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1 Multivariate Volatility Models

Matthias R. Fengler and Helmut Herwartz

Institute for Statistics and Econometrics,
Department of Business Administration and Economics,
Humboldt- Universitat zu Berlin,

Spandauer Strafle 1, 10187 Berlin, Deutschland

Multivariate Volatility Models belong to the class of nonlinear models for
financial data. Here we want to focus on multivariate GARCH models. These
models assume that the variance of the innovation distribution follows a time
dependent process conditional on information which is generated by the history
of the process. In this chapter we demonstrate how to use the bigarch quantlet
of XploRe to estimate the conditional covariance of a bivariate (high frequency)
return process. In particular we consider a system of exchange rates of two
currencies measured against the US Dollar (USD), namely the Deutsche Mark
(DEM) and the British Pound Sterling (GBP). For this example process we
compare the dynamic properties of the bivariate model with univariate GARCH
specifications where cross sectional dependencies are ignored. Moreover, to
illustrate the scope of the bivariate model we employ the estimated model to
price call options written on foreign exchange rates.

We gratefully acknowledge financial support from the Deutsche Forschungsgemein-
schaft, Sonderforschungsbereich 373 ” Quantifikation und Simulation 6konomischer
Prozesse”.



2 1 Multivariate Volatility Models

1.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed on
speculative markets, motivated the introduction of autoregressive conditionally
heteroskedastic (ARCH) processes by Engle (1982) and its popular generaliza-
tions by Bollerslev (1986) (Generalized ARCH, GARCH) and Nelson (1991)
(exponential GARCH, EGARCH). A further stylized feature of empirical price
variations is contemporaneous cross correlation among a set of assets, stock
market indices, exchange rates etc.

Cross section relationships are often implied by economic theory. Interest rate
parities, for instance, provide a close relation between domestic and foreign
bond rates. Long- and short term interest rates are also related. Assuming
absence of arbitrage opportunities the so-called triangular equation formalizes
the equality of an exchange rate between two currencies on the one hand and
an implied rate constructed via exchange rates measured towards a third cur-
rency. Furthermore, as illustrated in Hafner and Herwartz (1998), stock prices
of firms acting on the same market often show similar patterns in the sequel
of news that are important for the entire market. Similarly, analyzing global
volatility transmission Engle, Ito and Lin (1990) and Hamao, Masulis and Ng
(1990) found evidence in favor of volatility spillovers between the world’s major
trading areas occurring in the sequel of floor trading hours. From this point
of view, when modeling time varying volatilities, a multivariate model appears
to be a natural framework to take cross sectional information into account.
Moreover, the covariance between financial assets is of essential importance in
finance. Effectively, many problems in financial practice like portfolio opti-
mization, hedging strategies, or Value-at-Risk evaluation require multivariate
volatility measures, see e.g. Bollerslev et al. (1988) and Cecchetti, Cumby and
Figlewski (1988).

1.1.1 Model specifications

Let &, = (€1¢,€2¢,---,6n¢) T denote an N-dimensional error process. For gen-
eralizing the univariate GARCH model towards a multivariate framework, it is
necessary to condition the covariance matrix of €; on the information set gener-
ated by the history of this process. For convenience we regard ¢; as observable
error terms or as estimated residuals of a multivariate regression model. The
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process &; follows a multivariate GARCH process if it has the representation
e = 2%, (1.1)

where ¥; is measurable with respect to information generated up to time ¢t — 1
(Q4—1), and the N components of &; follow a multivariate Gaussian distribution
with mean zero and covariance matrix equal to the identity matrix.

The conditional covariance matrix, ¥; = E[e;e] |Q;_1], has typical elements
oij with 04,7 = 1,..., N, denoting conditional variances and off-diagonal el-
ements 0;5,%,J = 1, .. .,N, i # j, denoting conditional covariances. To make
the specification in (1.1) feasible a parametric description relating ¥; to Q;—;
is necessary. In a multivariate setting, however, dependencies of the second
order moments in ¥; on ; 3 become easily computationally intractable for
practical purposes.

Let vech(A) denote the half-vectorization operator stacking the elements of a
quadratic (N x N)-matrix A from the main diagonal downwards in a 2N(N +
1) dimensional column vector. Within the so-called vec-representation of the
GARCH(p, q) model % is specified as follows:

P
vech(X;) =c+ ZA ivech (g, Zst i) Z ivech(Z;_;) (1.2)

i=1

In (1.2) the matrices A; and G; each contain (N(N + 1)/2)? elements. Deter-
ministic covariance components are collected in ¢, a column vector of dimension
N(N +1)/2. We consider in the following the case p = ¢ = 1 since in applied
work the GARCH(1,1) model has turned out to be particularly useful to de-
scribe a wide variety of financial market data (Bollerslev, Engle and Nelson,
1994).

On the one hand the vec-model in (1.2) allows for a very general dynamic struc-
ture of the multivariate volatility process. On the other hand this specification
suffers from high dimensionality of the relevant parameter space. Note that
the estimation of GARCH processes always requires iterative optimization al-
gorithms. Containing a very large number of model parameters the vec-model
is often intractable for empirical work. Apart from computational feasibility it
may become cumbersome in applied work to restrict the admissible parameter
space such that the implied matrices Xy, t = 1,...,T, are positive definite.

Variants of multivariate GARCH processes can be evaluated with respect to
their scope of handling the two issues raised above:
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o Their ability of economizing on the dimension of the parameter space to
make computational exercises feasible.

e Their need of additional restrictions on the parameter space to guarantee
positive definiteness of the implied conditional covariance matrices.

Prominent proposals reducing the dimensionality of (1.2) are the constant
correlation model (Bollerslev, 1990) and the diagonal model (Bollerslev et
al., 1988). Specifying diagonal elements of X; both of these approaches as-
sume the absence of cross equation dynamics, i.e. the only dynamics are

2 .
Oiit = Cij + €541 + 9i0iit—1, © = 1,..., N. (13)

To determine off-diagonal elements of ¥; Bollerslev (1990) proposes a constant
contemporaneous correlation,

Oijt = Pij/0ii0jj, i, j = 1,..., N, (1.4)

whereas Bollerslev et al. (1988) introduce an ARMA-type dynamic structure
as in (1.3) for oy, as well, i.e.

Oijt = Cij + Qi€ 416511 + Gij04j6-1, 4,5 = 1,..., N. (1.5)

For the bivariate case (N = 2) with p = ¢ = 1 the constant correlation model
contains only 7 parameters compared to 21 parameters encountered in the full
model (1.2). The diagonal model is specified with 9 parameters. The price that
both models pay for parsimonity is in ruling out cross equation dynamics as
allowed in the general vec-model. Positive definiteness of 3, is easily guaranteed
for the constant correlation model (|p;;| < 1), whereas the diagonal model
requires more complicated restrictions to provide positive definite covariance
matrices.

The so-called BEKK-model (named after Baba, Engle, Kraft and Kroner, 1990)
provides a richer dynamic structure compared to both restricted processes men-
tioned before. Defining N x N matrices A;; and G and an upper triangular
matrix Cp the BEKK-model reads in a general version as follows:

K ¢ K p
¥ = CgCO + Z ZAg];Et—iEtTLiAik + Z Z Gg,;Et_,'Gik. (1.6)

k=1 i=1 k=1 i=1
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If K=q=p=1and N = 2, the model in (1.6) contains 11 parameters and
implies the following dynamic model for typical elements of ¥;:

o111t = C11+ Cl%lé‘it,l + 2a11a21€1,4—1€2,4—1 + aéleé,H
+ 91101161 + 291192102101 + 921022,415

021t = Co1+ a11a22€it_1 + (a21012 + G11a22)€1 4—162,4—1 + a21a226§,t_1
+ 91192201161 + (921912 + 911922)012,6—1 + 92192202241,

0224 = Co2+ afgé‘it,l + 2a12a22€1,t-1€2,0—1 + a§2.€%,t,1

2 2
912011,¢—1 + 2912922021,t—1 + 922022,t—1-

Compared to the diagonal model the BEKK-specification economizes on the
number of parameters by restricting the vec-model within and across equations.
Since A;; and Gy, are not required to be diagonal, the BEKK-model is con-
venient to allow for cross dynamics of conditional covariances. The parameter
K governs to which extent the general representation in (1.2) can be approxi-
mated by a BEKK-type model. In the following we implicitly assume K = 1.
Note that in the bivariate case with K = p = ¢ = 1 the BEKK-model contains
11 parameters. If K = 1 the matrices A;; and —A;;, imply the same condi-
tional covariances. Thus, for uniqueness of the BEKK-representation a;; > 0
and gq1 > 0 is assumed. Note that the right hand side of (1.6) involves only
quadratic terms and, hence, given convenient initial conditions, ¥ is positive
definite under the weak (sufficient) condition that at least one of the matrices
Co or Gy; has full rank (Engle and Kroner, 1995).

1.1.2 Estimation of the BEKK-model

As in the univariate case the parameters of a multivariate GARCH model are
estimated by maximum likelihood (ML) optimizing numerically the Gaussian
log-likelihood function.

The contribution of a single observation to the log-likelihood of a sample is
given as:

I(.)

In(f(ee|2-1))
N 1 1 _
—E 1n(2ﬂ') - 5 1n(|2t|) - 56?275 lgt.

Maximizing the Gaussian log-likelihood | = Zthl l¢(.) requires nonlinear max-
imization methods. Involving only first order derivatives the algorithm intro-
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duced by Berndt, Hall, Hall, and Hausman (1974) is easily implemented and
particularly useful for the estimation of multivariate GARCH processes.

If the actual error distribution differs from the multivariate normal, maximizing
the Gaussian log-likelihood has become popular as Quasi ML (QML) estima-
tion. In the multivariate framework, results for the asymptotic properties of
the (Q)ML-estimator have been derived recently. Jeantheau (1998) proves the
QML-estimator to be consistent under the main assumption that the consid-
ered multivariate process is strictly stationary and ergodic. Further assuming
finiteness of moments of &; up to order eight, Comte and Lieberman (2000)
derive asymptotic normality of the QML-estimator. The asymptotic distribu-
tion of the rescaled QML-estimator is analogous to the univariate case and
discussed in Bollerslev and Wooldridge (1992).

1.2 An empirical illustration

1.2.1 Data description

We analyze daily quotes of two European currencies measured against the USD,
namely the DEM and the GBP. The sample period is December 31, 1979 to
April 1, 1994, covering T' = 3720 observations. Note that a subperiod of our
sample has already been investigated by Bollerslev and Engle (1993) discussing
common features of volatility processes.

The data is provided in fx.dat. The first column contains DEM/USD and
the second GBP/USD. In XploRe a preliminary statistical analysis is easily
done by the summarize command. Before inspecting the summary statistics,
we load the data and take log differences. The following XploRe code

library("xplore")
library("stats")

; read the data
etl=read("fx")

; take logs and difference
returns=diff (log(etl))
fxrate="DEM/USD" | "GBP/USD"
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; produce summary statistics
summarize (returns, fxrate)

Q XFGmvolO1.xpl

produces the output given below:

[2,1 " Minimum Maximum Mean Median Std.Error"
[3,] "w___ —— — n
[4,] "DEM/USD -0.040125 0.031874 -4.7184e-06 0 0.0070936"
[6,1 "GBP/USD -0.046682 0.038665 0.00011003 0 0.0069721"

Evidently, the empirical means of both processes are very close to zero (-4.72e-
06 and 1.10e-04, respectively). Also minimum, maximum and standard errors
are of similar size. First differences of the respective log exchange rates are
shown in Figure 1.1. Asis apparent from Figure 1.1, variations of exchange rate
returns exhibit an autoregressive pattern: Large returns in foreign exchange
markets are followed by large returns of either sign. This is most obvious in
periods of excessive returns. Note that these volatility clusters tend to coincide
in both series. It is precisely this observation that justifies a multivariate
GARCH specification.

1.2.2 Estimating bivariate GARCH

{th,liks} = bigarch(theta,et)
estimates a bivariate GARCH model

The quantlet bigarch provides a fast algorithm to estimate the BEKK repre-
sentation of a bivariate GARCH(1,1) model. QML-estimation is implemented
by means of the BHHH-algorithm which minimizes the negative Gaussian log-
likelihood function. The algorithm employs analytical first order derivatives of
the log-likelihood function (Liitkepohl, 1996) with respect to the 11-dimensional
vector of parameters containing the elements of Cy, 417 and G711 as given in
(1.6).

The standard call is

{coeff, maxlik}=bigarch(theta, data),
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Foreign exchange rate returns: DEM/USD

T T T T
0 1000 2000 3000
Time

Foreign exchange rate returns; GBP/USD

Time

Figure 1.1: Foreign exchange rate data: returns
Q XFGmvolO1l.xpl

where as input parameters we have initial values theta for the iteration algo-
rithm and the data set, e.g. financial returns, stored in data. The estimation
output is the vector coeff containing the elements of the parameter matrices.
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Being a numerical procedure the algorithm requires to determine suitable ini-
tial parameters. For the diagonal elements of the matrices 411 and G1; values
around 0.3 and 0.9 appear reasonable, since in univariate GARCH(1,1) models
parameter estimates for o; and $3; in (1.3) often take values around 0.3% = 0.09
and 0.81 = 0.92. There is no clear guidance how to determine initial values for
off diagonal elements of A7 or G11. Therefore it might be reasonable to try
alternative initializations of these parameters. Given an initialization of Ay
and G1; the starting values for the elements in Cy are immediately determined
by the algorithm assuming the unconditional covariance of ¢; to exist (Engle
and Kroner, 1995).

Given our example under investigation the bivariate GARCH estimation could
be done by the following pieces of code:

; fix starting values
theta=#(0.28,-0.06,-0.05,0.2,0.9,0.03,0.02,0.9)

; call bigarch
{coeff, maxlik} = bigarch(theta, returns)

coeff
maxlik

Q XFGmvol02.xpl

As output we obtain

Contents of coeff

[ 1,1 0.0011516
[ 2,1 0.00031009
[ 3,1 0.00075685
[ 4,] 0.28185

[ 5,] -0.057194

[ 6,1 -0.050449

[ 7,1 0.29344

[ 8,1 0.93878

[ 9,1 0.025117
[10,] 0.027503
[11,] 0.9391
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Contents of liks

[1,] -28599

The last number is the obtained minimum of the negative log-likelihood func-
tion. The vector coeff given first contains as first three elements the parame-
ters of the upper triangular matrix Cy, the following four belong to the ARCH
(A1) and the last four to the GARCH parameters (G11), i-e. for our model

¥ = CgCO + A{15t7155_1A11 + GﬂEt,lGn (17)

stated again for convenience, we find the matrices Cp, A, G to be:

(115 31
Co=10 (0 76)

282 —.050 939 .028
An = (—.057 .293) G = (.025 .939) ‘ (18)

1.2.3 Estimating the (co)variance processes

The (co)variance is obtained by sequentially calculating the difference equa-
tion (1.7) where we use the estimator for the unconditional covariance ma-
trix as initial value (%o = ETTE) Here, the T x 2 vector E contains log-
differences of our foreign exchange rate data. Estimating the covariance pro-

cess is also accomplished in the quantlet XFGmvo102 and additionally provided

in sigmaprocess.dat. Q XFGmvol02.xpl

We display the estimated variance and covariance processes in Figure 1.2. The
upper and the lower panel of Figure 1.2 show the variances of the DEM/USD
and GBP /USD returns respectively, whereas in the middle panel we see the co-
variance process. Except for a very short period in the beginning of our sample
the covariance is positive and of non-negligible size throughout. This is evi-
dence for cross sectional dependencies in currency markets which we mentioned
earlier to motivate multivariate GARCH models.
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Sigmall: DEM/USD

0 1000 2000 3000
Time

Sigmal2: Covariance

0 1000 2000 3000
Time

Sigma22: GBP/USD

Time

Figure 1.2: Estimated variance and covariance processes (10523t)
Q XFGmvol02.xpl

Instead of estimating the realized path of variances as shown above, we could
also use the estimated parameters to simulate volatility paths (XFGmvo103).
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Q XFGmvol03.xpl

For this at each point in time an observation ¢; is drawn from a multivariate
normal distribution with variance ;. Given these observations, ¥; is updated
according to (1.7). Then, a new residual is drawn with covariance X;;1. We
apply this procedure for T = 3000. The results, displayed in the upper three
panels of Figure 1.3, show a similar pattern as the original process given in
Figure 1.2. For the lower two panels we generate two variance processes from
the same residuals &. In this case, however, we set off-diagonal parameters in
Aq1 and G11 to zero to illustrate how the unrestricted BEKK model incorpo-
rates cross equation dynamics. As can be seen, both approaches are convenient
to capture volatility clustering. Depending on the particular state of the sys-
tem, spillover effects operating through conditional covariances, however, have
a considerable impact on the magnitude of conditional volatility.
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BiGARCH, Sigmall: DEM/USD

o 500 1000 1500 2000 2500
Time

BiGARCH, Sigmal2: Covariance

3000

0 500 1000 1500 2000 2500
Time

BiGARCH, Sigma22: GBP/USD

- o
0 50 1000 1500 2000 20 3000
Time
Univariate GARCH, Sigmall: DEM/USD
0 0 1000 1500 2000 2500 a0
Time
Univariate GARCH, Sigma22: GBP/USD
o 0 10 1500 0 0 w0

Time

Figure 1.3: A simulated variance and covariance processes, both bivariate and
univariate case. (10°%;)

Q XFGmvol03.xpl
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1.3 An application to option pricing

The foregoing section illustrated how the GARCH model may be employed
effectively to describe empirical price variations of foreign exchange rates. As
an economic application of the particular estimated GARCH process one may
regard the pricing of derivatives where the investigated foreign exchange rates
are the underlyings. In this section we compare foreign exchange rate option
prices generated from the bivariate GARCH model estimated before and its
univariate competitor. As underlying we consider the DEM/USD-rate.

Pricing options in a GARCH framework has been introduced by Duan (1995)
and is extended and applied to major German stocks in Hardle and Hafner
(2000) and Hafner and Herwartz (1998). The GARCH option pricing model
generalizes the traditional option valuation methodology to the case of condi-
tional heteroskedasticity. Let P denote a subjective probability measure for
the price process S;. Under some regularity conditions satisfied by the price
process, the absence of arbitrage opportunities implies the existence of a prob-
ability measure () equivalent to P, such that all discounted prices processes are
martingales under (), Harrison and Pliska (1981). Therefore even in the case
of conditional heteroskedasticity, the current price of a European call option
C} with exercise price K and time to maturity 7 =T — ¢ is given by

Cy = (14 7) "E9max(St — K,0) | Q). (1.9)

In (1.9) St denotes the price of the underlying asset in time T and r is the
risk-free interest rate. Opposite to the homoskedastic case treated in Black and
Scholes (1973) the expectation in (1.9) has been evaluated analytically only for
the univariate case in Heston and Nandi (1997). Therefore we determine C
by simulations. The pricing measure () can be derived from the data generat-
ing process specified and estimated for Sy, the underlying asset. Under specific
assumptions, concerning the conditional expectations of returns of S;, the mea-
sures () and P coincide. In our case () = P is implied if both the conditional
mean of empirical returns and the risk free rate are assumed to be zero. To
focus on the comparison of bivariate and univariate volatility specifications we
assume coincidence of ) and P. We determine option prices by simulating
foreign exchange rates according to the GARCH parameter estimates given in
(1.8) and its "univariate” counterpart with off-diagonal elements of A;; and
G411 being zero. We use R = 100000 replications to evaluate

Cy = (1 +7) " E9max(Sy — K,0) | Q. (1.10)

Throughout we set Sop = 2.00 DEM, r = 0 and determine option prices for given
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) 2.2480 1.5748
Regime 1 | ¥y = (1,5748 1.8946)

‘ 6.7449  —0.5903
Regime 2 | 39 = <—0,5903 3.1272 )

) B 11.7640 14.9770
Regime 3 | ¥y = (14.9770 27.4520>

Table 1.1: Covariance matrices (10°%¢) among different regimes used as initial
values for the Monte Carlo Simulation.

times to maturity, 7 = 30 days, and varying degrees of moneyness (S;/K),
ranging from 0.85 to 1.15. We do the simulation for three different regimes of
volatility providing the initial state of the dynamic system. These regimes 1 to
3 represent low, medium, and high volatility states, respectively (Table 1.1).
All these covariance estimates have been obtained from the estimated variances
shown in Figure 1.2 (Regime 1 is the 150th, Regime 2 the 230th, and Regime
3 the 1370th observation of the covariance process). (To evaluate option prices
the reader may choose between these regimes, however, note that the number
of replications has been reduced in the quantlet to avoid the computational
effort necessary for R = 100000 replications.).

Q XFGmvolO4.xpl

Initial covariance matrices are displayed in Table 1.1, simulated option prices
in Table 1.2. As can readily be seen, prices obtained by the bivariate GARCH
are higher throughout. This (positive) absolute price difference reflects an
additional risk premium related to the second GARCH process. It has to be
positive because options have a one-sided risk profile. It is highest for the
at-the-money option (K = 2.00), and is decreasing for both in- and out-of-the-
money options. This is in line with the Black-Scholes model, where at-the-
money options exhibit highest sensitivity to changes in volatility. Among our
three regimes, the premium is highest in absolute terms for the high volatility
regime 3 (Table 1.2 and Figure 1.4). For the medium volatility regime 2 the
price difference is mitigated by the small negative covariance of the initial
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Moneyness 0.85 0.90 0.95 1.00 1.05 1.10 1.15
Strikes 2.3529 2.2222  2.1053 2.0000 1.9048 1.8182 1.7391
0.0000 1.93e-05 0.0014 0.0246 0.0979 0.1831 0.2621
Regime 1 0.0000 1.46e-05 0.0011 0.0229 0.0974 0.1830 0.2620
n.a. 0.3240 0.3207 0.0751 0.0046 0.0007 0.0005
1.44e-05 3.27e-04 0.0047 0.0331 0.1017 0.1843 0.2630
Regime 2 1.29e-05 2.98¢-04 0.0044 0.0324 0.1014 0.1842 0.2629
0.1150 0.0984 0.0654 0.0217 0.0032 0.0005 0.0003
0.0003 0.0023 0.0135 0.0484 0.1114 0.1883 0.2653
Regime 3 0.0001 0.0011  0.0088 0.0406 0.1062 0.1861 0.2641
1.1943 0.9996  0.5436 0.1907 0.0484 0.0117 0.0045

Table 1.2: Results obtained from the Monte Carlo Simulation: For each regime,
the first row displays the prices from the bivariate GARCH, the sec-
ond row from the univariate GARCH specification. The third row
shows relative differences between both. Sy = 2.00.

volatility state. In relative terms (third row for each regime in Table 1.2), the
same pattern emerges as for the absolute price difference, however the deviation
is highest for out-of-the-money options. This is due to the fact that for in-the-
money options the largest fraction of the price is borne by its intrinsic value,
i.e. Sy — K. Since interest rates are zero in our simulations, the prices of
in-the-money options almost equal 2.00 — K.

1.4 Conclusions

We briefly discussed specification issues relevant for multivariate volatility mod-
eling. The BEKK model is particularly useful for practical purposes, since it
allows for cross sectional dynamics and, moreover, positive definiteness of im-
plied volatility matrices holds under rather weak assumptions. In XploRe the
quantlet bigarch estimates the BEKK model for two dimensional return pro-
cesses. Investigating joint volatility dynamics of the DEM/USD and GBP /USD
exchange rates, we illustrate the convenience of both the BEKK model and its
implementation in XploRe. As one particular issue we show how the (unre-
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Call Prices under Regime 3

0.25

02

0.15

0l

18 1.9 2 21 22 2.3
Strikes

Figure 1.4: Option prices under the high volatility regime - blue are BIGARCH,
green are GARCH prices. R = 100000 replications, Sy = 2.00.

Q XFGmvolO4.xpl

stricted) BEKK model performs relative to univariate models when evaluating
time dependent second order moments. The former model turns out to capture
volatility spillovers which are highly intuitive. Naturally, univariate volatility
models, i.e. restricted BEKK-specifications, cannot deliver such insights. Pro-
viding an economic application we find that the dimension of the considered
volatility state space has an important impact on the level of option prices.
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