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ABSTRACT 

We propose in this article a joint test for testing simultaneously a deterministic trend 

component and the degree of integration of the cyclical component in a given time series. The 

test is directly derived from Robinson’s (1994) procedure, which is based on the Lagrange 

Multiplier (LM) principle. Thus, it has standard null and local asymptotic distributions. 

However, finite-sample critical values of the tests are evaluated and, an empirical application 

using historical annual data, is also carried out at the end of the article. 
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1. INTRODUCTION 

Modelling cycles in macroeconomic time series has been a major focus of attention in 

recent years. Deterministic cycles were initially proposed but they were shown to be 

inappropriate for many time series. Stochastic cycles were proposed amongst others by 

Harvey (1985) and Ahtola and Tiao (1987), and they were generalised to allow for long 

memory by Gray et al. (1989, 1994). In particular, they considered processes like 

tt
d uxLL =+− )21( 2µ     (1) 

where L is the lag operator (Lxt = xt-1); d is a given real number and the periodicity is 

determined by µ. If ut is I(0), defined in this context as a covariance stationary process with 

spectral density which is positive and finite at any frequency, xt in (1) follows a cyclic I(d) 

process. Gray et al. (1989) showed that the polynomial in (1) can be expressed in terms of 

the Gegenbauer poynomial Cj,d(µ), such that for all d ≠ 0, 
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and Γ(x) means the gamma function. Gray et al. (1989) showed that xt  in (1) is stationary if 

|µ| < 1 and d < 0.50 or if |µ| = 1 and d < 0.25. Simulated realizations based on fractional 

models like (1) can be found in Gray et al. (1989), and an empirical application in Gil-

Alana (2001). 

 In this article, we propose a testing procedure for testing simultaneously the degree of 

integration of the cyclical component in a given time series and the need of a linear time 

trend. The structure of the paper is as follows: Section 2 describes the tests of Robinson 

(1994) which permit us to test fractional cyclic models like (1). In Section 3, the tests are 

extended to allow us to test simultaneously the order of integration and a linear time trend. 
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Section 4 evaluates finite-sample critical values of the tests described in sections 3 and 4, 

conducting Monte Carlo experiments to check the sizes and the power properties of the 

tests in finite samples. Section 5 contains an empirical application and finally Section 6 

concludes. 

 

2. THE TESTS OF ROBINSON (1994) 

Following the discussions of Bhargava (1986), Schmidt and Phillips (1992) and others of 

parameterization of unit-root models, Robinson (1994) considers the following regression 

model, 

ttt xzy +′= β ,    (2) 

where yt is the time series we observe; β is a (kx1) vector of unknown parameters and zt is a 

(kx1) vector of deterministic regressors that may include, for instance, a linear time trend in 

case of zt = (1,t)′. The regression errors xt are such that 

,);( tt uxL =θρ      (3) 

where ρ is a function of L and the (px1) vector θ and ut is I(0). Robinson (1994) specifies ρ 

as: 

 ,)cos21()1()1();(
3

22211 ∏
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dd jjLLwLLL

θθθθρ   (4) 

for given real numbers d1, d2, …, dp and wr. Under the null hypothesis: 

0: =θoH ,     (5) 

the above function becomes: 

,)cos21()1()1()(
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and thus, a wide range of possibilities can be tested under Ho (5). Some special cases of 

interest are: 
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1. The I(1) model, if d1 = 1 and dj = 0 for all j ≠ 1, and in general, I(d) processes for any 

real d if d1 = d and dj = 0 for all j ≠ 1. 

2. The quarterly I(1) model, if for example, d1 = d2 = d3 = 1; dj = 0 for all j > 3 and wr = 

π/2, and similarly, quarterly I(d) processes if d1 = d2 = d3 = d. 

3. The cyclic I(1) model if d3 = 1 and dj = 0 for all j ≠ 3 and similarly, fractional cyclic I(d) 

processes like (1) if d3 = d. 

Robinson (1994) proposes a Lagrange Multiplier (LM) test for testing Ho (5) against 

Ha : θ ≠ 0. Specifically, the test statistic is given by: 
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where the function g above is a known function coming from the spectral density function 

of ut, 

,),;(
2

);(
2

πλπτλ
π

στλ ≤<−= gf  

evaluated at ),(minargˆ 2 τστ τ T∈=  and I(λj) is the periodogram of ,ˆtu  where 
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and the summation on * in the above expressions are over λ ∈ M where M = {λ: -π < λ < 

π, λ ∉ (ρl - λ1, ρl + λ1), l = 1, 2, …, s}, such that ρl, l = 1, 2, …, s < ∞ are the distinct poles 

of ψ(λ) on (-π, π]. 

Based on the null hypothesis (5), Robinson (1994) showed that, under regularity 

conditions, 

.ˆ 2 ∞→→ TasR pd χ    (8) 

Thus, a test of (5) against Ha: θ ≠ 0 is given by the rule: “Reject Ho (5) if 2
,

ˆ
αχ pR > ”, where 

Prob αχχ α => )( 2
,

2
p . He also showed that the tests are efficient in the Pitman sense that, 

against local alternatives of form Ha: θ = δ T-1/2 for δ ≠ 0, R̂  has a )(2 νχ p  limit distribution, 

with a non-centrality parameter ν which is optimal under Gaussianity of ut. 

 In the context of the present paper, based on cyclical models, we can particularize the 

above tests and consider the case with d3 = d and dj = 0 for all j ≠ 3. Thus, the functions  in 

(4) and (6) become respectively: 

,)cos21();( 2 θθρ ++−= d
r LLwL    (9) 

and 

 ,)cos21()( 2 d
r LLwL +−=ρ     (10) 

for a given real number d; wr = 2πr/T and r = T/s, s thus indicating the number of periods 

per cycle. Furthermore, if we impose white noise ut, the test statistic greatly simplifies and 

becomes 
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where I(λj) is again the periodogram of tû  as previously defined. Clearly, a test of (5) 

against Ha: θ ≠ 0 will have a 2
1χ  asymptotic distribution. 

The tests of Robinson (1994) have been applied to several macroeconomic time series 

in various articles. Gil-Alana and Robinson (1997) use a version of his tests to test I(d) 

statistical processes in US historical annual macroeconomic time series. Other versions of 

the tests, based on monthly and quarterly data, have been respectively studied in Gil-Alana 

(1999) and Gil-Alana and Robinson (2001), and cyclical models with the tests of Robinson 

(1994) were also analysed in Gil-Alana (2001). In the following section, we propose a joint 

test based on Robinson’s (1994) procedure for testing simultaneously the need of a linear 

time trend and the order of integration of the cyclical component in a given raw time series. 

 

3.   A JOINT TEST OF THE TIME TREND AND THE INTEGRATION ORDER 

In Gil-Alana and Robinson (1997), a joint test was proposed for testing simultaneously the 

need of a linear time trend and the order of integration in a given series at the zero 

frequency. In this section, a similar test is proposed but, instead of looking at the long run 

or zero frequency, we concentrate on the cyclical component of the series. 

 We consider a model given by (2); (3) and (9), with zt = (1,t)′ for t ≥ 1; 0 otherwise, i.e., 

,tt xty ++= βα      (12) 

  ,/2;)cos21( 2 TrwuxLLw rtt
d

r πθ ==+− +    (13) 

and test the null hypothesis: 

,00: == βθ andH o      (14) 

against the alternative: 

 .00: ≠≠ βθ orH a      (15) 
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A joint test is then given by: 
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with wt = (w1t , w2t)′ as given above (8), and 
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and R
~

 calculated as described in Section 2 but using the tu~  just defined. Then, under Ho 

(14), 2
2

~ χdS →   as  T → ∞, and we would compare (16)  with the upper tail of the 2
2χ  

distribution. However, in finite samples, the empirical distribution of the tests of Robinson 

(1994) can vary substantially from the asymptotic results, (see, eg., Gil-Alana, 2000). Thus, 

in the following section, we report finite-sample critical values of the joint test statistic just 

described in (16), along with the Robinson’s (1994) statistic R
~

 in (11) in the presence of a 

linear time trend. 

 

4. A FINITE-SAMPLE EXPERIMENT 

Table 1 reports finite-sample critical values of Robinson’s (1994) test statistic R
~

 in (11) in 

a model given by (12) and (13), i.e., testing the order of integration of the cyclical 

component in the presence of a deterministic trend, for values of r = T/2, T/4, T/6, T/7, 

T/10 and T/20; T = 40 and values of d = 0, 0.25, 0.50, 0.75 and 1. We generate Gaussian 

series obtained by the routines GASDEV and RAN3 of Press, Flannery, Teukolsky and 

Vetterling (1986) with 50,000 replications in each case, reporting the critical values at the 

5% and the 1% significance level. We see that for all values of d and r, the finite-sample 

critical values are higher than those given by the 2
1χ  distribution. Thus, when testing Ho (5) 
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against Ha: θ ≠ 0 with the asymptotic critical values, the tests will reject the null more often 

than with the finite-sample ones. We also observe across this table slight differences in the 

values across d and r, being higher the differences across r, i.e., the number of periods per 

cycle. However, we do not observe a clear pattern between the critical values and the values 

of r. In general, they are smaller when r = T/2 than when r = T/20, though the critical values 

do not increase in any case in a monotonic way with respect to r. 

(Tables 1 and 2 about here) 

 Table 2 also reports finite-sample critical values but this time based on the joint test 

S
~

described in (16), again in a model given by (12) and (13) for the same values of d and r 

as in Table 1 and T = 40, which is the sample size used in the empirical application carried 

out in Section 5. Similarly to Table 1, the finite-sample critical values are higher than those 

given by the 2
2χ  distribution, implying that the tests based on these finite-sample values will 

not reject the null so often as with the asymptotic results of the 2
2χ  distribution. 

We next examine the size and the power properties of the tests in finite samples, 

comparing the results with those based on the asymptotic results from the 2χ distributions. 

Tables 3 and 4 report respectively the rejection frequencies of R
~

 in (11) and S
~

 in (16) 

using both, the finite-sample critical values computed in Tables 1 and 2 and the asymptotic 

results given by the 2
1χ  and 2

2χ  distributions. 

Starting with the tests of Robinson (1994), in Table 3, we assume that the true model is 

given by 

tt xty ++= 1  

ttr xLLw ε=+− )cos21( 2  

and look at the rejection frequencies of R
~

 in (11) in a model given by (12) and (13) with d 

= 1; θ = -1, -0.75, -0.50, -0.25 and 0, and the same values of r (= T/2, T/4, T/6, T/7, T/10 
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and T/20) under both the null and the alternative hypotheses. Thus, the rejection 

frequencies corresponding to θ = 0 will indicate the sizes of the tests. Looking at the results 

for the asymptotic tests, we see that the sizes are too large for all values of r. Note that a 

similar problem occurs in Robinson (1994) when using the tests for the long run or zero 

frequency based on the asymptotic critical values (see, Table 10 in Robinson, 1994). Using, 

however, the finite-sample critical values, they are smaller but close to the nominal value of 

5%. This smaller size of the tests based on the finite-sample critical values is also 

associated with some inferior rejection frequencies though as we depart from the null, θ = 

0, throughout θ = 1, the difference becomes negligible. 

(Tables 3 and 4 about here) 

Table 4 examines the power properties of S
~

 in (16). We assume now that the true 

model is  

tt xy += 1  

ttr xLLw ε=+− )cos21( 2  

and perform S
~

 in (16), testing Ho (14) in (12) and (13) with d = 1 and the same values of  θ 

and r as in Table 3. We focus on this particular form of alternatives in order to get better 

comparisons with Table 3. Similarly to that table, we see that the sizes of the tests based on 

the asymptotic critical values are too large in all cases while those based on the finite-

sample ones are smaller and close to the nominal values. Once more, these smaller sizes are 

also associated with some smaller rejection frequencies in the finite-sample tests, 

particularly when we are close to the null θ = 0. However, we see that for θ = 0.75 (and θ = 

1), all the rejection frequencies are higher than 0.900 when using both the finite-sample and 

the asymptotic critical values. We should finally mention here that increasing the sample 

size, the difference between the asymptotic and the finite-sample results considerably 
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reduces in both tables. However, we only present here the results for T = 40 since this is the 

sample size used in the empirical application in the following section. 

 

5.     AN EMPIRICAL APPLICATION 

We look in this section at the nominal GDP series in the US, the UK, Canada and Japan 

with annual data from 1960 to 1999. Plots of the original series with their corresponding 

correlograms and periodograms are given in Figure 1. We observe that all the series 

increase over the sample period and the nonstationary character of the series seems to assert 

itself in view of the correlograms (with large and significant values) and the periodograms 

(with large values around the zero frequency). Figure 2 shows similar pictures for the 

detrended series (i.e, xt in (12) and (13)). We see that the trending behaviour disappears in 

all cases and the cyclical component becomes apparent in view of the correlograms and the 

periodograms. 

(Figures 1 and 2 about here) 

We initially employ R
~

 in (11), testing Ho (5) in (12) and (13) with values of d equal to 0, 

0.25, 0.50, 0.75 and 1; white noise ut, and values of r = T/2, T/4, T/6, T/7, T/10 and T/20, 

i.e., we test for the order of integration of the cyclical component, including a deterministic 

trend in the original series. Results are given in Table 5 and we see that Ho (5) always result 

rejected for r = T/2 and T/4 (i.e., allowing cycles every 2 or 4 years). However, if the cycles 

occur every 6 or 7 years, the null cannot be rejected if d = 0.50, 0.75 and 1 for any country. 

A few more non-rejections appear for the US if d = 0.75 and r = T/20 and if d = 1 and r = 

T/10; and also if d = 1 and r = T/20 for the UK and Canada. The non-rejection values 

obtained when r = T/20 can be due to the fact that the Gegenbauer polynomial becomes 

similar to (1 – L) in case of small frequencies wr, and thus, for realizations of 40 

observations, it can be difficult to distinguish stochastic trends produced by (1 – L) and 

deterministic models. Furthermore, it was shown by Gil-Alana (2001) that if the true model 
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contains cycles, for example, every eight periods, the power of Robinson’s (1994) tests 

with wr = T/20 is extremely low. (See, Gil-Alana, 2001, Table 3). 

(Tables 5 and 6 about here) 

In Table 6 we employ throughout S
~

 in (16), testing Ho (14) in (12) and (13) for the 

same (d, r) combination as in Table 5, i.e., we test simultaneously for the order of 

integration and the need of a deterministic trend. We see in this table that if r = T/6 or T/7 

and d = 0.50, 0.75 or 1, Ho (14) results now rejected, suggesting in view of the non-

rejection values of the previous table that if the cycles occur every six or seven periods, the 

time trend must be required in these cases. We also observe in this table that the only non-

rejection values appear when d = 1 and r = T/4 for the US, Canada and Japan, while for the 

UK, Ho (14) always is rejected, implying the need of a linear time trend at least for this 

country. 

 

6.     CONCLUDING COMMENTS 

We use in this article a version of the tests of Robinson (1994) for testing the degree of 

integration of the cyclical component in a given raw time series. A joint test for testing 

simultaneously the order of integration and the need of a linear time trend has also been 

proposed. Both tests have standard null and local limit distributions. However, finite-

sample critical values were computed and several Monte Carlo experiments conducted in 

the paper showed that the probability of rejection of the true model was much higher under 

the asymptotic tests than with the finite-sample ones. The tests were applied to annual data 

of the nominal GDP in the US, the UK, Canada and Japan, the results indicating that a 

linear time trend is required if the cycles occur every 6 or 7 years, with orders of integration 

higher than 0.50 and thus, showing the nonstationarity character of the cyclical component 

of the series. If we do not include a linear trend, the only non-rejected model appears with d 
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= 1 and cycles every 4 years for all countries except the UK, implying the need of the trend 

if the cycles truly occur every 6 or 7 years and reinforcing its importance in case of the UK. 

 This article can be extended in several directions. Monte Carlo experiments can be 

conducted to examine the power of the tests when we misspecify the frequency wr of the 

process in the context of deterministic trends. Note that in the experiments carried out in 

Tables 3 and 4 we assume the same values for r under both the null and the alternative 

hypotheses. It would be worthwhile proceeding to get estimates of wr. However, this would 

require preliminary differencing to achieve stationarity and invertibility. The tests could 

have been extended to permit more than one cyclic behaviour in the data and, also to jointly 

test for a linear time trend and for the order of integration with seasonal fractional 

integration instead of the cyclical component analysed in this article. Finally, we could also 

have allowed for weakly parametrically autocorrelated disturbances, computing finite-

sample critical values and performing the tests on the GDP series. Work in all these 

directions is now under progress. 
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FIGURE 1 

Original time series with their corresponding correlograms and periodograms 
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FIGURE 2 

Detrended time series with their corresponding correlograms and periodograms 
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TABLE 1 

Finite-sample critical values of R
~

 in (11) 

T  =  40 5% significance level 1% significance level 

d  /  r T/2 T/4 T/6 T/7 T/10 T/20 T/2 T/4 T/6 T/7 T/10 T/20 

0 4.17 6.03 6.55 6.48 6.48 7.01 6.82 8.42 9.94 9.57 9.60 9.55 

0.25 4.20 6.03 6.55 6.49 6.42 6.84 6.90 8.35 9.88 9.55 9.50 9.47 

0.50 4.18 6.02 6.52 6.45 6.30 6.54 6.90 8.31 9.85 9.55 9.31 9.11 

0.75 4.17 6.02 6.50 6.40 6.11 6.28 6.89 8.30 9.77 9.46 9.18 8.74 

1.00 4.17 6.02 6.45 6.33 5.98 6.17 6.88 8.30 9.72 9.32 8.84 8.64 

In case of T/6 and T/7, T = 42. The critical values of the 2
1χ  distribution are 3.84 at the 5% significance level 

and  6.63 at the 1% level. 
 
 
 

TABLE 2 

Finite-sample critical values of S
~

 in (16) 

T = 40 5% significance level 1% significance level 

d  /  r T/2 T/4 T/6 T/7 T/10 T/20 T/2 T/4 T/6 T/7 T/10 T/20 

0 6.50 8.31 7.85 7.60 7.37 7.50 10.31 11.71 11.08 10.58 10.15 10.16

0.25 6.51 8.31 7.83 7.58 7.43 7.60 10.25 11.80 11.10 10.57 10.24 10.29

0.50 6.51 8.33 7.85 7.63 7.45 7.83 10.24 11.77 11.08 10.51 10.45 10.62

0.75 6.50 8.33 7.85 7.63 7.53 7.93 10.32 11.84 11.08 10.51 10.59 10.93

1.00 6.49 8.31 7.91 7.67 7.51 7.82 10.26 11.76 11.13 10.52 10.94 10.92

In case of T/6 and T/7, T = 42. The critical values of the 2
2χ  distribution are 5.99 at the 5% significance level 

and  9.21 at the 1% level. 
 

 
 
 

 

 

 

 

 

 

 

 



 17

 

 

 

TABLE 3 

Rejection frequencies of R
~

 in (11) 

True model: yt =  1 + t + xt;  (1 – 2 cos wr L + L2) xt = εt  

Alternative: Testing Ho (5) in (12) and (13) with d = 1 

θ  /  r T/2 T/4 T/6 T/7 T/10 T/20 

T = 40 FSCV ASYM FSCV ASYM FSCV ASYM FSCV ASYM FSCV ASYM FSCV ASYM

-1.00 0.916 0.927 0.845 0.869 0.998 0.998 0.999 0.999 0.906 0.919 0.967 0.967 

-0.75 0.784 0.804 0.626 0.652 0.976 0.992 0.988 0.997 0.829 0.882 0.823 0.826 

-0.50 0.715 0.730 0.353 0.372 0.751 0.880 0.819 0.924 0.419 0.585 0.692 0.693 

-0.25 0.622 0.638 0.088 0.158 0.122 0.268 0.154 0.324 0.117 0.226 0.230 0.360 

0.00 0.046 0.057 0.041 0.144 0.043 0.096 0.045 0.091 0.045 0.135 0.041 0.131 
FSCV and ASYM means finite-sample and asymptotic critical values. The sizes are in bold and the nominal 
size is 5% in all cases. 
 
 
 
 
 

TABLE 4 

Rejection frequencies of S
~

 in (16) 

True model: yt =  1 + xt;  (1 – 2 cos wr L + L2) xt = εt  

Alternative: Testing Ho (14) in (12) and (13) with d = 1 

θ  /  r T/2 T/4 T/6 T/7 T/10 T/20 

T = 40 FSCV ASYM FSCV ASYM FSCV ASYM FSCV ASYM FSCV ASYM FSCV ASYM

-1.00 0.990 0.992 0.904 0.920 0.990 0.990 0.999 1.000 1.000 1.000 0.952 0.966 

-0.75 0.901 0.913 0.901 0.903 0.980 0.985 0.988 0.993 0.999 0.999 0.902 0.911 

-0.50 0.674 0.694 0.415 0.416 0.463 0.468 0.824 0.887 0.964 0.978 0.738 0.803 

-0.25 0.529 0.549 0.165 0.220 0.156 0.203 0.171 0.268 0.375 0.478 0.334 0.437 

0.00 0.049 0.061 0.047 0.124 0.049 0.116 0.047 0.067 0.044 0.056 0.048 0.057 
FSCV and ASYM means finite-sample and asymptotic critical values. The sizes are in bold and the nominal size 
is 5% in all cases. 
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TABLE 5 

Testing Ho (5) in (12) and (13) with R
~

 in (11) 

Country:   U.S.A. 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 18.03 23.04 21.12 21.69 18.33 53.88 

0.25 18.46 23.09 19.09 12.50 17.04 9.437 

0.50 18.64 22.95 0.07’ 2.26’ 14.50 26.06 

0.75 18.72 22.74 0.05’ 1.90’ 9.73 0.53’ 

1.00 18.75 22.51 0.02’ 1.34’ 3.21’ 6.47 

Country:   U.K. 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 17.97 21.06 21.23 21.16 20.47 42.41 

0.25 18.50 21.50 9.19 9.93 18.58 47.26 

0.50 18.77 21.85 0.14’ 2.66’ 16.06 41.25 

0.75 18.92 22.11 0.11’ 2.30’ 12.89 14.47 

1.00 19.01 22.28 0.06’ 1.83’ 8.98 0.90’ 
Country:   Canada 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 19.32 24.41 20.12 22.93 22.60 69.46 

0.25 19.19 24.26 15.12 19.94 20.02 64.32 

0.50 19.10 24.09 0.13’ 2.94’ 19.01 40.61 

0.75 19.05 23.91 014’ 2.88’ 16.48 6.86 

1.00 19.02 23.72 0.15’ 2.71’ 10.86 1.68’ 

Country:   Japan 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 20.80 27.35 30.03 32.55 20.81 92.32 

0.25 20.34 27.12 25.04 22.58 19.50 77.29 

0.50 19.85 26.66 0.04’ 2.39’ 15.79 48.31 

0.75 19.57 26.13 0.02’ 1.88’ 10.67 34.45 

1.00 19.41 25.56 0.03’ 1.13’ 8.02 9.35 
In bold and ‘: Non-rejection values at the 95% significance level. 
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TABLE 6 

Testing Ho (14) in (12) and (13) with S
~

 in (16) 

Country:   U.S.A. 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 50.15 53.08 32.54 35.39 50.35 85.40 

0.25 31.66 38.08 34.13 42.78 73.79 163.67 

0.50 26.00 24.32 37.77 54.66 118.53 480.07 

0.75 30.03 15.05 48.71 79.82 230.40 1872.81 

1.00 13.63 6.04’ 74.29 133.79 534.99 7848.18 

Country:   U.K. 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 72.95 76.41 55.02 57.82 72.95 112.11 

0.25 44.20 52.87 57.39 69.51 112.11 247.00 

0.50 40.31 33.70 63.04 87.69 188.06 771.55 

0.75 38.92 21.21 80.3 125.02 372.04 2946.56 

1.00 14.10 20.23 123.13 206.28 857.14 11745.89 

Country:   Canada 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 59.91 63.08 42.13 44.92 59.80 97.41 

0.25 3686 44.29 44.13 54.07 90.08 200.43 

0.50 33.16 27.97 49.14 68.22 149.78 617.47 

0.75 36.53 16.40 65.05 96.90 302.33 2448.86 

1.00 19.85 2.16’ 103.10 158.72 723.08 10286.64 

Country:   Japan 

d   /   r T/2 T/4 T/6 T/7 T/10 T/20 

0.00 60.78 63.85 43.37 46.24 61,29 90.24 

0.25 36.38 44.61 46.06 56.63 93.52 200.49 

0.50 42.25 28.90 53.73 75.33 160.25 722.97 

0.75 47.71 18.24 78.99 119.99 347.29 3345.56 

1.00 16.77 2.79’ 10.01 224.75 904.30 1894.77 
In bold and ‘: Non-rejection values at the 95% significance level. 
 
 
 
 

 

 

 

 

 

 


