or  Â∗2 . Since 0 ∈ , we also know

that  is non-empty.

We now prove that  is -dominant. Consider some  ∈  and  ∈  \ .

We have to prove that ({ }) = {}. If  is added before  in the induction, then

 ∈ , and the result follows trivially from the conclusion that no element in  is

ever chosen in a pair containing an element in . Suppose now that  is added after 

in the induction, i.e. (() ()) lexicographically dominates (() ()). Suppose first

that () = (). Since there is no  0 ∈  such that ({  0}) = {}, it must be
that () = 1. Since  is non-empty, it must be that there exists another element 

0

such that (0) = () that has been added before  - this must be the other element of

the atom E (()1) (remember that those atoms contain at most two elements, see Lemma
???). Hence ({  0}) = {}. Since there is no element in  and no element in

 from which  picks both elements, ({ 0}) = {}. Since  = Â, we must have

 Â ,  Â 0, and there exists  ∈ {1 2} such that  Â  Â 
0 and 0 Â  Â .

Hence ({ }) = {}, as desired. Finally, if ()  (), then there exists 00 such

that (00) = () and ({00 }) = {00} (00 could be  itself). By essentially the same
argument as above, we may conclude that ({ 00}) = {}, and hence, ({ }) = {},
by PT, as desired.

Fix now an atom ∗ of the partition. We will prove that Â and Â∗ must be the same
or a permunation of each other on ∗. This will conclude the proof, since there is only

one way of patching together the orderings obtained on the different atoms of Π ( Â 

if and only if  belongs to an atom that comes before the atom to which  belongs).
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For the sake of notational simplicity, we will assume that ∗ = , but of course the

reasoning can be reproduced with any set ∗ that has at least two elements, since  is

an arbitrary set throughout the paper. Let us add elements as in the induction from

the proof of theorem 2. Let   be the first two elements to be considered. Notice that

({ }) = { }, as otherwise either {} or {} would be -dominant, a contradiction
with the fact that  does not contain any strict subset that is -dominant. Let   be

such that  Â ,  Â− ,  Â0 ,  Â0− . The previous paragraph shows that the last
case when defining the extension of Â∗ when adding  in the induction cannot occur. In
the three other cases, it is not difficult to check that the way we defined the extension

is the only way possible to have that  coincides with the fallback bargaining solution

for the extended ordering. Hence by induction, it must be that Â=Â0 and Â−=Â0−. If
 = , then Â=Â0 (on ∗). Otherwise Â0 is simply a permutation of Â, as desired. ¥

6. CONCLUDING COMMENTS

Testable implications on limited data sets

The axioms listed in Section 5 remain of course necessary conditions for any data set

to be consistent with the fallback solution for some pair of linear orderings. Theorem 2

establishes that they are also sufficient when working with a complete data set. While

sufficiency is also guaranteed on some smaller data sets, it remains an open question to

characterize all those data sets that guarantee sufficiency, and to propose new independent

testable implications otherwise. In contrast, rationality is equivalent to the standard IIA

axiom on any data set that includes observations on all subsets of two or three elements.

The difference in results comes from the fact that our axioms of consistency across subsets

(e.g., RA and OC) focus, for simplicity in the absence of rationality, on marginal changes

- removing or adding a single alternative.

Even so, Theorem 2 is useful in providing an efficient method for verifying whether

a limited data set is consistent with the fallback solution for some preference profile,

and in deriving the corresponding preferences of the selves/bargainers. Indeed, its proof

provides an algorithm for constructing a candidate profile of preferences. Given this

profile, we can compute the fallback solution to predict the choice from any subset. A

data set that includes observations on all subsets of two or three elements is consistent

with the fallback bargaining solution for some pairs of linear orderings if and only if

predictions match actual data. Using this method instead of the alternative procedure
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of constructing all possible preference profiles and checking for each one whether it can

generate the data set with the fallback solution brings the computational complexity from

exponential down to polynomial.

Allowing for indifferences

Throughout our analysis we assumed that the bargainers have strict preferences over

. Allowing for indifferences complicates the analysis, and it remains an open question

how to extend our results to allow for indifference. One promising direction is to consider

the case where  has a product structure,  = 1 × 2, while criterion º on  is

assumed to be strict on  (but note that multiple elements of  may now have the

same -component). Axioms would have to be adapted in some cases, for instance EFF

would have to be strengthened to a notion of strong efficiency, but we expect that the

essence of our three theorems would extend to this new framework.

More than two bargainers

A natural extension of our analysis is to situation in which the elements of choice

have more than two dimensions (and the decision-maker is able to process more than two

dimensions), or where there are more than two distinct individuals engaged in bargaining.

While it is easy to extend the fallback solution to more than two selves, more work is

needed to see how the characterization results would extend, both mathematically and

in terms of the interpretation of the axioms. One difficulty, for instance, would be the

definition of a compromise. Our view of a compromise was of an element that in some

sense both bargainers rank “in between” other elements which one bargainer ranks in the

opposite way to the other bargainer (geometrically it means that the compromise falls

in the rectangle constructed on the two other alternatives). The question is, how do we

extend this notion of “betweenness ” to more than two bargainers, and how to interpret

it in terms of choice behavior? It is interesting to note in that respect that almost all

the experiments on the attraction and compromise effects were done on two-dimensional

elements.

When alternatives have more than two dimensions, one may further question our

assumption that all dimensions are treated equally. A natural extension would be to

allow the individual to put different weights on different dimensions, and to make a choice

according to, say, a “weighted” fallback solution. When the weights of the dimensions

and the ranking within each dimension are not observeable, the revealed exercise would
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be to try and infer both from observed choices. One potential concern with this is

identifiability: the additional freedom to choose the weights on the dimensions may allow

the same choice correspondence to be consistent with a wide variety of preferences.

Finally, it is worth noting that the predictive power of the fallback solution diminishes

with the number of bargainers since the maximal number of elements it can choose

equals the number of bargainers. However, it may very well be that, indeed, if we were to

replicate the experiments of the attraction and compromise effects with three-dimensional

alternatives, the distribution of choices would cover all three options when offering three

options that cannot be Pareto ranked.

Intensities

One has the intuition that the prevalence of the attraction and compromise effects

in applications may depend on factors that cannot be captured in our ordinal model.

More specifically, choices may be influenced by some trade-offs that involve a notion of

distance or intensity. An individual may exhibit a compromise effect when  = (100 1),

 = (50 50) and  = (1 100), but (perhaps) not when  = (2 2). Similarly, an he

may be more likely to exhibit the attraction effect when  = (60 40),  = (59 39) and

 = (40 60), but (perhaps) not when  = (41 39). Extending our analysis in this direction

is certainly an interesting topic for future research. Note though that the analysis may

now depend crucially on the context to which it is designed to be applied, as the model

would have to express what it means for two options to be ‘close’ or ‘far away’ on each

dimension. Perhaps a more promising avenue would be to derive these intensities, and

the relevant trade-offs, from the observed choices, but the added flexibility may result in

few testable implications. In addition to being detail-free, our ordinal approach has the

advantage of allowing straightforward comparisons to existing standard models of choice.

We hope that it will also serve as a benchmark for future extensions.

APPENDIX

Proof of Lemma 1

Necessary Condition for Subcase 1: Suppose that 

Â() = {}. For each

 ∈  \ {} and each  ∈  \ {}, we have:

min
=12

(  \ {}Â) ≥ min
=12

( Â)− 1 ≥ min
=12

( Â) ≥ min
=12

(  \ {}Â)
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and hence  ∈ 

Â( \ {}), as desired.

Let now  ∈  \ {}. Suppose that  ∈ argmin=12 ( Â). If there exists  ∈ 

such that  Â , then we have:

min
=12

(  \ {}Â) ≥ min
=12

( Â)− 1  min
=12

( Â)− 1 = min
=12

(  \ {}Â)

and hence  6∈ 

Â( \ {}). If there does not exist  ∈  such that  Â , then

min=12 ( \{}Â) = 0, and  6∈ 

Â(\{}), for each  ∈ \{}, since |\{}| ≥

3, and the minimal score attained at the chosen element(s) is always larger or equal to

the first integer below half the number of elements in the choice set.

Necessary Condition for Subcase 2: Suppose that 

Â() = { }. Let  ∈  \

{ }. Let’s assume that argmin=12 ( Â) = 1 and argmin=12 ( Â) = 2 (a
similar reasoning applies if 1 and 2 are exchanged).

Observe that it is impossible to have  Â1  and  Â2 , since the minimal score of
 in  would then be larger than the minimal score of both  and . The minimal score

of  (resp. ) is the same in both  and  \ {} if  Â2  (resp.  Â1 ), and therefore
remains strictly larger than the minimal score of any element in  \ {  } (since it
does not increase by deleting ). Hence 


Â( \ {}) ⊆ { }, as desired.

Suppose now that 

Â( \ {}) = {}. This is true if and only if  Â1  and  Â2 .

Hence there exists 0 ∈  such that  Â1 0 and 0 Â2 , as otherwise the minimal score
of  is strictly larger than the minimal score of , and 


Â( \ {0}) = {}, as desired.

Last Statements of the Lemma: Suppose that 

Â() = { }, and 


Â( \ {}) =

{ }, for all  ∈  \ { }. Continuing with the notations introduced to prove the
necessary condition for subcase 2, we already observed that it is impossible to find a  ∈ 

such that  Â1  and  Â2 . The previous paragraph also implies that 
Â( \ {}) =

{ } if and only if we don’t have  Â1  and  Â2 , nor  Â1  and  Â2 . Hence
 Â  and  Â , as desired.

Suppose now that 

Â() = {}, 

Â( \ {}) = { }, and 

Â( \ {}) = { }. If

 Â , then  looses one point along both dimensions when dropping , and the minimal

score of  remains strictly larger than that of  in  \ {}, hence a contradiction with


Â( \ {}) = { }. Similarly, it cannot be that  Â . There is no Pareto relation

between  and , and  and  either, since 

Â(\{}) = { } and 

Â(\{}) = { }.
Let  ∈ {1 2} be such that  Â . Three cases remain possible: 1)  Â  Â  and

 Â−  Â− ; 2)  Â  Â  and  Â−  Â− ; or 3)  Â  Â  and  Â−  Â− .
Consider case 1). Since  is above  along − and 


Â( \ {}) = { }, it must be that

40



the minimal score of  in  \ {} is attained along the -dimension, and is equal to the
minimal score of  in  \ {} which is attained along the −-dimension. Adding , the
minimal score of  increases by one point, while that of  remains unchanged, hence a

contradiction with 

Â() = {}. Case 3) leads to a similar contradiction. Hence only

case 2) remains, as desired.

Sufficient Condition for Subcase 1: Assuming that conditions 1(a) and (b) are true,

we need to prove that 

Â() = {}. If 

Â() = {} for some  ∈  \ {}, then the
necessary condition for subcase 1 implies that  ∈ 


Â(\{}), for all  ∈ \{}, thereby

contradicting 1(b). If 

Â() = { } for some   ∈ \{}, then the necessary condition

for subcase 2 implies that 

Â( \ {}) ⊆ { }, for all  ∈ , thereby contradicting

1(a). Finally, suppose that 

Â() = { } for some  ∈  \ {}. Condition 1(b) implies

that there exists  ∈  \ {} such that  6∈ 

Â( \ {}). The necessary condition for

subcase 2 implies that there exists 0 ∈  \ {} such that 
Â( \ {0}) = {}, thereby

contradicting 1(a). We must conclude that 

Â() = {}, as desired.

Sufficient Condition for Subcase 2: Assuming that conditions 2(a) and (b) are true,

we need to prove that 

Â() = { }. If  ∈ 


Â(), for some  ∈  \ { }, then

the necessary condition for subcases 1 and 2 implies that  ∈ 

Â( \ {}), for some

 ∈ , thereby contradicting 2(a). If 

Â() = {}, then 1(b) and 2(a) imply that



Â( \ {}) = {}, for some  ∈  \ {}. On the other hand, 1(a) implies that

 ∈ 

Â( \ {0}), for all 0 ∈  \ {}, and this leads to a contradiction with condition

2(b). A similar reasoning shows that 

Â() 6= {}, and hence 

Â() = { }, as desired.
¥

Proof of Lemma 2

Lemma 5 Let  be a bargaining solution that satisfies EFF, NBC, and EC. Then

|()| ≤ 2, for all  ⊆ .

Proof: Suppose that one can find three elements    in (), for some  ⊆ .

EFF implies that the choice out of any pair in {  } is the pait itself, and EC implies
that a single element must be chosen out of the triplet. This contradicts NBC. ¥

Lemma 6 Let  be a bargaining solution that satisfies SYM, RA, PC, EFF, ATT, NBC,

and EC. Let     be four distinct elements of . If ({   }) = { }, then
({  }) = {}.
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Proof: RA implies that  ∈ ({  }). Lemma 5 implies that we will be done af-
ter proving that ({  }) is not equal to { }, nor { }. Since the argument
is similar in both cases, we will only show how to rule out the first one. Suppose

on the contrary that ({  }) = { }. EFF implies that ({ }) = { },
({ }) 6= {}, and ({ }) 6= {}. EC implies that it is impossible to have

({ }) = { } and ({ }) = { }. ATT also implies that it is impossible to have
({ }) = {} and ({ }) = { }, or ({ }) = { } and ({ }) = {}.
Hence ({ }) = {} and ({ }) = {}. Also, ({   }) = { } implies
that ({ }) = { }, ({ }) 6= {}, and ({ }) 6= {}, by EFF. Notice that
({  }) must be a singleton, because of EC if ({ }) = { }, and because of
ATT if ({ }) = {}. RA implies that ({  }) = {}. If ({ }) = {}, then
({  }) = { }, by ATT, and we get a contradiction with SYM. If ({ }) =
{ }, then it must be that ({ }) = { } to avoid a contradiction with PC. ATT
thus implies that ({  }) = {}, which contradicts RA. Hence the original hypoth-
esis that ({  }) = { } is false, and we are done with the proof. ¥

Lemma 7 Let  be a bargaining solution that satisfies SYM, RA, PC, EFF, ATT, NBC,

EC, and EXP, and let     be four distinct elements of  such that the choice out

of any pair is the pair itself. Then the three following statements are true:

1. If ({  }) = {} and ({  }) = {}, then ({  }) = {}.

2. It is impossible to have ({  }) = {}, ({ }) = {}, and ({ }) =
{}.

3. If ({  }) = {} and ({  }) = {}, then ({  }) = {}.

Proof: For the first statement, assume that ({  }) = {} and ({  }) =
{}. RA implies that ({   }) cannot be  nor  since   ∈ {  } and
({  }) = {}, and cannot be , nor , since   ∈ {  } and ({  }) = {}.
Lemma 5 implies that ({   }) must contain two elements. RA rules out { },
{ }, { }, { }, and { }. Hence it must be { }. Applying Lemma 6, we
conclude that ({  }) = {}, as desired.
For the second statement, assume that ({  }) = {}, ({ }) = {}, and

({ }) = {}. It is not difficult to check that RA and Lemma 5 imply that

({   }) must equal {} or { }. The former case leads to a contradiction with
EXP, while the other leads to a contradiction with SYM.
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For the third statement, assume that ({  }) = {} and ({  }) = {}. EC
implies that ({  }) must be a singleton. Suppose that ({  }) = {}. Thanks
to the first statement, we can combine this with ({  }) = {}, to conclude that
({  }) = {}. Hence a contradiction with the second statement ( is “in between”
both  and , and  and , while  is “in between”  and ). If ({  }) = {}, then
one gets again a contradiction with the second statement ( is “in between” both  and

, and  and , while  is “in between”  and ). ¥

Proof of Lemma 2: We want to prove that, for each set  ⊆  with at least two el-

ements and such that the choice out of any pair in  is the pair itself, there exist exactly

two elements in  that are not chosen out of any triplet in  . This is done by induction

on the number of elements in  . The result is trivial if # = 2 or 3. Let  be a positive

integer larger or equal to 3, and suppose that the result holds for all set with no more

than  elements. Consider now a set  with + 1 elements.

First notice that there cannot be more than two elements in  that are not chosen

out of any triplet, since the choice out of any triplet in  is a singleton, by EC. Since 

has more than three elements, we can choose   0 ∈  such that ({  0}) = {}.
Let  0 be the two elements in  \ {} that are not chosen out of any triplet in  \ {}
(using the induction hypothesis). We will be done with the proof after showing that

these two elements are not chosen out of any triplet in  . This amounts to show that

({  }) 6= {}, for all  ∈  \ { }, and ({0  }) 6= {0}, for all  ∈  \ {0 }
(since we already know that  and 0 are not chosen out of any triplet in  \ {}).
We prove the first statement only, the argument with 0 instead of  being similar. We

proceed by considering three cases.

Case 1: { 0} = { 0}. In that case, we know that ({  0}) = {}. Suppose to
the contrary of what we want to prove that ({  }) = {}, for some  ∈  \ { }.
It must be that  6= 0, and hence ({  0}) = {}, by definition of  0. On the other
hand, the first statement of Lemma 7 implies that ({  0}) = {}, hence the desired
contradiction.

Case 2: { 0} ∩ { 0} 6= ∅, but { 0} 6= { 0}. Suppose for instance that  = 

(the argument for the three other cases  = 0, 0 = 0, and 0 =  is similar). We know

that ({  0}) = {} and ({ 0 0}) = {0} (by definition of  0). Suppose to
the contrary of what we want to prove that ({  }) = {}, for some  ∈  \ { }.
Observe that ({ 0 0}) cannot be {} because of the second statement of Lemma
7, and it cannot be {0} to avoid a contradiction with the first statement of Lemma 7.
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EC implies that ({ 0 0}) = {}. The first statement of Lemma 7 now implies that
({  0}) cannot be {} nor {0}, i.e. ({  0}) = {}. Hence we can assume that
 is different from 0, and we know that ({  0}) = {}, by definition of  0. This
leads to a contradiction with the first statement of Lemma 7, since ({  }) = {}.
Case 3: { 0} ∩ { 0} = ∅. Suppose to the contrary of what we want to prove

that ({  }) = {}, for some  ∈  \ { }. If ({ 0 }) = {}, then we reach a
contradiction with ({  0}) = {} and ({ 0 0}) = {0}, via the first statement
of Lemma 7. Hence ({ 0 }) = {} or {0}. We consider only the first case, the
argument for the second case being similar. The third statement of Lemma 7 implies

({  }) = {}, since ({  0}) = {}. Hence ({  0}) 6= {}, as otherwise
one would get a contradiction with the second statement of Lemma 7 (with  being “in

between” both  and , and  and 0, while  is “in between”  and 0). So  = 0 is

impossible. If  6= 0, then ({  0}) = {}. Once combined with ({  }) = {},
the first statement of Lemma 7 implies that ({  0}) = {}, a contradiction again. ¥

Proof of Lemma 3

Let  0 ∈  such that({  0}) = {}, and let  ∈ . We will be done with the

first part of the statement after proving that either ({ }) = {} or ({ 0}) =
{} (meaning that one can actually choose  in { 0}). Notice first that ({ })
must be a singleton, by EC if ({ }) = { }, or by ATT if ({ }) is a singleton.
A similar argument implies that ({ 0}) is a singleton as well. Suppose now, on the
contrary to what we want to prove, that ({ }) ∈ { } and ({ 0}) ∈ { 0}.
Notice that we must have ({ }) = ({ 0}), as otherwise we would have a
contradiction with Lemma 5 and RA (there is no way to select at most two elements out of

{   0}, that lead to a nonempty intersection with three different singleton choices in
three subsets of cardinality 3). Hence it must be that both ({ }) and ({ 0})
equal {}. It is not difficult to check that this, combined ({  0}) = {}, implies
that ({   0}) = {} or { }, again as a consequence of Lemma 5 and RA. SYM
makes the second case impossible. Indeed,  does not belong to neither ({ }),
nor ({ 0}). So we are forced to conclude that ({   0}) = {}, but then we
get a contradiction with EXP since   0 ∈ . We are thus done with the proof of the

first part of the statement.

As for the second part, let  0 ∈  be such that({ }) = {} and({ 0}) =
{}. Suppose, to the contrary of what we want to prove, that  Â1  and 0 Â1 .

Notice that ({ }) = { }, as otherwise ({ }) = {} or {}, by ATT. Sim-
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ilarly, ({ 0}) = { 0}. Hence  Â2  and  Â2 0. By the induction hypoth-

esis, ({  0}) = 

Â({  0}). Hence ({  0}) = {}. Combining this with

({ }) = {} and({ 0}) = {}, Lemma 5 and RA imply that ({   0}) =
{} or { }. The second case would lead to a contradiction with SYM, and hence
({   0}) = {}, but this leads to a contradiction with EXP, since ({ }) =
{ }, ({ }) = { }, ({ 0}) = { 0}, and ({ 0}) = { 0}. We are thus
done with the proof of the second and last part of the statement. ¥

Proof of Lemma 4

Lemma 8 Let  be a bargaining solution that satisfies SYM, RA, EFF, NBC, EC, and

EXP. Suppose that the choice out of any pair in {  0} is the pair itself, and that
({  0}) = {}. If  ∈  and  

0 ∈ , then ({ 0 }) = {}.

Proof: ATT implies that ({  }) = ({ 0 }) = {}. Since ({  0}) =
{}, it follows from Lemma 5, RA and SYM that ({  0 }) = {}. EC implies
that ({ 0 }) is a singleton. If ({ 0 }) = {}, then we get a contradiction with
EXP, since ({ }) = { }. By a similar argument, ({ 0 }) 6= {0}, and hence
({ 0 }) = {}. ¥

Proof of Lemma 4: Assume, by contradiction, that there exist  0 ∈  and  0 ∈ 

such that  Â2  and 0 Â1 0. Hence ({ }) 6= {}, by definition of Â on . Also,

({ }) 6= {}, as otherwise we would get a contradiction with  ∈  via PC, since

 ∈ . Hence ({ }) = { }. A similar argument implies that ({0 0}) = {0 0}.
By definition of Â on , we have:

 Â1   Â2 
0 Â1 0 0 Â2 0

(2)

The proof proceeds by considering two cases.

Case 1 ({ 0}) = {} and ({0 }) = {0}

By definition of Â, we have:  Â 0 and 0 Â . Combining this with (2), it fol-

lows that  Â1 0 Â1 0 Â1  and 0 Â2  Â2  Â2 0. Since  = 

Â on triplets

in , we conclude that ({  0}) = {} and ({0  0}) = {0}. ATT implies that
({  }) = ({  0}) = , and({ 0 }) = ({ 0 0}) = 0. SYM, Lemma 5,
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and RA imply that ({   0}) = {} and ({ 0  0}) = {0}. This leads to a con-
tradiction with EXP if ({  0}) = {} or {0}, since  0 ∈ , ({ 0}) = { 0},
({ }) = { }, and ({0 }) = {0 }. EC implies that ({  0}) is a singleton,
and hence ({  0}) = {}, but this contradicts the assumption of Lemma 4. Hence
this first case is impossible, and we have to look into the second case.

Case 2 ({ 0}) 6= {} and/or ({0 }) 6= {0}.

We consider the case where ({ 0}) 6= {}. A similar reasoning applies if ({0 }) 6=
{0}. ({ 0}) = {0} would lead to a contradiction with 0 ∈  via PC, since  ∈ .

Hence ({ 0}) = { 0}. If  Â1 0, then  Â1 0 Â1 0 and 0 Â2 0 Â2 , by (2)

and the fact that  = 

Â on pairs in . Also,  = 


Â on triplets in , and hence

({ 0 0}) = {0}. On the other hand, ATT implies that ({  0}) = {} and
({ 0 0}) = {0}. There is no way of defining ({  0 0}) so as to satisfy Lemma
5 and RA. Hence it must be that 0 Â1 . In turn, this implies that 0 Â1  Â1  and
 Â2  Â2 0, by (2) and the fact that  = 


Â on pairs in . Also,  = 


Â on triplets in

, and hence ({  0}) = {}. Lemma 8 implies ({ 0 }) = {}, a contradiction
with the assumption of Lemma 4. Case 2 is thus impossible as well. ¥

Â∗1 and Â∗2 are transitive

Transitivity is the subject of Lemmas 10 and 11. Before stating and proving them,

we need to establish a useful property.

Lemma 9 Let  be a bargaining solution that satisfies SYM, RA, EFF, ATT, NBC,

EC, and EXP. Let    0 be four elements of  such that the solution out of any

pair in {  } is the pair itself, ({ 0}) = { 0}, and ({ 0}) = {0}. Then
({  }) = {} if and only if ({  0}) = {}.

Proof: Notice that ({ 0}) 6= {}, as otherwise we would get a contradiction
with ({ }) = { } via PC, since ({ 0}) = {0}. Independently of whether

({ 0}) = {0} or { 0}, ATT implies that ({  0}) = ({  0}) = {0}.
If ({  }) = {}, then Lemma 5 and RA imply that ({   0}) = {0} or

{ 0}. The former case leads to a contradiction with EXP. In the latter case, SYM
implies that 0 6∈ ({  0}), since ({  0}) = {0}. ({ 0}) = {0} would imply
({  0}) = {0}, by ATT, a contradiction. Hence ({ 0}) = { 0}, and EC implies
that ({  0}) must be a singleton, or ({  0}) = {} given RA, as desired.
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If ({  0}) = {}, then Lemma 5 and RA imply that ({   0}) = { 0}.
Lemma 6 implies in turn that ({  }) = {}, as desired. ¥

Lemma 10 Let (Â1Â2) be two complete, transitive and anti-reflexive orderings defined
over  ⊆  such that  = 


Â on pairs and triplets in , let  ∈  \ , let (Â∗1Â∗2) be

the extensions of (Â1Â2), as defined in the main text, let   be two elements of , and
let  ∈ {1 2}. If  Â  and  Â∗ , then  Â∗ . Similarly, if  Â∗  and  Â , then

 Â∗ .

Proof: The second statement being symmetric to the first, its proof is very similar

and is therefore omitted. We are thus assuming that  Â  and  Â∗ , and we want to
prove that  Â∗ . If  ∈ , then we are done. So we’ll assume  ∈ .

Suppose that there is no  0 ∈  such that ({  0}) = {}. If  ∈ , then

 Â∗ , by definition of Â∗ . Suppose now that  ∈ . Our construction of Â∗ is such
that either  Â∗  for all  ∈ , or  Â∗  for all  ∈ . Hence  Â∗ , as desired.
So from now on we assume that there exist  0 ∈  such that ({  0}) = {}.
By Lemma 3, there exists 0 ∈  such that ({ 0}) = {}. If  Â 

0, then

 Â∗ , by construction, and we are done. So we prove in the remainder that 0 Â  is

impossible. So we will assume, on the contrary, that 0 Â  and  Â− 0.
Suppose first that  ∈ . In that case, ({ }) is different from {}, as otherwise

we get a contradiction with  ∈  via PC. ({ }) is also different from {}, since
 Â , and = 


Â on all pairs in . Hence({ }) = { }. Since = 


Â on all pairs

in , we conclude  Â− . Given that 0 Â  and  Â− 0, the transitivity of Â implies
that 0 Â  and  Â− 0. Since  = 


Â on all pairs in , ({0 }) = {0 }. Given

that  ∈ , ATT now implies that ({  }) = ({0  }) = {}. Since  = 

Â

on all triplets in , it follows that ({0  }) = {}. But because ({ 0}) = {},
there is no way to define ({ 0  }) so as to satisfy RA, given Lemma 5, and we get
the desired contradiction.

Suppose next that  ∈ . Then, it follows from  Â∗  that  Â∗− , by con-
struction. If ({0 }) = {0}, then 0 Â , by construction, and hence  Â  (by

assumption for  and by transitivity for −). Since  = 

Â on pairs in , we conclude

that ({ }) = {}. ATT implies that ({  }) = {} and ({0  }) = {0}.
It becomes impossible to define ({ 0  }) so as to satisfy RA and Lemma 5, given
that ({ 0 }) = {}. So we must conclude that ({0 }) 6= {0}, and hence
({0 }) = {0 } since 0 Â  (this follows from our assumptions that  Â  and

0 Â , and from the transitivity of Â). If ({ }) = {}, then Lemma 9 implies that
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({0  }) = {}, and we get a contradiction with  Â∗ , since 0 Â  (see Lemma

3). As in the previous paragraph, we cannot have ({ }) = {} either, because  Â .

Hence ({ }) = { }. So 0 Â  Â  and  Â−  Â− 0, and ({ 0 }) = {}
since  = 


Â on triplets in . In addition, we also know that ({0  }) = {}. Since

0  ∈  and ({0 }) = {0 }, then ({0  }) must be a singleton, by EC. If
({0  }) ∈ {0 }, then there is no way of defining ({ 0  }) so as to satisfy
Lemma 5 and RA. Hence, ({0  }) = {}, and we get a contradiction with  Â∗ ,
since 0 Â  (see Lemma 3). ¥

Lemma 11 Let (Â1Â2) be two complete, transitive and anti-reflexive orderings defined
over  ⊆  such that  = 


Â on pairs and triplets in , let  ∈  \ , let (Â∗1Â∗2) be

the extensions of (Â1Â2), as defined in the main text, let   be two elements of , and
let  ∈ {1 2}. If  Â∗  and  Â∗ , then  Â .

Proof: We wish to show that  Â . If ({ }) = {}, then we are done. Assume
({ }) 6= {}.
We first consider the case where  ∈ . Hence ({ }) 6= {}, or ({ }) =

{ }, since otherwise we get a contradiction with  Â∗  via PC. Now assume that the
conclusion of the lemma is wrong, i.e.  Â . Notice that there must exist 

0 ∈ 

such that ({ 0}) = {}, as otherwise  Â∗ , by definition of Â∗, a contradiction.
Since  Â∗ , it must be that 0 Â  and  Â− 0, again by definition of Â∗. Since
 Â ,  Â− , and  = 


Â on triplets in , it follows that ({  0}) = {}. Given

that  is added after  in our induction, it cannot be that ({ }) = {}. Since
 Â∗ , it cannot be that ({ }) = {} either. Hence  ∈ . ATT implies that

({ }) = {}, but then there is no way of defining ({  0 }) so as to satisfy
Lemma 5 and RA. We, therefore, conclude that  Â , as desired.

Consider next the case where  ∈ . As in the previous paragraph,  ∈ . By

our construction of Â∗, there must exist 0 0 ∈  such that ({ 0}) = {} and
({ 0}) = {}. If this was not true, then  would be ranked above or below both

 and  according to Â∗ , thereby contradicting our assumption that  Â∗  and  Â∗ .
Suppose that ({ }) = {}. Lemma 9 implies that ({0  }) = {}. Since

 Â∗ , we must have 0 Â . We must also have  Â 
0, since ({ 0 }) = {} and

 Â∗ . Transitivity of Â implies that  Â , as desired.

Suppose now that ({ }) = { }, and that  Â , contrarily to what we want

to prove. Then 0 Â  Â  Â 
0 and 0 Â−  Â−  Â− 0 in order to have  Â∗ 

and  Â∗ . The solution out of any pair in {  } is the pair itself. So ({  })
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is a singleton, by EC. It cannot be , as this would imply  Â∗ . Suppose that

({  }) = {}. Since ({  0} = {}, the first statement of Lemma 7 implies
that ( 0) = {}, hence a contradiction with  Â∗ , since 0 Â . Suppose now

that ({  }) = {}. Since ({ 0} = {}, the first statement of Lemma 7
implies that ({0  }) = {}, hence a contradiction with  Â∗ , since  Â 

0. ¥
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