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Abstract

In this paper we propose a new testing procedure to detect the presence of a cointe-
grating relationship that follows a globally stationary smooth transition autoregressive
(STAR) process. We start from a general VAR model, embed the STAR error correction
mechanism (ECM) and then derive the generalised nonlinear STAR error correction
model. We provide two operational versions of the tests. Firstly, we obtain the associ-
ated nonlinear ECM-based test. Secondly, we generalise the well-known residual-based
test for cointegration in linear models by Engle and Granger (1987) and obtain its non-
linear analogue. We derive the relevant asymptotic distributions of the proposed tests.
We ¯nd via Monte Carlo simulation exercises that our proposed tests have much better
power than the Engle and Granger test against the alternative of a globally stationary
STAR cointegrating process. In an application to the price-dividend relationship, we
also ¯nd that our test is able to ¯nd cointegration, whereas the linear-based tests fail to
do so. Further analysis of impulse response functions of error correction terms (under
the alternative) shows that the time taken to recover one half of a one standard de-
viation shock varies between ¯ve and twenty years, whereas the time taken to recover
one half of a large shock varies between just 4 to 18 months. This clearly implies that
data periods dominated by extreme volatility may display substantial mean reversion
of the price-dividend relationship. By contrast this relationship may well look like a
unit root when the underlying shocks take on smaller values.
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1 Introduction
The investigation of nonstationarity in economics has assumed great signi¯cance over the
past two decades. There has been increasing concern in macroeconomics that the information
revealed by the analysis of a linear time series model may be insu±cient to give de¯nitive
inference on important economic hypotheses. In particular, the power of tests such as the
Dickey-Fuller (1979, DF) unit root test or the Engle-Granger (1987, EG) test for cointegra-
tion has been called into question. As a response to these problems, macroeconomists are
increasingly turning to nonlinear dynamics to improve estimation and inference.

Balke and Fomby (1997) have recently popularised a joint analysis of nonstationarity
and nonlinearity in the context of threshold cointegration, the case where a process may
follow a unit root in a middle regime whilst at the same time being globally geometrically
ergodic in outer regimes. They have also shown via Monte Carlo experiments that the
power of both the DF unit root test and the EG cointegration test falls dramatically with
threshold parameters. For a growing literature to address the joint issues of nonstationarity
and nonlinearity see Michael et al. (1997), Enders and Granger (1998), Berben and van Dijk
(1999), Caner and Hansen (2001), Lo and Zivot (2001), van Dijk et al. (2001), Saikkonen
and Choi (2001), Kapetanios and Shin (2002) and Kapetanios et al. (2003).

In particular, Kapetanios et al. (2003) provide an alternative univariate framework by
analysing a test of the null of a unit root against an alternative of a nonlinear exponential
smooth transition autoregressive (ESTAR) process, develop the test that is speci¯cally de-
signed to have power against the globally stationary ESTAR process, and ¯nd via Monte
Carlo simulations that the proposed test has better power than the DF test in cases where
the nonlinear adjustment is locally prominent under the alternative of a globally stationary
ESTAR process. However, these type of tests could also be regarded as cointegration tests
in principle with (possibly) cointegrating parameters being known, since it can be applied
to equilibrium relationships such as real exchange rates or real interest rates. In this regard,
it would be more fruitful to derive a direct cointegration test under the STAR framework.

To bridge the two areas of nonstationarity and nonlinearity in the context of cointegration,
we consider a single equation cointegrating relationship with nonlinearity in the speed of
adjustment back to equilibrium. Following Kapetanios et al. (2003), we propose here to
model a process where correction to cointegration is slower when the cointegrating residual
is close to zero, and where the change in speed of this adjustment process is assumed smooth
rather than sharp (as with threshold autoregressive models). Therefore, we focus on the
case in which the cointegrating relationship or the error correction term follows a globally
stationary ESTAR process under the alternative. Our approach is theoretically sensible in
terms of speed of convergence arguments made in the literature, when considering economic
hypothesis such as purchasing power parity in particular and hypotheses consisting of asset
arbitrage conditions in general. See Sercu et al. (1995) and Michael et al. (1997) for a further
discussion. More importantly, our framework is quite general. We start from a general VAR
model and embed the ESTAR error correction mechanism in the resulting single equation
conditional VAR model, and then develop the generalised nonlinear ESTAR error correction
model in which we allow for the presence of nonlinear adjustment to the error correction
mechanism under the alternative hypothesis.
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Using this general nonlinear STAR error correction model framework and following a
pragmatic residual-based two step approach advanced by Engle and Granger (1987) and
Balke and Fomby (1997), we propose that a null hypothesis of no cointegration against
an alternative of a globally stationary ESTAR cointegration be tested by examining the
signi¯cance of the parameter controlling the degree of nonlinearity in the speed of adjustment.
We derive the two operational test statistics, denoted tNLECM and tNLEG, respectively. The
tNLECM test refers to the t-type statistic obtained directly from the nonlinear ESTAR error
correction regression, whereas the tNLEG test is the nonlinear analogue to the Engle and
Granger statistic for linear cointegration.

The small sample performance of the suggested tests is compared to that of the EG
test via Monte Carlo experiments. We ¯nd that our newly proposed tests have good size
properties and superior power properties compared to the EG test. In particular, the tNLECM
test is clearly superior to either linear or nonlinear EG tests when the regressors are weakly
endogenous in a cointegrating regression. This clearly supports similar ¯ndings made in
linear models by Kremers et al. (1992) that the EG test loses power relative to ECM-based
cointegration tests because of losing potentially valuable information from the correlation
between the regressors and the underlying disturbances.

Finally, we provide an application to investigating the presence of cointegration of as-
set prices and dividends for eleven stock portfolios (Germany, Belgium, Canada, Denmark,
France, Ireland, Italy, Japan, Netherlands, UK and US) allowing for nonlinear ESTAR ad-
justment to equilibrium. The motivation for nonlinearity is that asset market models in the
presence of transactions costs imply a nonlinear adjustment process toward an equilibrium
through arbitrage. The test results clearly demonstrate the empirical worth of our approach.
In particular, our proposed tests are able to reject the null of no cointegration in majority
cases whereas the linear EG test rejects only twice. Given the strength of evidence in favor
of the ESTAR cointegration we also estimate adjustment parameters under the alternative,
and ¯nd that these estimates are signi¯cant in all cases. We further evaluate the impulse
response functions of the error correction term with respect to initial impulses of 1 - 4 stan-
dard deviation shocks, respectively. The striking ¯nding is that the time taken to recover
one half of a one standard deviation shock varies between ¯ve and twenty years, whereas
the time taken to recover one half of a large shock varies between just 4 to 18 months. This
implies that data periods dominated by extreme volatility may display substantial reversion
of prices towards their NPV relationship, while in \calmer" times where the error in the
NPV relationship takes on smaller values, the process driving it may well look like a unit
root.

The plan of the paper is as follows: Section 2 discusses general modelling issues and
derives the nonlinear ESTAR error correction models. Section 3 develops the proposed test
statistics and derives their asymptotic distributions. Section 4 evaluates the small sample
performance of the proposed tests that take account of the speci¯c ESTAR nonlinear nature
of the alternative. Section 5 presents an empirical application to price-dividend relation-
ships. Section 6 contains some concluding remarks. Mathematical proofs are collected in an
appendix.
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2 Nonlinear STAR Error Correction Models
We begin our analysis by reviewing cointegration testing in the linear case. We start with
the following (possibly cointegrating) linear regression:

yt = ¯0xt + ut; (2.1)

¢xt = vt; (2.2)

where yt is a scalar I(1) variable, xt is a k £ 1 vector of I(1) variables (not cointegrated
among themselves), and the disturbances (ut;v0t)

0 are assumed to follow the general station-
ary processes. We also suppose that the ut follow an AR(1) process:

¢ut = ½ut¡1 + "t: (2.3)

Initially, we assume that the "t are iid processes with zero mean and ¯nite variance, ¾2" , and
the xt are weakly exogenous with respect to "t. In this linear case, if ½ = 0, then yt and xt
are not cointegrated, while if ½ < 0, there is a cointegrating relationship between yt and xt.

The most popular approach to testing the presence of cointegration is the Engle and
Granger (1987) two-step residual based test (hereafter EG). In the ¯rst stage one estimates
¯ by OLS in (2.1) whereas in the second stage one carries out the Dickey-Fuller unit root
t-test for the null of ½ = 0 (no cointegration) against the alternative of ½ < 0 (cointegration)
using the following auxiliary regression:

¢ût = ½ût¡1 + "t; (2.4)

where ût = yt ¡ ^̄ 0xt are residuals obtained from (2.1) and ^̄ is the OLS estimator of ¯.
There has been an alternative testing approach based on error correction models. Ap-

plying the ¯rst di®erence transformation to (2.1) and combining with (2.3), we obtain

¢yt = ¯0¢xt + ½ut¡1 + "t; (2.5)

If ½ = 0, then (2.5) reduces to the linear regression involving only ¯rst di®erences, thus
implying that there is no cointegration between the levels of yt and xt. Therefore, in this
case, the cointegration test can be carried out using the one-sided t-statistic for ½ = 0 (no
cointegration) against ½ < 0 (cointegration) in the following regression:

¢yt = ¯0¢xt + ½ût¡1 + "t: (2.6)

There have also been some attempts to derive the ECM-based test directly from (2.5) without
using residuals. See Banerjee et al. (1998) and Pesaran et al. (2001). One main motivation
behind the use of ECM-based tests is their superior power performance over the EG tests.
The plausible explanation for the much better power of the ECM-based test as compared
to the EG test centers on an implicit common factor restriction imposed when using the
EG procedure. If that restriction is invalid, the EG test remains consistent but loses power
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relative to ECM-based cointegration tests because of losing potentially valuable information
from ¢xt (see (2.13) below). For some details see Kremers et al. (1992) and Hansen (1995).

In this paper we aim to develop an alternative modelling approach in which we allow for
the presence of nonlinear adjustment to the error correction mechanism under the alternative
hypothesis. To do this we consider the following general model:

¢ut = F (ut¡1) + "t; (2.7)

where various functional forms of F (²) can be analysed such that F (ut¡1) includes a linear
model (2.3) as a special case. Here we focus on a special case where F (²) follows the
exponential smooth transition autoregressive (ESTAR) functional form,1

F (ut¡1) = °ut¡1
³
1 ¡ e¡µu2t¡1

´
: (2.8)

In this case (2.7) becomes

¢ut = °ut¡1
³
1 ¡ e¡µu2t¡1

´
+ "t: (2.9)

Kapetanios, Shin and Snell (2003, henceforth KSS) show that the ut in (2.9) are geometrically
ergodic or globally stationary as long as µ > 0 and ¡2 < ° < 0. Combining (2.6) and (2.9)
together,

¢yt = °ut¡1
³
1 ¡ e¡µu2t¡1

´
+ ¯0¢xt + "t; (2.10)

which we call the nonlinear STAR error correction model. The representation (2.10) makes
economic sense in that many economic models predict that the underlying system tends to
display a dampened behavior towards an attractor when it is (su±ciently far) away from it,
but shows some instability within the locality of that attractor. For a growing literature on
the joint analysis of the cointegration and the STAR models see Sercu et al. (1995), Michael
et al. (1997), Saikkonen and Choi (2001) and KSS.

Following KSS, it is straightforward to show that the test of the null of no cointegra-
tion against the alternative of globally stationary cointegration can be based on the single
parameter µ. More particularly, we set the null hypothesis of no cointegration as

H0 : µ = 0; (2.11)

against the alternative of nonlinear ESTAR cointegration of

H1 : µ > 0: (2.12)

The positive value of µ e®ectively determines the stationary property of ut¡1. In general,
the ut are unobserved unless ¯ are unknown, whereas the unknown STAR parameter ° is

1The exponential transition function is bounded between zero and 1, i.e. F : R ! [0; 1] has the properties:
F (0) = 0; limx!§1 F (x) = 1, and is symmetrically U-shaped around zero. An alternative nonlinear
adjustment scheme is given by the ¯rst- or second-order logistic functions. In other application the threshold
autoregressive models can also be considered.
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not identi¯ed under the null µ = 0. Furthermore, when considering the nonlinear STAR
error correction model (2.10), both (nuisance) parameters ¯ and ° are not identi¯ed under
the null. Most solutions to this problem involve some sort of integrating out unidenti¯ed
parameters, and this is usually achieved by calculating the summary test statistics obtained
for a grid of possible values of ¯ and °, e.g., Hansen (1996). The direct approach to dealing
with this double Davies problem would be desirable, but the construction of a grid of possible
values for ¯ would be formidable as the dimension of ¯ increases. There has been a limited
approach, see for example Hansen and Seo (2001) for a two-regime TAR cointegration model.
In next section we will develop the operational cointegration tests under the nonlinear STAR
framework.

However, the above modelling approach may be restrictive in time series modelling in
the sense that any tests developed from them are not expected to be robust to possible weak
endogeneity of the regressors and serial correlation of the errors "t. We ¯rst consider relaxing
the weak exogeneity assumption. For simplicity we consider the nonlinear STAR framework
given by (2.1), (2.2), (2.9), but at ¯rst only allow for the contemporaneous correlation
between vt and "t as follow:

"t = ¼0vt + et = ¼0¢xt + et; (2.13)

where the et's are iid variates with zero mean and ¯nite variance. In this case, (2.1), (2.9)
and (2.10) can be modi¯ed respectively to

yt = ®0xt + u¤t ; (2.14)

¢u¤t = °u
¤
t¡1

³
1 ¡ e¡µu¤2t¡1

´
+ et; (2.15)

¢yt = °u¤t¡1
³
1 ¡ e¡µu¤2t¡1

´
+ ®0¢xt + et; (2.16)

where ® = ¯ + ¼. This clearly shows that so far as the estimation of (2.14) and (2.16) is
concerned under the null, (2.14), (2.15) and (2.16) are observationally equivalent to (2.1),
(2.9) and (2.10). Therefore, the asymptotic null distributions of the (nonlinear) cointegration
statistics obtained from (2.1), (2.9) and (2.10) would be equivalent to those obtained from
(2.14), (2.15) and (2.16).

Next, turning to the case where the "t in (2.10) are serially correlated, and assuming that
these serial correlations enter in a linear autoregressive fashion with ¯nite lag order p, then2

¢ut = °ut¡1
³
1 ¡ e¡µu2t¡1

´
+

pX

j=1

'j¢ut¡j + ´t; (2.17)

2Of course in reality the augmentations may actually enter in a nonlinear way. In such cases, we would
view the use of linear augmentation terms as a ¯rst order approximation to the underlying dynamics rather
than a strict view about the exact nature of the dynamic process itself. Alternatively, we would follow the
semi-parametric correction method advanced by Phillips and Perron (1988).
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where ´t's are iid variates with zero mean and ¯nite variance. Now, combining (2.17) with
(2.10), we have

¢yt = ¯0¢xt + °ut¡1
³
1 ¡ e¡µu2t¡1

´
+

pX

j=1

'j¢ut¡j + ´t

= ¯0¢xt + °ut¡1
³
1 ¡ e¡µu2t¡1

´
+

pX

j=1

'j¢yt¡j +
pX

j=1

¸0j¢xt¡j + ´t; (2.18)

where ¸j = ¡'j¯. Following Said and Dickey (1984) and KSS, it can be easily seen that un-
der the null the statistics testing µ = 0 in (2.18) would have the same asymptotic distribution
as obtained under non-serially correlated errors.

Finally, combining both contemporaneous correlation (2.13) and serial correlation (2.17)
within (2.10), we obtain the following general nonlinear ESTAR error correction model:3

¢yt = °ut¡1
³
1 ¡ e¡µu2t¡1

´
+ ®0¢xt +

pX

j=1

'j¢yt¡j +
pX

j=1

¸0j¢xt¡j + et:
(2.19)

where the et are iid processes and all the regressors in (2.19) are weakly exogenous by
construction.

We now turn to a generalization which includes all the above modelling approaches as
a special case. We begin with the data generating process for zt = (yt;x0t)

0 that follows the
general VAR model of lag order p+ 1:

zt =
p+1X

i=1

©izt¡i + "t; t = 1; 2; :::; T (2.20)

where ©i, i = 1; :::; p + 1; are (k + 1) £ (k + 1) matrices of unknown coe±cients, the vector
error processes "t are iid(0;§) with § being a (k + 1)£ (k + 1) positive de¯nite matrix, and
the initial observations Z0 ´ (z¡p; :::; z0) are given. The VAR(p + 1) model (2.20) may be
rewritten in vector ECM form as

¢zt = ¦zt¡1 +
pX

i=1

¡i¢zt¡i + "t; t = 1; 2; :::; T; (2.21)

The focus of this paper is on the conditional modelling of the variable yt given the k-
vector xt and the past values of zt and Z0. Partitioning the error term "t conformably with

zt as "t = ("yt;"0xt)0 and its variance matrix as § =
µ
¾yy ¾yx
¾xy §xx

¶
, we may express "yt

conditionally in terms of "xt as

"yt = ¾yx§¡1xx"xt + et; (2.22)

3The extension to a more general case that the vt follow the VAR(q) processes will be straightforward.
Then, the resulting model has essentially the same structure as (2.19). See the general discussion below.
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where et » iid(0; ¾2e), ¾2e ´ ¾yy ¡ ¾yx§¡1xx¾xy and et is independent of "xt by construction.
Substituting (2.22) into (2.21), partitioning ¦ = (¼0

y;¦0
x)0, ¡i = (° 0yi;¡0xi)0, i = 1; :::; p, and

further assuming ¦x = 0, we obtain the following conditional ECM model for ¢yt:

¢yt = ¼yzt¡1 + !0¢xt +
pX

i=1

Ã0
i¢zt¡i + et; (2.23)

and the marginal VAR model for ¢xt,

¢xt =
pX

i=1

¡xi¢zt¡i + "xt; (2.24)

where ! ´ §¡1xx¾xy and Ã0
i ´ °yi ¡ !0¡xi, i = 1; :::; p. Notice that the assumption ¦x = 0

implies that the process xt are weakly exogenous for the parameters of (2.23) and therefore
the parameters in (2.23) are variation-free from the parameters in (2.24), but also restricts
consideration to cases in which there exists at most one conditional cointegrating relationship
between yt and xt which includes both yt and xt. See Johansen (1995), and Pesaran et al.
(2001) for a more general discussion. Now, rewriting ¼yzt¡1 = ½ (yt¡1 ¡ ¯0xt¡1) = ½ut¡1 in
(2.23), and embedding the STAR error correction mechanism (2.9), we obtain the following
generalised nonlinear ESTAR error correction model:

¢yt = °ut¡1
³
1 ¡ e¡µu2t¡1

´
+ !0¢xt +

pX

i=1

Ã0
i¢zt¡i + et: (2.25)

In practice di®erent lag orders for ¢yt and ¢xt can be selected in a data dependent way using
standard model selection criteria or signi¯cance testing procedure without loss of generality
or change in the asymptotic analysis. See Ng and Perron (1995).

3 Testing for Nonlinear STAR Cointegration
In this section we will develop the two operational versions of the cointegration test under
the general nonlinear STAR-ECM framework given by (2.25). Here we follow Engle and
Granger (1987) and Balke and Fomby (1997), and take a pragmatic residual-based two step
approach. In the ¯rst stage, we obtain the residuals, ût = yt ¡ ^̄ 0xt from (2.1) with ^̄ being
the OLS estimate of ¯. In the second stage, in order to overcome the Davies problem that
° is not identi¯ed under the null, we follow KSS and approximate (2.25) by

¢yt = ±u3t¡1 + !0¢xt +
pX

i=1

Ã0
i¢zt¡i + et; (3.1)

where we use a ¯rst-order Talyor series approximation to
³
1 ¡ e¡µu2t¡1

´
under the null µ = 0

following Luukkonen et al. (1988).
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This suggests that we could obtain the t-type statistic for ± = 0 (no cointegration) against
± < 0 (nonlinear ESTAR cointegration) by using ût in (3.1). We then obtain the t-statistic
for ± = 0, denoted tNLECM , by

tNLECM =
û30
¡1Q1¢yp
¾̂2û30

¡1Q1û3
¡1
; (3.2)

¾̂2 = T¡1
TP
t=1

Ã
¢yt ¡ ±̂û3t¡1 ¡ !̂0¢xt +

pX

i=1

Ã̂
0
i¢zt¡i

!2

; (3.3)

where û3
¡1 =

¡
û30; :::; û3T¡1

¢0, Q1 = IT ¡ S (S0S)¡1 S0, S = (¢X;¢Z¡1; :::;¢Z¡p), ¢X =
(¢x1; :::;¢xT )

0, ¢Z¡i = (¢z1¡i; :::;¢zT¡i)
0, i = 1; :::; p, ¢y = (¢y1; :::;¢yT )

0, and ±̂, !̂, Ã̂i,
i = 1; :::; p; are the OLS estimates of ±, !, Ãi, i = 1; :::; p.

Alternatively and in keeping with the tradition in linear cointegration, we propose a
companion test, namely a test which is the analogue to the Engle and Granger statistic for
linear cointegration. This statistic, denoted tNLEG, is obtained by

tNLEG =
û30
¡1Q2¢ûp
¾̂2û30

¡1Q2û3
¡1
; (3.4)

through the following regression:

¢ût = ±û3t¡1 +
pX

i=1

'i¢ût¡i + »t; (3.5)

where

¾̂2EG = T¡1
TP
t=1

Ã
¢ût ¡ ±̂û3t¡1 ¡

pX

i=1

'̂i¢ût¡i

!2

; (3.6)

¢û = (¢û1; :::;¢ûT )
0 ; Q2 = IT ¡ ¢Up

¡
¢U0

p¢Up
¢¡1¢U0

p, ¢Up = (¢û¡1; :::;¢û¡p),
¢û¡i = (¢û1¡i; :::;¢ûT¡i)

0, i = 1; :::; p and ±̂, '̂i are the OLS estimates of ± and 'i.

Theorem 3.1 Consider the generalised nonlinear ESTAR error correction model (2.25).
Under the null (2.11), the tNLECM and tNLEG statistics de¯ned by (3.2) and (3.4) have the
following asymptotic distributions, respectively:

tNLECM )
R
B(r)3dW (r)qR
B(r)6dr

; (3.7)

tNLEG )
R
B(r)3dB (r)

(1 + ¿ 0¿ )
qR
B(r)6dr

; (3.8)
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where `)' denotes a weak convergence,

B(r) =W (r) ¡W(r)0
µZ 1

0
W(r)W(r)0

¶¡1 µZ 1

0
W(r)W (r)

¶
; (3.9)

¿ =
· 1R
0
W0 (r)W (r) dr

¸¡1 · 1R
0
W0 (r)W (r)

¸
; (3.10)

and W (r) and W (r) are independent scalar and k-vector standard Brownian motions, re-
spectively, de¯ned on r 2 [0; 1]. Under the alternative (2.12), both tNLECM and tNLEG
statistics diverge to negative in¯nity.

To accommodate deterministic components in the regression (2.1), we extend to consider
the regression with an intercept

yt = a0 + ¯0xt + ut; (3.11)

and the regression with an intercept and a linear deterministic time trend,

yt = a0 + a1t+ ¯0xt + ut: (3.12)

Notice that the ut are still of the same form given by (2.9). Alternatively, we take a simpler
but equivalent approach, in which we re-express (3.11) and (3.12) as

y¤t = ¯0x¤t + u
¤
t ; (3.13)

y+t = ¯0x+
t + u+t ; (3.14)

where superscripts `¤' and `+' indicate the demeaned data and the demeaned and detrended
data, respectively.

The respective tNLECM and tNLEG statistics are then obtained as follows: First, the
appropriate residuals are obtained from either (3.13) or (3.14), and then the corresponding
regressions are constructed. More speci¯cally, we have

¢y¤t = ±û
¤
t¡1 + !0¢x¤t +

p¡1X

i=1

Ã0
i¢z

¤
t¡i + error; (3.15)

¢y+t = ±û+t¡1 + !0¢x+
t +

p¡1X

i=1

Ã0
i¢z

+
t¡i + error; (3.16)

where û¤t = y¤t ¡ ¯0x¤t , and û
+
t = y+t ¡ ¯0x+

t . The appropriate tNLECM statistics are now
obtained as the t-statistic for ± = 0 in (3.15) or (3.16), respectively. The corresponding tNLEG
statistics are also similarly obtained. For the regression with a non-zero intercept (3.11), it is
easily seen that the asymptotic distribution of both tNLECM and tNLEG statistics is the same
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as in (3.7) and (3.8), except that W (r) and W (r) is replaced by the de-meaned Brownian
motions, denoted fW (r) and fW(r) , de¯ned on r 2 [0; 1]. Similarly, for the regression with
non-zero intercept and non-zero linear trend coe±cient (3.12), the associated asymptotic
distributions are such that W (r) and W (r) are replaced by the de-meaned and de-trended
Brownian motions, denoted cW (r) and cW(r). Asymptotic critical values of the tNLEGDF and
tNLECM statistics for the above three cases have been tabulated for k = 1; :::; 5, via stochastic
simulations with T = 1; 000 and 50,000 replications in Table 1.

Table 1 about here

4 Finite Sample Properties
In this section we undertake a small-scale Monte Carlo investigation of the ¯nite sample size
and power performance of our proposed tNLECM and tNLEG tests in conjunction with the
linear EG test, denoted tEG.

We consider experiments based on the bivariate regression. In the ¯rst set of experiments
(Experiment 1) we focus on the size of the tests after constructing the null model by

yt = ¯xt + ut; (4.1)

¢xt = vt; (4.2)

¢ut = "t; (4.3)

"t = ¸vt + ´t; (4.4)

where we ¯x ¯ = 1, vt » iidN (0; 1), ´t » iidN (0; 1) and ´t is independently distributed
of vt. We consider the two cases: ¸ = 0 (Experiment 1A with exogenous regressor) and
¸ = 1 (Experiment 1B with endogenous regressor). Since the tests are similar with respect
to intercepts and/or time trends, we will set all intercepts and trend coe±cients to zero in
what follows. In order to accommodate the possible serial correlation of the errors, we also
consider the case of AR(1) errors given by

´t = Á1´t¡1 + et; (4.5)

vt = Á2vt¡1 + &; (4.6)

where we set Á1 = Á2 = 0:4, et » iidN (0; 1), &t » iidN (0; 1), and et, &t are independently
generated. We also consider the two cases: ¸ = 0 (Experiment 1C) and ¸ = 1 (Experiment
1D).

Secondly, in order to evaluate the power of alternative tests, we now generate (4.3) by

¢ut = °ut¡1
£
1 ¡ exp

¡
¡µu2t¡1

¢¤
+ "t; (4.7)
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where "t is still generated by (4.4) with vt » iidN (0; 1) and ´t » iidN (0; 1). To make a gen-
eral power comparison we choose a broad range of parameter values for ° = f¡1:5;¡1;¡0:5g
and µ = f0:01; 0:1g. We also consider the two cases, ¸ = 0 (Experiment 2A) and ¸ = 1
(Experiment 2B). Here we also consider the special case of the linear alternative given by

¢ut = °ut¡1 + "t; (4.8)

where we simply set ° = ¡0:1.
Table 2 presents results on the size of the alternative tests. Notice that for Experiments

1A and 1B in which the "t are not serially correlated, all the test statistics are obtained using
the saponi¯cation with no augmentations, whereas we use the correct speci¯cation with one
augmentation for Experiments 1C and 1D with AR(1) errors. As expected, sizes for the
tNLECM , tNLEG and tEG tests are all close to the nominal level of 5% even in the presence
of serially correlated errors.

Table 2 about here

Turning to the power performance of the tests, which are summarised in Table 3, a general
¯nding is that our suggested nonlinear-based tNLECM and tNLEG tests are more powerful
than the linear tEG test for almost all cases considered. In particular, the power gain of the
tNLECM and tNLEG tests over the tEG test becomes substantial, when µ is relatively small, e.g.
µ = 0:01.4 This result is consistent with the univariate ¯nding in KSS. For example, when
looking at Case 2 for Experiment 2A (with exogenous regressor) with (°; µ) = (¡1:5; 0:01)
and T = 100, the powers of the tNLECM and tNLEG tests are .534 and .514, whereas the
power of tEG is only .345. In Experiment 2A, the tNLECM test is only marginally more
powerful than the tNLEG test. Interestingly and as expected, however, the power dominance
of the tNLECM test becomes more pronounced for Experiment 2B in which the regressor is
endogenous. For example, when looking at Case 2 for Experiment 2B (with endogenous
regressor) with (°; µ) = (¡1; 0:01) and T = 100, the powers of the tNLECM , tNLEG and tEG
tests are .792, .458 and .288, respectively. As mentioned earlier, the plausible explanation is
that the tNLECM test explicitly employs potentially valuable information from the correlation
between ¢xt and "t, whereas both tNLEG and tEG tests fail to do so. Finally, looking at
the results for the linear alternative (see the rows with (°; µ) = (¡0:1;1)), we ¯nd that the
linear tEG test is slightly more powerful than both tNLECM and tNLEG tests for Experiment
2A, whereas the tNLECM is still most powerful for Experiment 2B. This clearly demonstrates
the superior power performance of the ECM-based test over the EG-type tests in general
when the regressors are likely to be endogenous.

Table 3 about here
4Notice in our application below that the estimates of µ (which we obtain under the constraint that

° = ¡1) are indeed quite small, ranging as they do between 0.007 and 0.017.
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5 Empirical Application to Asset Pricing in the Pres-
ence of Transactions Costs

In a seminal paper, Campbell and Shiller (1987) investigate the existence of linear coin-
tegration between aggregate US stock prices and US dividends, as predicted by a simple
equilibrium model of constant expected asset returns. Their results were ambiguous. A null
hypothesis of no linear cointegration was marginally rejected in their data but the implied
estimates of long run asset returns was implausible. Imposing a more credible long run
return caused non rejection of the null of no cointegration. Subsequent literature has met
with similar mixed results.

In this section we test for cointegration of asset prices and dividends for eleven stock
portfolios allowing for nonlinear adjustment to equilibrium of the STAR variety. The moti-
vation for nonlinearity is the existence of transactions costs via a bid ask spread that varies
over stocks. At ¯rst we might expect that transactions costs which arise from a ¯xed spread
might motivate the consideration of price adjustment mechanism of the TAR variety. How-
ever our data consists of prices and dividends averaged over a widely diversi¯ed portfolio of
stocks and it has been shown in numerical simulations that this aggregation process leads to
a speci¯cation that is better approximated by an STAR rather than a TAR model, see for
example Taylor et al. (2003).

We collected monthly data from January 1974 to November 2002 on end period real
prices and within period real dividend yields for value weighted market portfolio indices of
stocks traded on the main exchanges of the following eleven countries: Germany, Belgium,
Canada, Denmark, France, Ireland, Italy, Japan, Netherlands, UK and US. A dividend series
was constructed as the product of dividend yield and prices. Although not presented here,
simple ADF tests from an initial data analysis give overwhelming support to the hypothesis
that all variates are I(1).

As alluded to above we test for the existence of a linear cointegrating relationship between
dividends and prices of the form,

pt = ¯dt + ut: (5.9)

The existence of bid ask spreads discussed above motivate the speci¯cation of a nonlinear
dynamic adjustment mechanism such as the ESTAR model giving the following nonlinear
STAR-ECM model:

¢pt = °
³
1 ¡ e¡µu2t¡1

´
ut¡1 + ®¢xt + "t; (5.10)

where ut¡1 = pt¡1 ¡ ¯dt¡1 and "t is a (possibly autocorrelated) error term which captures
other microstructure e®ects such as speci¯c kinds of noise trading and dealer inventory
control mechanisms whereby the adjustment of prices to elicit inventory-correcting trades
generates autocorrelated price movements, see for example Snell and Tonks (1998).

We computed three tests. The ¯rst two, tEG and tNLEG are the linear Engel-Granger
test and its nonlinear counterpart. The third, tNLECM is the t-ratio on û3t¡1 in the STAR-
ECM formulation where ût¡1 is the residual from the ¯rst stage (spurious under the null)
regression of pt on dt. The price and dividend series appeared to have an upward trend
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so that all series were demeaned and detrended before use.5 We estimated the appropriate
auxiliary regressions for p = 12 and then dropped all insigni¯cant lags in a single round of
general to speci¯c modelling.6

The results for the tests are in columns 2 to 4 in Table 4. Looking at the results we see
that viewed through the \eyes" of linear cointegration tests there is little support for the
hypothesis that dividends and prices move together in the long run with only 2 of the tEG
tests rejecting the null, albeit at the 1% level. Furthermore, none of the remaining 9 tEG
statistics are signi¯cant even at the 10% level. By contrast the nonlinear tNLEG test rejects
in 7 out of 11 stock markets with four of these rejections occurring at the 1% level. A further
three statistics are quite close to the 10% critical value. The success in rejecting the null of
no cointegration is less marked for tNLECM with only 5 rejections at standard signi¯cance
levels although three of these reject also at the 1%. A further two tNLECM statistics are
quite close to the 10% critical value.7

Table 4 about here

Given the strength of evidence against the null and support for the alternative we could
obtain estimates of adjustment parameters under the alternative. Focusing on the univariate
model we obtained nonlinear least squares estimates of µ from the alternative ESTARmodel,

¢ût = ¡
©
1 ¡ exp

¡
¡µû2t¡1

¢ª
ût¡1 +

12X

i=1

'i¢ût¡i + »t; (5.11)

where the model has been specialised compared with the general ESTAR considered above
by imposing a unit coe±cient on °. Early attempts to estimate ° jointly with µ foundered
on severe identi¯cation problems and our nonlinear algorithm failed to converge in most
cases - hence the specialisation. Under the alternative (and estimation of (5.11) only makes
sense if the alternative is true), µ is scale dependent. To clarify its interpretation and to
facilitate numerical convergence, we normalised the ût series to have unit sample variance (a
procedure which only makes sense under the alternative). The results for µ̂ and its t-statistic
are given in Table 4. Although we cannot interpret the t-statistic as a signi¯cance from
zero test (for obvious reasons) we refer to it as \signi¯cant" if an asymptotic 95% con¯dence
interval around the estimate excludes zero. We see that µ̂ is \signi¯cant" in all cases and
varies between .007 and .017.

To get a feel for what such values imply, Figure 1 below plots impulse response functions
(irfs) for the error correction term for initial impulses of 1, 2, 3, 4 standard deviation shocks,

5The issue of whether or not stock prices and dividends contain a deterministic time trend in the long run
is contentious. However there is a clearly discernible trend in both dividends and prices in our data hence
we detrend and demean. It is comforting to note that if we do not detrend but only demean, the results are
qualitatively almost identical.

6We should note that although further exploration revealed some signi¯cant lags beyond 12th order, the
test statistics were not in general very sensitive to the choice of lag length.

7If the alternative is really true then we could interpret this ¯nding as being somewhat at odds with the
Monte Carlo evidence, which generally shows that tNLECM has more power than tNLEG. However, there is
good prior reason to believe that dividends are weakly exogenous in the system. If true, a bivariate ECM
would lack parsimony compared with the univariate speci¯cation and this may have lead to a loss in power.
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respectively. For completeness and comparison we compare the corresponding irf with that
obtained from the estimated linear models. The striking thing about the graphs is the length
of time taken to recover from small shocks. In particular the time taken to recover one half of
a one standard deviation shock varies between ¯ve and twenty years. By contrast, the time
taken to recover one half of a large shock (such as 3 or 4 standard deviations) is comparable
to that of the linear case and varies between just 4 to 18 months. This implies that data
periods dominated by extreme volatility may display substantial reversion of prices towards
their NPV relationship but in \calmer" times, where the error in the NPV relationship takes
on smaller values, the process driving it may well look like a unit root. This suggests that
in practice the ESTAR and SETAR models may not be too dissimilar in terms of overall
inference in any given (¯nite) sample.

Figure 1 about here

6 Concluding Remarks
The investigation of nonstationarity in conjunction with nonlinear autoregressive modelling
has recently assumed a prominent role in econometric study. It is clear that misclassifying
a stable nonlinear process as nonstationary can be misleading both in impulse response and
forecasting analysis. Similarly not allowing for the presence of cointegration when the speed
of adjustment varies with the position of the system as in the case of nonlinear cointegration
can be equally misleading. In this paper we have proposed a direct cointegration test that
is designed to have power against nonlinear error correction speci¯cations. Our proposed
tests are shown to have better power than the Engle and Granger test that ignores the
nonlinear nature of the alternative. An empirical application clearly shows the potential of
our approach. Unlike linear cointegration tests, the nonlinear tests ¯nd substantial evidence
of cointegration in stock price and dividend systems. Further research to develop similar
tests for alternative nonlinear models such as threshold autoregressive models is currently
under way.
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Table 1. Asymptotic Critical Values of the tNLEGDF and tNLECM Statistics

tNLEGDF
Case 1 Case 2 Case 3

k 90% 95% 99% 90% 95% 99% 90% 95% 99%
1 -2.59 -2.85 -3.38 -2.98 -3.28 -3.84 -3.41 -3.71 -4.26
2 -3.01 -3.30 -3.89 -3.36 -3.67 -4.23 -3.64 -3.99 -4.53
3 -3.34 -3.66 -4.23 -3.63 -3.93 -4.50 -3.90 -4.18 -4.76
4 -3.65 -3.95 -4.56 -3.90 -4.19 -4.68 -4.09 -4.39 -4.95
5 -3.88 -4.13 -4.75 -4.10 -4.42 -4.97 -4.36 -4.67 -5.23

tNLECM
Case 1 Case 2 Case 3

k 90% 95% 99% 90% 95% 99% 90% 95% 99%
1 -2.38 -2.66 -3.35 -2.92 -3.22 -3.78 -3.30 -3.59 -4.17
2 -2.67 -3.01 -3.59 -3.12 -3.43 -4.00 -3.46 -3.79 -4.40
3 -2.95 -3.28 -3.93 -3.32 -3.61 -4.19 -3.62 -3.96 -4.54
4 -3.15 -3.47 -4.14 -3.46 -3.77 -4.38 -3.75 -4.07 -4.70
5 -3.33 -3.67 -4.31 -3.58 -3.92 -4.53 -3.87 -4.20 -4.85

Table 2. Size of Alternative Tests

Experiment 1A Experiment 1B
tEGDF tNLEGDF tNLECM tEGDF tNLEGDF tNLECM

Case 1
T = 100 .056 .045 .052 .042 .042 .048
T = 200 .047 .041 .053 .060 .051 .045
Case 2
T = 100 .056 .047 .041 .049 .053 .054
T = 100 .049 .046 .046 .038 .051 .047
Case 3
T = 100 .070 .041 .046 .061 .045 .053
T = 100 .051 .044 .047 .044 .046 .051

Experiment 1C Experiment 1D
tEGDF tNLEGDF tNLECM tEGDF tNLEGDF tNLECM

Case 1
T = 100 .068 .062 .054 .046 .054 .052
T = 200 .046 .054 .054 .056 .047 .055
Case 2
T = 100 .048 .053 .036 .056 .053 .031
T = 100 .047 .054 .049 .056 .061 .039
Case 3
T = 100 .047 .040 .040 .055 .047 .040
T = 100 .051 .051 .037 .059 .045 .036
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Table 3. Power of Alternative Tests

Case 1 Experiment 2A Experiment 2B
(°; µ) T tEGDF tNLEGDF tNLECM tEGDF tNLEGDF tNLECM

(-0.5,0.01) 100 .172 .236 .317 .260 .327 .710
200 .633 .778 .859 .932 .894 .990

(-0.5,0.1) 100 .982 .958 .976 1.0 .978 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0

(-1,0.01) 100 .345 .500 .619 .667 .695 .935
200 .977 .977 .986 1.0 .992 .999

(-1,0.1) 100 1.0 .999 .999 1.0 1.0 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0

(-1.5,0.01) 100 .606 .737 .824 .915 .885 .982
200 .999 .993 .995 1.0 1.0 1.0

(-1.5,0.1) 100 1.0 1.0 1.0 1.0 1.0 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0

(-0.1,1) 100 .373 .236 .336 .286 .213 .538
200 .922 .631 .720 .847 .576 .920

Case 2 Experiment 2A Experiment 2B
(°; µ) T tEGDF tNLEGDF tNLECM tEGDF tNLEGDF tNLECM

(-0.5,0.01) 100 .150 .183 .191 .123 .177 .463
200 .376 .515 .541 .547 .664 .936

(-0.5,0.1) 100 .843 .826 .841 .963 .902 .995
200 1.0 1.0 1.0 1.0 1.0 1.0

(-1,0.01) 100 .215 .293 .312 .288 .458 .792
200 .786 .859 .869 .978 .963 .996

(-1,0.1) 100 1.0 .993 .994 1.0 1.0 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0

(-1.5,0.01) 100 .345 .514 .534 .558 .698 .919
200 .977 .952 .954 1.0 .996 1.0

(-1.5,0.1) 100 1.0 1.0 1.0 1.0 1.0 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0

(-0.1,1) 100 .205 .165 .174 .123 .135 .326
200 .701 .456 .479 .547 .350 .758

Case 3 Experiment 2A Experiment 2B
(°; µ) T tEGDF tNLEGDF tNLECM tEGDF tNLEGDF tNLECM

(-0.5,0.01) 100 .131 .120 .141 .108 .095 .297
200 .274 .335 .367 .205 .365 .802

(-0.5,0.1) 100 .664 .646 .691 .794 .708 .967
200 1.0 .994 .995 1.0 .997 1.0

(-1,0.01) 100 .174 .192 .222 .211 .273 .630
200 .613 .681 .720 .830 .830 .978

(-1,0.1) 100 .992 .976 .985 1.0 .994 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0

(-1.5,0.01) 100 .265 .313 .374 .332 .464 .825
200 .854 .861 .883 .991 .968 1.0

(-1.5,0.1) 100 1.0 .998 .997 1.0 1.0 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0

(-0.1,1) 100 .176 .115 .132 .108 .073 .190
200 .553 .322 .352 .295 .196 .576
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Table 4. Cointegration Tests and Estimates of the ESTAR Parameter for Asset Prices and Dividends

Country tEG tNLEG tNLECM µ tµ
Germany -2.62 -3.68¤ -4.69¤¤ .011 3.40
Belgium -2.06 -4.69¤¤ -4.89¤¤ .007 3.79
Canada -1.73 -3.05 -1.53 .008 3.26

Denmark -5.04¤¤ -4.82¤¤ -4.73¤¤ .009 3.75
France -3.27 -3.07 -0.99 .007 2.83
Ireland -2.72 -3.76¤ -3.73¤ .017 3.85
Italy -1.81 -5.50¤¤ -3.04 .010 3.51
Japan -2.44 -2.46 -2.11 .009 2.86

Netherlands -4.94¤¤ -7.79¤¤ -1.90 .015 6.18
UK -2.43 -3.28 -3.22 .008 2.78
US -2.10 -3.90¤ -3.70¤ .007 3.76

Notes: The sample period in all cases is March 1974 to November 2002. ¤(¤¤) denotes signi¯cance at the
5% (1%) level.
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Germany
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Belgium
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Canada
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- UK
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- US
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Denmark
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- France
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Ireland
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Italy
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Japan
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Response of z to a k (k=1,2,3,4) standard 
deviation shock:- Netherlands
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Figure 1. Impulse Response Functions of Error Coorection Terms

Notes: The lower line in each graph is the impulse response functions for the linear case whilst the lines
above are impulse response functions the nonlinear case with k = 1; 2; 3; 4 standard deviations shocks (in
ascending order), respectively.
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A Appendix: Proof of Theorem 3.1
Under the null, ± = 0 and thus tNLECM given by (3.2) can be written as

tNLECM =
û30

¡1Q1eq
¾̂2

ECM û30
¡1Q1û3

¡1

=
T¡2û30

¡1Q1eq
¾̂2

ECM
¡
T¡4û30

¡1Q1û3
¡1

¢ ; (A.1)

where e = (e1; :::; eT )0. Next we write the residuals ût obtained from (2.1) as

ût = yt ¡ ^̄0
xt = ut ¡ x0

t

³
^̄ ¡ ¯

´
; (A.2)

where ^̄¡¯ = (X0X)¡1X0u, X = (x1; :::;xT )0 and u = (u1; :::; uT )0. Notice under the null of no cointegration
that the ut are I(1). It is now well-established (e.g., Following Phillips and Ouliaris (1990)) that

1p
T

[Tr]X

t=1

et ) ¾eW (r); T¡1=2ut ) B1 (r) ; (A.3)

^̄ ¡ ¯ = (T¡2X0X)¡1T¡2X0u )
· 1R

0
B0

2 (r)B2 (r) dr
¸¡1 1R

0
B0

2 (r) B1 (r) ; (A.4)

where [Tr] is the integer part of Tr, W (r) is a scalar standard Brownian motion, B1(r) is a scalar Brownian
motion with a long-run variance $2

11 = !11¡!0
21­

¡1
22 !21, and B2 (r) are the k-vector Brownian motions with

a covariance matrix ­22 = E (vtv0
t), and ­ =

µ
!11 !12
!21 ­22

¶
is the long run covariance matrix of (¢y;¢x0)0.

Using (A.3) and (A.4) in (A.2), it is easily seen that

T¡1=2ût ) $11B (r) ;

where B (r) is de¯ned in (3.9). Next, noting that the ûj
t¡1, j = 1; 2; :::; are a regular transformation of ût¡1

in the sense of Park and Phillips (2001), we can apply Lemma 2.1 of their paper and obtain (see also KSS)

T¡4
TX

t=1

û6
t¡1 = T ¡1

TX

t=1

³
T¡1=2ût¡1

´6
) $6

11

Z
B(r)6dr;

T¡2
TX

t=1

û3
t¡1et = T¡ 1

2

TX

t=1

³
T¡1=2ût¡1

´3
et ) ¾e$3

11

Z 1

0
B(r)3dW (r);

T¡2
TX

t=1

û3
t¡1¢zt = T¡ 1

2

TX

t=1

³
T¡1=2ût¡1

´3
st = Op (1) ;

where the st are the t-th row of S. Using the above results, it is now readily seen that

T¡2û30
¡1Q1e = T¡2û30

¡1e + T¡1=2 ¡
T¡2û30

¡1S
¢ ¡

T¡1S0S
¢¡1

³
T¡1=2S0e

´
(A.5)

= T¡2û30
¡1e + op (1) ) ¾e$3

11

Z 1

0
B(r)3dW (r);

T¡4û30
¡1Q1û3

¡1 = T¡4û30
¡1û

3
¡1 + T¡1 ¡

T¡2û30
¡1S

¢ ¡
T¡1S0S

¢¡1 ¡
T¡2S0û3

¡1
¢

(A.6)

= T¡4û30
¡1û

3
¡1 + op (1) ) $6

11

Z
B(r)6dr:
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Finally, it is straightforward to show under the null that

¾̂2 = T¡1
TP

t=1

Ã
¢yt ¡ ±̂û3

t¡1 ¡ !̂0¢xt ¡
pX

i=1

Ã̂
0
i¢zt¡i

!2

(A.7)

= T¡1
TP

t=1

Ã
et ¡ ±̂û3

t¡1 ¡ (!̂ ¡ !)0 ¢xt ¡
pX

i=1

³
Ã̂i ¡ Ãi

´0
¢zt¡i

!2

= T¡1
TP

t=1
e2
t + op (1) ! ¾2

e ;

where we used T 2±̂ = Op (1),
p

T (!̂ ¡ !) = Op (1) and
p

T
³
Ã̂i ¡ Ãi

´
= Op (1). Using (A.5) - (A.7) in

(A.1), we obtain the required results for the asymptotic distribution of the tNLECM test.
We move on to prove results for the tNLEG test, which under the null can be written as

tNLEG =
û30

¡1Q2»q
¾̂2

EGû30
¡1Q2û3

¡1

=
T¡2û30

¡1Q2»q
¾̂2

EG
¡
T¡4û30

¡1Q2û3
¡1

¢ ; (A.8)

where » = (»1; :::; »T )0. Notice under the null that the DGP for ¢ût is given by

' (L)¢ût = »t;

where ' (L) = 1 ¡ Pp
i=1 'iLi, (see (3.5) and also discussion around (2.18)). Following Phillips and Ouliaris

(1990), it is straightforward to show that

T¡1=2
[Tr]X

t=1

»t ) ' (1)$11B (r) ; (A.9)

1
T

TX

t=1

¢û2
t ) $2

11 (1 + ¿ 0¿ ) ; (A.10)

1
T

TX

t=1

»2
t ) [' (1)]2 $2

11 (1 + ¿ 0¿ ) ; (A.11)

where ¿ is de¯ned in (3.10). As before we also have
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t¡1 ¡
pX

i=1

('̂i ¡ 'i)¢ût¡i
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where we used (A.11), ±̂ = Op
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T¡2

¢
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¢
, i = 1; :::; p. Using (A.12) - (A.14) in

(A.8), we obtain the required results for the asymptotic distribution of the tNLEG test.
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We now prove that both tNLECM and tNLEG tests are consistent under the alternative. First, under
the alternative, tNLECM can be expressed as
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û30

¡1Q1û3
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under the alternative, it is easily seen that
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. Notice in

(A.15) that we also used that ut¡1, ût¡1 and all lagged I(0) regressors in S are uncorrelated with et. Next,
a tedious but straightforward computation shows that
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Therefore, using (A.15) - (A.16) in (A.14), we obtain:
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which clearly shows that the tNLECM statistic diverges to negative in¯nity as T ! 1.
Next, under the alternative, tNLEG can be expressed as
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EGû30
¡1Q2û3
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As before, it is straightforward to show that

T¡1û30
¡1Q2û3
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where we used
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which also shows that the tNLEG statistic diverges to negative in¯nity as T ! 1.
We note in passing that Theorem 3.1 can be proved for the most general case of an in¯nite order VAR

under the further condition that the truncated lag order is imposed by p = Op(T 1=3). This upper bound
follows from Berk (1974) who shows that a second moment matrix for the higher (than p) lagged regressors
does not converge to its population moment in norm, and thus any coe±cients on these stationary variables
would not be estimated consistently. See also Ng and Perron (1995). Therefore, for consistent estimation
we need to impose this upper bound. The detailed technical proof will be available upon request.
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