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Abstract

In the heterogeneous experimental oligopoly markets of this paper, sell-
ers …rst choose capacities and then prices. In equilibrium, capacities should
correspond to the Cournot prediction. In the experimental data, given ca-
pacities, observed price setting behavior is in general consistent with the
theory. Capacities converge above the Cournot level. Sellers rarely manage
to cooperate.
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1. Introduction

The Cournot (1838) model is among the most prominent models in economic the-

ory. An often raised critique against this model is that, without special institutions

like an auctioneer who sets the price, quantity competition lacks realism. Against

this critique, an innovative justi…cation of Cournot competition was demonstrated

by Kreps and Scheinkman (1983). They show that the Cournot solution may in-

deed be justi…ed as the equilibrium outcome of a two-stage game in which sellers

…rst choose capacities and then, knowing the vector of capacities, sellers set prices.

Given the importance of the Kreps and Scheinkman model in justifying quantity

competition, an empirical evaluation seems warranted. Two recent experimen-

tal studies analyze capacity choices followed by price choices.1 More precisely,

Davis (1999) analyzes posted–o¤er markets with three sellers and with advance

production. In Muren’s (2000) paper, three sellers have to make a quantity pre-

commitment before deciding about prices.

The experimental data support the Kreps and Scheinkman prediction only weakly.

Firstly, capacities are signi…cantly above the Cournot level in both studies. Sec-

ondly, the experimental markets did not converge. The data indicate that sub-

jects persistently made inconsistent choices, leading to instable markets. In Davis

(1999), stable Cournot outcomes were not observed as play never converged with

advance production. Similar results were obtained by Muren (2000): Markets

were only stable with experienced participants who did the experiment twice.

Then the discrepancy between prediction and experimental outcome was some-

what reduced, though not completely. Finally, price choices for a given capacity

were neither in line with the theoretical prediction in both papers. This was also

observed by Brown–Kruse et al. (1994). Their experiment was designed to test

the prediction for the distribution of prices; there were no capacity choices. Price

choices were inconsistent with the mixed strategy equilibrium distribution. Taken

1Field studies (Rosenbaum, 1989; Rees, 1993) of markets in which price competition is con-
strained by capacities usually test for the collusive e¤ects of excess capacities (see Phlips, 1995,
for a survey).
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together, the problem with the evidence from the experimental studies is not that

they simply reject the theoretical prediction, but rather the erratic choices of the

subjects in general.

Why does the Kreps and Scheinkman theory fail in experimental markets? One

possible explanation could be the analytical di¢culty of the intricate two-stage

model. For example, Muren (2000, p. 154) mentions that even “in the experienced

markets ... sellers did not seem to be entirely certain about the way the rationing

mechanism worked”. Such uncertainties and misunderstandings may suggest that

the Kreps and Scheinkman model is too demanding. Davis (1999, p. 72) has

an alternative explanation. He conjectures that “the added complexity is not

the primary explanation for the continued instability. ... The instability of the

advance production environment is not due to the failure of the institutional

framework to induce Cournot incentives, but rather to the instability of Cournot

incentives themselves”.

In the light of these statements, it is interesting to recall that the Kreps and

Scheinkman theory itself provoked criticism because of technical details. The

main problem of their model is that no pure–strategy equilibrium in prices exists

for generic ranges of capacity choices. The non–existence problem is caused by

two discontinuities of the model. The …rst discontinuity results from the e¤ect of

product homogeneity on the residual demand function. The second discontinu-

ity is that, beyond the capacity constraint, production costs are in…nitely high.

This might lead to situations where the pro…t functions are not quasi concave.

Because of these features of the model, Kreps and Scheinkman have to make an

assumption of how demand is rationed when prices di¤er and the low-price …rm

cannot meet market demand. Kreps and Scheinkman apply the above mentioned

e¢cient rationing. The e¢cient rationing rule implies that the low-price seller

serves the buyers with the highest reservation values. This assumption is cru-

cial for the results, in particular when analyzing endogenously chosen capacities.

Other rationing rules lead to di¤erent pricing behavior and thus to di¤erent en-

dogenous capacities (see Davidson and Deneckere, 1986). In any event, the two

discontinuities make the solution of the model technically very demanding.
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Recent theoretical papers have modi…ed and generalized the Kreps and Scheinkman

model, in particular with respect to these technical problems. Yin and Ng (1997)

and Martin (1999) analyze capacity precommitment and price competition when

products are di¤erentiated. Boccard and Wauthy (2000) and Güth and Güth

(2000) analyze models with homogenous product competition, but capacities can

be extended at a …nite extra cost. All these approaches con…rm the Kreps and

Scheinkman result in the sense that the market equilibrium is à la Cournot.

In this experiment, we follow the line of these theoretical extensions. We will use

a market model which assumes that goods are heterogenous and that capacities

can be extended at a …nite extra cost. In this way, we avoid problems with the

non–existence of pure–strategy equilibria and somewhat arbitrary rationing rules.

The capacity constraint is no longer an absolute upper limit on production, rather

…rms serve full market demand but at high costs. In this model, no matter how the

distribution of capacities is, a (unique) pure–strategy in price is subgame perfect.

Moreover, the unique Nash equilibrium in prices and capacities is according to

the Cournot prediction.2

We address the same problem as Davis (1999) and Muren (2000), namely the

viability of the Cournot prediction in experimental markets with self–selected

capacities, followed by price competition. We thought that it might be worth

reducing the complexity of the game. Therefore, the major deviation from Davis

(1999) and Muren (2000) is that we use the di¤erent market model just mentioned.

A second di¤erence in the experimental design is that capacity is …xed for several

periods in our experiment. This allows subjects to learn optimal pricing strategies

within each capacity constrained subgame. Thirdly, we start the experiment with

exogenously …xed capacities. Again, the idea is that subjects should …rst get an

idea of how to choose prices. Our conjecture is that in the simpli…ed environment

the data might give a clearer picture about the Cournot-type results in Bertrand–

Edgeworth markets.

2Similar models were proposed by Güth (1995) and Maggi (1996). Güth (1995) discusses
how to view homogeneity as a limiting case of heterogenous products. Maggi (1996) shows how
the equilibrium outcome ranges from Bertrand to Cournot as capacity constraints become more
important. For a very comprehensive analysis, see Martin (2000).
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Our results are as follows. In contrast to Davis (1999) and Muren (2000), we found

that price choices are in general consistent with the subgame perfect prediction,

and that capacity choices are stable. However, capacity choices were often above

the Cournot prediction. While we are able to rationalize the capacity-setting

behavior, it is remarkable that hardly any cooperation occurs in our duopoly

markets.

In Section 2 we introduce the market environment and derive the equilibrium. Our

experimental design is described in Section 3. Section 4 discusses the experimental

results. We conclude in Section 5.

2. Market model

Our experiment assumes a heterogeneous oligopoly market with n sellers whose

demand functions are given by

xi (p) = ®¡ ¯pi + °
0
@X

j 6=i

pj
n¡ 1 ¡ pi

1
A for i = 1; :::; n; (2.1)

provided that all quantities are positive. Here p = (p1; :::; pn) denotes the vector

of individual sales prices pj and xi (p) is seller i’s demand level as depending on p.

The positive parameters ® and ¯ describe how demand depends on prices when

all prices are equal, i.e. when pi =
P
j 6=i

pj= (n¡ 1) for i = 1; :::; n. The positive

parameter ° measures the degree of heterogeneity on the market. By ° ! 0; we

could approach the situation where all n sellers are essentially monopolists, by

° ! 1 a homogeneous market since small deviations from the average price would

induce dramatic spill–overs of demand (what would rule out prices di¤erences).

Production requires investments in capacities x. We assume that capacity costs

Ki (xi) = cxi; for i = 1; :::; n; (2.2)

are linear in seller i’s capacity xi: Production costs Ci (xi; xi) are (piecewise) linear

Ci (xi; xi) = d max f0; xi ¡ xig ; for i = 1; :::; n: (2.3)
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According to equation (2.3) the capacity xi is no rigorous upper bound for seller

i’s sales level xi. A capacity xi just represents a production target which does not

preclude larger sales in the sense of xi > xi, but only imposes positive extra costs

d (xi ¡ xi) ; d > c; for positive excess demands xi ¡ xi.

Due to market clearing, i.e.,

xi = xi (p) for i = 1; :::; n; (2.4)

the actual sales level xi is determined by the vector p of chosen sales prices. The

pro…ts per period resulting from these choices are

¦i (p; x) = pixi (p)¡Ki (xi)¡ Ci (xi (p) ; xi) ; for i = 1; :::; n; (2.5)

where x denotes the vector (x1; :::; xn) of individual capacities.

Firms play a two-stage game. They …rst choose capacities and then, knowing the

vector of capacity choices, they choose their prices. In order to derive equilibrium

behavior, consider the last stage …rst. Given the capacities x; there are three

possible segments of the price reaction functions: One for the case of idle capacity,

one where capacity is fully utilized, and one when there is excess demand (see

Appendix A). If all …rms’ demand is equal to capacity, we can express price

reaction functions solely in terms of capacities.3 We get

p¤i (x) =

(®¡ xi) [¯ (n¡ 1) + °] + ° P
j 6=i
(®¡ xj)

¯ [¯ (n¡ 1) + n°] (2.6)

as subgame perfect prices.

Then consider the …rst stage. We state three solutions of this model as benchmarks

for the experiment (see Appendix A for the derivation). Consider …rst the joint-

pro…t maximizing solution as a benchmark. We get

xci =
®¡ ¯c
2

for i = 1; :::; n; (2.7)

3Though capacity choices up to 200 were allowed by design, in the experiment, all capacity
choices were in the range where demand should equal capacity. That is, subgame perfect prices
would have always yielded production up to capacity. Collusive pricing also almost always
implies production up to capacity. The reason is that leaving idle capacities maximizes the joint
pro…ts only if capacities are very large. As such cases are very rare in our experimental data,
we refrain from deriving the solution for collusive prices.
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as the e¢cient and collusive capacity choices xci of all sellers, and

pci =
®+ ¯c

2¯
for i = 1; :::; n; (2.8)

as optimal prices.

The second theoretical benchmark is the Cournot-Nash solution in which the play-

ers rationally recognize the in‡uence of their capacity choice on the competitors’

pricing behavior. The solution of the corresponding two-stage game is readily

computed:

xni =
[¯ (n¡ 1) + n°] (®¡ ¯c)
2 (n¡ 1)¯ + (n+ 1) ° for i = 1; :::; n: (2.9)

Since equilibrium capacities are symmetric, prices are simply

pni =
®¡ xni
¯

for i = 1; :::; n: (2.10)

in equilibrium.

The third theoretical benchmark is a competitive solution in which the players

ignore the oligopolistic price mechanism. Of course, price setting strategies are not

compatible with the standard notion of a competitive allocation, but we can easily

replace this by a scenario of monopolistic competition in which the players take

the prices of the competitors as given and maximize the resulting pro…t function.

Note that in this case …rms play a one-shot game. As the solution, we get

xwi =
[¯ + °] (®¡ ¯c)

2¯ + °
; i = 1; :::; n; (2.11)

and

pwi =
®+ c(¯ + °)

2¯ + °
: (2.12)

3. Experimental setup

In order to make the market as simple as possible, we decided to employ n = 2

…rms in the market. The other parameters were as follows. The parameters

® = 120, ¯ = 1 and ° = 2 describe the demand functions such that (2.1) becomes

xi (p) = 120¡ pi + 2 (p¡i ¡ pi) for i = 1; 2; (3.1)

given that xi(p) > 0; i = 1; 2: If one …rm sets a high price such that xi(p) < 0; we

made sure that the demand function for the remaining “active” …rm is adjusted.4

4One gets xi < 0 if pi > (120 + 2pj)=3. Hence, if xi < 0, we set xi = 0, pi = (120 + 2pj)=3
and therefore xj = 200 ¡ 5=3pj in the computer program of the experiment.
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Cost parameters were c = 40 for the capacity costs and d = 80 for the production

costs of every unit exceeding the capacity. Equation (2.6) becomes

p¤i (x) =
600¡ 3xi ¡ 2x¡i

5
; i = 1; 2:

Further, we introduced a …xed cost of 600 in order to get a relatively larger and

reasonable di¤erence between cooperative and non-cooperative pro…ts.

With these parameters, the symmetric collusive solution requires

xci = 40 and pci = 80 for i = 1; 2: (3.2)

The non-cooperative Nash equilibrium implies

xni = 50 and pni = 70 for i = 1; 2: (3.3)

Finally, the competitive benchmark is

xwi = 60 and pwi = 60 for i = 1; 2: (3.4)

Pro…ts resulting from these capacities and prices are 1000 at the symmetric collu-

sive solution, 900 at the non-cooperative equilibrium and 600 at the competitive

solution.

The sellers interact repeatedly on this market in periods t = 1; 2; :::; 60; i.e. within

a given and known …nite time horizon. Our setup also allows for cooperative

outcomes to occur. There is ample evidence (Selten and Stöcker, 1986) of stable

cooperation (except for a rather short end phase) even in the case of a known

…nite horizon, excluding so-called Folk Theorems.

Capacity was to be chosen every tenth period while the price was to be set in

every period. A change in restructuring is seen as a major restructuring of the

…rm whereas prices can be more easily and frequently adjusted. In order to give

participants an occasion to learn about the market, capacities are …rst exogenously

given from t = 1 to 10 and anew from t = 11 to 20 respectively.5 The decision

process assuming that all former choices are commonly known is as follows.
5In a pilot session, the design of the experiment was without such initial exogenous capacities.

It turned out that such a setup was too complicated. Subjects incurred substantial losses before
converging to reasonable capacities so that they only broke even after 60 periods.
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Stage 1: (in t = 21; 31; 41; 51): Sellers i = 1; 2 choose their capacities xi.

Stage 2: (in t = 1; 2; :::; 60): Sellers i = 1; 2 choose their sales prices pi,

The initial capacity vectors x = (x1; x2) for t = 1 and t = 11 were

x =

(
(50; 40) for t = 1; :::; 10;
(45; 65) for t = 11; :::; 20.

(3.5)

The corresponding equilibrium price vectors p¤ = (p¤1; p
¤
2) are

p¤ =

(
(74; 76) for t = 1; :::; 10;
(67; 63) for t = 11; :::; 20.

(3.6)

Information was given to subjects in the following way. The cost parameters (40

for each capacity unit, and 80 for each unit in excess of capacity), the number of

…rms (two), the number of periods (60), and the exchange rate of experimental

earnings into real currency (see below) were explicitly mentioned in the instruc-

tions (see Appendix B). Experiments were computerized.6 This enabled us to give

more information on the computer screen. After each period, subjects learned the

price choice of the rival …rm and the resulting pro…t for their own …rm. Similarly,

they learned the choice of the rival …rm whenever capacities were chosen.

Moreover, subjects had access to a “pro…t calculator”. When considering their

decisions, subjects could enter trial prices and capacities (numbers between 0 and

200 with two decimal points) in this calculator. The pro…t calculator gave a

subject the sales and pro…ts of his or her own …rm which would occur with these

decisions. Once actual capacity choices were made, they remained …xed in the

pro…t calculator and subjects could only experiment with prices. Subjects could

experiment with the pro…t calculator as intensively as they wished. With the

device of the pro…t calculator, the demand conditions could quickly be learned.

Note that a pro…t calculator gives qualitatively the same information as a pro…t

table. Such tables are often provided in market experiments of this kind (e.g.

Holt, 1985). They allow, however, only for a small and discrete action space. The

6We used the software “z-Tree” (Fischbacher, 1999).
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pro…t calculator allows for many actions. As we had two decimal points for the

capacity and price decisions, continuous actions were approximated. This has the

advantage that multiple Nash equilibria due to the discretization of the action

space (see Holt, 1985) can be avoided. An alternative design would have been

to provide the functional form of the demand function to subjects (Davis, 1999;

Muren, 2000). However, since our design with product di¤erentiation requires

more complicated functional forms, this does not seem to be practible. Compared

to the provision of functional forms, the pro…t calculator might help to avoid a

bias due to limited computational capabilities of subjects. Generally, it seems

possible that the use of a pro…t calculator reduces the “noise” in the data that

results from subjects making random noises.

The experiments were conducted in the computer lab of the Humboldt University.

We conducted three sessions, each consisting of six duopoly pairs. That makes

a total of 36 subjects which were recruited via telephone and email from a list

of participants of previous experiments. Each subject participated only once and

no subject had participated an experiment similar to ours before. Subjects were

randomly allocated to separated cubicles in the lab. They were not able to infer

with whom they were interacting.

Sessions lasted between one hour and 45 minutes and two hours and 15 minutes.

For 1,000 “points” earned in the experiment, DM 1 was paid. An initial capital

of 15; 000 points was given since subjects could have made losses, particularly so

in the beginning. Average earnings were DM 50:99 (which is roughly $27).

4. Results

We start by reporting the results for pricing behavior. As mentioned, in periods

t = 1; :::; 20 capacities were exogenously …xed. In Figure 1 we have graphically

illustrated the average price choices for the …rst 20 rounds (the solid lines indi-

cating subgame perfect prices (74; 76) and (67; 63) respectively). Prices are often
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below the predicted level, however, this deviation is rather small. Prices move to-

wards the equilibrium prices. For the …rst set of capacities prices are, after some

time of coordination, quite close to the prediction, and very close for the second

exogenously given capacity vector.

Figure 1: Average price choices for predetermined capacities in t = 1; :::; 20

How is pricing behavior when capacities are self-selected in later periods? In Table

1, we report the percentages of “hits”, that is, the relative frequency of subgame

perfect price choices. We distinguish exact hits and price choices which were

within a 5% range of the subgame perfect prices. We report these results for the

entire data set, separately for all thirds (periods t = 1 to 20; 21 to 40, and 41 to

60), and for the second halves of the ten-period interval with the same capacities

(periods t = 6 to 10; 16 to 20; :::; 56 to 60:). The hypothesis behind this is that

subjects make more accurate price choices over time. We also reports hits when

capacity choices were symmetric. Here, the hypothesis was that subgame perfect

prices are more easily found with equal capacities. Note that, for all observations,

subgame perfect prices were such that demand would have equalled capacity, that

is (2.6) was the appropriate price reaction function.
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exact §5%
all observations (#2160) 33:47 85:83
t = 1; :::; 20 (#720) 28:75 77:63
t = 21; :::; 40 (#720) 36:81 86:53
t = 41; :::; 60 (#720) 34:86 93:33
t = 6 to 10; 16 to 20; :::; 56 to 60 (#1080) 35:37 91:02
symmetric capacities (#200) 72:00 99:50

Table 1: Relative frequency of subgame perfect price choices

In approximately one third of the cases, subjects played exactly the subgame per-

fect prices (recall that there were two decimal points). Almost all choices were

roughly equal to the subgame perfect prices. Looking at the tables in Appendix

C, it is remarkable how close prices p¤i and actual average prices were. It appears

that participants understood the price implications of capacity vectors well. From

Table 1, the frequency of hits in later periods within a ten-period subgame in-

creases. It also appears that §5% hits increase over the course of the experiment.

Moreover, symmetric capacities seem to facilitate hits.

In order to test for statistic signi…cance of these e¤ects, we ran the simple regres-

sion

h = ¯0 + ¯1first+ ¯2last+ ¯3early + ¯4symm;

where we take into account that observations are independent across sessions but

not neccesarily within sessions.7 The number of “hits” (h; two at most) was the

variable to be explained. The variable first was equal to one if t < 21 and zero

otherwise; similarly last was equal to one if t 2 (40; 60] and zero otherwise; early

was equal to one in periods t = 1 to 5, 11 to 15,..., 51 to 55 and zero otherwise;

symm was equal to one if capacity choices were symmetric. (see Table 2).

All coe¢cients have the expected sign, except last for exact hits. Subgame perfect

prices are signi…cantly more likely when capacities are symmetric. The variables

first and last are not signi…cant, while early is. We interpret this as a con…rma-

tion of our design (few capacity choices, several price choices within subgames).

There is learning going on within the ten period subgames, but prices do not

become more accurate in the later periods of the experiment.
7We used the cluster option for linear regressions of the STATA package. See STATA Corp.

(1999, vol. 3, pp.156-158).
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exact hit §5% hit
¯0 +0:761¤¤ +1:817¤¤

¯1 ¡0:067 ¡0:155
¯2 ¡0:086 +0:125
¯3 ¡0:239¤¤ ¡0:219¤¤
¯4 +0:850¤ +0:208¤¤

Table 2: Regression results for hit rates. Superscripts ¤¤(¤) indicate signi…cance

at the 1(5)% level.

We summarize the results of the price setting stage as follows:

Observation 1: Participants quickly learn to rely on equilibrium prices p¤i satisfying

xi(p
¤) = xi for i = 1; 2.

We now turn to the results of the capacity choices. In the tables in Appendix C,

we list the four capacity vectors for all 18markets. Since capacity choices are likely

to depend on individual paths, we …rst report industry capacities, x1;2 = x1 + x2;

in Table 3. Recall that the predictions were 80 for the collusive market, 100 for

the Cournot market and 120 for the competitive market.

x1;2 ¾(x1;2)
t = 21; :::; 30 114.2 18.6
t = 31; :::; 40 110.0 16.1
t = 41; :::; 50 109.9 14.7
t = 51; :::; 60 109.5 14.9

Table 3: Average industry capacity

Out of 72 observations for industry capacity (see Appendix C), none was smaller

than 80, 16 were smaller than 100, 37 were between 100 and 120, and 19 were

larger than 120 with 153 being the maximum. Average industry capacity is 110:93

which is above the Cournot-Nash equilibrium value and below the monopolistic

12



competition solution. The 95% con…dence interval for industry capacity (again ac-

counting for possible dependence of observations within groups) is [103:89; 117:97]

around the observed mean. Therefore, we have to reject the hypothesis that ca-

pacity choices coincide with the Cournot prediction, and we also have to reject

the hypothesis that capacity choices are in line with monopolistic competition.

Figure 2: Histogram of the individual capacities

A look at the histogram of individual capacity choices in Figure 2 gives further

insights. The Cournot equilibrium choice (50) is contained in the bracket which

occurred most often. Ignoring the (somewhat arbitrary) brackets in Figure 2, we

…nd that 50 is also the mode of all capacity choices. The monopolistic competition

solution (60) is the second most frequent choice while the intermediate value (55)

is chosen less often then the collusive capacity.8 While there is some dispersion

in capacity choices, these choices are relatively constant for individual industries

(see Appendix C). Moreover, average capacity choices are, except for a slight (and

insigni…cant) negative trend, stable over time.

Stable behavior which is more competitive than the Cournot solution was also

found in Huck, Normann, an Oechssler (1999). In their quantity-setting homogen-

ous-goods Cournot experiment, depending on the information revealed to subjects,
8The benchmark capacities xc

1;2; xn
1;2 and xw

1;2 were chosen simultaneously by both …rms in
2; 4; and 1 of the 72 possible cases, respectively. Surprisingly, all price choices in all periods are
optimal for these capacities in the sense that xi(p) = xi(p); i = 1; 2.
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play converged close to the competitive equilibrium.9 And even when structural

information was granted as in our study, the results were quite competitive. These

results were con…rmed in experimental markets with quantity-setting …rms and

di¤erentiated goods by Huck, Normann, an Oechssler (2000). However, in Huck,

Normann, and Oechssler (1999, 2000), there were four …rms and, in Davis (1999)

and Muren (2000), there were three …rms. Since we used duopoly markets, our

results are surprising. In most standard Cournot duopoly experiments in which

subjects are matched in …xed pairs, there is at least some cooperation and there are

rarely choices beyond the Cournot level.10 We conclude from this that repeated

interaction over a long but …nite horizon is no reliable reason for cooperating.

Observation 2: (i) Capacity choices are at a level above the Cournot prediction

and below the competitive prediction. (ii) Despite the relatively long horizon, there

is hardly any cooperation.

Since we have concentrated on n = 2 …rms, our test seems to provide the most

favorable conditions for cooperation (since cooperation on larger markets is more

doubtful, see Selten, 1972, for a rigorous distinction of small, i.e. cooperative

markets with few sellers). Thus game types inviting cooperation seem to be: not

framed as markets11, and relying on one-stage base games (or binary games).

It seems interesting to explore which of these aspects is (more) reasonable for

inducing cooperative outcomes, but this is beyond the scope of this study. It

seems that the strong cooperative results for …nitely repeated prisoners’ dilemma

and public good provision games are special results for certain game types which

are cognitively perceived as cooperative exercises.

Another reason for more competitive results is that our design relies on quite

realistic assumptions concerning the pro…tability of cooperation. Whereas, in

9For our market model this would require both, ° ! 1 and n ! 1; and thus xi ! 80 and
pi ! 40:

10Concerning this issue, see e.g. Dufwenberg and Gneezy (2000), or Keser (2000). Selten
et al. (1997) show that, in tournaments, there is a particularly strong motivation to establish
collusion.

11Experiments framed as markets seem to induce more competitive behavior. See Ho¤man et
al. (1994).
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our experiment, cooperation leads to moderate increases in pro…ts, mutual co-

operation in most base games (of …nitely repeated games with …xed matching)

yields much larger, sometimes outrageous increases in pro…ts (see, for example,

the repeated prisoners’ dilemma experiment of Cooper et al., 1996; or repeated

interaction in trust games of Berg et al., 1995). It is quite possible that the usually

claimed cooperation in …nitely repeated games is mainly due to the dominance12

of striving for e¢ciency when cooperation is highly pro…table. This may surprise

naive protagonists of cooperative behavior or e¢ciency. From an antitrust per-

spective, however, the result is most welcome since there might be competitive

results even in narrow markets. It also allows to maintain the duopoly market as

a standard case for illustrating the e¤ects of competition.

5. Conclusion

In this experiment, we tested for the viability of the Cournot prediction in duopoly

markets with capacity and price competition. We used a simpli…ed environment

which allowed subjects su¢cient time for learning of frequently adjusted choices

(prices) and rarely adjusted choices (capacities). In contrast to other experiments

(Davis, 1999; Muren, 2000), we found subgame perfect price choices and stable

capacity choices. Individual capacities converge at a level below the competitive

prediction and above the Cournot prediction. That is, capacity choices were more

competitive than pure non–cooperative behavior suggests. It is surprising that no

cooperation occurs in our duopoly markets with the same …rms interacting for 60

market periods.

12When one views decision making as the result of competing behavioral forces, it makes sense
to assume that one can in‡uence behavior by changing the relative strength of one motivation,
e.g. by weakening the gains from cooperation.
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Appendix

A. Derivation of the benchmark solutions

We …rst derive subgame perfect prices given the installed capacities. The reaction

function of each …rm has three di¤erent segments.

² Up to capacity, …rm i can produce at zero marginal cost. That is, if xi < xi we

get
@¦i (p; x)

@pi
= ®¡ 2(¯ + °)pi + °

P
j 6=i pj
n¡ 1 = 0; (A.1)

and therefore

p¤i =
®+ °

P
j 6=i pj
n¡1

2(¯ + °)
: (A.2)

The …rst part of the reaction function is relevant if it is optimal to hold idle

capacity. In that case, …rm i chooses its prices such that marginal revenue is zero.

² The second segment of the reaction function is relevant if marginal revenue is

between zero and d. Here, …rm i chooses pi such that xi = xi:

®¡ (¯ + °)pi + °
P
j 6=i pj
n¡ 1 = xi; (A.3)

that is,

p¤i =
®+ °

P
j 6=i pj
n¡1 ¡ xi
¯ + °

: (A.4)

In this segment, capacity is fully utilized. If reaction functions of all …rms intersect

in this segment, we can use ¯
P n

j=1p
¤
j =

P n
j=1 (®¡ xj) to express p¤i in terms of

capacities only:

p¤i (x) =

(®¡ xi) [¯ (n¡ 1) + °] + ° P
j 6=i
(®¡ xj)

¯ [¯ (n¡ 1) + n°] : (A.5)

² In the third segment, …rm i produces more than its capacity, at the extra cost

d:
@¦i (p; x)

@pi
= ®¡ 2(¯ + °)pi + °

P
j 6=i pj
n¡ 1 + (¯ + °)d = 0; (A.6)
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and so

p¤i =
®+ °

P
j 6=i pj
n¡1 + (¯ + °)d

2(¯ + °)
: (A.7)

Here, marginal revenue is larger than d and therefore it is rational to produce the

excess demand units.

The slope of reaction function di¤ers in the three segments: @p¤i =@pj is larger

in the second segment. It is easy to verify that 0 < @p¤i =@pj < 1=(n ¡ 1) in

any segment, therefore a unique vector of prices exists for any combination of

capacities.

Our …rst benchmark is the joint–pro…t maximum. Perfect collusion requires e¢-

ciency in the form of xi (p) = xi for all sellers i = 1; :::; n; and symmetry in the

form of xi = xj for all i; j = 1; :::; n. We can therefore set xj = xi for all j 6= i in

equation (A.5) so that

p¤i (xi) =
[¯ (n¡ 1) + n°] (®¡ xi)
¯ [¯ (n¡ 1) + n°] =

®¡ xi
¯

: (A.8)

The pro…t of all sellers i = 1; :::; n is thus ¦i (xi) = p¤i (xi) ¢ xi ¡ cxi: From
@2

@x2i
¦i (xi) < 0 and

@

@xi
¦i (xi) = p

¤
i (xi) + xi

@

@xi
p¤i (xi)¡ c = 0 (A.9)

we derive

[¯ (n¡ 1) + n°] (®¡ xci)¡ xci [¯ (n¡ 1) + n°] = c¯ [¯ (n¡ 1) + n°] (A.10)

or

xci =
®¡ ¯c
2

; for i = 1; :::; n; (A.11)

as the e¢cient and collusive capacity choices xci of all sellers. Collusive prices are

immediate from (A.8): p¤i (x) = (®+ ¯c)=2¯:

Then turn to our second benchmark, the Cournot–Nash equilibrium. We …rst

show that, in equilibrium, …rm i chooses xi such that xi = xi, that is, in equi-

librium there is neither idle capacity, nor is output produced in excess of the

capacity. Suppose that, by contrast, xi < xi in equilibrium. Then …rm i could
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slightly reduce its capacity. This would save costs, but would not alter the price

choices of other …rms as p¤j only depends on p¤i ; but not on xi: Suppose xi > xi

in equilibrium. Then …rm i could gain by increasing its capacity which, again,

would save costs without changing behavior among the other …rms. Therefore, in

equilibrium, xi = xi:

From (A.5), we have

@

@xi
p¤i (x) = ¡ ¯ (n¡ 1) + °

¯ [¯ (n¡ 1) + n°] ; (A.12)

so @2

@x2i
¦i (x) < 0. The …rst order conditions

@

@xi
¦i (x) = p

¤
i (x) + xi

@

@xi
p¤i (x)¡ c = 0 (A.13)

for i = 1; :::; n can be written as

(®¡ xi) [¯ (n¡ 1) + °] + °
X

j 6=i
(®¡ xj)¡ [¯ (n¡ 1) + °]xi (A.14)

= c¯ [¯ (n¡ 1) + n°]

for i = 1; :::; n whose unique symmetric solution is

xni =
[¯ (n¡ 1) + n°] (®¡ ¯c)
2 (n¡ 1)¯ + (n+ 1) ° for i = 1; :::; n: (A.15)

From xni = x
n
i we obtain

@¦i (p; x)

@pi
= xni ¡ (¯ + °)pni + (¯ + °)d > 0;

and therefore d > pni ¡ xni =(¯ + °) as a necessary condition for the equilibrium.

Equation (A.15) and (A.5) describe the non-cooperative equilibrium behavior of

the market. Note that approximating homogeneous markets via ° ! 1 implies

xni ! n(®¡ ¯c)
n+ 1

; (A.16)

which is the usual homogenous goods Cournot prediction for quantity setting

oligopoly (note that there are n markets). By contrast, xci does not depend at all

on the degree ° of heterogeneity.

The third theoretical benchmark is the monopolistic competition solution. Play-

ers take the prices of the competitors as given and maximize the resulting pro…t
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function ¦i = (pi ¡ c) ¢ xi(p) assuming that xi(p) is produced with the cost min-

imizing capacity xi = xi(p).13 The resulting one-stage game yields the following

…rst order conditions for the best reply functions

®¡ ¯pi + °(§pj=(n¡ 1)¡ pi)¡ (pi ¡ c)(¯ + °) = 0: (A.17)

Using symmetry this immediately gives the (unique) equilibrium at

pwi =
®+ c(¯ + °)

2¯ + °
: (A.18)

The corresponding capacity, xw; is easily derived from xi = xi(p):

B. Instructions

Welcome to our experiment. Please read …rst carefully the following instructions.

In the next one or two hours you have to make various decisions. Doing so, you

can earn some real money. One thing is important in the beginning: Please, keep

calm during the entire experiment. If you have a question, please raise your hand

and somebody will help you.

You will receive your payment individually and discrete right after the experi-

ment. We guarantee full anonymity against all other participants. Also, we do

only save the decision data, in an anonymous way. All money in the experiment

is given in points. In the beginning you get a capital of 15,000 points. In the end

of the experiment your payment will be transformed where 1,000 points = 1 DM.

Now we explain the rules of the experiment. You are representing a …rm, pro-

ducing or distributing a certain product. Besides your …rm there is another …rm

producing or distributing a similar product. You have to make two di¤erent kinds

of decisions for your …rm. On the one hand you have to decide about the capacity

for your …rm, on the other hand you have to decide about the price of the product.

13Since xi(p) is learned after choosing all prices, this somewhat reverses the order of moves. It
nevertheless seems possible that participants engage in cognitive deliberations whose dynamics
justify this assumption.

19



First, consider the capacity decision. In the …rst 20 rounds your capacity is

given. More precisely, you produce in round 1 to 10 with a given capacity and in

round 11 to 20 with a di¤erent given capacity. Beginning with round 21 you have

to decide yourself about the capacity. This decision also holds for 10 rounds. The

entire experiment lasts for 60 rounds. This means you have to decide about the

capacity in the 21st, 31st, 41st, and 51st round. Capacity causes costs of 40 points

per unit. Your capacity has the following meaning: up to the capacity limit, you

can produce without additional costs. Production exceeding the capacity limit is

possible, but causes higher costs of 80 points per unit.

The price decision has to be made every round. The price determines how

much of the product you will sell in every round. There is one important rule:

The higher the price, the lower is the quantity you sell. From a certain price on,

the quantity you sell will be zero. In addition it holds that the lower the price

of the other …rm is, the lower is your quantity. Your sales quantity can be above

or below your capacity. If the quantity is higher, you have to pay extra costs,

as mentioned above. If your quantity is lower than your capacity, you have idle

capacity. An example: Suppose your capacity is 50. If prices are such that you

sell 60 units, then your costs are 50 ¤ 40 + 10 ¤ 80 = 2; 800 points. If your price

is such that you sell 45 units, your costs are 50 ¤ 40 = 2; 000 points. In addition

you have to pay …xed costs of 600 points every period.

If you want to know which pro…t a certain capacity and price combination yields,

you can access a special pro…t calculator. The pro…t calculator works as follows:

In rounds where you have to choose your capacity, by the way of trial you can (as

often as you want to) enter a capacity for your and the other …rm. Furthermore

you have to enter a trial price for your and the other …rm. The pro…t calculator

will give you the expected pro…t for these values. In rounds where you only have

to decide about the price, the capacities for your and the other …rm are …xed

in the pro…t calculator. The pro…t calculator enables you to calculate di¤erent

combinations of prices.

Before the experiment starts you will have enough time to get familiar with the

pro…t calculator directly at the computer. In advance, you get a printout of the

computer screen with a detailed description.
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The pro…t calculator uses the following abbreviations

C1 Own capacity
C2 Other capacity
Q1 Own quantity
Q2 Other quantity
P1 Own price
P2 Other price
Eink. 1 Own income
Eink. 2 Other income

All the things we described here are not only valid for you but also for the other

…rm. In all of the 60 rounds you will interact with the same partner. All of you

read the same instructions. Have fun!
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C. Capacities choices and average price implications

No./t x1 x2 x1;2 p¤1 p¤2 ;p1 ;p2 ¾p1 ¾p2

1/21 50 65 115 64 61 64.9 61.9 0.316 0.316
1/31 50 65 115 64 61 63.6 62.0 2.951 0.000
1/41 50 65 115 64 61 63.6 62.0 2.951 0.000
1/51 50 70 120 62 58 63.8 61.0 0.632 0.000
2/21 50 55 115 68 67 67.3 66.6 1.096 0.810
2/31 52.5 60 112.5 64.5 63 65.3 63.5 1.318 0.726
2/41 62.5 55 117.5 60.5 62 61.3 62.9 1.161 0.637
2/51 65 55 120 59 61 59.2 61.3 0.483 0.235
3/21 60 55 115 62 63 62.1 63.2 0.316 0.330
3/31 65 55 120 59 61 59.2 61.3 0.483 0.235
3/41 60 50 110 64 66 64.0 66.0 0.000 0.000
3/51 60 50 110 64 66 64.0 66.0 0.000 0.000
4/21 50 50 100 70 70 70.0 70.0 0.000 0.000
4/31 40 50 90 76 74 74.2 73.6 2.898 1.265
4/41 40 50 90 76 74 73.0 73.2 3.162 1.687
4/51 50 50 100 70 70 70.0 70.0 0.000 0.000
5/21 60 65 125 58 57 58.6 58.2 0.843 2.469
5/31 60 65 125 58 57 58.0 57.0 0.000 0.000
5/41 60 65 125 58 57 58.0 57.0 0.000 0.000
5/51 63 65 128 56.2 55.8 56.8 56.3 0.486 0.422
6/21 61 60 121 59 60 61.2 60.5 3.000 1.091
6/31 61 61 122 59 59 59.5 59.3 0.290 0.210
6/41 61 61 122 59 59 59.2 59.1 0.136 0.087
6/51 61 64 125 57.8 57.2 57.4 57.3 0.584 0.805
7/21 53 65 118 62.2 59.8 62.6 60.4 0.578 0.971
7/31 58 57 115 62.4 62.6 62.3 62.4 0.215 0.246
7/41 58 60 118 61.2 60.8 61.9 61.2 0.248 0.318
7/51 59 59 118 61 61 61.1 60.9 0.626 0.221
8/21 40 62 102 71.2 66.8 71.1 66.8 0.544 0.680
8/31 50 52 102 69.2 68.8 69.5 69.1 0.201 0.110
8/41 50 40 90 74 76 72.1 74.6 1.584 1.115
8/51 55 40 95 71 74 71.0 73.5 0.000 1.078
9/21 50 50 90 70 70 70.0 70.0 0.000 0.000
9/31 50 40 90 74 76 74.0 76.0 0.000 0.000
9/41 40 50 90 76 74 76.0 74.0 0.000 0.000
9/51 40 40 80 80 80 80.0 80.0 0.000 0.000
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No./t x1 x2 x1;2 p¤1 p¤2 ;p1 ;p2 ¾p1 ¾p2
10/21 40 45 85 78 77 76.5 76.2 0.972 1.107
10/31 50 45 95 72 73 72.6 73.6 1.174 1.506
10/41 55 47 102 68.2 69.8 69.3 69.9 3.199 2.183
10/51 52 45 97 70.8 72.2 69.8 70.2 1.476 1.476
11/21 50 50 100 70 70 70.0 68.0 0.000 6.325
11/31 50 40 90 74 76 72.2 74.4 1.125 0.842
11/41 52.01 50 102.01 68.8 69.2 68.7 69.1 0.610 0.175
11/51 52.14 50 102.14 68.7 69.1 67.9 67.8 0.790 1.414
12/21 40 55 95 74 71 74.3 70.1 0.443 2.006
12/31 45 60 105 69 66 68.7 66.7 0.769 1.733
12/41 50 55 105 68 67 68.1 66.9 0.212 0.669
12/51 50 70 120 62 58 62.1 59.6 0.183 2.386
13/21 50 70 120 62 58 62.0 58.5 0.000 1.581
13/31 50 57 107 67.2 65.8 55.7 54.5 0.699 1.838
13/41 50 66 116 63.6 60.4 63.8 61.0 0.422 0.816
13/51 55 63 118 61.8 60.2 61.9 60.6 0.316 1.265
14/21 60 65 125 58 57 59.3 58.1 0.823 2.601
14/31 65 75 140 51 49 62.9 62.9 3.268 3.100
14/41 65 70 135 53 52 56.8 55.1 3.521 2.846
14/51 50 64 114 64.4 61.6 64.4 61.1 1.350 0.994
15/21 100 53 153 38.8 42.2 40.2 49.1 2.300 1.101
15/31 60 55 115 62 63 57.4 59.1 0.876 0.876
15/41 60 62 122 59.2 58.8 59.8 59.7 1.398 1.337
15/51 60 60 120 60 60 60.0 60.0 0.000 0.000
16/21 90 60 150 42 48 49.7 53.9 3.690 3.777
16/31 70 60 130 54 56 57.4 59.1 4.136 0.589
16/41 65 40 105 65 70 62.8 68.3 4.341 1.578
16/51 60 40 100 68 72 68.2 73.1 3.705 0.032
17/21 80 52 132 51.2 56.8 54.9 61.7 4.040 2.983
17/31 70 62 132 53.2 54.8 54.4 56.6 1.776 1.647
17/41 65 64 129 55.4 55.6 55.5 57.3 0.972 1.829
17/51 63 62 125 57.4 57.6 57.2 57.9 0.632 0.568
18/21 40 55 95 74 71 73.6 71.1 3.134 0.738
18/31 40 45 85 78 77 78.0 77.0 0.000 0.000
18/41 40 45 85 78 77 75.7 77.0 4.900 0.000
18/51 40 40 80 80 80 80.0 80.0 0.000 0.000
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