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The relative importance of group-level e®ects on

the performance of German companies¤

Ste®en Brennery, Olaf Bunkez, Bernd Drogez; Joachim Schwalbachy

November 7, 2001

Abstract

We examine the impact of performance groups on the estimation of the

relative importance of ¯rm, industry and other e®ects on corporate perfor-

mance. Performance groups comprise ¯rms from the same industry with a

similar performance over a longer period of time. We present a statistical

method which improves the procedure of variance decomposition by allowing

¯rm e®ects and the interacting e®ects of ¯rms and time to be uni¯ed into the

group e®ects. Applied to a German data set of 219 companies observed over

a period of eleven years (1987-1997) it appears that the majority of the ¯rms

can be ascribed to performance groups. The variance proportion of the group

e®ects is about one half of the non-grouped ¯rm e®ects. They explain about

17.9 percent of the total variance of the returns.
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1 Introduction

This article builds upon the recent literature on the relative importance of ¯rm,

industry and other e®ects on corporate performance. The debate which provides

the motivation for this line of research was initiated by the paper of Schmalensee

(1985). His study is descriptive and does not aim at discriminating between the-

ories. Rather, it addresses the question of which paradigm is potentially the most

fruitful to deliver a consistent theory of corporate performance. Mainly, the preva-

lent paradigms of the following disciplines were considered to be competing in this

arena: the traditional Industrial Organization (IO), the modern theoretical Indus-

trial Organization, and the Strategic Management. The traditional IO emphasizes

the structural characteristics of industries like growth and the degree of concentra-

tion as determinants of corporate performance. The modern theoretical IO, however,

focuses on market shares and other partially ¯rm-related concepts while the Strate-

gic Management scholars consider the speci¯c resources of a ¯rm to be important

performance predictors.

In order to assess the relative importance of the several research agendas it

was analyzed how much of the variance of ¯rm performance could be attributed to

industry e®ects, to the market share, and to ¯rm speci¯c e®ects.1 Using a cross-

section of the 1975 FTC LB data on the manufacturing sector Schmalensee showed

that with about 20 percent of the total variance of the ¯rm performance the industry

e®ects explained more than ¯rm and market share e®ects. This was interpreted

as supporting the view that industry is important but not the only in°uence on

corporate performance.

The article provoked much criticism towards the choice of the data set and the

estimation procedure. Rumelt (1991) extended Schmalensee's sample for another

three years of data (1974-1977) which allowed him to distinguish not only between

industry and corporate-parent e®ects but also between the error term and the e®ects

of the business units. Further, he allowed business units to enter his data set which

1If data on business units are available, the ¯rm e®ects are divided into corporate parent and

business unit e®ects.
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did not meet the size criterion of Schmalensee. In this case, the e®ects of the

lines of businesses explaining about 45 percent of the ¯rm performance variance

dominated clearly the transient and intransient industry e®ects which accounted for

about nine to sixteen percent. The corporate parent e®ects were shown to be small

in comparison.

Subsequent studies were based on much larger data sets, more sophisticated

estimation methods, and a greater variety of performance measures (Hansen and

Wernerfelt 1989, Roquebert, Phillips, and Westfall 1996, McGahan and Porter

1997, McGahan 1999, Brush and Bromiley, and Hendrickx 1999, Bunke, Droge,

and Schwalbach 2000). If we take stock of the estimation results of those studies

the following stylized facts can be put forward: Industry matters, but to a much

larger extent business units do. Temporal e®ects are consistently found to be rather

small. With respect to corporate parent e®ects the results are equivocal. Another

approach was used by Cubbin and Geroski (1987) who considered the dynamics of

¯rm's pro¯tability. They found a large degree of heterogeneity within the industries

in the sense that about ¯fty percent of the companies pro¯tability changes could

not be attributed to industry-wide dynamic factors.

Schmalensee and his successors may be criticized for assessing two rather ex-

treme views on economic ¯rm behavior for their ability to predict pro¯t rates: One

which ignores ¯rm-speci¯c sources of pro¯t variation versus a view which neglects

performance determinants on the industry level. Intermediate concepts introduc-

ing some homogeneity between ¯rms and some heterogeneity within an industry,

respectively, were not considered.

The most popular concept in IO and Strategic Management of this kind is the

concept of strategic groups. Strategic groups are de¯ned as collections of ¯rms

whose performance is in°uenced by group characteristics after controlling for ¯rm

and industry e®ects (Dranove, Peteraf, and Shanley 1998).2 In the literature, the

relationship between strategic group membership and ¯rm performance is a central

2Previous studies on strategic groups (Hunt 1972, Porter 1979) focussed on clusterings along

the relevant strategic dimensions of an industry. However, Dranove, Peteraf, and Shanley (1998)

argue that by doing so one is not able to distinguish between ¯rm and group e®ects of performance.
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issue. From the twenty papers surveyed by Thomas and Venkatraman (1988) ¯fteen

are committed to the analysis of this relationship. Thus, one might be well advised

to discuss the strategic group concept within the debate on the relative importance

of ¯rm and industry e®ects on ¯rm performance.

Considering group e®ects could make a big di®erence for the estimation of the

relative importance of the various e®ects. Assuming that the relationship exists

between strategic group membership and performance at least for some industries,

it might turn out that industry e®ects disappear when allowing for group e®ects

because high performing industries consist of some well protected high performing

groups. On the other side, it might be the case that within industries heterogeneity is

attributable to some di®erently performing groups and thus, ¯rm e®ects are upward

biased if groups are neglected.

Up to now it is still not clear which relative impact strategic groups have on the

performance of a ¯rm. The literature on the performance e®ects of strategic groups

cannot provide an answer to this question. Those studies are inherently limited in

their ability to deliver such a decomposition of the pro¯t rate variance because to

accomplish that large scale data sets are necessary.3

The present paper aims at ¯lling this research gap by extending the study of

Bunke, Droge, and Schwalbach (2001) who neglected group phenomena. However,

because of several reasons which are discussed in the following section we do not

assess the relative importance of strategic groups directly. Instead, we use the con-

cept of "performance groups" introduced by Wiggins and Rue°i (1995). Besides

strategic groups, they comprise every clustering of equally performing ¯rms within

an industry. The data set consists of 219 German companies observed over a period

of eleven years (1987-1997). The companies cover a wide range of industries from

non-¯nancial sectors. The performance measure is returns on sales. Applying a vari-

3The majority of the empirical studies testing theories of strategic groups are industry speci¯c,

i.e. particular industries were considered where background knowledge was used to extract the

relevant strategic dimensions of the industry. Then clusters of ¯rms were detected by di®erent

methods. Finally, it was tested if the average pro¯tability di®ered signi¯cantly between or within

groups (for surveys see Barney and Hoskisson 1990, Thomas and Venkatraman 1988, McGee and

Thomas 1986).
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ety of methods, we ¯nd that a large fraction of the ¯rms have a similar performance

after controlling for other e®ects. Hence, they can be grouped into performance

groups. This supports the hypotheses that there may be concepts between the level

of ¯rms and the level of the industry which are able to explain a considerable share

of the ¯rm performance.

The study proceeds as follows. The next section gives a short overview over the

literature on strategic groups and introduces the concept of performance groups.

Then, we present the statistical method in Section 5.3. The data set and the em-

pirical results are reported in Section 5.4 before the paper is concluded.

2 Performance groups

In the literature, there are several explanations for the appearance of strategic

groups. The ¯rst one refers to the existence of mobility barriers within an indus-

try (Caves and Porter 1977). This concept is an extension of the entry barriers of

Bain (1956). Essentially, mobility barriers prevent ¯rms from freely changing group

membership, thus protecting higher performing groups from potential competition.

The second, more recent concept, focuses on the perceptions of the managers whose

cognition tend to simplify industries by mapping it into groups of ¯rms (Porac and

Baden-Fuller 1989, Fombrun and Zajac 1987, Reger and Hu® 1993, Lant and Baum

1995, Hodgkinson 1997, Osborne, Stubbart, and Ramaprasad 2001).4 A third con-

cept combines the level of strategic interaction between ¯rms with the mobility bar-

riers concept (Cool and Dierickx 1993, Peteraf 1993, Dranove, Peteraf, and Shanley

1998).

From models of the ¯rst stream of research it can directly be deduced that

performance consequences exist for group membership (Porter 1980). In the latter

class of models, group membership may have consequences on intermediate outcomes

such as the level of rivalry (Smith, Grimm, and Wally 1997, Cool and Dierickx 1993),

the group's reputation (Ferguson, Deephouse, and Ferguson 2000), and the groups's

identity (Peteraf and Shanley 1997) which may result in performance di®erentials

4Bogner and Thomas (1993) integrate both views into one theoretical framework.
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between groups.

However, there is only weak empirical evidence suggesting the group membership-

performance relationship holds (Barney and Hoskisson 1990, Thomas and Venkatra-

man 1988, Cool and Dierickx, 1993). Furthermore, Barney and Hoskisson conjec-

tured that due to methodological problems both basic assertions of strategic group

research are untested: ¯rst, that strategic groups exist, and second, that strategic

group membership has performance implications. This made obvious the critical

state of strategic group research. The main points of concern are the lack of theory

about when strategic groups will emerge, the application of clustering algorithms

which virtually always produce groups of ¯rms whatever data set is explored, and

the misleading interpretation of performance di®erences between groups as a result

of mobility barriers (Barney and Hoskisson 1990). Hence, if studies detect group

e®ects of performance it remains unclear if those e®ects are due to the existence

of mobility barriers between strategic groups, cognitive mapping mechanisms, or if

they are just statistical artifacts.5

Wiggins and Rue°i (1995, p. 1636) circumvent these problems by not selecting

strategic groups ex ante as usual but by referring to "performance groups" which are

de¯ned as "set[s] of ¯rms whose performance levels are statistically indistinguishable

from those of other ¯rms in the group but are distinguishable from the performance

levels of ¯rms in other performance groups." If performance groups are detected in

a short period, then it is tested if those groups are stable over a longer time period.

This re°ects the idea that group membership requires temporal stability. When

stable performance groups are discovered, further research is required to explore

the reasons for their existence. Of course, performance groups and strategic groups

are not necessarily congruent. However, the existence of performance groups is a

necessary condition for the existence of di®erently performing strategic groups.6 If

performance groups are not detected, this can be interpreted as a case against the

5Nonetheless, there have been e®orts to develop cluster analysis further as a reliable method in

Strategic Management (Ketchen and Shook 1996).
6Note that we concentrate on horizontal groups of ¯rms from the same industry. Vertical

interindustry groups are neglected in this study.
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existence of strategic groups. Indeed, Wiggins and Rue°i did not ¯nd evidence for

the existence of strategic groups in their analysis of ¯ve industries.

We follow Wiggins and Rue°i by considering performance groups instead of

strategic groups in our analysis. Our statistical procedure is di®erent. In search

for performance groups, Wiggins and Rue°i discriminate between ¯rm clusters of

di®erent pro¯t distributions by applying iteratively Kolmogorov-Smirnov tests. The

drawback of this procedure is that nothing can be said about its reliability. The

error of the grouping is the result from the errors made at each single step of the

procedure. Hence, it is not clear how large the error is that was made during the

whole procedure, since the signi¯cance level (® = :05) used for the tests at each

step can only be regarded as some tuning parameter. Signi¯cance tests testing the

equality of average returns also seem to be inadequate statistical methods from the

point of view that ¯rms forming a performance group should not necessarily have

exactly identical average performances, the performance di®erences having to be

small in some not well-de¯ned sense. Furthermore, the considered tests are non-

parametric in nature but rely on rather few observations for each ¯rm. Moreover,

these observations, although obtained for consecutive years, are treated as indepen-

dent replications, which does not seem to be always reasonable. Finally, as in any

procedure based on iterative testing it remains unclear how the obtained grouping

takes into account the objective of the analysis. Con¯rming the resulting groups by

some discriminant function analysis may not be su±cient to completely overcome

these drawbacks. In contrast, our method considers simultaneously (almost) every

possible grouping of ¯rms within each industry. Then, the grouping of ¯rms with

similar performance is chosen which is optimal with respect to some criterion pre-

sented later. This criterion re°ects clearly the objective of the analysis and, hence,

the procedure provides a result which is optimal (in a certain way). The next section

describes our method in more detail.
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3 Methods

As performance measure we observe the returns on sales rikt of ¯rm k's activity in

industry i at time t. Throughout this paper we will assume that the returns are

uncorrelated and have variances which may depend on the ¯rm and industry, but

not on time. Hence, the expectation and variances of the returns may be denoted

by

E(rikt) = ¹ikt and V ar(rikt) = ¾
2
ik ; (1)

respectively, with i = 1; : : : ;m; k = 1; : : : ; ni; t = 1; : : : ; T ;
P
i ni = n and N =

nT .

If the impact of certain e®ects on the performance is investigated, one uses typ-

ically analysis of variance models which decompose the expected returns as follows:

¹ikt = ¹+ ®i + Áik + °t + ±it + ºikt ; (2)

where ¹ is the average return of ¯rms of all industries over the whole time period,

the terms ®i, Áik and °t denote the e®ects of industry i, of ¯rm k within industry

i and of year t, respectively, and ±it and ºikt represent time-dependent e®ects, i.e.,

the interaction between industry i and year t as well as the interaction between ¯rm

k and year t. The identi¯cation of the parameters in (2) requires certain parameter

constraints such as

X
i

wi:®i =
X
k

wikÁik = °: =
X
i

wi:±it = ±i: = ºik: =
X
k

w:kºikt = 0 (3)

i = 1; : : : ;m; k = 1; : : : ; ni; t = 1; : : : ; T ;

where wik ¸ 0 are some time-independent weights. Taking wik ´ 1 in (3) provides
the \usual" parameter constraints. Here, and in the remaining part of the paper we

use the usual ANOVA notation. That is, if a su±x is replaced by a dot, variables

are summed over the values of that su±x, e.g. °: =
P
i
°i : The average over the

values of a su±x is denoted by an additional upper bar, e.g. ¹°: =
1
T

P
i
°i :

Without any additional model assumptions, (2) describes a saturated model.

Most analyses are based on smaller models, that is, on models with fewer \e®ective"

parameters than the number of observations N . Such models may be obtained by
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deleting some e®ects, compare Bunke, Droge, and Schwalbach (2001) where, for

example, a model without interactions ºikt was considered:

¹ikt = ¹+ ®i + Áik + °t + ±it : (4)

However, the analyses di®er not only in their assumptions on the expected returns.

There are also several models for the variances ¾2ik in (1) imaginable. Very popular

is, for example, the homogeneous variance model assuming a common variance for

the returns of all ¯rms over the whole time period:

¾2ikt ´ ¾2 : (5)

Alternatively, one could use a homogeneous variance model within each industry

allowing the returns' variances to depend on the industries, but not on the speci¯c

¯rm:

¾2ikt = ¾
2
i : (6)

The objective of our analysis is to ¯nd groups of ¯rms within each industry with

a similar performance over the whole time period. Let Mi = f1; : : : ; nig denote the
¯rms of industry i. Then a grouping of ¯rms within the industries may be described

by a partitioning of Mi into gi disjoint groups Mil (l = 1; : : : ; gi ; 1 · gi · ni):

Mi =Mi1 [ : : : [Migi ; i = 1; : : : ;m : (7)

The ideal assumption of identical performance of the ¯rms within the groups leads

thus to a submodel of (1) by setting

¹ikt = ¹ik0t if k; k0 2Mil (l = 1; : : : ; gi; i = 1; : : : ;m) : (8)

The return of a ¯rm would then be predicted by a weighted average of the returns

of all ¯rms which belong to the same group:

¹̂gikt =
X
j2Mil

wijP
j2Mil

wij
rijt for all k 2Mil : (9)

Note that (8) may also be described as submodel of (2) by

Áik = Áik0 and ºikt = ºik0t if k; k0 2Mil (l = 1; : : : ; gi; i = 1; : : : ;m) : (10)
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Now, if we more realistically assume that the ¯rms belonging to the same group have

similar but not necessarily identical average returns, we still may use the weighted

group mean (9) as a prediction and be more accurate than using the returns as

predictions of the average returns. The latter predictions correspond to the trivial

partition into groups each containing a single ¯rm. It seems sensible to form per-

formance groups, grouping ¯rms together in such a way that the prediction of the

average return using the model determined by the grouping (that is using (9)) is as

accurate as possible. Equivalently, the estimation of the dependence of the return

on the industry, the ¯rm and time will be as accurate as possible. The performance

of a model such as a grouping of the ¯rms may therefore be assessed by the weighted

mean squared error of prediction (MSEP)

Rg =
X
i;k;t

wik
Tw::

E(¹̂gikt ¡ ¹ikt)2 +
X
i;k

wik
w::
¾2ik ; (11)

where ¹̂gikt denotes the estimate of the expected returns under the model associated

with the grouping g, cp. (9). Assuming a speci¯c model for the variances ¾2ik, we

would always use the inverse of these variances as weights, i.e.:

wik = ¾
¡2
ik ; (12)

since this leads to generalized least squares estimators of the expected returns, which

possess certain optimality properties.

To select an appropriate grouping of the ¯rms, one would ideally try to mini-

mize the MSEP over all possible groupings. Unfortunately, this is impossible since

the MSEP depends on the unknown expected returns and variances. Therefore one

resorts in practice to data-driven methods such as minimizing some convenient esti-

mator of the MSEP. Now, for given variances ¾2ik and a given grouping g, an unbiased

\estimate" of the MSEP (11) could be calculated which depends, however, on the

unknown variances. Replacing in this formula the variances by some estimates ~¾2ik

based on the assumed variance model, we ¯nally obtain the following criterion for

comparing the competing groupings of ¯rms:

R̂g = RSS
w
g +

2
P
i giP

i;k ~¾
¡2
ik

; (13)
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where

RSSwg =
X
i;k;t

wik
Tw::

(rikt ¡ ¹̂gikt)2

denotes the weighted residual sum of squares for the grouping g using the weights

wik=Tw:: = ~¾
¡2
ik =(T

P
i;k ~¾

¡2
ik ). Note that we have also to replace the unknown weights

in (9) in the same way to arrive at \reasonable" estimates (weighted least squares

estimates, WLSE) of the expected returns. To reduce bias e®ects due to an inade-

quate modelling of the expected returns, we will use the following model-independent

variance estimates:

¾̂2ik =
1

2(T ¡ 1)
TX
t=2

(rikt ¡ rik;t¡1)2 : (14)

Consequently, the variance estimates under the submodels (5) and (6) are given by

~¾2ik =
1

n

X
i;k

¾̂2ik := ¾̂
2 and ~¾2ik =

1

ni

X
k

¾̂2ik := ¾̂
2
i ; respectively. (15)

4 Data and empirical results

4.1 Data set and exploratory data analysis

The empirical analysis is based on a panel data set of German companies provided

by the Kienbaum Consultants International GmbH. The sample consists of n = 219

¯rms and covers a wide range of m = 26 industries from non-¯nancial sectors.

Originally, it includes more than 1700 large companies. However, eliminating the

¯rms whose pro¯ts or sales are not observed over the whole period of time and

excluding all the ¯nancial companies reduces the set enormously. No information

is available about whether the companies are diversi¯ed or not. Each company is

assigned to a single industry. The performance measure is returns on sales, de¯ned

as the ratio of accounting pro¯ts to sales. For each ¯rm, the returns on sales are

available over a period of T = 11 years (1987-1997). The distribution of the ¯rms

over the industries is shown in Table 1.

Like any statistical method, our procedure depends on certain assumptions.

Therefore we carried out some exploratory data analysis to reveal the features of

the data set under study. In particular, we tried to answer the following questions:
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Do the data contain errors or outliers? Since the data were collected over time,

is there any evidence of serial correlation? Do the data have a nearly constant

variance? Can the analysis be improved by some convenient data transformation?

A ¯rst impression of the data is provided by the box plots of the returns for

all ¯rms. A detailed inspection of extreme or outlying values led to the conclusion

that the raw data set contained errors probably introduced at the point of data

collection. In most cases it was not possible to reconstruct the correct values, so

that we eventually omitted the data of 18 ¯rms from the original data set of 237

¯rms.

The distribution of the observational errors "ikt = rikt¡¹ikt is roughly described
by the distribution of the residuals "̂ikt = rikt¡ ¹̂ikt, where ¹̂ikt is obtained by ¯tting
some model for the expected returns ¹ikt. But the residuals are not independent nor

do they have constant variance, even if both conditions are ful¯lled by the errors.

To examine possible serial correlations, or dependencies, we tested for each ¯rm

ik, whether the autocorrelation function ½ik of the errors "ikt at time lag 1 vanishes.

The tests are based on estimates of the autocorrelations ½ik calculated under model

(4) as well as under the simple model,

¹ikt = ¹ik ; (16)

which considers the returns of a ¯rm over the years as replicated observations. It

turned out that, among the 219 ¯rms, only 28 (under (4)) and 32 (under (16)),

respectively, possess coe±cients ½ik which di®er signi¯cantly from 0 at level ® = 0:05.

Consequently, it seems plausible to assume uncorrelated returns or observational

errors.

Box plots as well as plots of standardized residuals under (4) against ¯tted values

indicate that the variances of the returns depend on the ¯rms. In case of replicated

observations (16) heteroscedasticity is easy to detect and there exist simple formal

tests such as the Cochran and the Bartlett tests under the assumption of normally

distributed errors. Thus, as a formal quantity for checking (5), i.e., the homogeneity

of the error variances, we use, in analogy to Cochran's test, the statistic

G = max
i;k

¾̂2ikP
i;k ¾̂

2
ik

; (17)
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where ¾̂2ik is given by (14), and compare it with the related critical value for Cochran's

test. Cochran's test is based on a statistic, ~G say, which in (17) replaces the variance

estimates ¾̂2ik by s
2
ik = (T¡1)¡1

P
t(rikt¡¹rik¢)2, and the corresponding critical value is

calculated under (16) assuming normally distributed errors. Naturally, this critical

value is not the correct one when using G, since the variance estimates (14) are not

Â2-distributed as in the \Cochran"-case of replicated observations; but it turns out

to be a reasonable approximation and so the resulting test may serve as exploratory

data analysis tool. For our data set, the hypothesis of homogeneous variances was

rejected at signi¯cance level ® = 0:01 based on both statistics G and ~G.

Similarly, we have performed tests for checking (6), i.e. the variance homo-

geneity within each industry, using statistics Gi de¯ned as G in (17) but with the

summation and maximization over k only. At signi¯cance level ® = 0:05 the hypoth-

esis of a homogeneous variance of the ¯rms within an industry was always rejected

except for ¯ve industries. Under the replication model (16), one would use the vari-

ance estimates s2ik instead of ¾̂
2
ik, leading to Cochran-statistics ~Gi. On the basis of

these statistics, the homogeneity hypotheses would always be rejected except for

two industries.

If heteroscedasticity is detected, then ordinary least squares (OLS) methods

cannot be used. Points for which the variance is comparatively large should be

downweighted when models for the expected returns are ¯tted to the data. This may

be accomplished by using WLSE with weights depending on the variances instead

of OLS estimates. However, in general this requires estimation of the variances

since these variances will be unknown. Therefore it is not clear whether WLS with

estimated variances is superior to OLS or not! Nevertheless, our analysis will be

based on WLS with weights

wik = ¾̂
¡2
ik ; (18)

since the variances di®er signi¯cantly such that neither (5) nor (6) can be assumed.

Naturally, improvements of the procedure are imaginable by searching for an appro-

priate variance model with less than n parameters, which is di®erent from (5) and

(6); but this is beyond the scope of this paper.

Finally, Box-Cox transformations may be seen as another approach to correct
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for both nonnormality and heteroscedasticity. We tried the seven (modi¯ed) Box-

Cox transformations described in Bunke, Droge, and Schwalbach (2001) and found

that the identical transformation is optimal for both models (4) and (16). All

investigations in the remaining part of this paper will therefore deal with the original,

untransformed data.

4.2 Performance groups under heteroscedasticity

As explained in the previous subsection, we allow di®erent variances for the returns

of di®erent ¯rms, i.e., we assume (1). Consequently, we use the WLSE based on

weights (18) for estimating the e®ects and expected returns. The optimal model or

performance group, ĝ say, is then de¯ned as the minimizer of the criterion R̂g over all

possible groupings g of ¯rms, where R̂g is de¯ned by (13) with ~¾
2
ik = ¾̂

2
ik, cp. (14).

7

It turns out that the optimal grouping of the 219 ¯rms within the 26 industries

consists of 113 groups. The number of groups within the di®erent industries is

presented in Table 1. Note that 56 of these groups contain only one ¯rm.

Table 1: For each industry, number of ¯rms and number of groups under the optimal

model ĝ.

Industry (i) 1 2 3 4 5 6 7 8 9 10 11 12 13

No. of ¯rms (ni) 10 5 9 15 7 4 3 5 4 9 10 3 3

No. of groups under ĝ 5 2 4 9 6 4 2 2 3 3 4 2 3

Industry (i) 14 15 16 17 18 19 20 21 22 23 24 25 26

No. of ¯rms (ni) 12 4 7 16 5 4 3 9 6 5 49 8 4

No. of groups under ĝ 7 2 3 6 3 4 2 5 4 2 19 4 3

7Actually, the implemented procedure does not examine all possible partitionings of ¯rms within

the industries. Instead, because of numerical feasability, it proceeds stepwise, starting by taking

each of the n ¯rms as a group. Then, among all possible pairs of groups within any industry, we

join that pair to a single group, which leads to the largest reduction of the estimated risk (13).

This process is continued until no further decrease of the estimated risk can be achieved and leads

to a suboptimal grouping.
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Table 2 summarizes some additional results. It shows also how the weighted

variance proportions of some e®ects is in°uenced by the optimal grouping. Here, ~r1,

~r2, ~r3, ~r13 and ~r23 denote the empirical weighted variance proportions of the indus-

tries, ¯rms, years, industry-year interactions and ¯rm-year interactions, respectively.

Their de¯nition as measure for the impact of the di®erent factors or e®ects on the

performance may be found in Bunke, Droge, and Schwalbach (2001).8

Table 2: Some results of optimal grouping under (1) using WLS.

Model g Dimension MSEP Weighted variance proportions

of g 104 ¢ R̂g ~r2 ~r23 ~r2 + ~r23

Saturated model (2) N = 2409 0.335819 0.449305 0.117614 0.566919

Optimal model ĝ 1243 0.258688 0.443392 0.086713 0.530105

Reduction (in %) 48.40 22.97 1.32 26.27 6.49

A grouping of ¯rms leads to a replacement of the ¯rm e®ects and the ¯rm-year

interactions by ¯rm group e®ects and ¯rm group-year interactions, respectively,

when modelling the expected returns. Hence, the grouping of ¯rms has only an

in°uence on the variance proportions of the ¯rms and the ¯rm-year interactions.

The other empirical weighted variance proportions remain unchanged, and for our

data set we obtain:

~r1 = 0:396843 ; ~r3 = 0:006797 ; ~r13 = 0:029440 :

Similarly to Bunke, Droge, and Schwalbach (2001), we could conclude that the

industry e®ects are dominated by the ¯rm e®ects. This holds for both the permanent

e®ects (~r1 < ~r2) and when adding the time-dependent e®ects to the permanent

e®ects (~r1+~r13 < ~r2+~r23), and it remains also true after an optimal grouping of the

¯rms. Despite optimal grouping the percentage of performance variance explained

8For example, the weighted variance proportion of the industry e®ects is de¯ned by ~r1 = ~s21=~s
2,

where ~s2 = (Tw::)
¡1P

i;k;twik(rikt ¡ ¹̂)2 and ~s21 = w¡1::
P
i wik®̂

2
i are the weighted empirical

variances of the returns and the industry e®ects, respectively, and ¹̂, ®̂i denote the WLSE of the

e®ects ¹, ®i.
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by the permanent and time-dependent ¯rm e®ects remains nearly unchanged (53.0%

instead of 56.7% before the grouping), although the corresponding model dimension

is drastically reduced by 48.8 % . Note that about 35.1 % of the performance variance

is explained by the 53 \single-¯rm-groups", whereas the remaining 60 groups with

163 ¯rms in all explain 17.9 % of that variance.

Recall that our procedure for ¯nding performance groups does not rely on the

assumption of normally distributed observations. However, some formal tests such

as those described in Section 3 for checking variance homogeneity would require such

an assumption (at least approximately). To check whether the observational errors

are normally distributed, one should use the standardized residuals,

eikt =
"̂ikt

~¾ik
p
1¡ hikt

: (19)

Here, hikt denotes the diagonal element ikt of the hat matrix associated with the

model under consideration. Several diagnostic plots (plots of standardized residuals

against ¯tted values, normal QQplots and histograms for standardized residuals) as

well as estimated skewness (0.005) and kurtosis (5.787) of the standardized residuals

after optimal grouping suggest that a normal approximation to the error distribution

would work.

4.3 Firm groups under alternative aims and short summary

Here we consider two additional approaches for the de¯nition of performance groups

which correspond to di®erent models for the expected returns. That is, the com-

peting models are no longer given by (8). We continue to assume heteroscedastic

variances as in (1).

First we aim at ¯nding groups of ¯rms within each industry, which show a

similar behavior of their returns over the time, but which have possibly di®erent

levels of performance, i.e., possibly di®erent averages of returns. For this, we start

with model (4) and introduce additionally ¯rm-year interactions ºikt as in (2). If

two ¯rms, (ik) and (ik0) say, interact with the years in a similar way, then they will

enter the same group. Hence, the model for the expected returns will assume the

same interactions with the years for both ¯rms, but not the same ¯rm e®ects! That
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is, the competing models for the expected returns may be described by the set of all

possible partitions (7) such that additionally to (2) the following constraints hold:

ºikt = ºik0t if k; k0 2Mil (l = 1; : : : ; gi; i = 1; : : : ;m) : (20)

As before, a model selection criterion may be derived as an appropriate estimate of

the risk (11). With the notations of the previous section and ¹̂gikt being the WLSE

of the expected returns calculated under the assumption (20), this leads to

~Rg = RSS
w
g +

2[n+ (T ¡ 1)Pi gi]

T
P
i;k ~¾

¡2
ik

: (21)

The minimizer of (21) with respect to the possible groupings g will be denoted by ~g.

For our data set, the optimal grouping ~g classi¯es the 219 ¯rms into 80 groups. It

is not surprising that this number is smaller than that of ĝ, because it is now more

likely that ¯rms are considered to behave similarly.

Another aim could be the search for groups of ¯rms with approximately the same

time-independent ¯rm e®ects, neglecting completely the year-¯rm interactions. That

is, the competing models for the expected returns are given by (16) and assuming

additionally

¹ik = ¹ik0 if k; k0 2Mil (l = 1; : : : ; gi; i = 1; : : : ;m) : (22)

In this case, the competing models (partitions g) can be compared by the following

criterion:

¹Rg = RSS
w
g +

2
P
i gi

T
P
i;k ~¾

¡2
ik

; (23)

whose minimizer over g will be denoted by ¹g. Here, ¹̂gikt is the WLSE of the expected

returns assuming (22). Note that the optimal grouping (model) would remain un-

changed by assuming any submodel of (2), which contains at least ¯rm e®ects Áik

(i = 1; : : : ;m; k = 1; : : : ; ni), and selecting among the partitions (7) with

Áik = Áik0 if k; k0 2Mil (l = 1; : : : ; gi; i = 1; : : : ;m) : (24)

For our data set, the optimal grouping ¹g classi¯es the 219 ¯rms into 117 groups.

Obviously, the obtained optimal groupings depend on the di®erent aims of the

analysis. Table 3 summarizes some results. For the sake of completeness, it contains
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also the results of subsection 4.2 as well as those for some models for the expected

returns such as

¹ikt := ¹+ ®i + Áik + °t ; (25)

which have not been considered until now.

Table 3: Estimated risk for some models for the expected returns assuming het-

eroscedastic variances.

Model g Dimension of g 104£ Estimated risk
(2) 2409 0.335819

(4) 479 0.339645

(25) 229 0.373098

(16) 219 0.387474

Optimal under:

(2), (10); i.e. ĝ 1243 0.258688

(2), (20); i.e. ~g 1019 0.238697

(4), (24) 377 0.327375

(25), (24) 127 0.360828

(16), (22); i.e. ¹g 117 0.375204

Recall that all considered models contain the same industry e®ects, so that they

have the following associated empirical weighted variance proportion: ~r1 = 0:396843.

Moreover, the presented estimated risks were always calculated as almost unbiased

estimates of the MSEP (11) under the condition that the variances are given by (14),

that is, they were calculated according to (13), (21), (23) or a corresponding formula

for other models. We observe that even some optimal models may be outperformed

by the saturated model with respect to the estimated risk when this \largest model"

doesn't belong to the class of competing models.

The optimal grouping model ~g under (2) and (20) with 80 groups of ¯rms ap-

pears most convenient for predicting future returns when we compare all candidates

considered in Table 3. The second choice would be model ĝ, which was obtained

in Subsection 4.2 as optimal solution under (2) and (10). This model provides a
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grouping of the ¯rms into 113 groups with both a similar time-dependent and a

similar permanent behavior of their returns. Note that another grouping could be

preferred to the optimal one if its estimated risk is close to the optimal risk R̂ĝ

and if it provides fewer or easily interpretable groups. This is reasonable, since our

procedure is based on estimates of the risk. Thus any appealing grouping in our

stepwise search, g¤ say, ful¯lling a rule of thumb like

R̂g¤ < (1 + ±)R̂ĝ ; with some small ± > 0 such as 0:1 ;

could be our ¯rst choice. But such an approach is not discussed in more detail, since

the economic interpretation of speci¯c groupings is not addressed in this paper.

Generally, time-dependent industry and ¯rm e®ects seem to be important for

describing the dependence of the returns on some e®ects. Models such as (16)

neglect this fact by treating the data observed over time as independent replications

and may thus not serve as an appropriate basis for statistical analysis. Naturally,

there is some hope to improve the prediction quality of the models by considering

some variations such as allowing an additional grouping of the years, which could

drastically reduce the dimension of models containing, for example, interactions

between industries (and/or ¯rms) and years, without having a substantial e®ect on

the ¯t.

Finally, one could also try to ¯nd optimal groups of ¯rms with industries by a

simultaneous selection of (grouping) models for the expected returns and of (again

grouping) models for the variances by use of an appropriate criterion such as cross-

validation, which can be de¯ned without having some estimates of the variances.

But this is beyond the scope of this paper. The most convenient way of analyzing

the data in our setting is probably to assume just the rather general model (1) of

heteroscedastic variances.

5 Conclusions

This chapter extends the literature on the relative importance of ¯rm, industry, and

other e®ects on ¯rm performance by examining the e®ect of performance groups.
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The concept of performance groups was introduced by Wiggins and Rue°i (1995)

to investigate necessary conditions for the existence of strategic groups. Using a

variety of methods, we found that, in contrast to Wiggins and Rue°i, performance

groups exist in almost every industry of our data set. In particular, we found that

the majority of ¯rms can be grouped with respect to a criterion which measures

the ability of a grouping and of the corresponding model to predict the returns

of a ¯rm. The performance groups explain about 17.9 percent of the performance

variance. However, about 35.1 percent of this variance is explained by non-grouped

¯rms. Because of the splitting of the ¯rm e®ects into group and single-¯rm e®ects,

now the largest impact is associated with the industry e®ects of about 39.7 percent.

It is worth noting that the grouped model uses much less parameters than the

saturated model (about one half) but does not explain much less of the ¯rm e®ects

(53.0 percent versus 56.7 percent).

How can these results be interpreted? Of course, the study is descriptive in

nature and thus, no structural causalities can be uncovered. Nonetheless, the re-

sults suggest that ¯rm-focussed concepts from Strategic Management and industry-

focussed concepts from IO do not tell the whole story about corporate perfor-

mance. Hence, the respective literature could be fertilized by considering inter-

mediate group-level concepts. However, a note of caution seems to be appropriate

as Dranove, Peteraf, and Shanley (1998) point out that real evidence of group e®ects

can only be found if data on group characteristics are available. Possibly, our group

e®ects are spurious in the sense that they just result from some aggregated ¯rm

speci¯c characteristics and not from genuine group characteristics.

What other reasons are possible for ¯rms having apparently similar levels of

performance within an industry? First, our data set o®ers a segmentation of ¯rms

into industries which might be too coarse. Comparing with segmentations like the

SIC-3 and SIC-4 code, our classi¯cation covers relatively large bundles of indus-

try segments. On the other side, we only considered groups which lasted for the

whole period of time. Peteraf and Shanley (1997) suggest that the periods of group

membership vary and that groups may be more important in unstable industries.

However, addressing these questions remains for further research.
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In particular, it would be interesting to investigate if our results (which are to a

certain extent opposing to Wiggins' and Rue°i's) can be reproduced with di®erent

sets of data and di®erent measures of performance. Another possible research avenue

would be to further elaborate on the constituent characteristics of strategic groups

and other possible group concepts which are correlated with the performance groups.

The empirical framework of Dranove, Peteraf, and Shanley (1998) is a possible

starting point.
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