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How and why do firms differ?∗
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A : How do firms differ, and why do they differ even within narrowly defined

industries? Using evidence from six high-tech, manufacturing industries covering a 24-

year period, we show that differences in sales, materials, labor costs and capital across

firms can largely be summarized by a single, firm-specific, dynamic factor, which we label

efficiency in the light of our structural model. The model contains the complete system
of supply and factor demand equations. It suggests that efficiency is strongly linked to

profitability and firm size, but it is unrelated to labor productivity. Our second task is

to understand the origin and evolution of the differences in efficiency. Among the firms

established within the 24 year period that we consider, permanent differences in efficiency

dominate over differences generated by firm-specific, cumulated innovations.
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1 Introduction

More than 50 years ago Marschak and Andrews (1944) showed that production function

regressions generate inconsistent parameter estimates because optimal supply and factor

inputs are jointly determined by unobservable differences in efficiency across firms. The

problem with regressions on firm level data has haunted studies of efficiency and producer

behavior ever since; see Griliches and Mairesse (1998) for a survey. In this paper, we

propose an econometric model that explicitly uses the full system of equations derived

from optimizing supply and factor demands to overcome this problem. The econometric

model allows us to explore the origins of the efficiency differences across firms.

Efficiency differences are decomposed into stochastic, firm-specific (idiosyncratic) cu-

mulated innovations as emphasized e.g. by Ericson and Pakes (1995), and permanent

efficiency differences as emphasized by Jovanovic (1982) and others1. In the six high-tech

industries that we examine, the efficiency differences are largely permanent. Cumulated

innovations in efficiency play a lesser role among the firms established within our 24 year

period.

A large literature on firm heterogeneity has focused on firm performance as measured

by size (sales or employment), including Pakes and Ericson (1998). However, most recent

studies of differences in firm performance have focused on differences in efficiency. In

competitive environments, differences in size and efficiency should be closely related as

more efficient firms will tend to be larger, see e.g. Demsetz (1973), Lucas (1978), and

Jovanovic (1982). Our structural model highlights the positive relationship between size

and efficiency, while also emphasizing that the fixity of capital is essential in explaining

differences in firm sizes.

We use the term efficiency rather than productivity, as our structural model suggests

that differences in labor productivity are unrelated to differences in efficiency. The ar-

gument is simple, but seems to have been overlooked in the literature: Consider firms

with different levels of efficiency competing in a frictionless industry. A firm with high

efficiency will choose a high level of labor input so that its marginal product is equal to

the real wage, which, by assumption, is the same across all firms2. With a Cobb-Douglas

1Appendix A gives a survey of theoretical models focusing on firm heterogeneity.
2We assume diminishing returns for profit-maximization to be well defined.
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production function, the marginal product is proportional to production per factor in-

put, and, hence, all firms should have the same level of production per factor input apart

from transient noise or fluctuations3. This argument raises the question of how to make

inferences about differences in efficiency from firm level data, which is a central theme in

our analysis.

Our econometric framework uses a state space-approach, in combination with the

Kalman filter and smoother, to decompose the observations of firm-level supply and factor

demands in terms of four types of latent components: (i) firm-specific permanent com-

ponents, (ii) firm-specific stochastic trends, (iii) transient noise, and (iv) industry-wide

fluctuations. The multivariate framework imposes few restrictions on the data generat-

ing process a priori and allows us to consider the validity of the restrictions imposed by

our structural model. Our testing procedure relates to co-integrated time-series analysis.

Our structural model of firm behavior implies that supply and factor inputs should be

co-integrated with a heavily constrained co-integrating vector, and we show that these

constraints are largely satisfied in all industries. The model is estimated by a partial like-

lihood function and we discuss the question of identification emphasizing sample attrition

and the fact that we do not explicitly model the firms’ exit decisions.

2 A first look at differences in firm performance

How should we measure differences in firm performance and do these differences increase

with firm age? Using size as a preliminary measure of firm performance, we address the

second question in Figure 14. Figure 1 presents the means and standard deviations of log

sales as a function of firm age. All observations are measured relative to industry-year

means. Not surprisingly, the graph shows that on average young firms are substantially

smaller than older firms and that firm growth tends to decelerate with age. More inter-

estingly, the graph shows that relative differences in firm size are almost independent of

firm age.

The upper graph in Figure 2 displays the correlation coefficient between log sales in

3This result also holds in the CES case and, more generally, when there is a one-to-one relation between

marginal product and production per factor input.
4Figures 1-2 are based on a comprehensive, unbalanced sample of firm level observations from six (two-

digit NACE) high-tech manufacturing industries, as discussed in Section 5. Graphs for the six separate

industries show the same patterns as in Figures 1-3.
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the firms’ first year and in their subsequent years. The correlation coefficient for the first

and the second year is 0.94, and it declines slowly in the subsequent years. This shows

that the relative differences in firm size are highly persistent as the firms become older.

These patterns indicate that differences across young firms are as large as those among

older firms and the differences are highly persistent, suggesting that firm heterogeneity is

generated by permanent differences. However, this conclusion is preliminary as it leaves

open a number of questions. Young firms have a high rate of exit; on average, 50 percent

of a new cohort of firms have exited within seven years in our sample. Since exiting firms

are systematically selected among the least successful firms, we expect an upward trend in

average log sales. Such an upward trend is clearly seen in Figure 1. Systematic selection

that eliminates the least successful firms should also, cet.par., tend to narrow down the

differences in firm size. However, such narrowing is not visible in the figure. There

must be an offsetting force that tends to make firms grow more unequal with age. Such

an offsetting force could be idiosyncratic, cumulated shocks that would also explain the

declining correlation between a firm’s performance in its first year and in its subsequent

years, demonstrated in Figure 2.

Labor productivity is another widely used measure of firm performance. Figure 3

presents means and standard deviations of labor productivity as a function of firm age.

We see that the patterns are rather different from those in Figure 1. There is no upward

trend in labor productivity and the standard deviations decline substantially with age.

The difference between sales and labor productivity is equally clear from the lower graph

in Figure 2, which displays the correlation coefficient between labor productivity in the

firms’ first year and in their subsequent years5. The low correlation coefficient between

productivity in the first two years shows that almost half of the observed variance in labor

productivity is due to temporary fluctuations or noise in the data. A comparison of the

two graphs in Figure 2 raises the question of why differences in size are considerably more

persistent than differences in labor productivity. Furthermore, this comparison indicates

that labor productivity is a rather noisy measure of efficiency, as we will discuss further

below.

5Figures 1-3 focus on heterogeneity in new cohorts of firms. Similar patterns of heterogeneity and

autocorrelation are also present among older and larger firms. E.g. high and low degrees of persistence

in differences in revenues and labor productivity, respectively, are not restricted to the firms’ early years.
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3 A structural model of optimal supply and factor

demand

Our preliminary look at the data suggests that we need an econometric framework that

can address a number of challenging methodological issues. The framework must account

for the permanent differences embedded in firms at birth and how these differences evolve

over time. In addition, it must account for the considerable noise in the data and self-

selection. Yet it should be flexible enough to enable us to examine alternative measures

of firm performance.

Section 3.1 presents a model of optimal supply and factor demand. This model is the

basis for the econometric framework that we use to make inferences about unobserved

differences in efficiency from observed supply and factor demand, as explained in Section

3.2.

3.1 Optimal supply and factor demand

Consider the production function

Qit = AitK
γ
i,t−1 F (Mit, Lit) , (1)

where Qit and Ait denote firm i’s output and efficiency in year t, Ki,t−1 is the predeter-

mined capital stock, and F (Mit, Lit) is a function aggregating materials and labor inputs.

F (Mit, Lit) is homogenous of degree ε (ε < 1). Given common prices across firms for

output, labor and materials, Pt = pt, w
l
t, w

m
t , it follows that the short-run cost-function

has the following form:

C(Pt, Qit, Ait,Ki,t−1) = G(Pt)
Qit

AitK
γ
i,t−1

1/ε

. (2)

Setting price equal to marginal costs, we obtain the following set of supply and (short-run)

factor demand equations: lnQit
lnMit

lnLit

 =
 (1− ε)−1

(1− ε)−1

(1− ε)−1

 lnAit +
 γ (1− ε)−1

γ (1− ε)−1

γ (1− ε)−1

 lnKi,t−1 + g(Pt), (3)

where g(Pt) is a vector function common across firms that depends (only) on the common

price vector Pt. Its functional form reflects the properties of the aggregation function

F (·, ·).
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According to (3), differences in firm output, material use and labor input are infor-

mative about unobserved differences in firm efficiency, conditional on the firms’ capital

stocks. The equations in (3) cannot be directly exploited to make inferences about the

differences in efficiency, as these tend to be (positively) correlated with differences in

capital. Hence, to obtain an econometric model that allows us to make inferences about

differences in efficiency, we must introduce a model of capital accumulation.

Capital stock dynamics: Consider now the capital stock dynamics derived from each

firm’s optimal investment behavior. Let Iit denote the resources required to change the

firm’s capital stock from Ki,t−1 at the end of period t− 1 to Kit at the end of period t,

while qt denotes the price per unit Iit.

Assume that (Ait, P
t) is Markovian, where P t = (Pt, qt). Then the firm’s investment

problem is the solution of the Bellman equation:

V (Ait, Ki,t−1, P t) = max
Kit

{Π(Ait, Ki,t−1, Pt)− qt Iit
+ β E[V (Ai,t+1,Kit, P

t+1)|Ωit] , (4)

where V (Ait,Ki,t−1, P t) is the value function, and

Π(Ait, Ki,t−1, Pt) = π(Pt) (AitK
γ
i,t−1)

1/(1−ε) (5)

is the short-run profit function. In equations (4) and (5), β is the discount factor, E [·|Ωit]
is the expectation conditional on the firm’s information at t, and π(Pt) is a function of

input and output prices. We assume convex adjustment costs such that

Kit = Ki,t−1 1− δ + δ1−α (Iit/Ki,t−1)
α
, α ∈ (0, 1). (6)

Small α corresponds to large adjustment costs, while α = 1 gives the standard equation

for capital accumulation without adjustment costs. Appendix C shows that with constant

returns to scale, i.e. γ+ ε = 1, and Ki,t−1 Kit, an optimal capital accumulation policy

satisfies:

lnKit = lnKi,t−1 +
δα

1− α
ln v(Ait, P

t) + ln(
αβ

qt
) , (7)

where v(Ait, P
t) is the expected value per unit of capital in period t + 1, conditional on

the firm’s information Ωit.
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The function v(Ait, P
t) is increasing in Ait. Moreover, as discussed in Appendix C,

v(Ait, P
t) is approximately homogenous of degree (1− ε)−1 in Ait. Hence, we can approx-

imate (7) by

lnKit = κk lnKi,t−1 + κa lnAit + κt, (8)

where κa =
δα

(1−α)(1−ε) and κt is an industry-wide time varying intercept. According to

(7), κk = 1, but with decreasing returns to scale, the optimal investment behavior implies

that d lnKit

d lnKi,t−1
< 1. Thus, we have in (8) included a parameter κκ, which is less than one

if there are decreasing returns to scale6.

Supply and factor demand: Combining (3) and (8), we obtain a simultaneous system

of equations:

yit = θa lnAi1 + θa ln (Ait/Ai1) + θk ln (Ki,t−1) + θt, (9)

where

yit ≡ lnQit lnMit lnLit lnKit

θa = 1
1−ε ,

1
1−ε ,

1
1−ε , κa

θk = γ

1−ε ,
γ

1−ε ,
γ

1−ε , κk (10)

while θt = g(Pt) , κt .

The model (9)-(10) suggests that differences between firms in the endogenous variables

yit are due to differences in efficiency ln (Ait) and capital accumulation, ln (Ki,t−1). Capital

accumulation, according to (7), is driven by cumulated changes in efficiency and changes

in input and output prices. Equation (9) decomposes differences in efficiency into two

components: permanent differences already introduced when the firms are established,

lnAi1, and differences in subsequent innovations, i.e. the cumulated changes in efficiency,

ln (Ait/Ai1).

Efficiency, profitability and labor productivity: Before we complete our econo-

metric model by specifying its stochastic properties, we discuss how our model relates dif-

ferences in efficiency to profitability and labor productivity. According to (5), (short-run)

6However, in that case κk cannot be given a direct interpretation in terms of the elasticity of scale.
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profitability is increasing in efficiency Ait and capital Ki,t−1. On the other hand, (3) shows

that differences in labor productivity, i.e. value added per labor input (Qit −Mit) /Lit,

are independent of differences in firm efficiency, Ait. This result shows that differences in

efficiency and capital intensity are inadequate to explain differences in labor productivity.

The relationship between various measures of size and efficiency on the one hand and the

absence of a similar relationship between labor productivity and efficiency on the other,

may explain why differences in sales are much more persistent than the differences in labor

productivity, as we saw in Figure 2. We will elaborate on this theme in the concluding

Section 9.

3.2 The econometric model

The model of firm behavior, (9)-(10), is highly constraining on the data as it assumes

that efficiency changes affect all the components of yit through a single latent variable,

Ait, and, furthermore, that the three first components of the ”loading vector” θa are

equal. Notice, however, that θa (and consequently γ) are not identified, because Ait is

not observed (by the econometrician).

In this section we formulate a more general econometric model that encompasses the

structural model. This general econometric model imposes considerably less structure on

the data generating process than (9)-(10), and allows us to test the empirical validity of

the structural restrictions. Our general model is:

yit = vi + ait + θk lnKi,t−1 + dt + eit, τ i ≤ t ≤ T, (11)

where

ait =
04 t = τ i
ai,t−1 + ηit t = τ i + 1, ..., T,

(12)

0k denotes the k-dimensional vector of zeros, and vi,ηit and eit are 4-dimensional vectors

that have independent, multivariate normal distributions:

vi ∼ IN (04,Σv), ηit ∼ IN (04,Ση), eit ∼ IN (04,Σe). (13)

We have an unbalanced panel data set, where firm i is observed from year τ i ≥ 1 until
Ti ≤ T , where τ i is the date of the firm’s birth. The birth dates τ i have an exogenous

distribution, while the exit dates Ti can be endogenous, as we discuss in Section 6.2.

8



When interpreting equation (11) in view of the structural equation (9), the term ait

corresponds to θa ln (Ait/Ai1), vi corresponds to θa ln (Ai1), while all transient shocks and

measurement errors are captured by eit. While it may seem restrictive to assume that

ait is a random walk, our econometric procedure does not critically depend on moderate

departures from the random walk assumption, as discussed in Appendix B. For example,

our main results (presented in Section 7) will not be seriously affected if the ait process

is slightly mean reverting, as suggested by Blundell and Bond (1999, 2000).

The structure of the covariance matrices are essential for the interpretation and identi-

fication of the model (11)-(13), which encompasses some well-known econometric models

of firm heterogeneity as special cases: If Ση = 04×4 , we obtain the fixed effect model

widely used to account for firm heterogeneity in the econometric panel data literature

(0k×k denotes the k × k matrix of zeros). When Σe = 04×4, the model is consistent with

Gibrat’s law discussed by Sutton (1997), where firm growth from period t− 1 to t is in-
dependent of the level in period t− 1. On the other hand, when Σe is a non-zero matrix,

the model (11)-(13) implies ”mean reversion”, in the sense that any component of ∆yit

will be negatively correlated with the corresponding component of yit−17.

Are the parameters of the covariance matrices identified? Consider a sample covering

two years; t = 1, 2. From (11)-(13), ignoring capital for simplicity, we have:

Cov (yit,yis) =
Σv +Ση [min (t, s)− 1] t = s
Σv +Ση(t− 1) +Σe t = s.

(14)

We then obtain: Cov(yi2,yi1) = Σv, Cov(yi1,yi1) = Σv +Σe, and Cov(yi2,yi2) = Σv +

Ση +Σe. Although identification of the covariance matrices thus appears almost trivial,

the situation is complicated by sample attrition, which we discuss in Section 6.2.

Testing the structural model: As mentioned, there are no a priori constraints (apart

from positive semi-definiteness) on the covariance matrices Σv and Ση in our general

econometric model (11)-(13). On the other hand, according to the structural model (9)-

(10) these two matrices can be factorized as:

Σv = θaθa V ar (lnAi1)

Ση = θaθa V ar [ln (Ait/Ai1)] . (15)

7Friedman (1993) has emphasized that noise and temporary fluctuations in the data often mislead

researchers to infer convergence across the units of observations when there is no convergence in the

underlying, uncontaminated processes of interest. See also Quah (1993).

9



If (15) holds, the rank of Ση is 1, and all components of ηit are determined by a single

latent factor, say ηit:

ηit = uηηit, with ηit ∼ IN (0, σ2η), (16)

where uη is the eigenvector of Ση corresponding to the only non-zero eigenvalue σ
2
η . The

eigenvector is normalized so that uη = 1. From (12) and (16):

ait = uηait, where ait =
s≤t

ηis. (17)

Similarly, vi can be expressed by a single latent factor vi:

vi = uvvi, with vi ∼ IN (0,σ2v), (18)

where uv is the (normalized) eigenvector of Σv, corresponding to the only non-zero eigen-

value σ2v.

According to (15) the (normalized) eigenvectors uv and uη should be identical:

uv = uη =
θa
θa

, (19)

which is a testable restriction. From the definition of θa in (13), a further testable impli-

cation of the structural model is that the first three components within each eigenvector

are equal.

Preceding a test of the structure of uη and uv, we must examine a more basic question:

How well does a model with only one latent component - i.e. where the rank of Σv and

Ση is one - fit the data compared with a model with no structural constraints on Σv and

Ση? Consider a Ση-matrix with rank r ≤ 4. The innovations ηit can then be represented
through an orthogonal factor decomposition (see Anderson, 1984):

ηit = uη,(1)ηit,(1) + ...+ uη,(r)ηit,(r), (20)

where uη,(j) is the normalized eigenvector ofΣη corresponding to its j’th largest eigenvalue

σ2η,(j). Furthermore, ηit,(j) ∼ IN (0,σ2η,(j)). According to our structural model, r = 1, so
that only the first eigenvalue is non-zero. That is, σ2η,(1) > 0 and σ2η,(j) = 0 for j ≥
2. Hence, if our structural model is valid, the largest eigenvalue σ

2
η,(1) of the estimated

covariance matrix Ση should be large relative to the others. A similar result should hold

with regard to the magnitude of the estimated eigenvalues σ2v,(j) of Σv.
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Our testing procedure can be related to time series analysis and terminology. Our

structural model imposes a cointegration relationship between the components of yit,

with an a priori highly constrained cointegration vector: a linear combination λ yit will

be a stationary variable (relative to the industry-wide trend dt) if λ θa = 0 .

4 Why do firms differ in efficiency?

Given the validity of our structural model, we can address questions of why firms differ. In

particular, our econometric framework allows us to decompose differences in efficiency and

to quantify the relative importance of permanent differences and cumulated innovations.

A natural measure of the importance of permanent differences relative to idiosyncratic

innovations in a particular year, say T , is

V ≡ V ar {lnAi1}
V ar {ln (AiT/Ai1)} .

Note that V is identified even if lnAit is not: From (17) and (18) it follows that

V =
V ar {vi}
V ar {aiT} =

σ2v
T̄ σ2η

, (21)

where σ2v and σ2η are the (non-zero) eigenvalues of Σv and Ση, respectively, and T̄ ≡
E{T − τ i}, i.e. the average life-time of firms operating in year T .
The measure V, defined in (21), ignores endogenous exit, which will tend to reduce

the variances both in vi and aiT among the firms operating in year T . Hence, we focus on

a modified version of (21): Let MT be the set of firms that operate in year T . We define

the conditional variance ratio, CV , as

CV =
V ar {vi|i ∈MT}
V ar {aiT | i ∈MT} . (22)

As we shall see in Section 6, CV is computed from the distribution of the latent

components vi and aiT conditional on the observations (yi,τ i , ....,yi,T ). Thus, while V is

computed from the unconditional distribution of the latent variables, CV is calculated

from their conditional distribution given the observed data. This implies that CV is

considerably less sensitive to the a priori assumption of a random walk process for ait,

as it is essentially a semi-parametric measure. We will return to this issue in Section

6.3, where we also elaborate upon our discussion of the self-selection problem and other

econometric issues.
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5 Data and variable construction

We rely on raw data from Statistics Norway’s Annual Manufacturing Census, which pro-

vide annual observations on sales, intermediates, wage costs, gross investment and other

variables for all Norwegian manufacturing establishments for the period 1973-1996. The

Census is comprehensive in the sense that a firm is included as soon as it starts to pay

payroll taxes. Separate estimates are presented for six different industry groups corre-

sponding to the 2-digit NACE codes; see Appendix D.

Following Caves’ (1998) survey of empirical findings on firm growth and turnover,

we have not stressed the distinction between a firm and an establishment8. The unit

of observation in our data is an establishment in a given year. For convenience, we

have labeled the unit a firm rather than an establishment, which is not misleading in a

large majority of cases, since only 10-20 percent of the establishments belong to multi-

establishment firms in the sectors we consider9.

All costs and revenues are measured in nominal prices, and incorporate taxes and

subsidies. We have not deflated the variables with the available industry wide deflators as

the econometric model contains an industry wide time varying intercept vector. The model

contains four variables, which are measured on log-scale: sales, labor costs, materials, and

capital. Sales are adjusted for inventory changes. Labor costs incorporate salaries and

wages in cash and kind, social security and other costs incurred by the employer. The

capital variable is constructed on the basis of annual fire insurance values and gross

investment (including repairs).

Initially all firms in a sector that were operating during 1973-96 were included in

the sample, and observed until T = 1996. For the firms established before 1973 we

introduced separate (nuisance) parameters for the distribution of vi
10, since vi for these

firms is composed of both permanent differences and cumulated innovations (up until

1973) and therefore has a different meaning than for firms established after 1972. For

8Caves (1998) points out that most of the results on firm growth and turnover have been insensitive

to the establishment-firm distinction.
9This is not to deny that the distinction between firms (or lines-of-business) and establishments raises

interesting questions for our analysis. For instance, are there strong correlations between efficiency levels

across establishments within a firm? Do new establishments from an existing firm have the same efficiency

as new firms? We will investigate these and related questions in future research.
10That is, vi ∼ N (µv,Σv)
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this reason, firms entering the industry before 1973 are excluded from the analysis of firm

heterogeneity. Of all plants operating in 1996, 75-85 percent were established after 1972,

and thus are included in the analysis of firm heterogeneity. These firms account for a

similar share of total sales in 1996.

Some ”cleaning” of the data was performed. A firm was excluded from the sample if:

(i) the value of an endogenous variable is missing for two or more subsequent years; (ii)

the firm disappears from the raw data file and then reappears; or (iii) the firm is observed

in a single year only. These trimming procedures reduced the data set by 15-20 percent.

In addition we removed firms with extreme variations in the endogenous variables, which

eliminated an additional 4-8 percent of the observations11. Some summary statistics are

presented in Table 1.

6 Econometric issues

Our econometric model, presented in Section 3, raises a set of econometric issues that we

address in this section. These include: (i) estimation of the structural parameters of the

model, (ii) consistency of the parameter estimates in the presence of self-selection, and

(iii) calculation of the conditional variance ratio CV for the latent variables. Parts of the

discussion are quite technical and some readers may initially wish to proceed to the next

section presenting the empirical results.

6.1 Estimation

The main challenge in estimating our econometric model (11) is to obtain a computation-

ally convenient representation of the log-likelihood function and its derivatives. Having

achieved that, an efficient quasi-Newton algorithm can be applied to maximize the likeli-

hood function with respect to the unknown parameters: β = (Ση,Σv,Σe,θk,d), where d

denotes the matrix of time-dummies. A state space representation of the model, combined

with a decomposition of the log-likelihood function well known from the EM (Expectation

Maximization) algorithm, provides an efficient solution to our estimation problem.

11Extreme variation means that the differenced variables (on log-scale) have a maximum absolute value
that is more than four standard deviations away from the (sector specific) mean maximum absolute values.
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The state space representation: In order to obtain a state space representation that

is useful for estimation purposes, we start by factorizing the covariance matrices Ση and

Σv, assuming that these have arbitrary rank r (r ≤ 4):

Ση = ΓηΓη (23)

Σv = ΓvΓv. (24)

Equations (23)-(24) are rank-r decompositions of the two covariance matrices Ση and Σv,

where Γη and Γv are 4 × r lower triangular matrices (i.e. with zeros above the main
diagonal). The matrix factors Γη and Γv are uniquely determined, given positivity of the

diagonal elements.

With Γη and Γv defined in (23)-(24), equations (11)-(13) can be restated on the

following state space form:

yit = Gαit + dt + θk lnKi,t−1 + eit
αit = Fitαi,t−1 + ωit

t = τ i, ..., Ti, (25)

where the state vector αit has dimension 2r, and is determined by the equations:

αi,τ i−1 = 02r

G = Γη Γv

Fit =
02r×2r t = τ i
I2r t = τ i + 1, ..., Ti

ωit ∼


IN 0r

0r
,
0r×r 0r×r
0r×r Ir

t = τ i

IN 0r
0r

,
Ir 0r×r
0r×r 0r×r

t = τ i + 1, ..., Ti.

(26)

Notice that Gαit = ait+ vi, since the first r components of αit are the orthogonal latent

factors of ait, normalized to have unit variance, while the last r components of αit are

the normalized latent factors of vi.

The likelihood function and its derivatives: Given the state space representation

(25)-(26), it is well known that the log-likelihood function can be evaluated for any given

parameter value β by using the Kalman filter and smoother (see e.g. Harvey (1989)).

Let yi,→t = (yi,τ i , ...,yit). Then

L(β) = −1
2

N

i=1

Ti

t=τ i

ln GVit |t−1G +Σe +Rit GVit |t−1G +Σe
−1
Rit
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where
Vit |t−1 = E{(αit − ait|t−1)(αis − ait−1|Ti−τ i+1) |yi,→t−1}
ait|t−1 = E{αit |yi,→t−1}
Rit = yit −Gait|t−1 − dt − θk lnKi,t−1.

(27)

Appendix E explains in detail how the Kalman filter and smoother can be applied to the

state space form (25) to evaluate the conditional moments in (27), given β.

While the evaluation of the likelihood function is straightforward, the main challenge

is to obtain analytic expressions for the derivatives of L(β). The task of obtaining an

analytic form for
∂L(β)
∂β

may seem prohibitive since L(β) indirectly depends on β through

the Kalman filter recursions12.

Our solution to the problem is to make a somewhat unusual application of techniques

associated with the EM (Expectation Maximization) algorithm — an algorithm originally

developed by Dempster, Laird and Rubin (1977), and refined by Meng and Rubin (1993),

and others.

Let f(y,α;β) be the joint density of the observed variables y = {yit} and the latent
variables α = {αit}. Furthermore, let f(α|y;β) be the conditional density of α, given y.
The maximum likelihood estimator, β, is the maximum of the log-likelihood L(β), where

L(β) = ln f(y;β). (28)

Since

f(y;β) =
f(y,α;β)

f(α|y;β) ,

(28) can be rewritten as

L(β) = ln f(y,α;β)− ln f(α|y;β). (29)

Taking the expectation of both sides in (29) with respect to f(α|y;β ), where β is an

arbitrary parameter value, gives:

L(β) =M(β|β )−H(β|β ), (30)

12In principle one could find the derivatives recursively by applying the chain rule to each iterations

of the Kalman filter. However, the programming task would be enormous, and even if one were able to

obtain the derivatives through a herculean effort, repeated use of the chain rule would magnify round off

error due to numerous matrix multiplications and lead to imprecise calculations.
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where

M(β|β ) = ln f(y,α;β) f(α|y;β ) dα

H(β|β ) = ln f(α|y;β) f(α|y;β ) dα.

While the decomposition (30) is not useful in calculating L(β), it has the following ex-

tremely important property:

∂L(β)

∂β β=β

=
∂M(β|β )

∂β β=β

, (31)

which follows from the fact that β is the maximizer ofH(β|β ) (by Kullback’s inequality),
and hence a stationary point. As shown in Appendix E, the derivatives

∂L(β )
∂β

can easily

be obtained by analytic differentiation of M(β|β ). Furthermore, the Hessian of L(β) at
the ML estimate β can be obtained by numerical differentiation of ∂M(β|β)

∂β
β=β

, yielding

a computationally simple estimator of the covariance matrix of β.

6.2 Identification, attrition and consistent estimation

Discussing identification of the model (11)-(13) in Section 3.2, we noticed that the question

is complicated by entry, and, in particular, sample attrition. We can exploit the results

of Cox (1975) and Little and Rubin (1987), which show that a pseudo likelihood function

— that is, the likelihood obtained by treating the exit times Ti as if they were fixed

indices — yields consistent estimators in the presence of systematic selection, provided the

stochastic process, yit, satisfies the so-called missing at random (MAR) condition13. The

MAR condition needed in our case is (assuming τ i = 1 for all firms):

f(yit|χit,yi1, ..,yi,t−1;β) = f(yit|yi1, ..,yi,t−1;β), t = 1, ..., T and i = 1, ..,N, (32)

where f(·|·) is generic notation for conditional probability density, χit is the indicator
variable, which is 1 if the firm is active in year t, and 0 otherwise, and β is the model

parameters. As discussed in Raknerud (2001), equation (32) says that information about

survival in year t should not help us to predict yit, given the history of the observed

variables yi1, ...,yi,t−1.14 A situation where MAR fails is, say, if the firm knows by the

13See Raknerud (2001) for a more in-depth discussion of firm exit and the MAR-condition. Moffitt,

Fitzgerald and Gottschalk (1999) refer to the MAR condition as selection on observables.
14Notice, however, that the MAR assumption does not exclude firms from having private information

that affects their exit decisions, e.g. information about scrap values. See Raknerud (2001).
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end of year t− 1 what its efficiency will be in year t, and chooses to exit if this efficiency
is below some threshold. In this case, the value of χit gives information about yit not

being contained in yi1, ...,yi,t−1.

Identification of β based on the pseudo likelihood function is achieved provided (32)

holds and β is identified in the model without attrition. This result holds even if exit

depends on β. Thus, we use the term likelihood throughout this paper when, in fact, we

consider a pseudo likelihood.

In the presence of self-selection, the MAR assumption is substantially more general

than the assumptions required for consistency of widely-used panel data estimators based

on the (generalized) method of moments15.

6.3 Calculation of the conditional variance ratio

The conditional variance ratio (CV), defined in (22), is the ratio of the variances for the

unobservables, i.e.

CV =
V ar {vi|i ∈MT}
V ar {aiT |i ∈MT} =

tr V ar (vi|i ∈MT )

tr V ar (aiT |i ∈MT )
,

where the last equality holds if the structural model is valid. This section explains how

Var{vi|i ∈MT} and Var{aiT |i ∈MT} can be estimated.
First note that from (25), aiT = GE1αiT and vi = GE2αiT , for selection matrices

Ej =
δj1Ir 0r×r
0r×r δj2Ir

, j = 1, 2,

where δjk is the Kroencker delta function (which is one if j = k and zero otherwise).

Hence

CV =
tr V ar (αiT |i ∈MT )E2 GGE2
tr V ar (αiT |i ∈MT )E1 GGE1

.

From (27) and the rule of iterated expectation:

V ar{αiT |i ∈MT}
= E{V ar (αiT |i ∈MT ,yi,→T ) |i ∈MT}+ V ar{E (αiT |i ∈MT ,yi,→T ) |i ∈MT}

= E{ViT |T |i ∈MT}+ V ar{aiT |T |i ∈MT},
15The covariance structure (14) cannot be estimated from sample analogues: If exit is endogenous,

Cov(yit,yis|max(s, t) ≤ Ti) will not in general be given by (14) even if MAR holds. Hence the sample
covariance matrix ceases to provide consistent estimators for the model parameters. See, however, Abowd,

Crepon and Kramarz (2001) who propose a weighted moment estimator that is consistent under the MAR

assumption, provided exit probabilities are known or can be estimated.
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where the last equality follows from the MAR assumption:

f(αiT |i ∈MT ,yi,→T ) = f(αiT |yi,→T ). (33)

Both E{ViT |T |i ∈ MT} and V ar{aiT |T |i ∈ MT} can be estimated from the cross section

of firms operating in year T , by the empirical mean and variance of ViT |T and aiT |T ,

respectively.

7 Empirical results

This section, which presents our empirical results, is divided into two parts. First, we

argue that our structural model presented in Section 3 accounts well for the empirical

patterns in most of the industries we consider. On the basis of the structural model, we

can construct an estimate of each firm’s efficiency every year. The second part of our re-

sults explores these estimates. We show that permanent differences dominate differences

generated by cumulated, firm-specific innovations in explaining observed firm heterogene-

ity in all the industries we consider. Finally, we examine the performance of young firms

and how selection systematically eliminates firms with low efficiency.

7.1 The validity of our structural model

The results in Tables 2 and 3 largely support our structural model presented in Section

3. Table 2 presents the estimated eigenvalues from the factor decompositions described

in Section 3.2. The second column presents the four estimated eigenvalues, σ2η,(j), of the

covariance matrix for the idiosyncratic innovations, Ση. In all the industries, the largest

eigenvalue is at least an order of magnitude larger than the second eigenvalue. The same

pattern is present in the third column, presenting the four estimated eigenvalues σ2v,(j) of

the covariance matrix of the permanent differences, Σv. The largest eigenvalue is also an

order of magnitude larger than the second largest eigenvalue in all industries for Σv.

These patterns of eigenvalues show that the persistent differences in performance can

largely be summarized by the first latent factors ait,(1) and vi,(1), as they account for at

least 90 percent of the variation in ait and vi, respectively. This conclusion is confirmed

by the last columns in Tables 2 and 3, which present a (pseudo-) R2-measure varying

between .97 and .98 in the four-factor model (Table 2), and between .93 and .96 in the
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one factor model (Table 3)16. Thus, there is only a marginal increase in R2 when going

from the rank-one to the rank-four model. The excellent fit of the model with only one

latent factor supports our conclusion that a single permanent component and a single

random walk component are largely adequate as a summary of firm performance17.

As pointed out in Section 3.2, our structural model does not only impose a rank

condition on Ση and Σv. These matrices should also have the structure that follows from

θa (see Section 3 and, in particular, (10) and (15)). That is, the structural model in

Section 3 requires that the three first components within each eigenvector should be the

same. Furthermore, the eigenvectors of Ση and Σv should be identical (see (19)).

The estimates for the eigenvector in the one-factor model are presented in Table 3,

with standard deviations in parentheses. A first look at these results indicates that in

four of the six sectors (NACE 29-33), the results for the eigenvector estimates are in

good agreement with our structural model. In two industries, Plastics and Transport

equipment, our estimates show that the labor variable is less responsive to idiosyncratic

innovations than sales and materials, contrary to the prediction by the model in Section

4. The deviation in these two industries may be interpreted as evidence for innovations

that are labor-saving or that the technology is non-homothetic (with, roughly speaking,

some scale economies for labor). Another explanation could be adjustment costs, but

recall that the results in Table 3 refer to responses to persistent changes in efficiency18.

Formal χ2-tests of the structural restrictions on the eigenvectors uη and uv are pre-

sented in Table 4. While all structural restrictions are clearly rejected in the two industries,

Plastics and Transport equipment, the structural hypotheses are largely maintained for

the other four sectors. However, in Machinery the restrictions on uv (and consequently

the hypothesis uη = uv) are rejected, despite the fact that the estimates and standard

deviations in Table 3 appear to be consistent with the null hypothesis. This outcome

16Our pseudo R2-measure is

R2 = 1− tr V ar(eit)

tr V ar(yit − dit)
,

where eit = yit − E(vi + ait|yi,→Ti) − θk lnKi,t−1 − dt (the expectation is evaluated at the estimated
parameters and V ar(·) denote the sample variance).
17A single factor model is an essential, maintained assumption in most empirical studies of firm per-

formance, including Marschak and Andrews (1944) and Olley and Pakes (1996).
18Griliches and Hausman (1986) report an elasticity of labor to non-transitory changes in output, which

is about the same as the elasticity for materials, while Biørn and Klette (1999) report higher elasticities

for materials.
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should, however, be interpreted in view of the particularly large number of firms in this

sector. As is well known, rejection of any null-hypothesis is only a question of having

a sufficiently large data set, since the power of our test tends to one for the slightest

departure from the null hypothesis19. Machinery is clearly the largest sector (see Table

1), and the rejection of the structural model in this case seems to be due to a very large

sample size, rather than substantial evidence that the structural model misrepresents our

data.

The eigenvector coefficient in the fourth equation, i.e. the capital accumulation equa-

tion, in columns 2 and 3 of Table 3, is small and suggests that the link between innovations

and investment is, perhaps, surprisingly weak. However, this is consistent with the capital

adjustment model considered in Section 3.1, when the coefficient κa =
δα

(1−α)(1−ε) is small

(see (8)). Recall that δ is the the depreciation rate of capital, which is typically a small

number (≈ .05), while α ∈ (0, 1) reflects adjustment costs.
The coefficients of lagged capital, lnKi,t−1, for each of the four equations in our system

(9) are presented in the fourth column in Table 3. The coefficient is slightly less than one

in the capital accumulation equation, consistent with moderately decreasing returns to

scale.

The last column in Table 2 depicts the four eigenvalues from a decomposition of

Σe, the covariance matrix associated with transient shocks. The results show that the

transient shocks are not dominated by a single, common latent factor, in contrast to

the persistent shocks. That is, transient fluctuations are not common across the four

endogenous variables. We notice that the variance generated by the transient variance

component is of the same magnitude as the variance of the innovation component, i.e.

tr (Σe) ≈ tr (Ση) . The transient fluctuations account for mean reversion in the dynamic

process for the observable variables as pointed out in Section 5.2.

Summarizing our results so far, we conclude that our simple, structural model of firm

behavior imposes heavy constraints on the data that are largely fulfilled in at least four

of the six industries.

19See e.g. Leamer (1983) for a discussion of this issue.
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7.2 Permanent differences dominate

Using our estimated model, we can now examine the origin and evolution of differences in

efficiency across firms. Table 5 presents various measures of the magnitude of permanent

efficiency differences and differences generated by cumulated innovations within each of

the six industries. Columns 2 and 3 present the variance in permanent differences and

the variance in cumulated innovations. The ratio of these variances, presented in column

4, shows how many years innovations must be cumulated in order to account for as much

of the heterogeneity as the permanent differences. These ratios are considerably larger

than the average age (column 5) among the firms established after 1972, suggesting that

the variance of the permanent efficiency differences accounts for the larger fraction of the

non-transient firm heterogeneity in all industries.

These results do not, however, provide a fully satisfactory measure of the importance

of permanent differences in explaining the observed variation in firm performance, since

they neglect the issue of exit and self-selection. We argued in Section 4 that a better

measure is provided by the conditional variance ratio, which presents the variance ratio

among surviving firms. The conditional variance ratios for each industry in 1996 are pre-

sented in column 6. The pattern from the previous columns remains, i.e. the variance

of the permanent differences is larger than the variance in the cumulated, idiosyncratic

innovations in all industries. The conditional variance ratios vary from 1.2 in Electrical

instruments (NACE 31) to 2.6 in Medical instruments (NACE 33) and Transport equip-

ment (NACE 35). In all industries, we find that the conditional variance ratio is at least

as large as the unconditional variance ratio. We conclude that in all six industries the

permanent differences in efficiency across firms dominate the differences in the cumulated

innovations.

7.3 Further results

There is considerable selection that systematically eliminates firms with low efficiency.

This can be seen from the ratios in the last column of Table 5. These ratios show that

the actual variance in efficiency among surviving firms, accounting for selection, is con-

siderably smaller than the predicted variance in the absence of selection20.

20Similar findings have been presented in a number of studies, as surveyed by Foster, Haltiwanger and

Krizan (2001). However, our measurement of efficiency differs from the previous studies. The negative
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In all industries there is a strong, negative correlation between the permanent efficiency

levels vi and the subsequent innovations, aiT (on average -.40). Our interpretation of this

negative correlation is that a firm with a low permanent efficiency level must have a high

growth in efficiency in its subsequent years in order to survive and vice versa. That is

to say, selection is based on the firm’s overall efficiency, which is the combination of the

permanent efficiency levels and the innovations.

Finally, examining permanent differences in efficiency, we find no systematic trend

across cohorts. Our results reveal no vintage-capital effects where more recent cohorts

have higher levels of efficiency. However, we do find that younger firms are more innovative

than older firms. That is, there is a negative trend in the mean value of the innovations

during the first five to six years of a firm’s life time. In addition, young firms have more

volatile dynamics than older firms. These results on new firms are consistent with the

findings in several other studies surveyed in Caves (1998).

8 Conclusion

This paper examines the large differences across firms in terms of supply and demand

for labor, materials and capital. With firm level observations from six manufacturing

industries covering 24 years, we showed that almost 95 percent of these differences in

supply and factor demands can be accounted for by a single, firm-specific, dynamic factor,

which we label efficiency in the light of our structural model. Our structural model of

firm behavior is based on a simple production function and price taking behavior, and it

explicitly accounts for fully optimizing supply and factor demand.

The structural model enables us to investigate the origin and evolution of the differ-

ences in efficiency across firms. The empirical results show that permanent differences in

efficiency dominate among the firms established within the 24-year period we consider, as

they exceed differences in cumulated innovations in efficiency by a factor ranging between

1.2 and 2.6 across the six high-tech industries.

The most striking and controversial result from our analysis is its implications for

efficiency measurement. We argue that size is a better indicator of efficiency than labor

correlation between the probability of exit and a firm’s productivity level has not been striking in previous

studies of Norwegian manufacturing firms. See Møen (1998).
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productivity, as long as we also account for the fixity of capital. It is well known that

differences in firm size should reflect differences in efficiency, while the serious problem

we point out with labor productivity as a measure of efficiency differences seems to have

been largely neglected in the literature21.

Our model suggests that differences in labor productivity should be transitory. This is

largely true in our data, but not completely. An important research task is to explain why

we observe persistent differences across firms in value added per unit of labor input. Our

simple framework suggests that differences in efficiency and capital are not sufficient, and

a satisfactory explanation must incorporate a more elaborated model of labor demand.

Studies of firm level differences in productivity and labor demand deserve an integrated

treatment.

21See, however, Bernard, Eaton, Jensen and Kortum (2000) and Klette and Kortum (2002).
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Appendix A: Some theoretical ideas on firm hetero-

geneity

We decompose the persistent differences in firm performance into (i) permanent differences

that are established already when the firm enters an industry, and (ii) differences that

are generated through subsequent, idiosyncratic innovations that accumulate through the

firms’ life-time22. In this appendix, we briefly review the main ideas in the theoretical lit-

erature emphasizing efficiency differences permanent to the firms and differences evolving

through innovations that are cumulated, respectively.

The importance of permanent differences in efficiency: Which theoretical models

can explain large permanent differences across firms that are introduced already when the

firms enter the industry? An old idea is the so-called putty-clay model, emphasizing the

irreversible nature of a firm’s choice of technology. The classical contribution is Johansen

(1959)23. The putty-clay literature emphasizes that choices of technology are embodied

in the capital, which makes adjustment costly as it requires that the existing capital must

be replaced.

Recent case studies of the life cycle of firms suggest that organizational capital can be

as difficult and costly to adjust as physical capital; see e.g. Holbrook, Cohen, Hounshell

and Klepper (2000), Carroll and Hannan (2000), Jovanovic (2001) and Jovanovic and

Rousseau (2001). For instance, Holbrook et al. document the development of four of

the dominating firms in the early history of the semiconductor industry. Their analysis

explains how these firms had a hard time adjusting to the new circumstances as the

industry evolved, and eventually all the firms failed and were closed down.

Large costs associated with adjustment of the organizational capital has also been

a recurrent theme in studies of the productivity effects of new information technology.

Milgrom and Roberts (1990) emphasize that implementing new, IT-based just-in-time

production requires simultaneous and costly adjustments in a number of distinct and

complementary technological and organizational components in order to be productive.

Similar findings have emerged in a number of recent firm level studies examining the

(often small) productivity gains from IT-investments; see the survey by Brynjolfsson and

Hitt (2000).

That re-adjustments of organizational capital are costly and difficult to implement

successfully is not surprising in the light of recent advances in the theory of incentives

in firms and organizations. This research has revealed how firms are operated through a

complicated system of explicit, formal contracts and informal, relational contracts, and

why such a system is costly to adjust and renegotiate; see Gibbons (2000).

Finally, we should mention the study by Jovanovic (1982). His study links differences

22In his review of models of firm growth and heterogeneity, Sutton (1997) emphasizes essentially the

same distinction, i.e. between models where firm heterogeneity is driven either by ”intrinsic efficiency

differences” or by ”random outcomes emanting from R&D programs”. The distinction between intrinsic

differences and innovations has also been prominent in labor economics, where the two components are

referred to as heterogeneity and state dependence, respectively. See e.g. Heckman (1991).
23See Førsund and Hjalmarsson (1987), Lambson (1992) and Jovanovic and Rousseau (2001) for further

references to subsequent research.
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in firm productivity to differences in the skills of the firms’ entrepreneur. The simple

and basic idea is that more efficient entrepreneurs command larger firms. This model of

firm heterogeneity was introduced by Lucas (1978). It was extended by Jovanovic who

introduced entrepreneurial uncertainty about their relative efficiency which is gradually

resolved as the entrepreneur learns from the performance of his firm. Jovanovic’s model

has had considerable empirical success, as it provides an explanation for the high degree of

turbulence and high exit rate among young firms. The basic idea that efficiency differences

are permanent characteristics embedded in the firms as they are established, is in line with

the ideas discussed in this section.

The present study does not aim at discriminating among these various theories which

all emphasize the important role of permanent efficiency differences across firms. Instead,

this brief survey is provided to remind the reader why differences that are introduced

when the firms are born may in principle have a considerable influence on subsequent

firm performance.

Firm growth through cumulated innovations: Another line of research has focused

on differences in firm performance driven by idiosyncratic and cumulated innovations.

The basic idea is that firm performance is driven by firm specific learning, R&D, and

innovation, involving significant randomness. This line of ideas emphasizes that a firm’s

relative efficiency and market share slowly, but gradually changes over time.

Early research on firm heterogeneity was stimulated by Gibrat’s analysis of the skewed

size-distribution of firms, and how such skewed size-distributions can be generated from

independent firm growth processes. These growth processes are characterized, according

to the so-called Gibrat’s law, by firm growth rates that are independent of firm size.

Simon and his co-authors developed this line of research in the 1960s and 1970s, by

exploring firm evolution through formal modelling of the stochastic processes; see Ijiri

and Simon (1977). While this early work paid little attention to optimizing behavior and

interactions between firms, Hopenhayn (1992) presents a related study of an industry

equilibrium generated by interacting and optimizing firms. Firm growth is driven by

exogenous stochastic processes, with exit as an endogenous decision24.

Gibrat’s legacy has recently had a revival, not least due to the work by Sutton (1997,

1998). Sutton shows how persistent differences in firm size and a concentrated market

structure tend to emerge in models imposing only mild assumptions on the innovation

activities in large versus small firms. His work recognizes the essential role of innovation

and R&D in explaining large and persistent differences e.g. in firm sizes, but his model

deliberately contains little structure, as he searches for robust patterns which are indepen-

dent of the detailed model structure. A somewhat more structured model of firm growth

through learning and innovation is provided by Ericson and Pakes (1995).

Other recent studies of firm growth emphasizing endogenous learning and innovation,

have imposed tight structures on their models in terms of the role of R&D and the nature

of the innovation process; see Klepper (1996), Klette and Griliches (2000) and Klette and

24Hopenhayn’s model accounts for differences in initial conditions, as well as idiosyncratic innovations

during the firms’ life cycles. Our empirical framework is in large parts consistent with his model of firm

evolution.
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Kortum (2002). These studies confront stylized facts that have emerged from a large

number of empirical studies of R&D, innovation and firm growth.

The common theme across all these models is that firm growth can be considered as

stochastic processes, with idiosyncratic innovations, and a high degree of persistence.

In the rest of this study we examine the relative, quantitative importance of perma-

nent differences on the one hand and cumulated innovations on the other, as sources of

persistent firm heterogeneity. Clearly, this is only a first step and subsequent research

will aim at discriminating among the theories within each of these line of research.

Appendix B: Initial conditions and non-stationary

In our econometric model we have assumed that ait is a random walk. However, it might

be desirable to generalize the dynamics of the latent process. For example:

ait = φai,t−1 + ηit (34)

would generalize equation (17), where it was assumed that φ equals one. Although our

assumption greatly simplifies the interpretation and estimation of our model, and is con-

sistent with Gibrat’s law (which has received some support in the empirical literature25),

the cost is that we might unduly restrict the dynamics of the yit-process.

However, our econometric procedure does not critically depend on the exact value

of φ, and the main results presented in section 7 would not be seriously affected if φ is

slightly smaller than one (in line with Blundell and Bond (1999) and Blundell and Bond

(2000)). The reason for this is that the distributions of main interest in this paper are

the conditional distributions of the latent variables given the observed data (see e.g. the

construction of the measure CV in section 6.3). In fact these conditional distributions

play the same role in our analysis as the posterior distributions in Bayesian statistics, with

equation (34) specifying a common ”prior” (i.e. unconditional) distribution. Theory and

experience from Bayesian statistics show that inferences based on posterior distributions

are generally robust with respect to moderate alternations of the prior distribution (see

for example Kitagawa, 1996 ).

Appendix C: Capital accumulation

A linear, non-stochastic case: The firm’s capital accumulation solves the functional

equation (see Stokey and Lucas (1989), ch. 5.10):

V (Kt−1) = max
Kt

{F (Kt,Kt−1) + β V (Kt)} (35)

where V (Kt−1) is the value function and β = (1 + r)−1 is the discount factor. Assume
that F (Kt, Kt−1) is increasing and strictly concave in Kt, and homogenous of degree one

25The empirical literature suggests that Gibrat’s law is valid for large and medium sized firms. The

validity of Gibrat’s law for smaller firms depends on whether the analysis condition on survival. See

Sutton (1997) and Caves (1998) for a discussion and further references.
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in (Kt, Kt−1). Furthermore, consider the special case:

F (Kt, Kt−1) = πKt−1 −Kt−1 qc(Kt/Kt−1),

where c(Kt/Kt−1) is continuously differentiable, increasing, and strictly convex, and q is
the price per unit of capital. Let c(1) = δ, where δ corresponds to the rate of depreciation.

The linear homogeneity of F (Kt, Kt−1) implies that V (Kt−1) is linear homogenous inKt−1
(see Stokey and Lucas (1989), ch. 5.10), i.e.

V (Kt−1) = vKt−1. (36)

Using (36), the first order condition is

qc (Kt/Kt−1) = βv (37)

⇒ Kt = Kt−1 g(βv/q)

or

lnKt = lnKt−1 + ln g
βv

q

The functional form (6) yields:

c(Kt/Kt−1) = δ 1 +
1

δ

Kt

Kt−1
− 1

1/α

, α ∈ (0, 1) . (38)

Given (38), it follows from (37) that g(x) = 1− δ + δ (αx)α/(1−α) and

Kt = Kt−1 1− δ + δ
αβv

q

α/(1−α)
. (39)

In a stationary state, Kt−1 = Kt. Thus

αβv

q
= 1 (40)

and F (Kt,Kt−1) = (π − qδ)Kt−1. From (35) and (36):

v = π − qδ + βv

⇒ π − qδ
1− β

= v =
q

αβ
,

where the last equality follows from (40). Rearranging terms, π = q r
α
+ δ , which

resembles the well-known formula stating that capital’s marginal product, π, equals the

Jorgensonian user cost of capital, i.e. q (r + δ). With adjustment costs, α < 1 and

capital’s marginal product, π, exceeds this user cost of capital, as expected.
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The stochastic case: In the stochastic case, assuming that (At, P
t) is Markovian,

with P t = (Pt, qt), the firm’s investment path can be derived from the following Bellman

equation:

V (At, Kt−1, P t) = max
Kt

π(Pt)A
1/(1−ε)
it Kt−1 − qtKt−1c(Kt/Kt−1) + βE V (At+1, Kt, P

t+1)|Ωt ,

(41)

where V (At,Kt−1, P t) is the value function and E [·|Ωt] is the expectation conditional on
the information set Ωt. Assuming the same functional form as above, the main difference

from the preceeding case is that:

V (At, Kt−1, P t) = ν(At, P
t)Kt,

while (39) is replaced by

Kt = Kt−1 1− δ + δ
αβv(At, P

t)

q

α/(1−α)
, (42)

where

v(At, P
t) = E ν(At+1, P

t+1)|Ωt .
After some calculations, we obtain the following functional equation:

ν(At, P
t) = π(Pt)A

1/(1−ε)
t + β(1− δ)v(At, P

t) +
δ(1− α)

α

αβv(At, P
t)

qt

1
1−α
. (43)

A linearization of
αβv(At,P t)

qt

1
1−α

around
αβv(At,P t)

qt
= 1 (i.e. Kt−1 Kt), yields

ν(At, P
t) π(Pt)A

1/(1−ε)
t − qtδ + βE ν(At+1, P

t+1)|Ωt . (44)

Furthermore, the expression inside the curly brackets in (42) can be approximated as

follows:

ln 1 + δ e
α/(1−α) ln αβv(At,P

t)
q − 1 ln 1 +

δα

1− α
ln

αβv(At, P
t)

q

δα

1− α
ln

αβv(At, P
t)

q

Let us consider the solution of (44) in the case where At is a geometric randomwalk, in-

dependent of P t. Assume that (π(Pt), qt) is a martingale. Then E{π(Pt+1)A1/(1−ε)t+1 |Ωt} =
λπ(Pt)A

1/(1−ε)
t and E {qt+1|Ωt} = qt. If a solution to (44) exists,

ν(At, P
t) =

π(Pt)A
1/(1−ε)
t

1− λβ
− δqt

1− β

v(At, P
t) =

λπ(Pt)A
1/(1−ε)
t

1− λβ
− δqt

1− β
.
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Then (42) can be restated as

lnKt − lnKt−1 = κt +
δα

(1− α)(1− ε)
ln (At) + error,

where

κt =
δα

1− α
ln

rαβλπ(Pt)

qt (r + αβδ)
.

By a Taylor expansion, the error term can be written:

error =
δα

(1− α)

1

1 + r
αβδ

(x− 1) +O (x− 1)2

where x ≡ αβv(At, P
t)/qt. The error term is small relative to the leading term when

Kt−1 Kt (i.e. x 1) and r/ (αβδ) is large. The capital accumulation equation is then

approximately linear in lnAt in the neighborhood of ”steady state” when adjustment

costs are large and depreciation is slow.

Appendix D: NACE sector codes

25 Manufacture of rubber and plastic products

29 Manufacture of machinery and equipment n.e.c.

31 Manufacture of electrical machinery and apparatus n.e.c.

32 Manufacture of radio, television and communication equipment and appa-

ratus

33 Manufacture of medical, precision and optical instruments, watches and

clocks

35 Manufacture of other transport equipment

Appendix E: Computational issues

The Kalman filter and -smoother: We shall now use the state space representation

(25)-(26) to derive the conditional moments (27) by means of the Kalman-filter and -

smoother. We first define

Qit = V ar{ωit}
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(see (26)). By modifying the exposition in Fahrmeir and Tutz (1994), p. 264, the filtering

recursions can be described by the following algorithm:

Kalman filtering:

For i = 1, ...,N :

aτ i−1|τ i−1 = 02r
Vτ i−1|τ i−1 = 02r×2r
do for t = τ i, ..., Ti:

ait|t−1 = Fitai,t−1|t−1
Vit|t−1 = FitVi,t−1|t−1Fit +Qit

Zit = yit − dt − γk lnKi,t−1
Kit = Vit|t−1G [GVit|t−1G +Σe]

−1

ait|t = ait|t−1 +Kit(Zit −Gait|t−1)
Vit|t = Vit|t−1 −KitGVit|t−1, (45)

The conditional expectations ait|Ti and variances Vit |Ti are obtained in subsequent back-
ward smoothing recursions (see Fahrmeir and Tutz (1994), p. 265):

Kalman smoothing:

For i = 1, ..., N :

do for t = Ti, ...., τ i + 1:

ai,t−1|Ti = ai,t−1|t−1 +Bit(ait|Ti − ait|t−1)
Vi,t−1|Ti = Vi,t−1|t−1 +Bit(Vit|Ti −Vit|t−1)Bit, (46)

where

Bit = Vi,t−1|t−1FitV
−1
it|t−1.

Derivatives of the log-likelihood function: We shall now show how to obtain ana-

lytic derivatives of the log-likelihood function using the relation:

∂L(β)

∂β β=β

=
∂M(β|β )

∂β β=β

(see (31)).We first need an expression for

M(β|β ) = −1
2

N

i=1

Ti

t=τ i

( ln |Σe| +

E (yit − [Γη Γv]αit − dit − γk lnKi,t−1) Σ−1e (yit − [Γη Γv]αit − dit − γk lnKi,t−1) |yi,→Ti ;β ,

(47)

where the expectation is evaluated at the parameter value β . Standard calculations and

(27) yield:
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M(β|β ) = −1
2

N

i=1

Ti

t=τ i

( ln |Σe|

+ tr Σ−1e yit − [Γη Γv]ait|Ti − dt − γk lnKi,t−1 yit − [Γη Γv]ait|Ti − dt − γk lnKi,t−1
+tr Σ−1e [Γη Γv]Vit|Ti[Γη Γv] .

In practice, the optimization is performed with respect to the Cholseky factors of Σe to

ensure positive definiteness:

Σe = ΓeΓe,

where Γe is lower triangular. Hence, in the implementation of the optimization algorithm

β = (Γη,Γv,Γe,γk,d). Analytic expressions for the derivatives of M(β|β ) with respect
to the components of β are easily available (see Lutkepohl (1996)).
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Table 1: Descriptive statistics

Sector (NACE) #Firms: Total vs. 1996 Mean output∗ Median output Lab.prod∗

Plastics (25) 242/99 1.77 (2.6) .74 1.39 (.82)

Machinery (29) 1410/514 1.71 (6.3) .40 1.37 (.92)

Electrical inst. (31) 377/162 3.30 (11.8) .61 1.18 (.81)

Radio/TV eq (32) 249/86 4.57 (9.9) .76 1.04 (.64)

Medical inst. (33) 129/73 2.08 (3.9) .75 1.51 (.81)

Transp. eq. (35) 818/286 7.03 (23.7) .99 1.30 (.68)

∗ Standard errors in parentheses. All numbers are in logs.
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Table 2: Estimates of eigenvalues and pseudo R2 in model with four latent

factors

Eigenvalues of Ση Eigenvalues of Σv Eigenvalues of Σe Pseudo R2

Sector (NACE) (Idiosyncratic innov.) (Permanent differences) (Noise)

Plastics (25) (.18, .02, .00, .00) (3.38, .26, .01, .00) (.19, .08, .04, .02) 0.97

Machinery (29) (.24, .02, .00, .00) (2.00, .20, .00, .00) (.17, .07, .04, .02) 0.98

Electrical inst.(31) (.24, .01, .00, .00) (2.17, .23, .01, .00) (.15, .07, .02, .02) 0.98

Radio/TV eq.(32) (.35, .03, .00, .00) (3.27, .22, .00, .00) (.27, .07, .04, .02) 0.97

Medical inst. (33) (.28, .02, .00, .00) (4.07, .15, .01, .00) (.15, .07, .02, .01) 0.97

Transp. eq. (35) (.32, .03, .00, .00) (5.96, .38, .01, .00) (.20, .10, .04, .03) 0.98

36



Table 3: Estimates of eigenvectors and capital coefficients in model with one

latent factor.

Sector (NACE) Idiosyn. inn. Intrinsic dif. Capital coef. Pseudo R2

Estim. (st.dev.) Estim. (st.dev.) Estim. (st.dev.)

Plastics (25)

.62 (.02)

.73 (.04)

.28 (.12)

.01 (.03)

.59 (.03)

.52 (.10)

.60 (.10)

.02 (.02)

.45 (.17)

.56 (.22)

.32 (.14)

.98 (.02)

0.94

Machinery (29)

.57(.01)

.59 (.01)

.56 (.02)

.00 (.01)

.55 (.01)

.56 (.03)

.61 (.04)

.01 (.01)

.58 (.05)

.62 (.06)

.50 (.05)

.99 (.01)

0.93

Electrical Inst. (31)

.58(.03)

.60 (.04)

.54 (.09)

.04 (.02)

.60(.04)

.60 (.05)

.52 (.10)

.01 (.02)

.65 (.07)

.65 (.08)

.64 (.07)

.99 (.01)

0.96

Radio/TV eq.(32)

.58(.01)

.61 (.03)

.52 (.05)

.00 (.02)

.58(.02)

.58 (.04)

.56 (.05)

.03 (.03)

.44(.11)

.46 (.12)

.43 (.09)

.97 (.03)

0.94

Medical Inst. (33)

.58(.03)

.61 (.06)

.52 (.07)

.03 (.05)

.57(.01)

.58 (.03)

.56 (.03)

.01 (.01)

.31(.15)

.35 (.19)

.29 (.12)

.99 (.04)

0.94

Transp. Eq. (35)

.58(.01)

.76 (.02)

.29 (.05)

.01 (.01)

.58(.03)

.61 (.06)

.52 (.07)

.03 (.05)

.44(.05)

.52 (.06)

.38 (.03)

.97 (.01)

0.95
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Table 4: Testing structural restrictions on eigenvectors

Sector (NACE) Restrictions uη Restrictions uv Joint restictions

χ2 d.f. P-value χ2 d.f. P-value χ2 d.f. P-value

Plastics (25) 23.07 2 .00 5.2 2 .07 34.43 5 .00

Machinery (29) 3.20 2 .20 30.21 2 .00 44.93 5 .00

Electrical Inst. (31) .69 2 .70 1.78 2 .41 4.15 5 .52

Radio/TV eq.(32) 5.05 2 .08 .23 2 .89 8.93 5 .11

Medical Inst. (33) 1.00 2 .60 .06 2 .96 2.52 5 .77

Transp. Eq. (35) 105.21 2 .00 18.2 2 .00 131.5 5 .00

Table 5: Measures of the origins of firm heterogeneity. The variances of cumulative

innovations and intrinsic differences, their ratio, average firm age, conditional variance

measure (CV), and actual variance versus predicted variance in the absence of selection .

Sector (NACE) σ2η σ2v T ∗=σ2v
σ2η

Avg. age
tr V ar(vi|i∈MT )
tr V ar(ait|i∈MT )

V ar(vi+aiT |i∈MT )
σ2v+T̄ σ2η

Plastics (25) 0.16 2.27 14.2 7.1 2.3 .38

Machinery (29) 0.20 1.66 8.3 6.9 1.7 .46

Electrical inst. (31) 0.20 1.80 9.0 7.2 1.2 .27

Radio/TV eq.(32) 0.32 3.20 10.0 8.5 2.0 .41

Medical inst. (33) 0.23 3.46 15.0 6.7 2.6 .43

Transp. eq. (35) 0.24 4.25 17.7 8.5 2.6 .71
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Figure 1: Differences in log sales as a function of firm age. Circles indicate the

means and whiskers show the standard errors.

C
or

re
la

tio
n

co
ef

.

Firm age

lnS lnLP

1 3 5 7 9 11 13

.2

.4

.6

.8

1

Figure 2: The correlation between relative performance in a firm’s first year

and in its subsequent years. The circles correspond to the correlation coefficents for

(log) sales while the triangles refer to (log) labor productivity.
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Figure 3: Differences in log labor productivity as a function of firm age. Circles

indicate the means and whiskers show the standard errors.
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