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Abstract

In a single index Poisson regression model with unknown link function, the index
parameter can be root-n consistently estimated by the method of pseudo maximumum
likelihood. In this paper, we study, by simulation arguments, the practical validity
of the asymptotic behavior of the pseudo maximum likelihood index estimator and of
some associated cross-validation bandwidths. A robust practical rule for implement-
ing the pseudo maximum likelihood estimation method is suggested, which uses the
bootstrap for estimating the variance of the index estimator and a variant of bagging
for numerically stabilizing its variance. Our method gives reasonable results even for
moderate sized samples thus it can be used for doing statistical inference in practical
situations. The procedure is illustrated through a real data example.
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1 Introduction

We address the problem of estimating the direction parameter and the regression function
in a Poisson single index model. The observed data (X;,Y;) € IR* x IN, fori = 1,...,n are
independent and the conditional distribution of Y; given the vector of explicative variables
X, is Poisson with parameter depending on Xj.

We moreover assume that we have a Single Index Model (SIM), defined by the following

condition:
36, € IR* : E]Y;|X;] = E[Y;| 50X, (1.1)

where fyz is the usual scalar product of two vectors from IR*. Note that, if we denote by

R(-) the regression function of ¥; on Xj, condition (1.1) is equivalent to:
R(@) = EIYi|X: = 2] = gy (6oa), (1.2
where gg, for 3 € IRF is defined as:
9a(2) = EIY:|BX, = 2] (13)

The unknown function gg,(-) is usually called the “link” function of the SIM. Since gg, is
identified up to a multiplicative constant, we choose, as usual (see, e.g, Sherman, 1994,
Hérdle, Hall, Ichimura, 1993), to fix the first component of Gy to 1. Another solution would
be to fix the norm of fy.

This kind of models has been extensively used in the literature in actuarial sciences, in
biometrics or in econometrics, but with a fixed link function in the framework of General
Linear Models (GLM, see McCullagh and Nelder, 1989). Here we focus on the problem of
estimating simultaneously the link and the parameters ( in the case of a Poisson Single

Index regression model:
Yi| X = 2 ~ Po(gs,(Box)) (1.4)

One of the most attractive approaches for estimating this kind of models is based on
M-estimation methods. Under only the condition (1.1), a consistent estimator 3, is defined

by maximizing with respect to § the empirical mean of some objective function W:

A

12 R
B = &Tgmﬂilxgzq’(%gﬁ,hn(ﬂ)(z’)), (1.5)
=1

where ggp,, is a nonparametric estimator of the function gg and h,, is a series of bandwidths

used in the nonparametric estimator, which tends to zero at some appropriate rate asn — oo.



Usually, the Nadaraya-Watson leave-one-out estimator of gz(5X;), is used in (1.5). It is
defined as:

22 i Kn, (BX; — BX;)
>z Kn, (BX; — BX;)

a5 (BX;) = (1.6)
where K}, (z) = h'K(x/h,) and K is a fixed kernel function (typically a symmetric prob-
ability function).

Many objective functions ¥ can be chosen and under general regularity conditions (Sher-
man (1994), Delecroix and Hristache (1999)), it is easy to prove that B3, achieves the root-n
consistency. The idea is based on the fact that, since ggp, converges to gg as n — 0o, we

have

A

B — argmng[W(K,gﬁ(ﬁXi)], (1.7)

at the usual root-n rate of convergence. The remaining point is then to analyze under which
conditions the limiting term on the right hand side of (1.7) is equal to the true unknown f.
Delecroix and Hristache (1999) have obtained the following general result: for any dis-

tribution for the vector (X;,Y;), the single index model assumption (1.1), implies that
B0 = arg g B 9V, g5 (5X,)
if and only if the objective function W is the log of some linear exponential density, that is:
U(y,m) = log f(y,m) = A(m) + B(y) + C(m)y, (1.8)

where A and C are twice continuously differentiable and m is the mean of the distribution
whose density is f(y, m).

In our problem here (Poisson regression), it is obviously the case if we choose as objective
function ¥ the maximum likelihood function. One can find in Delecroix and Hristache (1999),
asymptotic efficiency arguments justifying this particular choice. In this case, the function

U used in the maximization problem (1.5) turns out to be:
U(Y:. G (6X0) = Vilog(gi5,) (BX0)) — 955, (BX0). (L9)

The estimation procedure is also called “pseudo maximum likelihood” since the true unknown
link function gg, is replaced by some appropriate estimator of gg. From now on, in this paper,
we will keep this particular choice of objective function.

Once [y has been consistently estimated by solving (1.5), the regression function R(x) =

E(Y|X = x) can be estimated, in a second stage, from the nonparametric regression of Y; on



the estimated index Ban', using the Nadaraya-Watson estimator, which has the same form

as in (1.6), except that here, the ith observation is included in the sum:

Rn(x) = gﬁn’h{n(ﬁ/\nx)
— 2?21 Yi Kh;lSBan _Aan) (110)
Zinzl Khﬁl (6an - ﬁnx) ,

where h! is another series of bandwidths converging to zero such as }A%n(x) converges at the
~1/5

optimal rate of convergence in nonparametric regression, i.e., h!, = n

This two-steps approach of the M-estimation method presents the inconvenient that
two series of bandwidths h,, and h!, need to be chosen in advance. Practitionners know
how sensitive are the results, in nonparametric regression, to the particular choice of the
bandwidths and that the existing theoretical asymptotic formulae do not help too much.

An alternative approach to this bandwidth selection problem is proposed by Hardle, Hall,
Ichimura (1993), generalized by Delecroix, Hristache, Patilea (1999). They suggest an one-
step method for selecting the same bandwidth for the root-n estimation of Gy and for the
kernel estimation of the function R, by optimizing the objective function ¥ simultaneously
with respect to 8 and to h. The resulting bandwidth is again of order n='/. Thus, the
one-step M-estimation is defined as follows:

~

. 1 n (i
(B h) = argmax ~ 3" W[Y;, g5, (BX)] (1.11)
=1

)

~

and the estimator of the regression fonction is then given by (1.10) with the bandwidth h,,:

Ro(x) = g5, 1. (Bu). (1.12)
This approach seems to be attractive and coherent: the procedure gives in fact, for any given
value of 3, the optimal value for h by a cross-validation criterion on ¥, and the optimal value
of B can be derived.

The asymptotics of the above estimators is well-known (see e.g. Ichimura, 1993, Sherman,
1994, Delecroix, Hristache, 1999, Delecroix, Hristache, Patilea, 1999). In both cases (one-
step and two steps), under technical conditions on the joint distribution of (Xj,Y;), on the
smoothness of the functions gg, on the kernel K and on the bandwidths, one gets the almost
everywhere root-n convergence of Bn to 0p.

In our case of Poisson regression model, this result particularizes as follows:

V(B — o) = N(0,3), (1.13)
where
-1 _ 1 59&’(5)(0 595(5Xi>
Sl=E {gﬁooni) 08 |, 08T B_ﬁo} : (1.14)



As a consequence, Bn is asymptotically efficient, since it reaches the asymptotic semipara-
metric efficiency bound (see Newey, 1990, for a general formulation of the semiparametric
efficiency bounds in single index models).

To the best of our knowledge, the only existing result on the asymptotic behavior of
estimators of the regression function R(x) in this framework, concerns the one-step method.
Delecroix, Hristache, Patilea (1999) show that R, (z), as defined in (1.12), shares the follow-

ing property:
Vnhn (35,5, (Bn) = 93, (Bow) — Bow(Bow)) <= N (0, V (o)) (1.15)

where

w(z) = (K1/2) |9 (2) + 203, (2) F1, (2) a0 (2)]
V(2) = KoVar(Y | BoX = 2)/ f(2)
K, = /uQK(u)du

Ky = /KQ(u)du.

with f3, denoting the density of the true index §yX. For a Poisson regression, Var(Y |
BoX = 2) = g (2).

For the two-steps estimator of the regression, a similar property can be provided using the
approach of Hérdle and Stoker (1989) developed for the case when an Average Derivative
Estimator (ADE) of 3 is available. They show, indeed, that if B, is a root-n consistent
estimator of 8 and if A/ is a bandwidth of order n='/% used to construct the Nadaraya-

Watson estimator gz, , as in (1.10), then the resulting regression shares the property:

n2[35. 1 (Ba) — 950 (Bom)] = N (w(Box), V(Box)), (1.16)

where the bias w(fyx) and the variance V(fGyx) have the same expression as in (1.15). The
only difference with our framework is that they use, for 3,, an ADE, which is root-n con-
sistent but not asymptotically efficient and relies on the continuity assumption of each of
the regressors X. In our case, the M-estimator Bn does not rely on such condition and is
asymptotically efficient.

Using the above results for the one and two steps regression estimators, asymptotic con-
fidence intervals can be constructed for ]A%(x), but this involves the nonparametric estimation
of the density and regression function and their derivatives appearing in the bias and variance

formulae, which is not easy in practice.

The aim of our paper is threefold. First, we investigate, by Monte-Carlo experiments

the finite sample properties of the above M-estimators in the Poisson regression case. In
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particular, it appears that the one-step estimator performs better than the two-steps and
that the asymptotic results for the variance of Bm provided by (1.13), should not be used
unless a huge number of observations is available. In addition, in practical situations, the
derivation of this variance is often intractable and depends on many unknown quantities.
This suggests that a bootstrap approach could provide an easier approximation for the
variance of Bn. Secondly, for computing the one-step estimator with real data, we propose
a practical and robust method (with respect to the numerical instability). The solution
of (1.11) involves rather intricate nonlinear numerical optimization procedures which are
numerically unstable when trying to optimize simultaneously in § and in h. In particular,
direct search optimization procedures, like the simplex algorithm, provide local optima thus
that starting values are influential. The idea is to use the two-steps method for providing
the initial guess for the starting values of (3, h) in the algorithm and then to use a variant
of Breiman’s (1996) bagging method to stabilize the estimation of ;. The variance of
our estimator is estimated through a bootstrap method. Then, even for moderate sample
sizes, confidence intervals for [y can easily be derived. Finally, we illustrate our method by

applying it to real data.

The paper is organized as follows. Section 2 explains how the one-step and two-steps M-
estimation methods can be implemented. Section 3 investigates the finite sample properties
of our estimators in a particular Monte-Carlo scenario. Section 4 indicates how to perform
a bootstrap algorithm in this framework, in order to provide a numerically stable estimator
of By and reasonable estimates of its variance. Then Section 5 illustrates with a real data

example and Section 6 concludes.

2 Implementation of the M-estimation Method

2.1 The one-step method

As already pointed out, for the practical implementation of estimators in semiparametric or
non-parametric models, an important issue is the choice of the bandwidth parameter. For
the one-step method, the bandwidth is obtained, from a theoretical point of view, by solving
(1.11), which, for the Poisson regression, turns out to be:

(B ) = argmae = 3" i log(35,7(3X0)) — 5,(8%0)}. (2.1)

hB n -

The optimization can be performed on grids of values for 8 and for h but the procedure
would be very expensive in terms of computation time if these grids are too large. We

prefered to use a “direct search” algorithm based on the Nelder-Mead simplex idea which,



in fact, acts as a “dynamic” grid search. This algorithm needs reasonable starting values for
(Bm izn) because it provides local minima.

For Bn, an initial guess could be provided by the consistent ADE estimator when all the
explanatory variables X are continuous (see e.g. Powell, Stock and Stoker, 1989), then the
initial value for h,, could be obtained by cross-validation for this fixed value of Bn In the case
of discrete and continuous regressors, the initial guess values for # can be provided either
by the direct (noniterative) semiparametric estimation method proposed by Horowitz and
Hérdle (1996) or by the two-steps method described in the next section. The last approach,

which is easier to implement, will be followed below.

2.2 The two-steps approach

As presented above, the maximization problem (1.5) has to be solved using a fixed appro-

priate bandwidth A,. We propose to define an estimator Bn by solving, at a first step,

3, = LS~ Y og(65 (830) — 650 (X, 2.2
Bn = arg mgx n Z i Og(gﬁ,hn(ﬂ i) gﬂ,hn(ﬁ i) (2.2)

i=1

where h,, is a pilot bandwidth determined by an automatic adaptive rule. The rule is based
on the very simple idea that, for a given 3, the bandwidth used to estimate gg should be
optimal for estimating the marginal density of 3X . The advantage of this approach is that
in many cases, a simple and fast to compute rule of thumb is available. When a Gaussian

kernel is used, Silverman’s (1986) normal reference rule can be used:
hy = hpp = 1.06s5x n ™7, (2.3)

where sgx is the standard deviation of the values 5X;, ..., 5X,.

Plugging the value of h,, in (2.2) yields the estimator Bn Here again, the simplex direct-
search method could be used. From a numerical point a view, the optimization problem is
only in [ here, therefore, it is much more stable and faster than the one-step problem (2.1),
where we optimize in (,h). So here, many starting values for Bn can be tried to fix the
optimum of the objective function.

Formally, the rule of thumb (2.3) is optimal for estimating the density of X, only if the
random variable X is normally distributed, but in practice, this rule is a reasonable choice
for many distributions as far as they are unimodal. Note also that a robust version of (2.3)
is available (see Silverman, 1986). In addition, this rule provides the optimal order of n='/°
corresponding to the order for h,, in the one-step problem (see Delecroix, Hristache, Patilea,
1999). Finally, in the Monte-Carlo experiment, we will see that, in the chosen scenario, the

estimator defined by (2.2) performs pretty well even in moderate sample size. In any case,
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it provides a reasonable starting value for computing our one-step estimator. Note that in
order to solve (2.2), an initial guess for § could be provided by a parametric estimator (for
example, GLM).

The value of h,, needed to estimate the regression function is now obtained by solving,
at a second step:

n
~

ho=hg , = argm’?x%z{mog( D(BaX)) = 45 1 (BaX0) } (2.4)

i=1
which is a rather simple one-dimensional optimization problem. The two-steps method ends
up with the value of (Bn, izn) from which the regression function can be estimated by using
(1.10).

The two-steps method is much faster and easier to implement than the one-step method
described above since it tackles the optimization problem in (3, h) separately for 5 and for
h using the “trick” (2.3). This is of course true, when a simple rule is available to fix a
reasonable bandwidth for estimating the marginal density of 5X. If this is not the case, the
simple rule (2.3) could be replaced by either some cross-validation criterion for estimating
the density of X or by the Héardle and Marron’s (1995) rule for selection of the bandwidth
of a kernel regression. It is not clear then, if we would still gain any computing time, but we
would certainly gain in the numerical stability of the procedure. Indeed, the optimization
procedure to get (Bn, ﬁn) in (2.1) involves the computation of many Nadaraya-Watson type
estimators where the denominators, in (1.6), could be near or even equal to zero for many
observed (X; (in particular for some combinations of large # and small h), unless good
starting values for the variables are provided. This kind of numerical problem is avoided in
a cross-validation done for the density estimation of 3X. The properties of the two methods
are investigated and compared in the Monte-Carlo experiment described in the next section.
The one-step method behaves better, but the two-steps method provides also sensible results

for estimating both (3, and h.

3 Simulations

In this section, we investigate, by Monte-Carlo experiments, the finite sample properties
of the one and two-steps estimators from the perspective of estimating both the direction
vector By and the regression function R itself.

As far as the estimation of (3 is concerned, we evaluate the performances of our estimators

by computing, as usual, their Monte-Carlo bias, variance and MSE:
1 M
bias(3,) = Z (Bm — (3.1)
m:l
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M

MSE(8,) = Z (3.2)

m=1

M

Var( Z 3 (3.3)

where M is the number of Monte-Carlo replications and ﬁﬁbm) is the value of Bn obtained for
the mth sample of size n. These statistics will be reported in the tables below. To appreciate
and compare the values of bias(f,), it is useful to compute the Monte-Carlo standard errors
of the bias:

1 1

L Mooy A | Var(B,)
std(bias) = \/—M$ 1 mZ::1( n . — )% = 1 (3.4)

Finally, we will also provide the asymptotic distribution of Bn for our Monte-Carlo sce-
nario. This allows to compare these asymptotic results with the obtained Monte-Carlo sam-
pling distributions. We will compare the Monte-Carlo variances Var(Bn) with the asymptotic
efficiency bound given in (1.14) and perform some tests for the normality of the sampling

distributions of (3, for various finite sample sizes.

When the estimation of the regression itself is concerned, we have many choices to ap-
preciate the global quality of the fit. In what follows, we will concentrate on two measures
of the goodness of fit: the average squared error (ASE) and the average Kullback-Leibler
distance (AKL). The same kind of global measures of goodness of fit for Poisson regression
is used in Climov, Hart, Simar (2000).

Let fx denote the density of the covariate X, p be an arbitrary function from IR to IR
and let 3 be any k-vector. The L, distance between the true model (gs,, 5y) and a candidate
(1, B) is the integrated square error (ISE):

ISE(u, 8) = E{[M(ﬁX)_Qﬂo(ﬂoX)]z}
B /{[M(ﬂx) _gﬁo(ﬁoag)]Q} [x(z)dx

and an empirical version of it is given by the average squared error:

n

ASE(u, 8) = =3[ — g5 (B X)) . (3.5)

ni=1
This quantity can be evaluated for (p, 8) equal to the estimates (g5 ;, , Bn) obtained for a
given data file.

In the case of a Poisson regression, the Kullback-Leibler discrepancy between the true
model (gg,, fo) and a candidate (p, ) can be computed as:

s - el
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= [ {090) ~ o) + g0 tow 2 )

where fo(y; A) denotes the Poisson discrete density with mean A. An empirical version of it,

which does not involve knowledge of fx(z), is the average KL distance:

L& 950 (B0 X:i)
AKL(u, B) = — X; X;)log ==———1 . .
=3[90 — (50X + g 50 o L0 (3.6)
Again, this quantity will be be evaluated for (i, 3) equal to the estimates ( 95, ﬁn) obtained
for a given data file.
In the Monte-Carlo experiments, we will report the mean values of the ASE and AKL

over all the simulated Monte-Carlo samples.

3.1 Monte-Carlo set-up

The simulation scenario can be described as follows. The simulated data (X;,Y;), i =
1,...,n, are independent and identically distributed. X; is a bivariate vector having inde-
pendent components X;; ~ N (0,1), j = 1,2 and Y; is Poisson distributed with conditional
mean depending on the index Z; = (8 X;). The direction vector used to generate the data
is By = (1,9)7, where the first component of 3, is fixed at the value 1 for identifiability
reasons. Note that this scenario is not particularly favorable for the estimation of [y, since
most of the values of Z; are concentrated near zero. A uniform distribution for X; would be
more favorable. The main reason for choosing this particular scenario is that the required
mathematics for the evaluation of the asymptotical variance of ﬁn is not very complicated
in this case, so that we can come up with a final value of the asymptotical variance which
will be compared to the empirical value.

To describe the dependence of the Poisson conditional mean on the index Z, we choose

a quadratic link function:
90 (Boz) = (Box)*.

Increasing sample sizes were used, n = 50, 100, 200, 400, 800, 1000, in order to investigate
the asymptotics. Due to computing time limitations, we restrict the Monte-Carlo (MC)
experiment, to M = 500 replications. The Nadaraya-Watson estimates are computed with a
standard normal kernel.

The Monte-Carlo variances of Bn can be compared to their theoretical asymptotic coun-
terparts. In the Appendix A we evaluate the expression of the functions gg(f8x) in this set-up
which are used in Appendix B to compute the asymptotic variance of \/ﬁ(ﬂn Bo), as given

by (1.14). Tt turns out that, in our Monte-Carlo scenario the vector [y has only one unknown



component and we have:

1+

2=

(3.7)

3.2 Practical implementation and results

We carried out the estimation of h and 3 exactly as described in Section 2. Through all
the Monte-Carlo experiments, even with carefully chosen initial values, the highly non-linear
optimization procedures used here can produce local minima which are numerical outliers.
This numerical instability can be explained as follows. In the evaluation of the objective
function, many Nadaraya-Watson leave-one-out estimators (1.6) have to be computed, whose
denominator (and numerator) could be almost equal or equal to zero. This is particularly
true in our MC-setup since vey few points Z; are generated in the tails.

We propose to eliminate the MC-samples providing numerical outliers by an “automatic”
adaptive rule. At the end of the MC-loop, we eliminate the samples which provided outlying
values for Bn and /or for ?LTL. We define an outlier, as usual, as being a value outside the
whiskers of a boxplot: any value larger (smaller) than the 3rd quartile (1st quartile) plus
(minus) 1.5 times the interquartile range. This procedure is followed in all the simulations
done below and also in the boostrap algorithm of Section 4. The percentage of samples
eliminated by this method ranged from 2 to 8 % in our Monte-Carlo experiments, depending
on the sample size. The number of the remaining MC-samples in each case is reported in
the tables below.

3.2.1 Two-steps method

In Table 1, we present the performances for the estimation of 3y using the two-steps ap-
proach. Under the heading AVar and r we report the corresponding values of the theoretical
asymptotic variances computed with (3.7) and, respectively, the ratio of the empirical vari-
ance to AVar. We display also some information on the bandwidth values chosen at this
first step: the averages of all the MC-values of hj . computed by the rule of thumb (2.3) at
B, and their MC-standard deviations. We report also, for comparison, hg,, the theoretical
value of the corresponding bandwith provided by the same rule of thumb at the true value

Bo and for the true variance of Gy X in our chosen scenario:
ho = 1.06 \/Var(5oX) n Y% = 1.06 /1 4 83 n /°. (3.8)

From this table, it appears that the bias in estimating 3, is quite negligible when n
increases but the variance of our estimator is larger than the bounds given by the column

AVar, in particular for small n. We will see below that the one-step procedure behaves better.
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| B Pom | how [ MC ]

n bias std(bias)  Var MSE  AVar r | mean std
50 | -0.0606  0.0785  2.8463 2.8500 0.4100 6.94 | 4.3421 0.9345 | 4.390 | 463
100 | -0.0579  0.0371  0.6498 0.6532 0.2050 3.17 | 3.7968 0.4382 | 3.821 | 472
200 | -0.0018  0.0231  0.2593 0.2593 0.1025 2.53 | 3.3153 0.2458 | 3.326 | 488
400 | 0.0216  0.0145 0.1024 0.1029 0.0512 2.00 | 2.9036 0.1498 | 2.896 | 487
800 | -0.0098  0.0090  0.0391 0.0392 0.0256 1.53 | 2.5156 0.0862 | 2.521 | 483
1000 | 0.0043  0.0087  0.0368 0.0368 0.0205 1.80 | 2.4107 0.0769 | 2.411 | 491

Table 1: Monte-Carlo simulations: first-step estimation of By =9 in a two-steps procedure.
MC' is the number of the remaining MC-samples in the analysis from 500 replications.

In any case, this very simple estimator of 3y provides sensible results and can certainly serve
as a first guess for computing our one-step estimator.

The results of the second step are summarized in Table 2. The values of h,, were found
by a simple one-dimensional optimization procedure by solving (2.4), with h constrained
to be positive. We report the MC-averages of the optimal bandwidths, along with their
MC-standard deviations. The quality of the regression fit may be appreciated through the
MC-averages and standard deviations of the ASE and AKL criteria. These values will allow
a comparison with the performances of the one-step estimator below. It will be seen that
the performances of our two-steps regression estimator are less good but, still, they are quite
reasonable. Thus, the value of h,, obtained through this procedure can again serve as initial

value for the one-step algorithm.

n hn AKL(gﬁmflnaﬁn) ASE(gﬁn,]}naﬁn)
50 | 0.8924 (0.3210) | 0.3322 (0.1834) 62.9579 (32.8283)
100 | 0.6856 (0.1839) | 0.1728  (0.0490) 43.1134 (19.2534)
200 | 0.5780 (0.1308) | 0.1034 (0.0243) 29.9574 (10.5182)
400 | 0.4838 (0.0876) | 0.0603 (0.0117) 20.7421  (6.7120)
800 | 0.4099 (0.0543) | 0.0352 (0.0062) 13.6227 (3.9465)
1000 | 0.3988 (0.0543) | 0.0304 (0.0054) 12.2049 (3.4723)

Table 2: Results for the second step: bandwiths and goodness of fit measures: averages over
the MC-replications, standard deviations are between parenthesis.

Figure 1 displays the global performances of our two-steps procedure in terms of the
sample size n. We can see how the values Bn tend to be more and more concentrated around
the true value Gy = 9 as the sample size increases. Also, the box-plots of the values iln, AKL

and ASFE are more concentrated towards 0 as n increases.
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Figure 1: Two-steps procedure: boz-plots of the values of Bn, iLn,AKL and ASE, over the
MC=-replications. The sample sizes are n = 50, 100, 200, 400, 800 and 1000 respectively.

3.2.2 One-step method

The implementation of the one-step method follows the procedure explained in Section 2.
The initial values for § and h are given by the two-steps procedure described above.

Table 3 presents the results of the MC-experiment: the performances of Bn and the
average and standard deviation values of izn For comparison, the average values of the

optimal bandwidth izoom are also reported, where izoom is defined as:

n

7 1 ~(—1 ~(—1
Njom = aT8 max — > {Yi log(géo,;z(ﬁoXi)) - géo,ﬁ(ﬁoXi)} :

i=1

(3.9)

This is a simple one-dimensional optimization procedure, where A is constrained to be posi-
tive.

The results can be compared with those of Table 1. The two procedures (one-step and
two-stepss) seem to provide the same quality for the estimation of 3y as far as the bias is
concerned. But for our chosen scenario, the variance (and MSE), is better for the one-step
estimator, though the empirical MC-variances are still larger than the theoretical asymptotic
values AVar. The normality of the sampling distribution of B, is investigated below.

Table 4 presents the performance of the fit of the regression by reporting the averages
of ASE and AKL criteria, which can be compared with those obtained in Table 2 for the

two-steps procedure. In view of the AKL criterion, which is the most sensible performance
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[ B ho | Moo [ MC ]
n bias std(bias) Var ~ MSE  AVar 7 | mean  std
50 | -0.0063  0.0511  1.2407 1.2408 0.4100 3.03 | 0.8065 0.2819 | 0.8928 | 476

100 | 0.0137  0.0337  0.5422 0.5424 0.2050 2.64 | 0.6575 0.1891 | 0.6977 | 479

200 | 0.0115  0.0204  0.1966 0.1968 0.1025 1.92 | 0.5520 0.1285 | 0.5891 | 475

400 | -0.0107  0.0124  0.0746 0.0747 0.0512 1.45| 0.4751 0.0851 | 0.4904 | 483

800 | -0.0016  0.0087  0.0373 0.0373 0.0256 1.45 | 0.4118 0.0564 | 0.4114 | 489

1000 | -0.0120  0.0068  0.0218 0.0219 0.0205 1.06 | 0.3896 0.0514 | 0.3969 | 475

Table 3: Monte-Carlo simulations: estimation of By = 9 using the one-step procedure. MC'
1s the number of the remaining MC-samples from 500 replications.

measure in the Poisson setting, the one-step procedure provides, in our MC-scenario, slightly
better global fit of the regression than the two-steps approach but the order of magnitude

of the measures of the quality of the fit are comparable.

n AKL(gﬁn,ana ﬁn) ASE(gﬁn,ﬁna ﬁn)

50 | 0.2790 (0.0989) 59.3787 (28.1859)
100 | 0.1722  (0.0469) 43.3698 (17.9833)
200 | 0.1012 (0.0216) 30.0675 (10.3864)
400 | 0.0600 (0.0116) 20.9637  (6.9062)
800 | 0.0355 (0.0061) 14.0052  (4.0600)
1000 | 0.0300 (0.0049) 12.5413  (3.5662)

Table 4: One-step procedure: goodness of fit measures for the regression, averages over the
MC-replications, standard deviations are between parenthesis.

It is certainly worth to have an idea of the sampling distribution of Bn Figure 2 displays
the box-plots of the MC-values of Bn for increasing values of n. The picture does not show real
departure from symmetry for the distribution of Bn. Figure 3 shows the sampling densities
of the standardized 3,, i.e. VAVar—" (8, — () compared to the theoretical limit A/(0, 1).
Here, a substantial difference remains even for large n. The following Kolmogorov-Smirnov

test for the normality was performed:

Ho : \AVar~ (3, — By) ~ N(0,1). (3.10)

The p-values for the tests are equal to 0, 0, 1079, 0.0189, 0.0115 and 0.0478, for the sample
sizes n =50, 100, 200, 400, 800 and 1000 respectively: the asymptotic distribution is rejected
at any sensible level for n smaller than 400. This is mainly due to the underestimation of

the variance of Bn by AVar. For larger n, the p-values remain very small, for the same reason
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Figure 2: One step procedure: box-plots of the values of Bn, ﬁn,AKL and ASE, over the
MC-replications. The sample sizes are n = 50, 100, 200, 400, 800 and 1000 respectively

although for n = 1000, we are not far from the 5% level. This is important, since it shows,
at least in our MC-scenario, that confidence intervals or testing using the asymptotic result
could be misleading.

The same comparison is considered for the differences (Bn — Bp) standardized by the MC-
estimation of the variance. Figure 4 shows that here, the N'(0, 1) approximation is better.

The Kolmogorov-Smirnov test of normality confirms this impression. We test:

VVar=Y(3, — Bo) ~ N(0,1).

providing the p-values, 0.7555, 0.8844, 0.8546, 0.4718, 0.8620 and 0.0857, for n =50, 100,
200, 400, 800 and 1000 respectively. Here, the normality assumption of the standardized

Hy : (3.11)

error term cannot, be rejected even for n = 50, at the level 5%.

The message of this experiment is the following, the asymptotic result could not be used as
such, even for large values of n. In addition, it must be pointed out that the computations
of AVar, in Appendix A and B are usually untractable. So, in any case, the asymptotic
result is rarely usefull in practice. But the Monte-Carlo experiment suggests an alternative,
available for moderate to large values of n. Indeed, we can use a normal approximation for
the sampling distribution of Bn for doing inference on (3, but using a better estimator of its
variance. In practice, the most natural analog of the Monte-Carlo estimator used above is

the bootstrap estimator of the variance of Bn Such a bootstrap procedure will be described
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Figure 3: Estimated densities (solid lines) of Bn — By standardized by the asymptotic AVar,
in a one-step procedure, over the MC-replications, compared with the N (0,1) (dash-doted
lines).

in the next section.

4 A Bootstrap Algorithm

We will use the bootstrap for two reasons: first, we want to estimate the variance of our
estimator Bn and secondly, we would like to numerically stabilize its value. The latter
point can be viewed as a variant of the bagging (“bootstrapping and averaging”) procedure
proposed in Breiman (1996): we compute B bootstrap estimators {B;b,b =1,...,B} by
using the algorithm proposed below, then we eliminate the numerical outliers, by the same
procedure as above for our Mone-Carlo experiment. The final corrected estimator of [y is
Bc’n, the mean of the remaining bootstrap values. The variance will be estimated as usual
by Var(3:) the empirical variance of the remaining bootstrap values.

Then, due to the normality of the sampling distribution around the true value 3y, even

for moderate n, an approximate (1 — a) * 100% confidence interval for [, is provided by

Bo € [Bc,n + 2102V Var(ﬁ:;,)} : (4.12)

where z, is the g-percentile of a standard normal distribution.

The bootstrap algorithm could be done nonparametrically by drawing sample values with
replacement from the pairs {(X;,Y;),i = 1,...,n}, but we will gain in precision if we take
into account the semiparametric structure of the Poisson regression model. The algorithm

is described as follows:
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Figure 4: Estimated densities (solid lines) of Bn — By standardized by the empirical variance
Var((3,), in a one-step procedure, over the MC-replications, compared with the N'(0,1) (dash-
doted lines).

[0]

[4]

With the original sample {(X;,Y;),i = 1,...,n}, compute the initial estimates by using
the procedure of Section 2: an initial guess for (5y, h) given by the two-steps procedure
(2.2) and (2.4), then the one-step estimator by solving (2.1). This provides 3, and h,,.
Set the bootstrap counter b = 1.

Generate a sample of vectors {X* i = 1,...,n} by sampling with replacement in
the original sample values {X;,i = 1,...,n}. Estimate the regression function at the

obtained points:
3" = 05,5, (B.X7), i= 1.,
by using the Nadaraya-Watson formula (1.12).
Generate the values of Y;** as a Poisson r.v. with mean g;°, fori=1,..., n.

Compute the bootstrap estimates ( A;“Lb, fz;‘ff’) with the bootstrap sample { (X, Y;**), i =
1,...,n}, by solving the one-step problem (2.1) with (Bn, izn) computed in step [0], as

starting values for the optimization algorithm.

Repeat the loop [1]-[3], for b= 1..., B. This provides the empirical bootstrap values
(B ). b=1...,B}.

After this bootstrap loop, we compute Bqn, the mean of the bootstrap values not considered

as numerical outliers due to the outlying value of either 5% or h**. Then, h,.,. the value of h
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corresponding to Bw, is provided by cross validation, by solving the simple unidimensional
optimization procedure (2.4) at the value Bc,n.

The procedure is illustrated with one typical sample of our Monte-Carlo scenario, with
n = 100 and B = 500 bootstrap replications. The estimation of 3, provided at the initial
step [0]is 3, = 9.2643 and h,, = 0.7732. The bootstrap correction (10% of bootstrap samples
considered as outliers) is Bc,n = 9.2288 and fzcm = 0.7714. In this case, the corrected values
are similar to the original ones, but the corrected values are much more numerically stable.
The bootstrap provides also an estimator of the variance. We obtain here Var(B;) = 0.8063.
The corresponding 95% confidence interval for gy is [7.4689, 10.9887].

The estimate of the regression function with the same sample, is displayed at Figure 5:
the top plot is not available in practice, with real data, since both 5y and ¢ are unknown.
The estimate in the bottom plot behaves reasonably well, as expected from our Monte-Carlo
experiment, in the preceding section. Notice the bad behavior of our estimate in the tails:
this is mainly due to our chosen scenario for generating the values of X;, there are very few

observations near the borders.
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Figure 5: Estimation of the regression function for one typical sample of size n = 100 in our
Monte-Carlo scenario. Top plot: the true functionAzQ, the dots are the pairs (BoX;, Y:) with
Bo = 9. Bottom plot: the estimate 9o v With Ben = 9.2288, h.,, = 0.7714, the dots are

the pairs (ﬁAc,nXi, Y:).

Of course, we cannot draw final conclusions after this illustration with one particular

sample, even if we tried many other generated samples obtaining essentially the same results.
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The bootstrap algorithm for n = 100, with B = 500, took 2h40min on a Pentium III, 450
Mghz machine, using Matlab.

5 An Illustration with Real Data

We applied the method described in Section 4 to a real dataset! containing the number of
suicides in n = 121 Austrian municipalities (Carinthia region) from 1980 to 1995, which
represents the response variable, denoted by Y. The dataset also contains demographic and
geographic information about every municipality for the year 1991, which is a census year.
The idea is to explain the variation of the number of suicides by some socio-demographic
explanatory factors. In this study we considered three explicative variables: the difference
between the migration to and from the municipality (X;), the mean altitude measured from
the sea level (X;) and the density of the population (X3). Two municipalities (Klagenfurt
and Villach) with outlying values for the population density and the migration variables
were excluded from the dataset. The plot of the 119 remaining observations from the Fig-
ure 6 gives a quick representation of the two-dimensional associations between the chosen
variables. Increasing the density seems to increase the number of suicides. As expected,
the municipalities with high population density are mostly located at lower altitude and
correspond to cities with positive migration gradient. The apparent negative effect of the
altitude X5 on Y may be due, in part, to an indirect effect of the density Xj.

Assuming that these data were generated by a Poisson SIM, defined in Section 1, the
statistical problem is to estimate the link function and the parameters of the linear index
BoX = Bo1 X1+ Bo2Xa + B3 X3. As explained above, for identifiability reasons, we choose to
fix o1 = 1, so that only the last two components of X have to be estimated. In order to
facilitate the relative comparison of the effects of the explanatory variables, the X-values have
been standardized to have mean 0 and variance 1. The magnitude of 3y;, j = 2, 3 measures
the change in X, in standardized units, required to match the effect of a standardized unit
change in X;. Let 3, denote the estimator of the vector (Boa Po3)-

We first evaluated the index parameter using the parametric GLM model with exponential

link function (this a parametric model often used in this situation):
Y|X =2 ~ Po(exp(5X)),

where 85X = Boo + Bo1 X1 + B2 Xz + B3 X3. The GLM estimator of By is Bery = (2.5728 —
0.2751 —0.2971 0.3620) with corresponding estimated variance (0.0007 0.0004 0.0009 0.0003).

!The data set was kindly provided by Martin Weichbold, Institut fiir interdisziplinire Tourismusforschung
- Universitat Salzburg. A more substantial study on the evolution of the number of suicides in Austria can
be found in Ziegler, Bachleitner and Arminger (1995) or Haller and Lingg (1985).
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Figure 6: Draftman plot for the 4 variables considered.

The estimator of the asymptotic variance of BG v was computed as the inverse of the hessian

—9%n(YiBcrm)
opos’

ing 95% confidence intervals are [2.5207, 2.6249], [—0.3132, —0.2369], [—0.3553, —0.2390]
and [0.3298, 0.3942] for Boo, Bo1, Boz and respectively [p3. Here, we can write the GLM

index estimator as follows:

matrix: { , where £, is the sample log-likelihood under GLLM. The correspond-

2.5728 — 0.2751(X; + 1.080X, — 1.316X3),

such that the expression between the parenthesis can be directly compared to the SIM index
estimator obtained below.

For the semiparametric approach, we obtain the following results. At the step [0] of the
algorithm described in Section 4, we used the parametric GLM estimate (1.080 — 1.316)
as starting value. The two-steps method provides the estimators Bn = (0.3078 — 1.5598)
and ﬁn = 0.3061. Then, the one-step method provides the initial estimates Bn = (0.6862 —
1.5648) and Bn = 0.0657. Using these last values for the semiparametric bootstrap procedure
described at the steps [1]-[3], with B = 500, we obtain the corrected final values Bc,n =
(0.6853 —1.5614) and fzc,n = 0.0847. Here, 21.8% of the bootstrap samples were considered
as outliers. This number of outliers is higher than what we obtained in our Monte-Carlo
sample from Section 4, in part because of the higher dimension of the parameter vector.

The bootstrap estimator of the variance is Var(3},) = 0.0006, Var(3};) = 0.0004. The
corresponding 95% confidence intervals are [0.6360,0.7347] and [—1.6027, —1.5201] for Bye
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and respectively for Gys.

In the Monte-Carlo setup of Section 4, the semiparametric bootstrap is well suited because
we know the real data generating process and the real value of 3,. With real data, a
nonparametric bootstrap is certainly more robust concerning the Poisson hypothesis and
less dependent on the one-step estimated value of 3 coming from the original sample. In
this case, at step [1] we generate a sample of vectors (X, V)i =1,....n by sampling
with replacement in the original sample values (X;,Y;),i=1,...,n. Here, the one-step
initial parameter estimate serves only as a starting value for the optimization process in the
bootstrap loop. The nonparametric bootstrap procedure, with B = 500, gives corrected final
values comparable to those obtained using the semiparametric bootstrap: Bc,n = (0.6915 —
1.5542) and iALC,n = 0.1203. Here, only 10% of the bootstrap values were considered as
outliers. The bootstrap estimator of the variance is Var(3%,) = 0.0022, Var(3%;) = 0.0007.
The corresponding 95% confidence intervals are [0.6006, 0.7824] and [—1.6058, —1.5026] for
B2 and respectively for (ys.

As far as the estimation of 3 is concerned, we can conclude that the order of magnitude
of B is the same for the parametric and the semiparametric approach. In the light of the
confidence intervals obtained by the GLM approach, the migration X; and the altitude Xs
have a negative significant effect (at 5%) on the number of suicides Y, whereas the density
X3 has a positive significant effect on Y. The variable X3 has the most important effect on Y
among all. These results agree with what we have already observed from the draftman plot
of Figure 6. They also agree with those given by the SIM approach, with the only difference
that for SIM, the estimated coefficients must be interpreted, as we already pointed out above,
relatively to the effect of X;. Thus, the SIM index estimator says that X5 has a contribution
0.6853 times larger than the contribution of X; on Y, in the same sense as X;. The effect
of X5 onY is 1.5614 times larger than the effect of X, in the opposite sense as Xj.

The estimate of the regression function is displayed in the Figure 7: the top and middle
plots show the Nadaraya-Watson estimator g[f;c’m hon based on the SIM index estimator using
the semiparametric and respectively the nonparametric bootstrap procedures. The bottom
plot gives the estimated parametric exponential link exp(BG v X ), based on the GLM index
estimator. Note the fluctuating Nadaraya-Watson estimator, especially at the left extremity,
where only a few points are available. These points correspond to the municipalities with
extreme high values of density X3, which can also be observed in the right column of Figure 6.

Climov, Hart and Simar (1999) have pointed out that the optimal value of A minimiz-
ing our criterion (2.1) might undersmooth the estimate of the regression function: this is
certainly the case here. A more smooth nonparametric estimator could be obtained by min-

imizing, at the final step of the algorithm, a so-called “Double Smoothing” criterion, which
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prevents undersmoothing in small or moderate samples (see Climov, Hart and Simar, 1999,
for details). We used it at the final step and obtained a higher value for the final bandwidth:
ﬁcm = 0.3475. The Nadaraya-Watson estimator, using this last value of h, is represented in
the Figure 8 in the top plot, together with the exponential link of the GLM, in the bottom
plot. The semiparametric estimator and the parametric estimators have a comparable shape
in the right region where enough data points are available. The difference between the two
link function estimators at the left extremity is due to the sparseness of the data and to
the presence of three influential points (which represent cities having low values of Y for
the corresponding high values of density X3). For this particular dataset, a method using
a local smoothing parameter would be indicated, in order to account for the regions with
different number of points. For example, the method of Hardle and Marron (1995) could be
used with two blocks (one for the left region with very few data and a second block for the

right region) for computing the bandwidth.

150

Figure 7: Regression function estimate: the upper and middle plots present the estimate based
on the SIM using the semiparametric and respectively nonparametric bootstrap approach and
the lower plot shows the estimate based on GLM.

To see how well a regression estimate fares on a dataset, we used two performance mea-
sures: the Poisson deviance and the Pearson X? statistic. The Poisson deviance is defined
as twice the difference between the maximum likelihood achievable (in the full model with

as many parameters as observations) and that achieved by the model under investigation
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Figure 8: Regression function estimate with the final h minimizing the Double Smoothing
criterion: the upper plot presents the estimate based on the SIM using the nonparametric
bootstrap and the lower plot shows the estimate based on GLM.

(see McCullagh and Nelder, 1989). Here we will only consider the second part (as the full
likelihood is the same for both SIM and GLM models), i.e.

Dl ) = - Y ln(8X) - Vilogn(aX)], (513

The other measure of discrepancy is the generalized Pearson X? statistic, which takes the

form:
1 Y —p(BX)]?
n 2 VuEx)

where V(u(6X;)) is the estimated variance function for the distribution concerned. In our

DC(”) ﬁ) =

(5.14)

case, for a Poisson distribution with V(u) = g, we obtain the original Pearson X? statis-
tic. These two deviances are evaluated for (u,3) equal to the SIM and GLM estimates
(gﬁmﬁw, Bcn) and respectively (exp(ﬁGLMX ) BGLM) obtained above.

For the SIM, using the semiparametric bootstrap approach, the Poisson deviance is
—30.5818 and the Pearson X? deviance is 2.8898. For the nonparametric bootstrap ap-
proach under SIM, the Poisson deviance is —30.3168 and the X? deviance is 3.5498. For
GLM we obtained —28.5501 and 7.4653 for the Poisson and respectively the Pearson X?

deviances.
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In the light of these deviance values and of the Figures 7 and 8, these results can be
interpreted as follows. The deviance values measure how well a regression estimate fits
a dataset but they give no information concerning the smoothness of the estimate. In
estimating the link function, a crucial step is the choice of the smoothing parameter, which
involves the usual compromise between a model’s smoothness and how closely it fits the data.
So, in order to compare different link function estimators, two aspects have to be taken into
account: the smoothness and the fit to the data. The nonparametric regression estimator
based on criterion (2.1) gives the “best” fit (the smallest values for both the Poisson and
the Pearson X? deviances), but it is very unstable, it tends to interpolate the data. The
nonparametric regression estimator with the final A given by the Double Smoothing criterion
presents an acceptable degree of smoothness. For this application, in the view of Figure 8
and of the deviance values, it appears that the exponential link function describes well the
data, especially for the municipalities with small or moderate values of density (the right part
of the plots). The negative values of the index estimator z correspond to large cities, with
high values of the density variable X3 and this part is less well explained by the exponential
model. Here, the nonparametric regression estimator fits the observed data better than
its parametric counterpart, which we expected given the flexibility of the semiparametric

modelisation.

6 Conclusions

We investigate by a simulation experiment, the finite sample properties of Bn, the maxi-
mum likelihood index estimator in single index Poisson regression model. We also propose
a comparison of a two-steps and a one-step method. The one-step method provides better
estimates but the two-steps method may be useful for providing initial values of the pa-
rameters in the numerically intricate optimization procedure. The asymptotic normality is
achieved even with moderate sample sizes.

The numerical instability of the method, inherent to single-index semiparametric estima-
tion, is corrected by using a variant of the bagging method. This gives a numerically robust
estimator of the index vector. The bootstrap loop is also used for providing a reasonable
estimator of the variance of our index estimator. Inference is then available, even with mod-
erate sample sizes, using the normal approximation. The procedure is illustrated with a real

data example.
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Appendix

A Derivation of the gs(8z) functions in the Monte-
Carlo scenario

The Monte-Carlo set-up was defined in Section 3.1. In this appendix, we derive the analytic
form for the functions gz(z1 + fx2) = E(Y| X1 + BXo = 1 + fza).
The joint density of the vector (X7, Xs,Y) evaluated at (xq, o, y) is

exp(—gg, (z1 + 50;!2))%’0(331 - 603:2)ny($1,3:2) (A1)

[xy (@1, 22,y) =
Consider the following linear transformation: (Xi,7,Y) = (X3, X7 + 5X3,Y). The joint
density of the transformed vector evaluated at (1, z,y) is

1 Z— @I

BfXY(xla T? y).
The conditional density of Y given Z = z is then:

exp(—g, (21 +80 =21 )) g3, (w1480 Z=22)] _
f 0 By! [ 0 B ] fX(l'l, ngl) dxl

exp(—9ga, (T1+B0Z52L))| g5 (m1+ﬁoz 1) _
ZyENf . yl [ . } fX(xlaZﬂm])dxl

By interchanging the order of integration and summation, as all the functions involved are

positive and integrable, we have:

P(Y =y| X1+ X, = 2) (A.3)
_ /eXp(_Qﬁo( Z!»gﬂo( 3 ) r(th’ ﬂ)dl‘l

where

fx(z1, =7)
| fx (@, =5 )day

Now, the link function gz has the following expression:

r(x1,2,0) =

gs(z) = E[Y|X1+ Xy =7]
= Y yPY =y[Xi + 38X, = 2)

yeN

Sy 54) |95 (2

yeEN y!

exp gﬁo

z—/;cl )]y
r(zy, 2, B)dz;.
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By interchanging again the order of integration and summation we obtain:

z — T

g

When X; and X, are two independent N (0, 1) variables , r(x1, z, 3) has the following

expression:

95(2) = /gﬁo (xl + Bo ) r(z1, 2, B)da;. (A.4)

r(x1, 2, 0) =

Too [ 3 (s + (57 e

which, after some calculations may be written as

2

( 3) 1 1 1 ( z )
r(z1,2,0) = ——=———=exp |—— |01 — 55—
VI e T B

The ratio r(zy, z, 3) is thus the density function of a normal variable, say U, evaluated at

2z 3
UNN<62+1’62+1>'

x1, where

Substituting into (A.4), we have

98(z) = E lgﬁo (U + o’ TBU)] : (A.5)

Now, for the “true” link function gg,(z) = 2% we may deduce the form of the gz functions

for any value of j:

95(z) = E[Y]Xi+ X5 =2

- @Z_ 2

= E[(U+B( U))]

(8- 5)? BB+ 117

— 7ﬁ2+1 +[Zﬁ2+1] (A.6)

Note that if 3 = 8, we obtain gz(z) = 22, hence we recover the “true” link function.

B Derivation of Var(3,) in the Monte-Carlo scenario

JFrom equation (1.14), we know that, in order to derive the value of ¥ we have to compute
(see A.6):

4 _ 9 [ (B=5)’ BB +1]
a5 9s(Bz) = a3 {W + l(Xl + ﬁXz)W] } :
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and determine the resulting value for 3 = 3. It is clear that

vanishes for § = [y, and thus we have:

9

0
o=y 00

= 2(X; + (o Xy) {X2 + (X1 + ﬂX2)ﬁ b }
o T

(6z)

= {2(X1+ﬁX2)650+1}

P

{(Xl + ﬁXQ)ﬁ/BO i 1}

71

B=Po B=Po

Xo
G +1

= 2(Xy + (o Xy) { — Bo

)

It follows then from (1.14) that:
So— Bl L x4 X2 (-2 g 2
a (X1 + BoXy)? b G5 +1 050 + 1

— X2 :
_'4E{Q%+1_5%%+1)}

In our simulation setting we considered X; and X, are two independent normal variables,

thus the distribution of the linear combination above is

1 B 1
X, — X, ~N(0,—— ],
1+327 1+, ( 1+5§>/

4
1465
We thus obtain that for the SIM with Poisson conditional distribution, the asymptotic

so that,

variance of the PML estimator Bn has the following expression:

Vi — ) -5 (0, ) (B.1)
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