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Abstract

We analyze daily changes of two log foreign exchange (FX) rates involving the Deutsche
Mark (DEM) for the period 1975 - 1998, namely FX-rates measured against the US
dollar (USD) and the Japanese yen (JPY). To account for volatility clustering we fit a
GARCH(1,1)-model with leptokurtic innovations. Its parameters are not stable over the
sample period and two separate variance regimes are selected for both exchange rate series.
The identified points of structural change are close to a change of the monetary policies
in the US and Japan, the latter of which is followed by a long period of decreasing asset
prices. Having identified subperiods of homogeneous volatility dynamics we concentrate
on stylized facts to distinguish these volatility regimes. The bottom level of estimated
volatility turns out be considerably higher during the second part of the sample period
for both exchange rates. A similar result holds for the average level of volatility and for

implied volatility of heavily traded at the money options.
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1 Introduction

Price variations observed at speculative markets are typically found to exhibit positive
autocorrelation. Periods of higher and lower volatility alternate. This phenomenon is
well known and generated a vast body of econometric literature after the seminal contri-
butions by Engle (1982), Bollerslev (1986), and Taylor (1986) introducing the (general-
ized) autoregressive conditionally heteroskedastic ((G)ARCH) process and the stochastic
volatility model, respectively. Often these specifications are valid only locally within a
particular window of time. Hamilton and Susmel (1994) point out that invariant para-
metric specifications, GARCH say, are often inconvenient to model long return series and,
thus, advocate models with switching parameters. Moreover, Mikosch and Starica (2000)
show formally that GARCH-models with parameter shifts may generate autocorrelation
patterns of squared returns carrying the risk to overestimate persistence in volatility.
Completely in line with the latter finding is the contribution of Lamoureux and Lastrapes
(1990) considering volatility persistence in the US stock market. In their work time homo-
geneous estimates of persistence exceed substantially corresponding quantities obtained
from a volatility model which allows deterministic shifts in the unconditional variance.

Apart from big events as the stock market crash in October 1987 at least two driv-
ing forces behind structural variation of volatility dynamics are interesting to consider.
Firstly, Chang, Cheng and Pinegar (1999) and Harris (1989) (among others) address
the impact of introducing new financial instruments like options or futures on volatility
dynamics. Whereas Harris (1989) finds marginal increases of stock volatility after the
introduction of S&P 500 index futures Chang et al. (1999) provide ambiguous results
for the Japanese stock market. Secondly, and more important for this paper, changes in
monetary policies might affect FX-volatility (Diebold 1986, Lastrapes 1989).

A further issue often raised in the empirical analysis of financial market volatility is
that the unconditional distribution of returns remains leptokurtic even after adjustment
for conditional heteroskedasticity (Bollerslev 1987). Since the convenience of Quasi Max-
imum Likelihood (QML) has been well established for financial analysis (Bollerslev and
Wooldridge 1992, Lumsdaine 1996, Hansen and Lee 1994) a violation of the common
normality assumption is hardly crucial for the purpose of parameter estimation and in-

ference. The matching of the theoretical model and the empirical distribution becomes



more important, however, when the return distribution is of direct interest to the analyst.
As a particular example one may regard the evaluation of portfolio risk (Jorion 2000).

The purpose of this paper is paper is twofold. In the first place the convenience of
the GARCH-approach to describe the (conditional) distribution of FX-returns is illus-
trated. For this purpose both generalizations mentioned before, structural variation and
conditional leptokurtosis, will be of essential importance. Secondly, we use the identified
subperiods of homogeneous dynamics to compare a few stylized facts of volatility over
time. Thereby we contribute to the view that FX-uncertainty has been smaller at the
beginning of the sample period compared to its end.

We analyze the dynamics of two daily FX-rate series (DEM/USD and DEM/JPY)
during the period from 1975 through 1998. When accounting for the potential of structural
variation of volatility dynamics we do not a priori assume exogenous (Lastrapes 1990) or
deterministic (Lamoureux and Lastrapes 1990) time points of change but test formally the
null hypothesis of structural invariance by means of a Lagrange Multiplier (LM) test (Chu
1995, Lin and Yang 2000). Having rejected the latter hypothesis we determine the time
point of structural variation by means of a likelihood ratio (LR) criterion. We show that
a two regime GARCH(1,1)-model driven by leptokurtic innovations describes accurately
the empirical distribution of FX-returns. Our empirical results are almost uniform for
both investigated FX-series. Interestingly, we find for both series that the identified time
points of structural change correspond to major changes of monetary policies adopted by
the Federal Reserve System (Fed) and the Bank of Japan (BolJ).

The implications of the estimated structural changes are illustrated by means of im-
plied volatilities, which financial market practitioners regard as a measure of uncertainty.
We obtain that a time invariant GARCH(1,1)-specification provides implied volatilities
which differ considerably from their time depending counterparts. Considering European
call options we obtain that implied volatility of heavily traded at the money options is
higher within the second subperiod. When considering short times to maturity it turns
out that implied volatility of out of the money options is higher at the beginning of the
sample period. The latter result mirrors that volatility responds stronger to lagged returns
during the identified first subsamples.

The paper is organized as follows: Section 2 provides a brief descriptive analysis of



the investigated FX-rates. Estimating time homogeneous volatility dynamics and dis-
tinguishing the scope of the GARCH-approach under conditional normality and condi-
tional leptokurtosis are central issues addressed in Section 3. In Section 4 we sketch the
methodological framework when testing parameter stability and detecting the time points
of structural change. Moreover, the identified volatility dynamics are related to real eco-
nomic events. In Section 5 the GARCH option pricing model is briefly motivated and we
discuss empirically its implications in presence of structural change. Section 6 concludes

the paper.

2 Descriptive statistics of the data

We analyze daily figures of two FX-rates, the DEM /USD- and the DEM/JPY-rate for the
period January 2, 1975 to December 30, 1998. Log rates are depicted in Figure 1. Both
processes are nonstationary which is confirmed by formal ADF tests (Dickey and Fuller
1979). The ADF statistics (test regression of lag order 1 with intercept term) for the
DEM/USD and DEM/JPY log-rates are -1.33 and -1.58, respectively. The corresponding
results for log-rate changes are -34.04 and -53.08. Thus, both exchange rates are integrated
of order 1.

As it is typical for price variations observed at speculative markets large log-return
changes (of either sign) are followed by further large changes (of either sign), periods
of higher and lower volatility tend to cluster. The latter property can be inferred from
descriptive statistics. Table 1 reports the third and fourth order moments and a few statis-
tics testing particular features of the FX-return processes. In particular, the Jarque-Bera
(JB) statistic (Jarque and Bera 1987) on unconditional normality, the Ljung-Box (LB)
statistics (Ljung and Box 1978) against joint serial correlation up to order 8, 16 and
24, and ARCH-LM test (Engle 1982) results on homoskedasticity are given. According
to the JB test the null hypothesis of normality is rejected at any reasonable level. The
unconditional distribution of DEM/USD-returns shows a slightly negative skewness and,
as a consequence of volatility clustering, a high degree of excess kurtosis. Moreover,
DEM/USD log-returns do not exhibit significant autocorrelation. Testing a homoskedas-
tic variance against conditional heteroskedasticity by means of an ARCH-LM(1) test,



however, indicates higher order dependence of the FX log-returns.

Empirical results for DEM/JPY-returns are similar to interpret. However, the latter
process exhibits significant autocorrelation. To estimate an uncorrelated residual series
generating volatility dynamics we consider a linear autoregressive subset model. Starting
from a maximum lag order of 12 we impose zero restrictions on coefficient estimates
which are not significant at the 5% significance level. Following these lines a convenient

representation for log-returns of the DEM/JPY-rate (e;) is found to be:

Ae; = 8.92E-05 + 0.041Aes—q + 0.032Ae;_g + 0.034 Ae;_g + €, (1)
(—1.141) (1.918) (1.763) (3.318)

where A is short for the first difference operator, i.e. Ae; = e, — e;_1. In (1) het-
eroskedasticity consistent t—ratios (White 1980) for the parameter estimates are given in
parentheses. As shown in Table 1 the estimated residuals €; are uncorrelated but still show
dependence in higher order moments. The following analyses concentrate on DEM/USD
log-returns and residuals from (1) when modeling the DEM/JPY-rate. There are 6015
and 6006 observations available for the DEM/USD- and the DEM/JPY-rate, respectively,

since we use 9 observations as presample values for the latter rate.

3 GARCH-Model

For the DEM/USD- and the DEM/JPY-rate the identified residual processes are shown
in the upper panels of Figure 2 and Figure 3, respectively. Both processes show typical
properties of (high frequency) price variations, in particular leptokurtosis and volatility
clustering. GARCH-processes are convenient parametric models to capture these features.
A Gaussian GARCH(p, q)-process €; obeys the following dynamic structure conditional
on VU, 4, the history generated by the process:

q P
& =60y, &~ N(0,1), 0f =ao+ Y cuef;+ Y oy, t=1,...,T. (2)

i=1 i=1
To guarantee positivity of the conditional variance of ¢; sufficient parameter restrictions
are g > 0,04 > 0,6, > 0,2 =1,...,¢q,7 = 1,...,p. The GARCH-model in (2)
implies |¥; ; ~ N(0,02). In the empirical literature it turned out that for most ap-

plications the GARCH(1,1)-model suffices to model financial market returns (Bollerslev,
Engle and Nelson 1994). Nelson (1990) discusses stationarity and ergodicity conditions
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of the GARCH(1,1)-process in detail. In particular, o7 and ¢; are strictly stationary and
ergodic if E[In(f; + a1&?)] < 0. Note that this moment conditions depends on the distri-
bution of &. Imposing the stronger restriction E[3; + a1&] < 1 (& a1 + 1 < 1) it can
be shown that E[e?] = 0% < oo and, thus, ¢ is weakly (covariance) stationary. Then an

estimate of the unconditional variance is:
A2 A —1
o = CYo(l — a1 — 51) . (3)

The specific case where a; and (3; sum to unity has become popular as the so-called
integrated GARCH(1,1)-model (IGARCH(1,1), Engle and Bollerslev 1986). Note that
the result in Nelson (1990) implies that while the GARCH(1,1)-process with oy + 1 < 1
is covariance stationary, strictly stationary and ergodic, the IGARCH(1,1)-process is not
covariance stationary but still strictly stationary and ergodic, thus distinguishing it from
the random walk with drift case.

ML-estimation of GARCH-models requires numerical optimization routines, since the
specification of the likelihood function is only feasible conditional on ¥;_;. The Gaussian

log-likelihood function (I(.) = In L(.)) may be given as follows:

L) = —%ln(%r)—%ln(af)—

N

€

(4)

DO =
Dl &)

g

When initializing the iterative optimization procedure it is convenient to try alterna-
tive parameter choices, a; = 0.05,0.09, £, = 0.8,0.9 say, to guard against local optimality
of the numerical estimate. Given some pair of initial values a4, ;1 and the unconditional
means of €2 the corresponding parameter o is obtained from (3). Then, to initialize the
volatility path o2 = 62 is suitable. Estimating GARCH(1,1)-specifications along these

lines for both FX-series we obtain the following results (QML ¢-ratios in parentheses):

DEM/USD: 6} = 5.56E-07 + 0.103¢;_; + 0.89067_,, log-lik: 21925.23, (5)
(2.29) (8.17) (58.6)

DEM/JPY: 67 = 5.30E-07 + 0.112¢; | + 0.87757 |, log-lik: 22893.45. (6)
(1.83) (6.26) (35.0)

A few diagnostic test results for the implied standardized residuals, ét = €/, from

(5) and (6) are also given in Table 1 (columns 3 and 6). Estimated innovations show
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some skewness and are still highly leptokurtic. The hypothesis of normally distributed
innovations is rejected at any reasonable significance level.

The ARCH-LM(1) test on homoskedasticity of & indicates for the DEM/JPY-rate that
the GARCH(1,1)-model may not capture conditional heteroskedasticity entirely. Increas-
ing the model order towards a GARCH(1,2)- or GARCH(2,1)-process, however, neither
provided significant coefficient estimates of the corresponding higher order parameters nor
improved the maximum value of the Gaussian log-likelihood function considerably. More-
over, the ARCH-LM(5) statistic is not significant at the 5% level. Thus we regard the
GARCH(1,1)-model to be an appropriate model describing both DEM /USD log-returns
and linear residuals obtained from (1) for the log DEM/JPY-rate.

With respect to parameter estimation the violation of the normality assumption is
not crucial. In this case the adopted estimation procedure has become popular as QML-
estimation. Due to the large sample investigated here we expect the efficiency loss of
QML compared to exact ML methods to be negligible. Asymptotic normality of the
QML-estimator in the GARCH(1,1)- and IGARCH(1,1)-model is derived in Lumsdaine
(1996) building upon former work by Bollerslev and Wooldridge (1992). Lee and Hansen
(1994) prove asymptotic normality of QML-estimates even for the case where oy + (34
slightly exceeds unity. Given some standard regularity conditions the latter result is
obtained mainly under the assumptions that the GARCH-process is strictly stationary
(Eln(B1 + a1£?)] < 0) and that the conditional fourth order moment of &; is bounded
(E[&}%,—1] < 00). A sufficient condition for the latter requirement is that & is iid with
finite fourth order moment.

The violation of the distributional assumptions underlying the GARCH-model in (2)
is more crucial if one is interested in inference on ¢;. Given some (estimated) GARCH-
specification and a particular history ¥, ; the practitioner might be interested in a con-

fidence band for €; with significance level a.. For the model in (2) such an interval is:
Cl(er| Vi) = {€: [€] < 21-0/2 04}, (7)

where z;_q/9 is the (1 —/2)-quantile of the Gaussian distribution. In (7) the subscript N
is used to indicate that the confidence interval of interest is determined under conditional
normality. A violation of the normality assumption may involve empirical significance

levels of CI(e;|¥;_1)% which differ from their nominal counterparts. With I(.) denoting
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an indicator function the empirical significance level is estimated as:

. 1<
anN = T ZI(Et ¢ CI(et‘\Ijt—l)?\{)-
t=1

Due to the large sample sizes which are typical in financial practice powerful tests of
the hypothesis Hy : &y = « can be performed. To illustrate this point Table 2 (second
column) shows éy for alternative nominal significance levels.

The empirical significance levels @y allow a similar interpretation for both FX-rates.
Due to excess kurtosis of the innovations &; empirical significance levels violate their
nominal counterparts significantly in almost all cases. For the DEM /USD-rate we obtain,
for instance, that confidence bands with nominal coverage of 50% actually include 54.4%
of all FX-returns, indicating that these confidence bands are too wide on average. The
nominal level a = 0.50 and its empirical estimate ay differ at the 1% significance level.

To allow valid inference for ¢; one may assume that the innovations &; follow a leptokur-
tic distribution as, for instance, a standardized t¢-distribution with v degrees of freedom
(& ~ t(0,1,v)). Then & may be given formally as & = Z*\/(v —2)/v, where Z* is
Student-t distributed with v degrees of freedom. It is easily verified that for such random
variables excess kurtosis is inversely related to v.

ML-estimation of GARCH-processes under #(0, 1, v)—distributed innovations is advo-
cated in Bollerslev (1987). In comparison to (2) the ¢(0, 1, v)—model requires to estimate
an additional parameter, namely the degrees of freedom coefficient v. Instead of (4) the

contribution of a single observation to the sample log-likelihood is given as (Johnson and

Kotz 1972):
1 1 ey
L()=—Tne—=In(w) = 250 <u+e—t>, (8)
2 Wy
where
7T (%) v—-2,
C—V%F(VT_H)awt_ v Uta

and I'(-) is the gamma function. A particular feature of this model is that not the con-
ditional variance (0?) but a rescaled version of it (w;) enters the log-likelihood function.
Obviously w; is only defined if v > 2, the necessary condition for a t—distributed random
variable to have a finite variance. Estimating a GARCH(1,1)-model under the assump-

tion of leptokurtic innovations we obtain estimates given in Table 3 (columns 2 and 5).
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The numerical differences between these estimates and those obtained under conditional
normality (see (5) to (6)) are rather small. The estimated degrees of freedom, 7, are 6.3
and 7.1 for the DEM/USD- and DEM/JPY-rate, respectively. Taking the correspond-
ing standard error estimates (not reported) into account both results indicate that the
underlying innovations are only poorly approximated by a standard normal distribution.
Note that both estimates 2 imply the existence of E[¢}] which has been one of the main
assumptions to establish asymptotic normality of QML-estimates. For both investigated
series the value of the log-likelihood function is considerably higher under leptokurtic
innovations indicating that the ¢(0, 1, v)-model provides a closer fit to the observed data.

Similar to the case of conditional normality confidence intervals for ¢; can be provided

under the leptokurtic distribution. Analogously to (7) we have formally:

Cl(e 1) = {62 el < troapp 0y 2 ol (9)

where t1_q/2(v) is the (1 — a/2)-quantile of the Student’s ¢-distribution with v degrees of

freedom.

The corresponding empirical significance level is:

T
CAktV = ZI €t ¢ CI Et‘\Ilt 1) )
t:l

Applying (9) we again compute confidence bands with alternative nominal levels to test
equivalence of &, and «. As can be seen from Table 2 (third column) all estimates
&y, cannot be distinguished from « at the 5% significance level. Complementary to
the improved accuracy of fit offered by the GARCH(1,1)-specification with leptokurtic
innovations the latter result provides a strong support for the convenience of this model

in empirical practice.

4 Stability of the GARCH-parameters

In the foregoing section the GARCH(1,1)-model was found to provide a powerful tool to
capture volatility clustering of FX-rates. Since we analyze a rather long sample period
one may question the adequacy of a time homogeneous model (Hamilton and Susmel
1994). Therefore we now turn to the issue of testing on time homogeneity and detecting

a potential change point of the dynamic model. Having identified a point of structural
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change we illustrate the gain in modelling empirical returns by means of a time inhomo-
geneous model. Moreover, we provide a few stylized facts characterizing FX-volatility in
both identified subsamples. Finally we relate our characterization of volatility dynamics

to economic events and shifts in monetary policies.

4.1 Evidence of structural variation

LM-tests are convenient candidates to test the null hypothesis of structural invariance of
GARCH-processes. In this framework the test is typically performed once an estimate of
the invariant model, (2) say, is available. Such an approach is especially sensible if the
specification of the model under the alternative is difficult to justify by a-priori reasoning.
Parametric as well as nonparametric tests of structural stability of GARCH-processes are
given in Chu (1995) and Lin and Yang (2000).

The supremum LM-test (Chu 1995) we apply here essentially compares the uncondi-
tional variance of ¢; before and after a set of break points located on a prespecified grid.
Detailed test results are given in Table 4. We reject structural stability of volatility dy-
namics for both FX-rates at the 1% significance level. Applying a supremum test to the
distance between the empirical distribution functions of standardized residuals {?t before
and after some prespecified break point (Lin and Yang 2000) we find strong evidence in
favor of a structural break of DEM/USD-volatility. With respect to the DEM /JPY-rate
this framework delivers evidence in favor of a structural shift at the 5% significance level
but not at the 2.5% level.

Although supremum LM-tests deliver evidence against the stable GARCH-model it
is not immediately informative with respect to the time point of structural variation.
In principle, performing the test on a dense grid could guide the analyst to detect the
location of a (single) breakpoint since the supremum test should reach its maximum at
the true break point. To identify the change point we follow a supremum likelihood ratio
(LR) approach which is asymptotically equivalent to the LM procedure. The advantage
of the LR approach is that the obtained log-likelihood estimates directly indicate the
improvement of the empirical model going back to the implementation of a structural
change.

We perform QML-estimation of the GARCH-model under normality and assume that
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one structural shift occurs during the sample period. The break point 7* is found by
maximizing the Gaussian log-likelihood over two subsamples, i.e.

T T

— mTax(th(ﬁAl) + Y U(6)),

t=1 t=7+1
where él and ég denote the vectors of estimated GARCH-parameters operating until and
after ¢ = 7. For reasons of computational convenience we initially assume the point of
structural change to be found on a grid: 7% = 100, 200, .. .. Then, as intermediate change
point estimates we take the three grid points providing the highest log-likelihood esti-
mates. Around these estimates we use a grid of only 10 observations to further improve
the intermediate results. Finally we employ a daily scheme to detect a particular point

of structural change. Along these lines we find = 1432 (September 8, 1980) and

Tosp
Try = 3717 (November 7, 1989) to maximize the Gaussian log-likelihood under the as-
sumption of two alternative volatility regimes governing the dynamics of the DEM /USD-
and DEM/JPY-rate, respectively. The log-likelihood values are 21971.85 and 22913.97
which can be directly compared with the corresponding results in (5) and (6).

Using standard LR-tests to infer on time homogeneity we obtain Aysp = 2(21971.85 —
21925.23) = 93.24 and A,py = 2(22913.97 — 22893.45) = 41.04. If the detected break
points were known a-priori it would be sensible to compare Aygp, and A;py with critical
values from a x?(3)-distribution. In this case it is evident that the assumption of structural
invariance has to be rejected. In the present case, however, we actually perform a family
of dependent tests such that the x?(3)-distribution cannot be applied. The values of the
statistics are so large, however, that it is hard to think of a reasonable distribution for
which both statistics were not significant.

Estimating the time point of structural change along the lines in Lin and Yang (2000)
we find similar but not identical break points (7}, = 1287 and 7},, = 3538). With
respect to the second subsample identified for the DEM /JPY-rate the GARCH(1,1)-model
estimated under standardized t-distributed innovations fails to provide confidence bands
with nominal and empirical coverage probability of 95%. For this reason we concentrate
on LR-estimates of 7* in the following.

Although the change point GARCH(1,1)-model under normality improves the accu-

racy of the time invariant counterpart considerably the model still delivers leptokurtic

residuals & and, as can be inferred from the log-likelihood estimates, is inferior to the
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time homogeneous model with (0, 1, v)-innovations. For these reasons we consider now a
change point model with underlying leptokurtic innovations.

Estimates of GARCH(1,1)-models assuming two different volatility regimes under con-
ditional leptokurtosis are given in Table 3. We obtain considerable improvements of the
log-likelihood function for the time inhomogeneous model in comparison to its time homo-
geneous counterpart. Complementary to parameter estimates &; and Bl we also provide
the sum é; + 3 and the corresponding standard error. Both time invariant specifications
are close to the IGARCH(1,1)-model. & + (1 sum to 1.001 and 0.990 for the DEM/USD-
and DEM/JPY-rate, respectively. Due to the rather small corresponding standard errors
both estimates differ at the 1% significance level from unity. In analogy to former results
in Lamoureux and Lastrapes (1990) and Lastrapes (1990) splitting the sample period
weakens the evidence in favor of high persistence in volatility to some degree. For the
DEM/USD-rate €? is covariance stationary in the second subsample and with respect to
the DEM/JPY-rate &; + Bl is significantly smaller in both subperiods compared to the
time homogeneous estimator. For both investigated time series the estimated «; coef-
ficient, governing the impact of lagged innovations on current volatility, is considerably
larger in the first subsample relative to the second period. Note that the value of oy
is of particular importance for excess kurtosis of ¢; (Bollerslev 1986). In the Gaussian
GARCH(1,1)-model conditional heteroskedasticity and thus leptokurtosis of ¢, vanishes
in the limit as a; — 0.

Together with the corresponding standard errors average values of ; as estimated from
competing model specifications are also shown in Table 3. Since &; + Bl > 1 for some
(sub)samples these estimates should be treated with care since then an unconditional
variance does not exist. The descriptive results, however, allow an analogous interpreta-
tion for both FX-rates. On average, volatility is larger in the second subperiod compared
to the first. Taking the empirical standard errors of the latter averages into account we
conjecture that the unconditional levels of volatility differ significantly from each other.
A similar conclusion can be drawn when considering the minimum levels of 6, which are
attained in longer periods of small price variations. As reported in Table 3 these lower
volatility bounds are higher in the second subsample compared to the first period for

both FX-rates. Moreover, a graphical inspection (lower panels of Figure 2 and Figure 3)
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supports the view that the bottom level of volatility is higher in the second subsamples
compared to the beginning of the sample period.

As for the time invariant models we use the estimated change point processes to se-
quentially estimate confidence bands for ¢;. The obtained empirical significance levels are
again shown in the right hand side of Table 2. Similar to the time homogeneous specifica-
tion empirical and nominal significance levels cannot be distinguished by statistical tests.
Estimating &, for the time homogeneous and the change point model within the iden-
tified subperiods, it turns out that, for instance, the empirical coverage of CI(e;|¥;—;);’°
obtained for the time invariant model is the weighted average of empirical size estimates
which are too small in the first subperiod and too large in the second. Subperiod specific
estimates &, differ significantly from the nominal 50% level. Allowing for two volatil-
ity regimes driven by leptokurtic innovations we obtain for both FX-rates empirical size

estimates which are insignificant within subperiods and over the entire sample period.

4.2 Volatility dynamics and economic events

The sample covers periods of different macroeconomic policy regimes and inflation rate
phases. Following the first oil price shock in 1973 a world wide acceleration of inflation
rates is observed (Krugman and Obstfeld 1996, Chapter 19). Major central banks adopted
a monetary targeting policy to stabilize inflation rates. The less tight monetary policy in
the US appears to weaken the USD against currencies of other major industrial countries
from 1976 to 1979 (see Figure 1). In 1979 the second oil price shock induced a world wide
recession. Monetary growth was restricted in most industrial countries to limit inflation
rates. The USD appreciated against most currencies from 1982 to 1985. According to the
Louvre accord in February 1987 the governments set up target zones for the DEM /USD-
and JPY/USD-rate. A period of relatively stable exchange rates ended with the stock
market crash in October 1987. Afterwards the DEM/USD-rate varied between 1.34 and
1.95.

The medium and lower panels of Figure 2 (Figure 3) display estimates of the condi-
tional standard deviations of the DEM/USD- (DEM/JPY-) rate. Three important peaks
of estimated DEM /USD-volatility occurring in January 1978, November 1978 and April

1980 are concentrated in the first subsample. Within the second subsample periods of
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high DEM/USD-volatility are September 1985 and May 1995. In September 1985 the
Group of Five announced to intervene jointly on the foreign exchange market in order to
depreciate the USD (Plaza announcement).

High DEM/USD-volatility in May 1995 coincides with the all time low of the DEM /USD-
rate. The Bank for International Settlements (BIS) (1996) states that different business
cycle states in the US and Germany and forward interest rate differentials may explain the
exchange rate movement. The peak in estimated DEM/USD-volatility coincides with ex-
tremely high implied volatility determined from currency options with 1 month maturity
(BIS 1996).

The DEM/JPY-volatility reaches its highest values in December 1979, April 1984,
September 1984, September 1985 and October 1998. Between April 1979 and March 1980
the BoJ raised its discount rate from 3.5 to 9.0 percent. During this period FX-volatility
culminated in December 1979. The coincidence of high volatility states in both series
in September 1985 illustrates the interdependence of financial markets. The volatility
peak in October 1998 corresponds to the crisis of the ”Long-Term Capital Management”
hedge fund. In the following the JPY appreciated abruptly against the USD due to better
growth expectations in Japan compared to the US (BIS 1999).

Both dates of structural change (September 8, 1980 for the DEM/USD and November
7, 1989 for the DEM/JPY) do not correspond to outstanding events of financial market
developments like the crash in October 1987. Nevertheless, they fall in periods of impor-
tant changes of monetary policies. On October 6, 1979 the Board of the Fed announced to
abandon the federal funds rate targeting. In its place a new operating procedure, so-called
nonborrowed reserves targeting, was adopted to improve monetary control. Afterwards
the inflation rate fell from its single-digit range and remained fairly stable between 3
and 6 percent. Being one effect of nonborrowed reserves targeting large variations of
interest rates occurred from 1979 to 1981. Since money demand decreased in 1981 the
Fed terminated this practice and switched to the borrowed reserve targeting in October
1982. Similar to Lastrapes (1989) we conjecture that the change of monetary control
instruments caused the observed shift of volatility dynamics. In contrast to the latter
work, however, we have not fixed possible time points of structural variation a-priori but

chose a data driven procedure to determine it. Moreover, in testing time homogeneity of
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the entire model specification, we do not restrict the attention to variation in just one
parameter (ag) as, for instance, Lastrapes (1989) and Lamoureux and Lastrapes (1990).

Interestingly also the change point of DEM/JPY-volatility almost coincides with a
change to a more tighten monetary policy conducted by the BoJ (Jinushi et al. 2000).
Inflation in Japan picked up in 1989 reflecting the expansive monetary policy of the BoJ
during the period 1986-1989. In May 1989 the BoJ began to raise the discount rate from
2.5 to 6 percent in August 1990. Moreover the time point of structural change is close
to the highest values of the Nikkei stock index in the end of August 1989. In the second
half of the 1980s, Japanese stock and real estate prices doubled and tripled within a few
years (Ito and Iwaisako 1995). Apart from fighting inflationary pressures the BoJ tried to
puncture the asset price bubble. In the first half of the 1990s, most asset prices plummet.
The Nikkei stock price index lost more than half its value between 1990 and 1992. The
sharp fall in asset prices threw Japan’s banking system into a crisis and deteriorated real

economic growth rates.

5 Time variation of implied volatilities

The foregoing section illustrated how the GARCH-model may be employed to fully de-
scribe price variations of FX-rates. As an economic application of the particular GARCH-
estimates one may regard pricing of derivatives with FX-rates being the underlying assets.
Hafner and Herwartz (2001) extend the GARCH option pricing model (Duan 1995 and
1999), to account for typical properties of empirical return processes, as, for instance,
positive autocorrelation of ¢; or leptokurtosis of &. Under stochastic volatility option
pricing is no longer preference free as it is in the homoskedastic Black and Scholes (1973)
model. The GARCH option pricing model (Duan 1995) generalizes the traditional risk
neutral valuation methodology to the case of conditional heteroskedasticity. Applying
some pricing measure () for local risk neutralization the representative agent maximizes
expected utility, for instance, if his utility function is either linear or nonlinear with con-
stant relative risk aversion. Moreover, in the latter case, relative changes in aggregate

consumption have to be normally distributed. Then, the current price of a European call
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option (C;) with exercise price K and time to maturity 7 =T — ¢ is:
Cy = (14 7)""E°max(Sr — K,0) | ¥]. (10)

In (10) St denotes the price of the underlying asset in time 7" and r is the risk free interest
rate. For a slightly different specification of the GARCH(1,1)-model under normality
as used here (see (2)) Heston and Nandi (2000) provide a closed form solution for the
expectation in (10). Since the Gaussian GARCH-model is found in Section 3 to provide
only a poor approximation to the investigated FX-rates we prefer to evaluate E?[max(Sy—
K,0) | ¥;] by simulation along the lines in Duan (1999) and Hafner and Herwartz (2001)
which also incorporate leptokurtic innovations.

The pricing measure () can be derived from the empirical measure P which is the
data generating process specified and estimated for the underlying asset. Under specific
assumptions, concerning the conditional expectations of S; and the distribution of &
the measures () and P are identical. Since the normal and the (0,1, v)-distribution
are unimodal and symmetric equivalence of () and P follows if both the conditional
mean of empirical returns (E[Ae;| ¥, 1]) and the risk free rate are zero (r = 0). With
respect to the first assumption note that DEM/USD-returns were found in Section 2 to
be uncorrelated, thus the conditional expectation for this series is zero. Weak correlation
has been detected for the DEM /JPY-rate as it is documented in (1). Since we are mainly
interested in uncovering the impact of volatility misspecification we neglect this weak
correlation pattern to facilitate the numerical evaluation of (10). Assuming a zero risk
free rate is convenient when analyzing high frequency (daily) data.

We assume coincidence of (2 and P, i.e. we determine option prices by simulating FX-
rates according to the GARCH-parameter estimates given in Table 3. We use R = 200000

replications to evaluate
Cy = (1+7)"E9max(Sy — K,0) | ¥,]. (11)

Throughout we set Sp = 1 and initialize the volatility paths with a medium volatility
level. To be precise we use o7 = 6.77E-03 (07 = 5.73E-03) for simulating the DEM /USD-
rate (DEM/JPY-rate). Option prices are determined for given times to maturity 7 =
20, 40,60, 120 and varying degrees of moneyness 0.85 < Sy/K < 1.15, which is the typical

range of traded options.
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To illustrate the results from a viewpoint often taken by practitioners, we provide
implied volatilities. Here the implied volatility is the particular volatility parameter that,
when plugged into the Black and Scholes (1973) formula, yields the option price generated
by the GARCH-model. Derived under the assumption of homoskedasticity the Black and

Scholes (1973) option price is:
CBS(St, ta 02) = Stq)(dl) - Ke_TTq)(d2), (12)

where
_ In(S;/K) + (r +02/2)7

Na

and ®(.) denotes the standard normal distribution function.

dy (o) , dy = dy — o/T,

For 7 = 20 the left hand side panels of Figure 4 provide volatilities (100 - o) implied
by the option prices generated from the GARCH(1,1)-models with ¢—distributed inno-
vations as listed in Table 3. For both FX-rates the implied volatilities show a U-shaped
pattern which is the prominent volatility smile measured towards the moneyness of a par-
ticular call option. Options out of the money and far in the money have higher implied
volatilities than options at the money. Since we are interested in the effects of falsely
applying a time homogeneous model the right hand side panels of Figure 4 show implied
volatilities obtained from the change point model relative to the simulation results gener-
ated under time homogeneity. In addition to the case 7 = 20, Figure 5 provides relative
volatility measures for both FX-rates and maturities 7 = 20, 40, 60, 120. To facilitate the
comparison of results across maturities and FX-rates all graphs are shown on identical
scales.

For both rates and all maturities we obtain that the implied volatility of at the money
options is higher during the second compared to the first subsamples. Note that these
options are more heavily traded than options which are out of the money or far in the
money. Considering short maturities, 7 = 20 say, we have the interesting result that
options being out of the money show a higher implied volatility during the first subsample.
This result can be related to the estimates for the GARCH-parameter «; which are larger
for both rates in the first subperiod. Governing the impact of lagged squared returns
on current volatility the larger o the higher is the probability for an out of the money
option to end in the money. As mentioned, the latter result is confined to the short

maturity case. With respect to higher maturities the overall level of volatility becomes
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more and more important. As the latter is higher during the second subsamples we obtain
for 7 = 120 and both FX-rates that implied volatility is higher for the entire range of

moneyness during the second subsamples.

6 Conclusions

Analyzing a sample period from 1975 to 1998 we find that the empirical properties of
the DEM/USD- and DEM/JPY-rate are quite similar. Firstly, the underlying volatility
processes exhibit serial correlation. Dependence of higher order moments is accurately
captured by a GARCH(1,1)-model with leptokurtic innovations. Secondly, GARCH-
parameters, are not time invariant. Evidence of high persistence in volatility obtained
from the time homogeneous model is mitigated to some extent when introducing struc-
tural variation. DEM/USD (DEM/JPY) volatility dynamics changed in September 1980
(in November 1989). Both time points fall into periods of changing of monetary policies
adopted by the Fed or the BolJ, respectively. When comparing stylized facts of volatility
across subperiods we find fourthly that the bottom and average level of (estimated) volatil-
ity is larger during the second subsamples compared to the beginning of the sample period.
Finally, applying the GARCH option pricing model higher implied volatility during the
second subsample is particularly diagnosed for at the money options. Determining option
prices alternatively under structural invariance and assuming two homogeneous subperi-
ods we find that falsely applying the time invariant model involves the largest deviations
from time varying implied volatilities for at the money options with high maturity.

The higher volatility may give one explanation for the growing importance of deriva-
tives trading on FX-markets since the mid of the eighties stated e.g. by the Bank for
International Settlement (BIS 1999). A particular issue, relevant to future research, is
to clarify if the increase of volatility affected the real economy. This topic is beyond the

scope of this paper and deserves a multivariate framework.
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Table 1: Tests on normality, homoskedasticity and serial correlation.

DEM/USD DEM/JPY

Ae; = ¢ &t Aey € &

Unconditional distribution
Skewness -0.17 0.16 0.82 0.74 0.22
Kurtosis 7.07 4.98 14.6 13.8 4.57
JB 4179.7**  1008.3*** | 34124.9*** 29954.2*** 668.4***
ARCH-LM(1) | 51.7%** 1.83 866.5*** 952.0** 5.63**
ARCH-LM(5) | 203.8*** 5.36 885.4*** 967.6*** 8.76

Serial correlation
LB(8) 14.96* 3.91 21.79** 4.10 12.87
LB(16) 22.56 16.52 38.09*** 11.64 19.47
LB(24) 28.44 24.06 43.76*** 16.40 24.03

The sample period is January 2, 1975 to December 30, 1998. FX-returns (Ae;),
linear residuals (Aé;) and GARCH(1,1)-innovations (&;) are distinguished. JB
and ARCH-LM(q) are the Jarque-Bera test on normality, and the LM-test
of homoskedasticity against conditional heteroskedaticity, respectively. The
Ljung-Box statistic (LB(q)) tests against joint serial correlation up to order g.

k) kk kksk
? 7
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indicate significance at the 10%, 5%, and 1% level, respectively.



Table 2: Empirical significance levels of sequential confidence bands
CI(Gt“I’t—l)?v and CI(et“Iltfl)gj

Time invariant model Change point model
T T 1st 2nd T 1st 2nd
« an u, G,

obs. | 6015 6015 1431 4584 6015 1431 4584
0.05 | .056 | 0.049 0.045 0.050 0.048 0.052 0.047
DEM/ 0.10 | .096 0.102 0.087*  0.107 0.100 0.102 0.099
USD 0.50 | .456™* | 0.507 0.457** 0.523™* | 0.507 0.506 0.507
0.90 | .886™* | 0.901 0.890 0.905 0.901 0.901 0.901
0.95 | .939"* | 0.946 0.941 0.947 0.947 0.950 0.946

obs. | 6005 6005 3715 2291 6005 3715 2291
0.05 | .053 0.047 0.044*  0.053 0.047 0.049 0.043
DEM/ 0.10 | .096 0.101 0.092*  0.115** | 0.098 0.099 0.096
JPY 0.50 | .454** | 0.499 0.481** 0.530** | 0.497 0.493 0.504
0.90 | .890** | 0.903 0.897 0.912* | 0.903 0.900 0.907
0.95 | .945* | 0.951 0.949 0.953 0.951 0.951 0.951
obs. denotes the number of available observation for the entire sample (7) and
two subsamples (1st and 2nd). *, **** indicate significance at the 10%, 5%,
and 1% level, respectively.
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Table 3: GARCH(1,1)-estimates under conditional leptokurtosis

DEM/USD DEM/JPY
time inv. | 1st sub 2nd sub | time inv. | 1st sub 2nd sub
log-lik. | 22067.04 22110.46 22998.25 23014.98
v 6.26 5.23 7.43 7.18 7.33 8.49
(13.7) (7.33) (10.2) (12.2) (8.54) (6.80)
Qg 4.0e-07 5.9E-07 1.4E-06 5.8E-07 8.8E-07 1.1E-06
(2.85) (2.43) (3.51) (3.68) (3.23) (2.33)
a 0.107 0.215 0.077 0.114 0.134 0.086
(10.1) (6.24) (7.39) (9.10) (6.91) (5.61)
B1 0.894 0.790 0.899 0.876 0.837 0.894
(87.9) (27.7) (61.1) (62.3) (33.7) (42.4)
a1+ B 1.001 1.006 0.977 0.990 0.971 0.980
(1.6E-04) (3.02E-05) (7.91E-04) (4.99E-04) (1.48E-03) (1.15E-03)
Descriptive statistics for ;
mean | 6.77E-03 | 4.91E-03 7.22E-03 | 5.73E-03 | 4.85E-03 7.06E-03
(3.27E-05) (7.13E-05) (2.71E-05) (3.06E-05) (2.80E-05) (5.03E-05)
min 2.18E-03 | 1.84E-03 3.19E-03 | 2.53E-03 | 2.55E-03 3.69E-03

Estimated ¢-values (standard errors) in parentheses underneath parameter es-
timates 7, &, &1, f1 (Gq + (B1). For estimates of average volatility (6;) the

empirical standard errors are given in parentheses.
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Table 4: Tests on structural invariance of the GARCH(1,1)

DEM/USD DEM/JPY

kE\g 1 3 11 21 1 ) 11 21

0.1 | 48.0 36.0 26.7 20.2 10.2 7.29 5.93 4.83
0.2 | 44.2 33.2 24.6 18.6 15.3 10.9 8.88 7.24
0,3 | 15.7 11.8 8.74 6.59 5.72 4.09 3.33 2.71
0.4 |21.5 16.1 12.0 9.05 16.2 11.5 9.41 7.67
0.5 | 0.58 0.44 0.32 0.24 18.2 13.0 10.6 8.64
0.6 | 1.19 0.89 0.66 0.50 44.9 32.1 26.1 21.3
0.7 10.23 0.17 0.13 0.10 44.4 31.7 25.8 21.0
0.8 | 7.40 5.55 4.13 3.11 23.7 16.9 13.8 11.2
0.9 | 10.6 7.96 5.91 4.46 61.9 44.3 36.0 29.3

max | 48.0"* 36.0"* 26.7*** 20.2"* | 61.9"™* 44.3"* 36.0™* 29.3***

The LM-test is performed under the null hypothesis that the unconditional
variance is identical before and after £*100% of the sample. Centered and
squared error terms (€7) enter the test statistic. Its variances are estimated by
means of g Bartlett-weights. Critical values are 12.96, 14.82, and 18.84 for the
10%, 5%, and 1% significance level, respectively (Chu 1995). *** significant at
the 1% level.
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Figure 2: Changes of log DEM/USD-rates (upper panel) and estimated standard errors from
GARCH(1,1)-models under conditional leptokurtosis.
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Figure 3: Residuals of a linear autoregressive subset model for changes of log DEM/JPY-
rates (upper panel) and estimated standard errors from GARCH(1,1)-models under conditional
leptokurtosis.
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Figure 4: Implied volatilities (left hand side patterns) estimates for GARCH option prices with
FX-rates as underlying assets. Time invariant and time varying GARCH-specifications are
distinguished. Right hand side: Measures for two subsamples relative to the time invariant
model. The x-axis is the moneyness Sy/K of the option, Sy = 1.
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Figure 5: Implied volatilities for the time varying model relative to the time invariant model.
The x-axis is the moneyness Sy/K of the option, Sy = 1. Alternative maturities 7 are distin-
guished.
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