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CONTRACT RENEWAL

HELGE HOLDEN, LARS HOLDEN, AND STEINAR HOLDEN

Abstract. Consider a contract between two players, describing the payment an agent
obtains from the principal, in exchange for a good or service supplied. At each point
in time, either player may unilaterally demand a renegotiation of the contract, involving
renegotiation costs for both players. Players’ payoffs from trade under the contract, as
well as from a renegotiated contract, are stochastic, following the exponential of a Lévy
process. It is argued that the optimal strategy for each player is to require a renegotiation
when the contract payment relative to the outcome of a renegotiation passes a certain
threshold, depending on the stochastic processes, the discount rate, and the renegotiation
costs. There is strategic substitutability in the choice of thresholds, so that if one player
becomes more aggressive by choosing a threshold closer to unity, the other player becomes
more passive. If players may invest in order to reduce the renegotiation costs, there will
be over-investment compared to the welfare maximizing levels.

1. Introduction

In most economies, a large part of the transactions take place within long-term rela-
tionships. Most workers stay in their job for many years. Some tenants rent the same
dwelling for decades. Firms may trade with the same supplier for long periods. Usually,
such long-term relationships are within a framework of long-term contracts, reducing the
risk that either of the parties may be left without a trading partner on short notice.

However, even if the parties may gain from long-term relationships, economic circum-
stances, both internal and external, may change so as to make one or both parties unsat-
isfied with the contract. While contracts in principle might be written in such a detailed
and foresighted manner that this should never happen, in practice contracts cannot cover
all the complexities that may arise. Thus, in practice, contracts are incomplete and the
terms need to be adjusted over time.

We consider the choice faced by the parties to a contract on whether and when to require
a renegotiation of the contract. Clearly, if more favorable contract terms are feasible,
requiring a renegotiation is attractive. However, contract renegotiation is not costless.
Furthermore, obtaining a more favorable contract now may lead the opponent to demand
a renegotiation in the future, involving both additional renegotiation costs and a less
favorable contract.
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In our framework, there are two players, a principal (P) and an agent (A). The agent
performs a fixed service, or delivers a specific good, for a payment specified in a contract.
Trade takes place in continuous time. The payoff to the parties from trading under the
contract is given by a stochastic process.

At each point in time, either of the players may unilaterally demand a renegotiation of
the contract, involving renegotiation costs for both players. One possible interpretation
of this is that there is an explicit renegotiation clause in the contract. Another possible
interpretation is that a player may enforce a renegotiation by credibly threatening to
disrupt trade, even without an explicit renegotiation clause. This interpretation allows
two alternatives. MacLeod and Malcomson [16] and Hart and Moore [11] assume that in
case no trade takes place, a court cannot verify why (i.e., which party chose not to trade).
Thus, if one party violates the contract, the other party cannot verify this for a court,
and is thus unable to sue for damages. Alternatively, it may well be verifiable which party
chooses not to trade, but the courts will not enforce any penalty provisions. This is the
motivation of Grout [10]; the Trade Union Immunity Laws in the United Kingdom prevent
an employer from suing a trade union to recover any losses during an industrial dispute,
even if the dispute violates a previous agreement. This assumption is in contrast to the
“specific performance contracts” analyzed in Aghion, Dewatripont, and Rey [1], where
courts can enforce a level of trade specified in the contract.

A demand for renegotiation may be caused by changes in the “inside” or “outside option”.
First, players’ payoff from trade under the contract may change, so that one of the players
benefit from a renegotiation. We capture this effect by assuming, realistically, that the
contract is set in nominal terms, so that the real value of the contract payment depends
on the stochastic aggregate price level. Second, outside alternatives may change, which
we capture by assuming that the outcome of a renegotiation is given by an exogenous
stochastic process, known to both parties at the time when a renegotiation is demanded.
(Thus, we do not go into details of the renegotiation process; see MacLeod and Malcomson
[16] and Holden [12] for analysis of renegotiation of contracts of trades in continuous time.)

In principle, strategies may depend on anything that has happened in the history of
the game, and thus be immensely complicated. To keep the analysis tractable, we follow
the tradition of the differential games literature (see Isaacs [14] and Dockner, Jørgensen,
Van Long, and Sorger [8]) of restricting attention to Markov strategies, i.e., strategies
where actions are allowed to depend on past history through the current value of the state
variables only.

The model we consider is simple; two players, trading with each other under a contract,
the payoff from trade being stochastic, and the only choice variable is when to demand
a renegotiation. Yet the decision problem facing the players is very complex. When
deciding whether to require a renegotiation, a player must weigh the gain from a possible
improvement in contract terms against the costs of a renegotiation. However, the player
must also take into consideration that a renegotiation now, making the contract terms more
favorable to himself, will also make the contract less favorable to the opponent. This may
cause the opponent to require a renegotiation at an earlier point in time than he otherwise



CONTRACT RENEWAL 3

would have done, involving both renegotiation costs and less favorable contract terms for
the first player.

We show that the optimal strategies of the players are given by critical thresholds for the
ratio of the real value of the contract payment relative to the real value of a renegotiated
contract. Thus, the agent will demand a renegotiation whenever this ratio is below the
agent’s threshold, irrespective of whether this is caused by high inflation eroding the real
value of the contract payment, or by an increase in the real payment that may be achieved
by a renegotiation. Conversely, the principal will require a renegotiation whenever the ratio
of the real contract payment to the real renegotiation payment is above the principal’s
threshold.

The thresholds depend, among other things, on the costs of renegotiation. As expected,
we show that the higher the costs of renegotiation for a player, the more passive is the
player, i.e., the farther is the critical threshold from unity.

Our key result is that there is strategic substitutability in the choice of threshold values,
so that if one player becomes more aggressive (i.e. setting a threshold closer to unity),
the opponent will become more modest (i.e. setting a threshold farther from unity). The
intuition for this result is that if a player becomes more aggressive, the expected time until
this player requires a renegotiation is reduced. Thus, the expected duration of a change in
contract terms induced by the opponent is reduced, which makes it less attractive for the
opponent to require a renegotiation.

One implication of strategic substitutability is that asymmetries between the players
may be exacerbated. For example, if requiring a renegotiation becomes less costly for one
of the players, making this player more aggressive, the strategic effect will make the oppo-
nent more passive. As the opponent becomes more passive, the first player becomes even
more aggressive, exacerbating the direct effect of reduced renegotiation costs. Numerical
examples suggest that the strategic effect in some cases may be substantial.

The paper is related to a considerable literature which studies the optimal choice of
nominal prices (or wages) under a stochastic evolution of money or aggregate prices (see,
e.g., Sheshinsky and Weiss [19], Danziger [7], Caplin and Spulber [6], and Caplin and Leahy
[5]). As in our paper, adjustment of the nominal price is costly. As in our model, optimal
behavior is typically characterized by threshold strategies, often termed (S,s) strategies,
where the prevailing price is changed if it is sufficiently far from the optimal new price,
so that the gain from adjustment covers the adjustment costs. However, in this literature,
the price is set unilaterally by the firm, avoiding the complexities arising from the fact
that a renegotiation requested by one player now may cause the opponent to demand a
renegotiation at an earlier stage than he otherwise would have done, inflicting additional
costs on both players.

The model we consider has close similarities to the model studied in Andersen and
Christensen [3]. As in our model, the model of Andersen and Christensen involves trade in
continuous time between two players according to a given contract, where each player at
each point in time may require a renegotiation of the contract. The outcome of the rene-
gotiation is assumed to be given by a geometric Brownian motion. However, an important
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limitation of Andersen and Christensen [3] is that it only allows for one contract renego-
tiation, implying that if one player has required a renegotiation, this option is no longer
open to the other player. Thus, Andersen and Christensen find strategic complementarity
in players’ contract renegotiation decisions, i.e., that the more reluctant one player is to
demand a renegotiation, the more reluctant the opponent will be, in contrast to our finding
of strategic substitutability.

In Andersen and Christensen [2] the model is extended to a large but finite number of
contract renewals, and the model is solved by use of backward induction from the last
possible contract renewal. However, it is not stated whether the strategic complementarity
also holds in this case.

The remainder of the paper is organized as follows. The basic model is described in
Section 2. Section 3 analyzes the case when both players use critical thresholds. In Section
4, we assume that the stochastic environment is continuous, and we prove the existence of a
Nash equilibrium. In Section 5, we allow for discontinuities in the stochastic environment,
and show that in this case equilibrium may involve randomization. We show that in some
specific cases, Nash equilibrium requires that one of the players uses a mixed strategy, in the
sense that the player randomizes between two threshold values. Technically, randomization
may follow when the best reply function of one player (i.e., the optimal threshold as a
function of the threshold of the opponent) is a discontinuous function. In the example we
consider, there is a possibility that the real renegotiation payment may take a large fall,
which may lead the principal to require a renegoation. In this case, the agent is faced
with the choice of whether to set a “low” threshold, potentially allowing for a “low” real
contract payment, but with the advantage that when the real contract payment is “low”,
a fall in the real renegotiation payment will not induce a renegotiation. Alternatively, the
agent may set a higher threshold, preventing a low contract payment, but implying that a
fall in the real renegotiation payment will induce an immediate and costly renegotiation.
For some parameter values, the agent will randomly choose one of the two strategies. In
Section 6, we extend the basic model by allowing for a stage prior to the basic model,
where players may invest in reducing the renegotiation cost, and we consider the efficiency
of this investment decision. Section 7 discusses the case where only one player is allowed
to demand a renegotiation of the contract. An approximate formula for the equilibrium is
given in Section A. Section 8 summarizes some of the main results. Proofs are provided
in Section 9.

2. The model

Consider a contract between two players, according to which one player, the agent,
supplies a good or undertakes a service for the other player, the principal, receiving in
exchange a payment from the principal. Trade takes place continuously, and the contract
specifies a nominal payment. The nominal contract payment set at ti can be viewed as
the product of two components, Z(ti, ω)Q(ti, ω), where Z(ti, ω) is the real value of the
payment set at time ti, and Q(ti, ω) is the aggregate price level at ti. We will refer to
Z(t, ω) as the real renegotiation payment, reflecting that Z is that real payment that will
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be agreed upon in a renegotiation. The parameter ω denotes that Z(t, ω) and Q(t, ω) are
stochastic; specifically they are exogenous stochastic processes, see below. At each time t,
the contemporaneous values Z(t, ω) and Q(t, ω) are known to the players, but the future
values Z(s, ω) and Q(s, ω) for s > t are unknown.

Let the times of contract renegotiations be denoted t1, t2, . . . . The real value of the
contract payment at time t, where ti+1 > t > ti, is found by deflating the nominal contract
payment by the aggregate price level at time t; we shall refer to this as the real contract
payment R(t, ω) = Z(ti, ω)Q(ti, ω)/Q(t, ω). Players’ flow payoffs are constant elasticity
functions of the real contract payment, so that Rην is the flow payoff of the agent (ν = a)
and the principal (ν = p). Clearly, ηa > 0 and ηp < 0 so that the agent prefers a high real
payment, and the principal prefers a low real payment1.

At any point t in time, either player may require a renegotiation of the payment spec-
ified in the contract, paying a fee that is proportional to the new real payment Z(t, ω).
Specifically, the renegotiation fee is τνZ

ην (t, ω), where τν is assumed to be strictly posi-
tive, deterministic and independent of which player is initiating the renegotiation2. See,
however, observation II in Section 4.

One may argue that when the outcome of the renegotiation is known to the players
in advance, the renegotiation costs, which reflect time and uncertainty associated with
reaching a new agreement, should be negligible. However, it is straightforward, but cum-
bersome, to extend the model so that players at time t only know the expected out-
come of a renegotiation at time t, and where the actual renegotiation outcome at time
t is stochastic. The expected outcome may either be a function of the previous rene-
gotiation outcome, i.e., for t > ti the expected outcome in real terms is described by
E{Z(t, ω) | Z(ti, ω)} = exp(c(t − ti))Z(ti, ω) for a constant c, or the expected outcome
may be a stochastic process similarly to Z and Q in the presented model. Under both
alternatives, the qualitative results would be unaffected.

The overall objective function of the players is the discounted sum of flow payoffs

Uν(t1, . . . , ω) =

∫ ∞

0

Rην (s, ω) exp(−βs)ds− τν

∞∑
j=0

Zην (tj+1, ω) exp(−βtj+1)(1)

where the discount rate β > 0. To avoid unimportant additional constants, we normalize by
setting R(0, ω) = Z(0, ω) = 1, and t0 = 0. The players choose the times for renegotiation
in order to maximize their objective functions.

1The payoff functions are motivated by a union-firm setting, with a constant elasticity production
function with labor as the only input, a constant elasticity of demand, the union’s payoff an isoelastic
function of the real wage, and the payoff of the firm an isoelastic function of the real profits. Note that
as ηa > 0 and ηp < 0, the model is not symmetric. However, by use of the same method, it can be shown
that the analysis and results would be qualitatively the same in a symmetric model where the flow payoff
of the principal is −Rηp , and ηp = ηa > 0.

2Proportional renegotiation fees, adjusted for the constant elasticity ην , yield tractable solutions. In a
labor contract, renegotiation costs may reflect time spent on bargaining, and the real contract payment
(i.e., the real wage) seems an appropriate measure of the costs of time.
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To ensure a high degree of generality, we assume that the real renegotiation payment
and the aggregate price are given by the exponential of a Lévy process. Thus we assume
that Z(s, ω) = exp(F (s, ω)) and Q(s, ω) = exp(G(s, ω)) where F, G are Lévy processes.
Lévy processes include geometric Brownian motion, jump processes that follow a Poisson
distribution and many other stochastic processes that are, e.g., asymmetric or have heavier
tails. For the benefit of the reader we recall the definition of a Lévy process (see, e.g., Sato
[18]).

Definition 2.1 (Lévy process). A stochastic process Xt is a Lévy process provided the
following conditions hold:
(i) For any n and any 0 ≤ t0 < · · · < tn the random variables Xt0 , Xt1−Xt0 , . . . , Xtn−Xtn−1

are independent.
(ii) X0 = 0 almost surely.
(iii) The distribution of Xs+t −Xs is independent of s.
(iv) The process is stochastically continuous, i.e., limt↓0 Prob(|Xt| > ε) = 0 for all ε > 0.
(v) The process is right-continuous with left limits.

For Lévy processes we have the Lévy–Khintchine formula for the characteristic function
of Xt (see, e.g., Sato [18])

E{exp(iλXt)} = exp
(
t
(
iαλ− 1

2
λ2a2 +

∫ ∞

−∞
(eiλx − 1− iλxχ{|x|≤1}(x))dσ(x)

))
,(2)

where dσ is a σ-finite measure, denoted the Lévy-measure, with σ({0}) = 0 and
∫ ∞
−∞ min(|x|2, 1)dσ(x) <

∞. The process is uniquely defined by the quantities (α, a, dσ). The measure σ describes
the size and intensity of the jumps in the process. The process is Gaussian if and only if
σ = 0, and in that case, α denotes the drift and a the volatility. If σ satisfies∫ ∞

1

eηxdσ(x) < ∞,

we may conclude that

E{exp(ηXt)} = exp
(
t
(
αη + 1

2
η2a2 +

∫ ∞

−∞
(eηx − 1− ηxχ{|x|≤1}(x))dσ(x)

))
holds and is finite.

To ensure that the objective functions are finite, it is necessary to bound Z and Q relative
to the discount rate β. This requires two additional assumptions. First, we assume that
the volatility of the non-gaussian part is bounded, by assuming that the Lévy-measures
satisfy ∫ ∞

1

eηhxdσh(x) < ∞, h = z, q

for some ηh. We may then define the drift in the processes by

µν,h = αhην + 1
2
η2

νa
2
h +

∫ ∞

−∞
(eηνx − 1− ηνxχ{|x|≤1}(x))dσh(x), ην ≤ ηh,
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for ν = a, p and h = z, q. We have that E{Zην (t, ω)} = exp(tµν,z) and E{Qην (t, ω)} =
exp(tµν,q). For example, µa,z is the expected rate of increase in the real renegotiation
payment, adjusted for the relative rate of risk aversion of the agent, ηa.

The second assumption is that the drift parameters µν,h must be bounded by the discount
rate β.

Definition 2.2 (Property F). We say that the stochastic price model has property F if
the real renegotiation payment Z(s, ω) = exp(F (s, ω)) and Q(s, ω) = exp(G(s, ω)) where
F and G are Lévy processes given by (αz, az, dσz) and (αq, aq, dσq), respectively. Assume
that there exists ηh such that∫ ∞

1

eηhxdσh(x) < ∞, h = z, q.

and consider ην ≤ ηh for ν = a, p and h = z, q. Furthermore, we assume that

µν,h < β, ν = a, p, h = z, q.

Note that by assuming that payoff functions exhibit constant elasticity in the real con-
tract payment R, and that the stochastic processes are given by the exponential of Lévy
processes, we ensure that the situation is the same after each renegotiation, subject to
a constant Z(t, ω). This property is crucial for the analysis, as it implies that the same
strategies are optimal after each renegotiation.

The strategy of a player is defined as a description of the criteria applied when the
player will require a renegotiation of the contract. In principle, strategies may depend
on anything that has happened in the history of the game. However, we will follow the
tradition of the differential games literature and restrict attention to Markov strategies
where the players’ choice of action only depend the state of the game. Thus, players may
condition their play on the real contract payment R, the real renegotiation payment Z, or
any combination of these variables. We do not allow players to condition their play on the
opponent’s play, except for any effect via the state variables R and Z. For example, we
do not consider strategies where players punish a rapid renegotiation by the opponent by
another renegotiation, inflicting further renegotiation costs on both players.

The theorem below states that if one of the players uses a Markov strategy, there exists
no strategy for the other player that gives higher expected values of the objective function
than having a critical threshold for the ratio R/Z. Other variables like R or Z separately,
calendar time or the time duration since the previous renegotiation, need not be used in
the strategy.

Theorem 2.3. Assume the stochastic price model satisfies property F . Assume that one
player uses a Markov strategy. Then there exists no strategy for the other player that gives a
higher expected objective function than what is possible to obtain having a critical threshold
for the ratio R/Z, i.e., require renegotiation whenever the real contract payment relative to
real renegotiation payment R/Z passes a specified value.

Let rp and ra denote the critical thresholds. Clearly, the agent will demand a renegoti-
ation if the real contract payment relative to real renegotiation payment of the contract is
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too low, so that ra < 1, while the principal will demand a renegotiation if the real contract
payment relative to real renegotiation payment is too high, so that rp > 1. However, it
does not follow that there exists a pair (ra, rp) where ra is the optimal response to rp and
rp is the optimal response ra; in Section 5, a counterexample is given.

3. The model when both players have critical thresholds

In the previous section it was proved that when one player uses a Markov strategy, then
the other player may obtain the maximum of his objective function by having a critical
threshold. Thus, in this and the following sections we assume that both players have a
critical threshold. Then we may give formulas for the expected objective functions and
their derivatives. Figure 1 shows a realization of the process R when both players use
threshold strategies.

Define the expected values of the objective functions

(3) uν(ra, rp) = E{Uν(ra, rp, ω)}

where Uν(ra, rp, ω), with a slight abuse of notation, is defined from (1) when the players
have critical thresholds ra and rp. Let T (ra, rp, ω) be the time of the first renegotiation
given the thresholds ra and rp, i.e., the first time after t = 0 that the contract payment
relative to renegotiation payment is either equal or below ra or equal or above rp, viz.,

T (ra, rp, ω) = inf{t > 0 | R(t, ω)/Z(t, ω) 6∈ (ra, rp)}.

Given the thresholds, define the expected contribution to the objective function of player
ν from the start at t = 0 to the first contract renegotiation,

fν(ra, rp) = E{
∫ T (ra,rp,ω)

0

Rην (s, ω) exp(−βs)ds}.

The expected flow payoff just after the first renegotiation, discounted down to time t = 0,
is defined by

hν(ra, rp) = E{Zην (T (ra, rp, ω), ω) exp(−βT (ra, rp, ω))}.

Note that in the special case where the real renegotiation payment Z is a constant, hν is
a pure discount factor. Note also that the second inequality in Definition 2.2 ensures that
hν < 1.

Then we may formulate the following theorem.

Theorem 3.1. Assume the real renegotiation payment Z and the aggregate price Q satisfy
property F , and that the contract is renegotiated as soon as the contract payment relative
to the renegotiation payment R/Z exits the interval (ra, rp). Then the following properties
hold:
(i) The expected values of the objective functions immediately after a renegotiation satisfy

(4) uν(ra, rp) =
fν(ra, rp)− τνhν(ra, rp)

1− hν(ra, rp)
, ν = a, p
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Figure 1. The figure shows one realization of the process R( · , ω) in the case
with Z = 1 and Q is geometric (or exponential) Brownian motion Q = exp((αq −
a2

q/2)t + aqBt) with drift αq = .002 and volatility aq = .01. Here Bt denotes
standard Brownian motion. When the unit of time is interpreted as one month,
this corresponds to 2.4% annual inflation. The process is sampled at 5000 points.

and are defined for 0 ≤ ra < 1 < rp ≤ ∞.
(ii) The derivatives satisfy

(5)
∂uν

∂rµ

=

∂fν

∂rµ
+ (uν − τν)

∂hν

∂rµ

1− hν

, ν = a, p, µ = a, p.

We make the following observations:
(I) The expressions on the right hand side of equation (4) can be computed numerically,

and possibly also analytically, for specific stochastic processes.
(II) To facilitate the interpretation of equation (4), one may compare with the determin-

istic case where the contribution fν is deterministic between renegotiations, and where the
real renegotiation payment Z is a constant, implying that hν is a pure discount factor. Re-
calling the formula for the sum of an infinite geometric series (a+ka+k2a+ · · · = a/(1−k)
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when |k| < 1), we see that equation (4) is on the same form, where a = f−τνhν is the pay-
off associated with the time interval between two renegotiations, including the discounted
renegotiation costs, and k = hν is the discount factor.

(III) Equation (5) captures the opposing effects of increasing the thresholds: Increasing
the threshold for, say, the agent, ra, the expected time until the next renegotiation is
reduced. This will reduce the expected payoff until the next renegotiation, i.e., ∂fν

∂ra
< 0.

Furthermore, reducing the expected time until the next renegotiation raises the discount
factor ∂hν

∂ra
> 0, reflecting that the renegotiation cost τν is incurred earlier, but also that the

value of the objective function after a renegotiation uν is received earlier. The denominator
reflects that in expected terms, all intervals between renegotiations are identical, so the
effect of one interval is multiplied up.

4. Assuming the real renegotiation payment Z and the aggregate price Q
are continuous

In order to prove the existence of a Nash equilibrium (see, e.g., Gibbons [9]) in a game
where players set critical thresholds, it is necessary with additional definitions and as-
sumptions. Define the expected value of the objective function of each of the players,
given optimal response of this player, as

um,a(rp) = sup
ra

ua(ra, rp),

um,p(ra) = sup
rp

up(ra, rp),

and the optimal thresholds ma(rp) and mp(ra) as follows

ma(rp) = inf{ra ∈ [0, 1) | ua(ra, rp) = um,a(rp)},
mp(ra) = sup{rp ∈ (1,∞] | up(ra, rp) = um,p(ra)}.

In general, the optimal threshold may not be unique, and the definitions above in this case
pick the most lenient value, i.e., the value farthest from unity. However, in Theorem 4.1
below, we show that when Z and Q are continuous, then the optimal threshold is indeed
unique. If it is optimal for a player never to require contract renegotiation, then ma(rp) = 0
(the agent) or mp(ra) = ∞ (the principal).

When Z and Q are continuous, fν , hν , and hence uν are all continuous by Theo-
rem 3.1. Then um,ν are continuous and mν are well-defined, piecewise continuous and
ua(ma(rp), rp) = um,a(rp) and up(ra, mp(ra)) = um,p(ra). Furthermore, the Lévy measure
vanishes, and Z and Q are geometric Brownian motions. We may then state the following
theorem regarding uniqueness of the optimal value and the existence of an equilibrium
point.

Theorem 4.1. Assume the real renegotiation payment Z and the aggregate price Q are
geometric Brownian motions, satisfying property F . Then the following properties hold:
(i) The expected objective function for the agent, ua(ra, rp), is increasing in rp, i.e., ∂ua

∂rp
> 0,

while the expected objective function for the principal, up(ra, rp), is decreasing in ra, i.e.,
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∂up

∂ra
> 0.

(ii) Given rp, there exists a unique value 0 ≤ ra = ma(rp) < 1 that maximizes ua(ra, rp).
Correspondingly, given ra, there exists a unique value ∞ ≥ rp = mp(ra) > 1 that maximizes
up(ra, rp).
(iii) If ma(rp) > 0, then the function ma(rp) is strictly increasing, and if mp(ra) < ∞,
then the function mp(ra) is strictly increasing.
(iv) If ma(rp) > 0, then ma(rp) is strictly decreasing in τa. Correspondingly, if mp(ra) < ∞,
then mp(ra) is strictly increasing in τp.
(v) There is at least one Nash equilibrium point (re

a, r
e
p) such that

re
a = argmaxr<1{ua(r, r

e
p)},

re
p = argmaxr>1{up(r

e
a, r)}.

Theorem 4.1 ensures that both players have unique best response functions in the form
of thresholds rν . Furthermore, there exists a Nash equilibrium in thresholds. It is possible
to prove existence of a Nash equilibrium under weaker assumptions than Z and Q being
continuous. The essential criterion is that mν are continuous. But this assumption leads
to rather technical assumptions on Z and Q.

Although we have not been able to construct cases with multiple Nash equilibria when
Z and R are continuous, we have been unable to prove uniqueness of the Nash equilibrium
in the general case. Thus, for each set of stochastic processes, it is necessary to verify
that there is only one equilibrium point. Andersen and Christensen [2] prove that the
equilibrium is unique in their model for a logGaussian price.

As expected, Theorem 4.1, (iv), shows that higher renegotiation costs make a player
more reluctant to require a renegotiation, by pushing the threshold value mν further from
unity. The interaction effects are, however, more interesting. First, part (i) show that if
one player bcomes more aggressive (that is, has a threshold close to unity), this reduces
the expected value of the objective function for the opponent. The opponent loses from
both more frequent renegotiation costs and on average a less favorable contract payment.

Second, and more important, Theorem 4.1,(iii), identifies strategic substitutability in the
choice of thresholds. This follows from the optimal thresholds ma(rp) and mp(ra) being
increasing functions. If, in equilibrium, one player becomes more aggressive by choosing a
threshold closer to unity, the other player becomes more passive by choosing a threshold
further from unity. In other words, if, say, the renegotiation fee of the principal is reduced,
the principal will respond by becoming more active, but this will induce the agent to become
more passive. The intuition for this result is as follows. Demanding a renegotiation involves
an immediate cost, and then a gain by a more favorable contract payment until the next
renegotiation. If the opponent is aggressive, i.e. the threshold of the opponent is close
to unity, the expected time until the next renegotiation is short, so that the gain from a
more favorable contract will be shortlived. In contrast, if the opponent is more passive,
with a threshold farther from unity, the gain from a more favorable contract is likely to
last longer, making a renegotiation more attractive.
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The strategic substitutability effect is in contrast to Andersen and Christensen [3], who
find strategic complementarity in the choice of thresholds. Their result appears to be due
to the fact that they consider only one contract renegotiation, implying an incentive for
players to preempt the opponent. Thus, if one player is aggressive, the opponent has an
incentive to also be aggressive, to increase the likelihood of being the player who obtains the
advantage of asking for a renegotiation at a suitable moment. Andersen and Christensen
[2] consider the model with a finite, but large number of contract renewals, but it is not
stated whether the strategic complementarity holds in that model.

Other observations include:
(I) If the renegotiation payment ZQ is monotone, then only one of the players will be

active and the critical threshold of the other player is immaterial. Hence, there is no unique
optimal strategy for this player. This is discussed in Section 7.

(II) The model may be generalized to the case where the renegotiation costs τa and τp

depend on which player that requires contract renegotiation. In equations (4) and (5), this
would require that τν is replaced by the expected value of the contract renegotiation fee,
which again would be a function of ra and rp. Theorem 4.1 is also valid in the generalized
model, but in equations (19), (20), and (21) below, and the calculation leading to these
equations, τν must be interpreted as the contract renegotiation fee when the agent requires
a contract renegotiation. The model may also be generalized to allow for the renegotiation
fees being stochastic, where τν is the expected value of the renegotiation fee.

(III) In special cases it is possible to find analytic expressions for some of the variables.
Assume the real renegotiation payment relative to the real contract payment is given by
a geometric Brownian motion Z(t, ω)/R(t, ω) = Z(t, ω)Q(t, ω) = exp((α − a2/2)t + aBt)
where Z(0, ω)Q(0, ω) = 1. Then (see Borodin and Salminen [4, p. 233, formula 3.0.1])

E{exp(−βT (ra, rp, ω))} =
(
rγ
a(rσ

p − r−σ
p )− rγ

p (rσ
a − r−σ

a )
)(

(rp/ra)
σ − (rp/ra)

−σ
)−1

with γ = αa−2−1/2 and σ =
√

γ2 + 2βa−2. By differentiating this expression with respect

to β at β = 0 we find, where σ̃ =
√

a2 + 8β/(2a),

E{T (ra, rp, ω)} =
1

a2γ(rarp)1/2

((rp

ra

)σ̃

−
(rp

ra

)−σ̃)−1

×
[
ln(ra)(r

σ̃+1/2
a − r−σ̃+1/2

a )− ln(rp)(r
σ̃+1/2
p − r−σ̃+1/2

p )

− ln(rp/ra)

( rp

ra

)σ̃
+

( rp

ra

)−σ̃( rp

ra

)σ̃ −
( rp

ra

)−σ̃

×
(
(rσ̃+1/2

a − r−σ̃+1/2
a ) + (rσ̃+1/2

p − r−σ̃+1/2
p )

)]
is the expected time to the first renegotiation.

In Figures 2–4, we present how key variables depend on the critical threshold ra and rp,
treating the thresholds as exogenous. Note that in almost all simulations, we include a
positive drift in the aggregate price level Q, representing inflation, implying a tendency that
the real value of the contract payment, R, falls over time, relative to the real renegotiation
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Table 1. The Nash equilibrium point for the example illustrated in Figures 2–4.

re
a re

p ua(re
a, r

e
p) up(re

a, r
e
p) P (re

a, r
e
p) E{T (re

a, r
e
p, ω)}

.960 1.023 196.7 200.8 .65 9.7

Table 2. The Nash equilibrium points for various values of τν . Drift αq = .002
and volatility aq = .01. Other parameters as in Figure 2.

τa τp re
a re

p ua(re
a, r

e
p) up(re

a, r
e
p) P (re

a, r
e
p) E{T (re

a, r
e
p, ω)}

.05 .05 .973 1.020 197.3 199.3 .64 5.3

.07 .05 .968 1.017 196.3 200.3 .58 5.9

.05 .07 .976 1.026 198.0 197.9 .74 5.7

.07 .07 .971 1.023 197.1 199.1 .69 6.7

.13 .13 .965 1.029 196.4 198.9 .75 9.9

.13 .23 .970 1.044 197.6 195.9 .87 10.9

.23 .13 .951 1.024 193.7 201.7 .64 12.1

.23 .23 .957 1.035 195.2 199.0 .78 13.7

payment, Z. Thus, it will usually be the agent who demands a renegotiation, unless the
critical threshold of the principal is close to unity.

Figure 5 illustrates the game in setting thresholds. The curves show the best response
functions mν for different values of renegotiation fees τν . The intersections indicate Nash
equilibrium for the appropriate renegotiation fees. We observe that higher renegotiation
fee for one player leads to less aggressive play by this player, in the form of a threshold
farther from unity. The strategic substitutability effect is also apparent: reducing, say,
the renegotiation fee of the agent, so that we consider thin curves further to the right,
involves higher thresholds ra for the agent, but in Nash equilibrium (represented by the
intersections), also higher thresholds for the principal (i.e., lower values of 1/rp, indicating
more passive play). The strategic effect varies between the different cases, but in some
cases it is rather strong.

If we reduce the renegotiation costs of the agent, τa, from .35 to .05, keeping τp constant
at .35, ra increases from .950 to .985, implying that the agent now requires a renegotiation
whenever he can increase the real contract payment by 1.5 percent, as opposed to a critical
threshold of 5 percent before the change. Then the strategic effect implies that critical
threshold of the principal increases, from a threshold at 4 percent reduction in real contract
payment to a threshold of 8.2 percent reduction (1/rp falls from .960 to .918).

Comparison of Tables 2, 4–5 indicates that the threshold of the principal is an increasing
function of the drift. This may reflect that when the drift is strong, there is less reason for
the principal to demand a renegotiation even if he has been “unlucky” with the random
movement, so that the contract payment is high relative to the renegotiation payment.
The reason is that when the drift is strong, the disadvantageous period is unlikely to last
long, so it is better for the principal to “let the drift do the job” than to incur the costs
of a renegotiation. In contrast, when the drift is weak, the principal must use a lower
threshold to avoid lengthy periods of a disadvantageous contract payment. This result is
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Figure 2. The function ua (top) and up (bottom) for ra, 1/rp ∈ [.85, 1] with the
same process and parameters as in Figure 1. Furthermore, β = .005, ηa = 1,
ηp = −1.5, and τa = τp = .1. The plots are computed using 105 realizations, each
sampled at 2 ·105 points up to time 200. Note that ua increases when rp increases.
Because of the drift in the aggregate price level Q, there is a tendency that the
real value of the contract payment falls over time, inducing the agent to demand
a renegotiation. Thus, ra is more important for both ua and up than rp is, except
when rp is close to 1.
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Figure 3. The function P (ra, rp) is the expected fraction of times the process
reaches ra before it reaches rp, as a function of (ra, rp). Parameters and processes
as in Figure 2.

Table 3. The Nash equilibrium points for various values of τν . Drift αq = .002
and volatility aq = .03. Other parameters as in Figure 2.

τa τp re
a re

p ua(re
a, r

e
p) up(re

a, r
e
p) P (re

a, r
e
p) E{T (re

a, r
e
p, ω)}

.05 .05 .943 1.039 194.7 198.4 .44 2.6

.07 .05 .929 1.034 192.5 200.9 .36 2.9

.05 .07 .948 1.050 196.2 195.9 .52 2.9

.07 .07 .937 1.044 194.1 198.1 .44 3.2

.13 .13 .923 1.056 193.1 197.9 .47 5.1

.13 .23 .937 1.081 196.2 191.7 .60 5.9

.23 .13 .886 1.044 187.1 204.5 .31 6.1

.23 .23 .908 1.064 191.1 198.1 .46 7.2
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Figure 4. The function E{T (ra, rp, ω)} is the expected time until a renegotiation,
i.e., until the process leaves the interval (ra, rp) the first time. Parameters and
processes as in Figure 2.

Table 4. The Nash equilibrium points for various values of τν . Drift αq = 0 and
volatility aq = .01. Other parameters as in Figure 2.

τa τp re
a re

p ua(re
a, r

e
p) up(re

a, r
e
p) P (re

a, r
e
p) E{T (re

a, r
e
p, ω)}

.05 .05 .971 1.017 197.3 199.2 .37 5.2

.07 .05 .965 1.016 196.4 200.2 .31 6.1

.05 .07 .976 1.024 198.4 197.7 .49 6.2

.07 .07 .969 1.020 197.2 199.0 .38 6.7

.13 .13 .962 1.026 196.7 198.6 .40 10.3

.13 .23 .968 1.038 198.3 195.7 .53 12.4

.23 .13 .944 1.021 193.9 201.6 .26 12.5

.23 .23 .954 1.032 196.1 198.4 .40 15.4
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Figure 5. The best response function of the agent ma (thin curves) and principal
mp (thick curves) for values of τa and τp from .05 to .35. Intersection between ma

and mp gives the Nash equilibrium point (re
a, r

e
p) for the particular set of (τa, τp).

Other parameters and process are as in Figure 2.

Table 5. The Nash equilibrium points for various values of τν . Drift αq = .006
and volatility aq = .01. Other parameters as in Figure 2.

τa τp re
a re

p ua(re
a, r

e
p) up(re

a, r
e
p) P (re

a, r
e
p) E{T (re

a, r
e
p, ω)}

.05 .05 .973 1.024 196.3 199.4 .95 4.0

.07 .05 .968 1.020 195.2 200.7 .92 4.7

.05 .07 .974 1.032 196.5 198.2 .97 4.1

.07 .07 .969 1.028 195.6 199.5 .97 4.9

.13 .13 .960 1.034 193.6 200.0 .98 6.7

.13 .23 .960 1.054 193.8 196.8 .99 6.7

.23 .13 .945 1.028 190.9 203.3 .96 8.9

.23 .23 .947 1.043 191.3 200.6 .99 8.9
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Table 6. The Nash equilibrium points for various values of τν . Drift αq = .002,
volatility aq = .01, ηa = .7, and ηp = −1.5. Other parameters as in Figure 2.

τa τp re
a re

p ua(re
a, r

e
p) up(re

a, r
e
p) P (re

a, r
e
p) E{T (re

a, r
e
p, ω)}

.05 .05 .968 1.018 197.4 200.3 .59 6.0

.07 .05 .960 1.016 196.5 201.7 .52 7.0

.05 .07 .971 1.023 197.9 199.1 .68 6.6

.07 .07 .964 1.020 197.0 200.5 .61 7.4

.13 .13 .955 1.024 196.3 200.8 .67 11.2

.13 .23 .962 1.039 197.4 197.7 .82 12.7

.23 .13 .937 1.019 194.0 204.3 .55 14.1

.23 .23 .947 1.030 195.4 201.2 .72 16.1

Table 7. The Nash equilibrium points for various values of τν . Drift αq = .002,
volatility aq = .01, and ηa = −ηp = 1.0. Other parameters as in Figure 2.

τa τp re
a re

p ua(re
a, r

e
p) up(re

a, r
e
p) P (re

a, r
e
p) E{T (re

a, r
e
p, ω)}

.05 .05 .976 1.027 198.0 198.5 .75 5.8

.07 .05 .971 1.023 197.0 199.3 .68 6.6

.05 .07 .979 1.036 198.9 197.3 .85 6.4

.07 .07 .974 1.030 197.7 198.3 .77 7.2

.13 .13 .967 1.038 197.1 198.0 .83 10.7

.13 .23 .973 1.061 198.5 195.2 .94 11.6

.23 .13 .956 1.032 194.9 199.8 .75 13.5

.23 .23 .963 1.051 196.6 197.4 .90 15.2

in contrast to the findings of Andersen and Christensen [3], where increased drift makes
the principal more aggressive. Their result is probably due to their assumption of only
one renegotiation; if there is drift that is disadvantagous to the principal, there will be
less reason for the principal to postpone a renegotiation in the hope of a more favorable
renegotiation a later stage. Indeed, in Andersen and Christensen [2], it is shown that the
effect of drift is ambiguous in the case where it is allowed for many renegotiations.

The threshold of the agent is non-monotonic in the drift. This reflects two opposing
effects. On the one hand, stronger drift implies that for a given threshold, renegotiations
will be more frequent, so that renegotiation costs increase. To reduce the rise in renegotia-
tion costs, the agent will be more reluctant to demand a renegotiation, thus the threshold
is decreased. On the other hand, the strategic substitutability in the choice of thresholds
implies that when higher drift increases the threshold of the principal, making him less
aggressive, it also increases the threshold of the agent. Intuitively, the increasing threshold
of the principal raises the possible gain for the agent of requiring a renegotiation, in the
hope of obtaining an advantageous evolution of the contract payment.

Comparing Tables 2–3 indicates that greater volatility makes both players more reluctant
to require a renegotiation, so that the threshold of the agent decreases, and the threshold
of the principal increases, both further away from unity. However, the change is not so
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large that it prevents that the expected time between renegotiations falls. The intuition is
straightforward: with greater volatility, thresholds close to unity will imply too frequent
renegotiations, thus agents are less aggressive so as to reduce renegotiation costs. This
result is the same as derived by Andersen and Christensen [3].

Table 6 shows the effect of reducing ηa, making the agent risk averse. Comparing with
Table 2, we see that the threshold of the agent is reduced (further away from unity), while
the threshold of the principal falls, i.e., becomes closer to unity. Thus, risk aversion makes
the agent more reluctant to require a renegotiation. We also see that the principal obtains
higher expected utility when the agent is risk averse, corresponding to the well-known
result that it is advantageous to bargain with a risk averse player (see, e.g., Osborne and
Rubinstein [17, p. 18]). Likewise, Table 7 shows the effect of reducing ηp, making the
principal risk neutral rather than risk loving. This improves the situation for the agent, as
the threshold of both players increases, making the agent more aggressive and the principal
more passive, resulting in an increase in the expected utility of the agent. (Clearly, it is less
relevant to consider the change in the expected utility for the player whose utility function
changes.)

5. Discontinuities in the real renegotiation payment Z or the aggregate
price Q

If Z or Q are discontinuous and make occasional jumps, this may give discontinuities
in the optimal responses mν . In most cases, this will not affect the existence of Nash
equilibrium with thresholds because the discontinuities in mν will usually be very small.
However, under some circumstances jumps in Z or Q may imply that ma(rp) and mp(ra) do
not intersect. Then there will be no Nash equilibrium with constant threshold strategies.
However, there will exist a Nash equilibrium in mixed strategies, which is illustrated by
the following stylized example.

Example Assume the real renegotiation payment Z and the aggregated price level Q
are constants except for sudden jumps according to Poisson processes where the process
Q increases and Z decreases. Let the Poisson process for Z have low intensity and that
Z decreases with a fixed rate 1 + ρ in the jumps, while Q has many small jumps and all
jumps are according to a continuous distribution. The contract payment relative to the
renegotiation payment R/Z is then decreasing except for sudden jumps where it increases
with the percentage ρ.

Consider the situation if the principal has chosen a threshold rp < 1 + ρ. Then, if
the real renegotiation payment Z jumps immediately after a renegotiation, the contract
payment relative to the renegotiation payment R/Z will after the jump be above the critical
threshold of the principal, inducing an immediate renegotiation. Thus, the agent will not
benefit from a period with high R/Z after the jump. On the other hand, if the agent let
R/Z fall below rp/(1 + ρ), a jump in the real renegotiation payment Z will nevertheless
leave R/Z below the threshold of the principal. There will be no immediate renegotiation,
and the agent will benefit from a period of high R/Z. This discontinuity at rp/(1 + ρ) will
imply a discontinuity in ma, i.e., in the optimal threshold of the agent.
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Figure 6. The figure shows a realization of R( · , ω)/Z( · , ω) with thresholds
rp = r3 = 1.035 and both ra = r2 = .971 and ra = r1 = .979. In a Nash
equilibrium, the agent randomizes between these two values, the highest value
gives renegotiation after every jump where R/Z increases, while the lower thresh-
old may give periods with high R/Z values. The two independent Lévy processes
Z and Q are constants except for sudden jumps according to a Poisson process
where the process increases. The Poisson process for Z has intensity .8 and in
the jumps Z increases with a factor 1.0625. The Poisson process for Q has inten-
sity approximately 1200 and in the jumps Q increases according to a continuous
distribution such that E log(Q(t, ω)) ≈ .13t and Var{log(Q(t, ω))} ≈ .004t. The
process is modelled with time step .001.

When choosing the threshold, the agent will have to weigh the loss of allowing a low
R/Z (by having a low threshold) against the possible gain of a period with high R/Z if
there is a jump. However, if the threshold of the principal is “rather low”, maintaining the
possibility of reaping a period of high R/Z will require a very low threshold for the agent.
For sufficiently low threshold of the principal, the agent will then profit from neglecting
the opportunity to benefit from a jump. At that point, the optimal threshold of the agent
will make a jump, as there is now no gain to be reaped by having a low threshold.
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The situation is illustrated in Figures 6 and 7. The agent mixes between two thresholds
r1 and r2. Figure 6 shows that the real contract price relative to the renegotiation price
falls monotonically, except when it is increased to unity at a renegotiation, or increased
above unity when Z falls. Figure 7 illustrates the strategic effects. For values of 1/rp in
the interval between .92 and .965, the optimal threshold of the agent, ra is reduced due to
the strategic effect discussed in Section 4. However, 1/rp > .965, the agent is indifferent
between choosing a low threshold ra ≈ .971, maintaining the possibility of benefitting from
a jump in the real renegotiation payment, and a high threshold ra ≈ .979, which removes
this possibility. In order to have a Nash equilibrium, the agent must mix between these two
thresholds, with probabilities ensuring that it is indeed optimal for the principal to choose
the threshold 1/rp ≈ .965. For higher values of 1/rp, a jump in the real renegotiation
payment will always induce a renegotiation request from the principal, implying that the
agent sets ra ≈ .979.

Let us now consider the consequences of discontinuities in Z and Q more formally.
Define Sν as the class of strategies for a player ν, where the player randomizes between
two thresholds r1 and r2, where r1 is chosen with probability 1− q and r2 with probability
q. Note that Sν includes pure strategies, where q = 0. Let sν ∈ Sν denote a strategy.
Furthermore, we assume that each time the contract payment relative to renegotiation
payment is equal to unity or jumps from one side of unity to the other side of unity, either
because the aggregate price or the real renegotiation payment fluctuates, or because a
renegotiation has taken place, players select one of the two thresholds at random. This
procedure ensures that past fluctuations of the aggregate price have no impact on the
probability each player perceives of the thresholds of the opponent.

We extend the definition of the expected values of the objective functions uν to allow
for randomization by both players. Furthermore, we define the optimal threshold for each
player when the opponent randomizes:

mc
a(sp) = inf{ra ∈ [0, 1) | ua(ra, sp) = sup

r1

ua(r1, sp)},

mc
p(sa) = sup{rp ∈ (1,∞] | up(sa, rp) = sup

r1

up(sa, r1)}.

Thus, the function mc
p(sa) corresponds to the usual optimal response function for the

principal, mp(ra), if the agent uses a pure strategy. However, mc
p(sa) is also defined if the

agent randomizes between thresholds r1 and r2, reflecting a discontinuity in ma(rp). If
mc

p(sa) changes continuously from mp(r1) to mp(r2) when q changes from 0 to 1, we say
that mc

p(sa) is continuous. Continuity of the function mc
a(sp) is defined similarly.

In order to prove existence of a Nash equilibrium, we assume that mν is piecewise
continuous and that mc

ν is continuous in each of the discontinuities in mν . This is a
property of the stochastic processes Z and Q, but we believe it will be fulfilled except
possibly in extreme cases. For example, it will not be fulfilled if Z or Q only take discrete
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values3. We may then formulate the more general theorem for the existence of a Nash
equilibrium.

Theorem 5.1. Assume the real renegotiation payment Z and the aggregate price Q satisfy
property F , that mν is piecewise continuous and that mc

ν is continuous in each of the
discontinuities in mν. Then there exists at least one Nash-equilibrium point (se

a, s
e
p) with

se
a ∈ Sa and se

p ∈ Sp such that

se
a = argmaxsa∈Sa

{ua(sa, s
e
p)},

se
p = argmaxsp∈Sp

{up(s
e
a, sp)},

where at most one of the players randomizes.

Let us now return to the example above, discussing the possibility of an equilibrium point
(se

a, r
e
p). Assume that mp(ra) intersects the horizontal line rp = r′p for r2 < mp(r3) < r1,

where there is a discontinuity in ma(rp). When the principal has the threshold r′p, the agent
gets the same value for the objective function for both r1 and r2, i.e., ua(r1, r

′
p) = ua(r2, r

′
p).

In equilibrium, the agent randomizes between r1 and r2, with probabilities ensuring that
the optimal strategy for the principal is to have the threshold r′p.

When the stochastic processes are discontinuous, we are able to construct examples
where there exist multiple Nash equilibria. In Figure 8, there are two Nash equilibria with
constant thresholds, and one with randomization.

6. Efficiency of the choice of renegotiation costs

In this section, we extend the model by allowing an additional stage of the model, taking
place ahead of the basic model, where players may invest in renegotiation capacity, leading
to lower renegotiation fee for the player. For example, a firm may have a large salary
department, taking care of the wage negotiations. Let the costs of obtaining renegotiation
fee τν be given by the function cν(τν), where we assume that cν is differentiable and strictly
decreasing, and that cν converges to infinity when τν converges to zero, and cν converges
to zero when τν converges to infinity.

With some abuse of notation, let Wν(τa, τp) denote the expected value of the objective
function of player ν, derived from Nash equilibrium in the basic model with renegotiation
fees τa and τp. (If the Nash equilibrium is not unique, we assume that players associate
probabilities with the various Nash equilibria, and then take the expected value of the
objective functions.)

When both players optimize their investment in renegotiation capacity, then the rene-
gotiation fees are given by the first order conditions

(6)
∂Wν

∂τν

− c′ν(τν) = 0, ν = a, p.

3If Prob(Z(t, ω) > r) and Prob(Q(t, ω) > r) are continuous in r for all values of t, then the functions
fν , hν are also continuous. Furthermore, uν is continuous by Theorem 3.1, um,ν is continuous and mν is
well-defined, piecewise continuous and ua(ma(rp), rp) = um,a(rp) and up(ra,mp(ra)) = um,p(ra).
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Figure 7. The function ma (thin curve) and mp (thick curve) for ra, 1/rp ∈ [.92, 1]
for values of τa = .0017 and τp = .0057. R and Z are as defined in Figure 6
and other constants are β = .005, ηa = 1, and ηp = −1.5. The dashed curve
is rp = 1.0625ra. When the thresholds satisfies rp < 1.0625ra, then there is a
renegotiation after every jump in Z. Therefore ma is constant above the dashed
curve. It is also shown the curve (Era(sa),mc

a(sa)), for r2 < ra < r1, but it
is not possible to separate this curve from the curve (ra,mp(ra)). The strategy
sa is when the agent randomizes between the values r2 ≈ .971 and r1 ≈ .979,
the endpoints of the horizontal line in ma for rp = r′p ≈ 1/.965. The horizontal
line in ma(rp) indicates a discontinuity where ua(r1, rp) = ua(r2, rp) = um,a(rp).
The curve (Era(sa),mc

a(sa)) intersects the horizontal line in ma at ra = r3 ≈
.973. In a Nash equilibrium, the agent selects the threshold r1 with probability
(r3 − r2)/(r1 − r2) ≈ .25 and else r2. The randomization makes the optimal
threshold for the principal equal to r′p. The plot is based on 105 realizations, each
sampled at 105 points up to time 100.
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Figure 8. This figure shows nonuniqueness in the Nash equilibrium due to mul-
tiple crossings of the curves ma (thin curve) and mp (thick curve) for the process
illustrated in Figure 7 with τa = .0005 and τp = .0045.

Assuming for simplicity that overall welfare can be measured by the sum of players’
expected utility, the welfare maximizing levels of investment in renegotiation capacity is
given by

(7)
∂Wa

∂τν

+
∂Wp

∂τν

− c′ν(τν) = 0, ν = a, p.

Both (6) and (7) have a solution provided cν approaches zero sufficiently fast when τν

increases. Note that ∂Wa/∂τp > 0 and ∂Wp/∂τa > 0. Then the values of τν that satisfies
(6) give positive values when put into the left-hand side of the equations (7). This implies
that for each solution of (6), there exists a solution of (7) with higher values of τν . This
implies that when each player determines the renegotiation fee from (6), there is an over-
investment in renegotiation capacity compared to a solution of equations (7).

This over-investment in renegotiation capacity is due to the following. First, each of the
players do not take into consideration that the contract payment in our setting is only a
matter of a transfer between the players, so that what one player gains by renegotiating the
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Figure 9. The figure shows the function Wa(τa, τp) for τa, τp ∈ [.01, .5]. The data
used are the same as in Table 2 and Figure 2.

price is directly linked to what the other player loses. Second, the first effect is exacerbated
by the strategic substitutability in the choice of thresholds. By investing in renegotiation
capacity, thus reducing the renegotiation fee, the threshold of the player is moved closer
to unity, leading the other player to choose a threshold further away from unity. The
player gains from both changes, i.e., both from lower own renegotiation fee, and from the
opponent setting a threshold further away from unity.

7. The case when only one player may require renegotiation

In some real-world relationships, it may be realistic that only one of the players have
the means of requiring a renegotiation. In this case the behavior of the other player can
be seen as a very simple form of a Markov strategy, namely never to require renegotiation.
Thus Theorem 2.3 applies and the optimal strategy for the active player is to use a critical
threshold. For simplicity, we consider only the case where the agent may require a rene-
gotiation, as the case where only the principal may require renegotiation follows directly
from this analysis. This implies that rp = ∞.
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Theorem 7.1. Assume the real renegotiation payment Z and the aggregate price Q are
continuous and satisfy property F and that the principal never requires a renegotiation of
the contract. Then the following holds:
(i) If the agent has a critical threshold, then the objective functions are given by

(8) uν(ra,∞) =
dν(1− rbν+ην

a )− τνr
bν
a

1− rbν
a

, ν = a, p,

for constants bν and dν where

(9) bν =
ln(hν(r0,∞))

ln(r0)
,

and

(10) dν =
fν(r0,∞)

1− rην

0 hν(r0,∞)

for any value of r0 < 1. The constants bν and dν depend only on the stochastic processes
Z and Q and the exponents ην, and they are independent of r0, the discount rate β and the
contract renegotiation fees τν .
(ii) There is a unique optimal strategy for the agent given by a threshold re

a. If τa ≥ da,
then re

a = 0, else re
a > 0 such that F (re

a) = 0 where F is defined by

(11) F (ra) = ηar
ηa+ba
a − (ηa + ba)r

ηa
a + ba(1−

τa

da

).

(iii) If the optimal thresholds re
a > 0, then re

a is decreasing in τa and is increasing in da.

Part (i) of Theorem 7.1 provides explicit expressions for the objective functions, for given
threshold of the agent. Part (ii) states that it is indeed optimal for the agent to have a
threshold, and it derives the optimal threshold as an implicit function of the renegotiation
fee τa and the constants bν and dν .

The proof of Theorem 7.1 is based on the idea that as seen from immediately after a
renegotiation, where R = Z, implying that R/Z = 1, the event that R/Z = ra so that a
new renegotiation takes place, can be split into n independent and identically distributed
events where R/Z decreases with a factor r0, where ra = rn

0 . This makes it possible to give
an analytic expression for the expected values of the objective functions.

If we assume that the real renegotiation payment Z and the aggregate price Q are not
stochastic, but Z(t, · ) = exp(tαz) and Q(t, · ) = exp(tαq) for constants α = αz + αq > 0,
then we get the following expressions

R(t, · )/Z(t, · ) = exp(−tα), t < t1

αt1 = − ln(ra),

bν =
β − αzην

α
,

dν =
1

β + αqην

.
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Figure 10. The figure shows the case when only the agent may require renegoti-
ation. Here Z = 1 and Q = exp((αq−a2/2)t+aBt) with drift αq = .002, volatility
a = .01, and ηa = 1. Note that both ua and the optimal ra value are decreasing
in τa. The constants ba = 2.385 and da = 144.3 are evaluated from fa(.96,∞) and
ha(.96,∞) based on simulations using 105 realizations, each sampled at 105 points
up to time 100.

In the deterministic case, the approximate formula (20) from Section A is exact and the
optimal threshold ra = ma(rp) satisfies

rηa
a = (β − ηaαz)(ua(ra,∞)− τa).

This formula is derived by assuming a fixed threshold for the other player and hence is
also valid when the other player is not active.

8. Concluding remarks

The assumption that wages and prices are sticky in nominal terms plays a key role
in macro and monetary economics. However, usually the timing of price adjustment is
taken as exogenous. This has motivated a considerable literature studying the optimal
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Figure 11. Same assumptions as in Figure 10, except αq = .001.

adjustment of prices under stochastic evolution of money or aggregate prices. In this
paper we extend this analysis by considering bilateral adjustment, where both parties to
the trade, both the seller and buyer, are allowed to require renegotiations of the contract.
This follows Andersen and Christensen [3], but they focus on only one renegotiation, while
we consider much more general stochastic processes, with an infinite horizon allowing for
an unlimited number of renegotiations.

We show that several of the key results from the literature on unilateral price adjust-
ment also hold in the more general case of bilateral adjustment. Optimal behavior is
characterized by threshold strategies, where players demand renegotiation whenever the
real contract payment is too far away relative to the real payment induced by a renegoti-
ation of the contract. As expected, higher volatility and larger renegotiation costs make
players more reluctant to demand a renegotiation, implying threshold values farther from
unity.

Furthermore, we prove under rather general assumptions the existence of a Nash equilib-
rium in thresholds. A main result is that in equilibrium, there is strategic substitutability
in players’ choice of threshold: If one player becomes more aggressive, setting a threshold
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closer to unity, the other player becomes more passive, setting a threshold farther from
unity. The strategic substitutability may exacerbate asymmetries. For example, if the
renegotiation costs of the agent are reduced, the agent will respond by raising the thresh-
old closer to unity. However, this effect will be strengthened by the principal raising his
threshold, further away from unity. Numerical simulations indicate that the strategic effect
may be substantial. We also find that a risk averse player will be more passive, setting a
threshold farther from unity, thus benefiting the opponent.

We extend the basic model by introducing a stage ahead of the model, where players
may invest in ”renegotiation ability”, in the sense that they may reduce their own costs
of undertaking a renegotiation (e.g. by having a personell department doing the wage
negotiations). We then find that players will overinvest as compared to the socially efficient
level. The overinvestment arises for two reasons. First, players require a renegoation too
often from a social point of view, as they do not take into consideration that their own gain
from better contract terms is reflected in a loss by the opponent. By investing to lower
one’s own renegotiation costs, a player will require a renegotiation more often, thus hurting
the other player. Secondly, the strategic substitutability mentioned above exacerbates the
first effect. By reducing one’s own renegotiation costs, a player becomes more aggressive.
This makes the opponent more passive, which adds to the gain of the first players, as a
renegotiation requested by the opponent becomes less likely.

9. Proofs

We have the following two technical results that are proved at the end of this section.

Lemma 9.1. Assume the real renegotiation payment Z and the aggregate price Q are con-
tinuous and satisfy property F . Then va(ra, rp) is continuous, increasing in both variables
and

∂va(ra, rp)

∂rp

< (β − µa,z)
∂ua(ra, rp)

∂rp

.

Correspondingly, vp(ra, rp) is continuous, decreasing in both variables and

∂vp(ra, rp)

∂rp

> (β − µp,z)
∂up(ra, rp)

∂rp

.

Lemma 9.2. If the real renegotiation payment model Z is continuous and satisfies property
F , then

E{1− Zην (t, ω) exp(−βt)} = (β − µν,z)E{
∫ t

0

Zην (s, ω) exp(−βs)ds}.

Proof of Theorem 2.3. The objective function may be written

Uν(t1, . . . , ω) =
∞∑

j=0

( ∫ tj+1

tj

Rην (s, ω) exp(−βs)ds− τνZ
ην (tj+1, ω) exp(−βtj+1)

)
= τν +

∞∑
j=0

Zην (tj, ω) exp(−βtj)
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tj

Qην (tj, ω)

Qην (s, ω)
exp(−β(s− tj))ds− τν

)
.

The expected value of integral in the last expression above is bounded due to property
F . Then EUν is bounded if the number of renegotiations is finite.

If there is an infinite number of renegotiations, it is in addition necessary to bound

E{
∞∑

j=0

Zην (tj, ω) exp(−βtj)}.

This expression is bounded due to property F .
When both τa, τp > 0, neither player benefits from requiring renegotiation immediately

all the time, e.g., have a critical threshold equal to 1. Hence the problem is well-defined.
Let T satisfy ti < T ≤ ti+1. Define CT as the contribution to the objective function for

t < T that cannot be changed when t ≥ T , that is,

CT =
i−1∑
j=0

( ∫ tj+1

tj

Rην (s, ω) exp(−βs)ds− τνZ
ην (tj+1, ω) exp(−βtj+1)

)
(12)

+

∫ T

ti

Rην (s, ω) exp(−βs)ds

and Hν(ti+2 − ti+1, . . . , ω) as the contribution to the object function after ti+1, that is,

Hν(ti+2 − ti+1, . . . , ω) =
∞∑

j=i+1

( ∫ tj+1

tj

Rην (s, ω) exp(−βs)ds

− τνZ
ην (tj+1, ω) exp(−βtj+1)

)
.

The function Hν(ti+2 − ti+1, . . . , ω) has the same distribution as Uν(t0, . . . , ω). Then we
may write the objective function as

Uν(t1, . . . , ω)

= CT + Zην (T, ω) exp(−βT )
(Rην (T, ω)

Zην (T, ω)

∫ ti+1

T

Rην (s, ω)

Rην (T, ω)
exp(−β(s− T ))ds

+
Zην (ti+1, ω)

Zην (T, ω)
exp(−β(ti+1 − T ))(Hν(ti+2 − ti+1, . . . , ω)− τν)

)
.

The ratios R(s, ω)/R(T, ω) and Z(ti+1, ω)/Z(T, ω) are independent of R(T, ω) and Z(T, ω)
due to the Markov properties. The future contribution to the object function depends on
R(T, ω) and Z(T, ω), but the optimal strategy is only a function of the ratio R(T, ω)/Z(T, ω)
and there is no memory in the game, i.e., dependencies on tj < T , R(s, ω) for s < T or
Z(s, ω) for s < T .

Let sp and sa denote the strategies of the principal and the agent, respectively. With a
slight abuse of notation, let Ua(sa, sp, ω) denote the objective function with the strategies
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sa and sp, respectively. Then supsa
E{Ua(sa, sp, ω)} is well-defined and there is a sequence

sa,i such that

(13) lim
i→∞

E{Ua(sa,i, sp, ω)} = sup
sa

E{Ua(sa, sp, ω)}.

Define the sequence of sets Si where r ∈ Si if the agent with strategy sa,i requires contract
renegotiation for any interval for any price Q( · , ω) at time t where R(t, ω)/Z(t, ω) = r.
Add the number 0 to Si. If the renegotiation is not the first time t when R(t, ω)/Z(s, ω) = r,
this is not critical, since it is the contribution to the player of the objective function in the
future that is critical. Since all r ∈ Si satisfies 0 ≤ r < 1, then for any sequence {ri}i with
ri ∈ Si, there is an accumulation point r′ (if several, take the largest). Consider a strategy
s′ with a critical threshold r′. Since the expected value of the future contribution to the
objective function at time t only is a function of the present R(t, ω)/Z(t, ω), and equation
(13), then

E{Ua(s
′, sp, ω)} = sup

sa

E{Ua(sa, sp, ω)}.

If the renegotiation payment ZQ does not only change in discrete jumps, then the rene-
gotiations will come with shorter and shorter time intervals if ra → 1. Assuming τa > 0,
then the renegotiation cost dominates the objective function which implies that the accu-
mulation point r′ < 1. If the price ZQ only changes in discrete jumps, then the relative
flow payoff can only take discrete values and r = 1 cannot be an accumulation point for
the chain where all elements in the chain satisfies ri < 0. This implies that the critical
threshold may be set equal to the accumulation point 0 ≤ r′ < 1.

Correspondingly, if the agent has the same strategy in each time interval, then there is
a corresponding argument showing that there cannot be a better strategy for the principal
than what is possible to obtain with a critical threshold rp. �

Proof of Theorem 3.1. Let H ′
ν be defined as Hν in the proof of Theorem 2.3 but with

T < t1 and with parameters ra and rp instead of t1 − t0, . . . as in (3). The definition of
Uν(ra, rp, ω) in (1) and (3) implies

Uν(ra, rp, ω) =

∫ t1

t0

Rην (s, ω) exp(−βs)ds + Zην (t1, ω) exp(−βt1)(H
′
ν(ra, rp, ω)− τν).

The stochastic variables Uν and H ′
ν have similar distribution and have expectation equal

to uν . The time for the end of the first interval t1 is independent of what is happening after
t1 due to the Markov property. Hence Zην (t1, ω) exp(−βt1) is independent of H ′

ν(ra, rp, ω).
This implies that

uν(ra, rp) = fν(ra, rp)− τνhν(ra, rp) + hν(ra, rp)uν(ra, rp),

leading to

uν(ra, rp) =
fν(ra, rp)− τνhν(ra, rp)

1− hν(ra, rp)
.
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This equation may also be written as

(14) uν(ra, rp) =
fν(ra, rp)− τν

1− hν(ra, rp)
+ τν .

An expression for the derivative is found using the above expression by the following
calculation

∂uν

∂rµ

=

∂fν

∂rµ
(1− hν) + (fν − τν)

∂hν

∂rµ

(1− hν)2
=

∂fν

∂rµ
+ (uν − τν)

∂hν

∂rµ

1− hν

for µ = a, p. �

Proof of Theorem 4.1. (i) Using Lemma 9.2 we have

(15)
fa

1− ha

=
E{

∫ T

0
Rηa(s, ω) exp(−βs)ds}

(β − µa,z)E{
∫ T

0
Zηa(s, ω) exp(−βs)ds}

.

Hence the fraction is a constant times the average of Rηa until the first contract renegoti-
ation divided by the average of Zηa in the same interval for ra < R/Z < rp. We will show
that the fraction (15) is increasing in rp. Let r′p > rp and

T ′ = inf{s ≥ T | R(s, ω)/Z(s, ω) 6∈ (ra, r
′
p)}.

Define further T ≤ T ′′ ≤ T ′ as

T ′′ = inf{s ≥ T | R(s, ω)/Z(s, ω) 6∈ (1, r′p)}.
The lower endpoint is set equal to 1 since R(0, ω)/Z(0, ω) = 1. Then

E{
∫ T ′

0

Rηa(s, ω) exp(−βs)ds} = E{
∫ T

0

Rηa(s, ω) exp(−βs)ds}

+ E{
∫ T ′′

T

Rηa(s, ω) exp(−βs)ds}

+ E{
∫ T ′

T ′′
Rηa(s, ω) exp(−βs)ds}.

Let P be the probability that there exists times s1 and s2 with T < s1 < T ′′ < s2 < T ′

such that R(s1, ω)/Z(s1, ω) ≥ rp and R(s2, ω)/Z(s2, ω) ≤ 1. Then

E{
∫ T ′

T ′′
Rηa(s, ω) exp(−βs)ds} = PE{

∫ T ′

0

Rηa(s, ω) exp(−βs)ds}

since R( · , ω)/Z( · , ω) varies in the same interval (1, r′p) in both expressions. This implies
that

E{
∫ T ′

0

Rηa(s, ω) exp(−βs)ds} =
1

1− P

(
E{

∫ T

0

Rηa(s, ω) exp(−βs)ds}

+ E{
∫ T ′′

T

Rηa(s, ω) exp(−βs)ds}
)
.
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Correspondingly, we have

E{
∫ T ′

0

Zηa(s, ω) exp(−βs)ds} =
1

1− P

(
E{

∫ T

0

Zηa(s, ω) exp(−βs)ds}

+ E{
∫ T ′′

T

Zηa(s, ω) exp(−βs)ds}
)
.

We have

E{
∫ T ′′

T
Rηa(s, ω) exp(−βs)ds}

E{
∫ T ′′

T
Zηa(s, ω) exp(−βs)ds}

>
E{

∫ T

0
Rηa(s, ω) exp(−βs)ds}

E{
∫ T

0
Zηa(s, ω) exp(−βs)ds}

since on the left-hand side R(T, ω)/Z(T, ω) ≥ rp, and R( · , ω)/Z( · , ω) varies in the interval
(1, r′p) while on the right-hand side R(0, ω)/Z(0, ω) = 1, and R( · , ω)/Z( · , ω) varies in the
interval (ra, rp). Then

E{
∫ T ′

0
Rηa(s, ω) exp(−βs)ds}

E{
∫ T ′

0
Zηa(s, ω) exp(−βs)ds}

>
E{

∫ T

0
Rηa(s, ω) exp(−βs)ds}

E{
∫ T

0
Zηa(s, ω) exp(−βs)ds}

.

Hence the fraction (15) is increasing in rp.
When rp increases, ET increases and ha decreases due to property F . This implies

−τa/(1 − h) increases when ra increases. Hence by using (14) we see that increasing rp

increases ua. The corresponding argument may be applied for up(ra, rp).
(ii) Since Z and Q are continuous, fa, ha, and hence ua are continuous by Theorem 3.1.

Then um,a is continuous and ma is well-defined, piecewise continuous and ua(ma(rp), rp) =
um,a(rp) and up(ra, mp(ra)) = um,p(ra).

Let rp > 1 be fixed. We will first prove that there is a value 0 ≤ ra < 1 that maximizes
ua(ra, rp). The function ua(ra, rp) is defined for 0 ≤ ra < 1. We will give an argument that
the maximum value is attained for ra in the closed interval [0, 1 − ε] for ε > 0 sufficiently
small. Since the interval is closed, the maximum value will be attained for a value ra =
ma(rp). Since Z and Q are continuous, then T (ra, rp) vanishes with probability 1 when
ra → 1. Then ha(ra, rp) → 1 and fa(ra, rp) → 0 when ra → 1. Further, the expression (4)
for ua implies that ua(ra, rp) → −∞ when ra → 1. Hence for each value for rp, there is a
value ra = ma(rp) < 1 where ua(ra, rp) = um,a(rp).

We will prove that the value ra = ma(rp) is unique, i.e., if ra 6= ma(rp), then ua(ra, rp) <
um,a(rp). Let t1 be the time for the first contract renegotiation. Furthermore, let W1 and
W2 be two new stochastic variables that are identical to Ua except that a different strategy
(a different limit for ra) is used before t1. After t1, we set ra = ma(rp). The first contract
renegotiation in W1 and W2, if required by the agent, is required when the relative flow
payoff reaches the values r2 < r1 < 1, respectively. Let Pr1 denote the probability that
the contract payment relative to renegotiation payment R(t, ω)/Z(t, ω) reaches r1 before
it reaches rp. In case the ratio reaches rp first, there is no difference between W1 and W2.
Further, let T1(r1, rp, ω) denote the time of the first contract renegotiation for W1. Finally,
let

Er1 = E{exp(−βT1(r1, rp, ω))}
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given that r1 is reached. For W2 there is a contract renegotiation when the contract pay-
ment relative to renegotiation payment first reaches r2 or rp. Assuming r1 is reached, there
is contract renegotiation when either the ratio decreases with a factor r2/r1 or increases
with a factor rp/r1. Let T2(r2/r1, rp/r1, ω) denote the time between r1 is reached and either
r2 or rp are reached. Let w1 and w2 be the expected values of W1 and W2, respectively.
Assuming that r1 is reached before rp, then

w1 = ECT1 + Er1E
{
(um,a(rp)− τa)Z

ηa(T1, ω) exp(−βT2)
}

and

w2 = ECT1 + Er1E
{ ∫ T2

0

Rηa(T1 + s, ω) exp(−βs)ds

+ (um,a(rp)− τa)Z
ηa(T1 + T2, ω) exp(−βT2))

}
where CT1 is defined in (12). We have that W1 = W2 are identical except if r1 is reached.
Since r1 is reached before rp happens with probability Pr1 , the difference is

w2 − w1 = Pr1Er1E
{ ∫ T2

0

Rηa(T1 + s, ω) exp(−βs)ds

− (um,a(rp)− τa)(Z
ηa(T1, ω)− Zηa(T1 + T2, ω) exp(−βT2))

}
= Pr1Er1E

{ ∫ T2

0

Rηa(T1 + s, ω) exp(−βs)ds

− (β − µa,z)(um,a(rp)− τa)

∫ T2

0

Zηa(T1 + s, ω) exp(−βs)ds
}

= Pr1Er1

(E{
∫ T2

0
Rηa(T1 + s, ω) exp(−βs)ds}

E{
∫ T2

0
Zηa(T1 + s, ω) exp(−βs)ds}

− (β − µa,z)(um,a(rp)− τa)
)

× E{
∫ T2

0

Zηa(T1 + s, ω) exp(−βs)ds}.

Lemma 9.2 is used in the second equality. Define the limit of the discounted real renego-
tiation payment when the lower threshold is slightly reduced by

La(r1, rp) = lim
r2→r1−

E{
∫ T2

0
Zηa(T1 + s, ω) exp(−βs)ds}

r2 − r1

.

Due to the Markov property and property F , the nominator is monotone and hence the
limit is well-defined. Letting r2 → r1, we have

∂w1

∂r1

= −Pr1Er1(va(r1, rp)− (β − µa,z)(um,a(rp)− τa))La(r1, rp)

where va is defined by (A). Hence, ∂w1

∂r1
= 0 when

(16) va(r1, rp) = (β − µa,z)(um,a(rp)− τa).
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According to Theorem 3.1 and Lemma 9.1, um,a(rp) and va(r1, rp) are continuous and
va(r1, rp) is increasing in r1. Consider the function w1(r1, rp) with rp fixed. Then w1(r1, rp)
reaches its maximum with respect to r1 either for r1 = 0 or for a value r1 > 0 when
∂w1(r1,rp)

∂r1
= 0. Since va(r1, rp) is increasing in r1, then ∂w1

∂r1
changes sign when (16) is

satisfied. Hence, the maximum is unique. Since the periods between contract renegotiations
are independent then the value r1 that maximizes w1 also maximizes ua(ra, rp). Hence,
there is a unique value ra = ma(rp) that maximizes ua(ra, rp).

The corresponding argument may be applied for up(ra, rp). However, since rp varies in an
unbounded interval we should consider up as a function of 1/rp instead of rp when applying
the argument. This is possible since up(ra, rp) is well-defined as rp approaches ∞.

(iii) Above it is proved that the optimal value ma(rp) satisfies equation

va(ma(rp), rp) = (β − µa,z)(ua(ma(rp), rp)− τa).

Differentiating both sides with respect to rp gives

∂va

∂ra

dma

drp

+
∂va

∂rp

= (β − µa,z)(
∂ua

∂ra

dma

drp

+
∂ua

∂rp

).

Since
∂va

∂rp

< (β − µa,z)
∂ua

∂rp

from Lemma 9.1 and ∂ua/∂ra = 0 since ma(rp) is the optimal value of ra, this implies that

∂va

∂ra

dma

drp

> 0.

Since ∂va/∂ra > 0, then also dma/drp > 0, i.e., ma(rp) is a strictly increasing function.
The proof that mp(ra) is strictly increasing is similar.

(iv) Equation (5) may be used in order to prove that ma(rp) decreases when τa increases,
assuming ma(rp) > 0. The function ua(ra, rp) has an optimal value for ra = ma(rp) >
0. Since ua is differentiable, then there exists a ε > 0 such that ∂ua

∂ra
(ra, rp) > 0 for

ma(rp) − ε < ra < ma(rp) and ∂ua

∂ra
(ra, rp) < 0 for ma(rp) < ra < ma(rp) + ε. If τa is

increased, then ∂ua

∂ra
is decreased which implies a reduction in the ra value where ∂ua

∂ra
= 0.

This implies that increasing the renegotiation fee reduces the optimal threshold value
ma(rp). Correspondingly, it is proved that mp(ra) strictly increases when τp increases
assuming mp(ra) > 0.

(v) Since um,ν and vν are continuous, we infer that the functions ma(rp) : (1,∞] → [0, 1)
and mp(ra) : [0, 1) → (1,∞] are continuous. In the infinite rectangle defined by 0 ≤ ra < 1
and rp > 1, ma(rp) gives a continuous path between the lines defined by rp = 0 and rp = ∞.
Similarly, mp(ra) gives a path in the same rectangle between the lines defined by ra = 0
and ra = 1. Hence, these two curves must intersect at least once, giving an equilibrium
point. �

Proof of Theorem 5.1. The existence of at least one equilibrium point (re
a, r

e
p) is proved

similarly as in Theorem 4.1 where it is assumed that the price ZQ is continuous, i.e., the
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equilibrium point is the intersection between ma(rp) and mp(ra). But in this case, these
curves are not necessarily continuous which implies that there might not be an intersection.
Define the graphs Ma and Mp consisting of curves ma(rp) and mp(ra) and in addition,
where there are discontinuities in the curves, make the graph continuous by connecting the
discontinuities by straight lines with constant rp and ra, respectively. (See Figure 7.) Since
the graphs are continuous, they must intersect. If the intersection is on the straight lines,
then randomization is necessary as illustrated in Section 5. Assume mp(ra) intersects a
straight line in Ma connecting the two points (r1, r

e
p) and (r2, r

e
p). Then mp(r1) and mp(r2)

give values of rp on opposite site of re
p. We may then define a one parameter family of

strategies sa where the probability for choosing r1 varies in the interval 0 ≤ q ≤ 1. Since
mp(r1) and mp(r2) gives values of rp on opposite site of re

p, then also the endpoints mc
p(sa)

when sa varies in the one-parameter family gives values on the opposite side of re
p. The

continuity of mc
p(sa) ensures that there is a strategy se

a that randomize ra between r1 and
r2 such that mc

p(s
e
a) = rp. There is a corresponding argument if ma(rp) intersects a straight

line in Mp.
The continuity of mc

a(sp) and mc
p(sa) implies that it is not necessary that both agent and

principal randomize at the same time. If Ma and Mp intersect with two straight lines, then
there may be two Nash equilibriums defined by using mc

a(sp) and mc
p(sa), respectively. �

Proof of Theorem 7.1. Set ra = rn
0 . That R/Z reaches ra is the same as the ratio is

decreasing n times with a factor r0. The changes in the ratio in different intervals are
independent of each other. Hence

hν(ra,∞) = hn
ν (r0,∞) = (h1/ ln r0

ν (r0,∞))ln ra = (exp bν)
ln ra = rbν

a

where it is used that n = ln ra/ ln r0 and bp defined by (9). It is easily argued that bν is
independent of r0. One may use that if ra = rn0

0 = rn1
1 , then both r0 and r1 give same

value for bν . Define the discounted flow payoff at the first contract renegotiation

gν(ra) = E{Q−ην (T (ra,∞, ω), ω) exp(−βT (ra,∞, ω))}.
Since

Q−ην (T (ra,∞, ω), ω) = Rην (T (ra,∞, ω), ω) = rην
a Zην (T (ra,∞, ω), ω),

we have that gν(ra) = rην
a hν(ra,∞) = rην+bν

a . The method used when finding an expression
for hν , may also be used for fν .

fν(ra,∞) =
n−1∑
i=0

fν(r0,∞)gi
ν(r0) = fν(r0,∞)

n−1∑
i=0

gi
ν(r0)

=
fν(r0,∞)(1− gn

ν (r0))

1− gν(r0)
= dν(1− rην+bν

a )

where dν is defined by (10). It is easily argued that dν is independent of r0. Combining
these formulas and equation (4) gives

uν(ra,∞) =
dν(1− rην+bν

a )− τνr
bν
a

1− rbν
a

.
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The object function (8) is an analytic expression that obtain its maximum value for
0 ≤ ra < 1. The optimal action for the agent is to choose ra = 0 or equal to the value that
makes the derivative vanish. The derivative is

dua(ra,∞)

dra

=
1

(1− rba
a )2

(
daηar

2ba+ηa−1
a − da(ηa + ba)r

ηa+ba−1
a + ba(da − τa)r

ba−1
a

)
=

dar
b−1
a

(1− rba
a )2

F (ra)

where F is defined in (11). Note that dF/dra and dua/dra have the same sign. We have that
ba, da > 0 and that rba

a < 1 due to property F . Further, we have that (ηa+ba)r
ηa
a > ηar

ηa+ba
a

and hence F (ra) is monotone decreasing in (0, 1).
If τa ≥ da, then F (0) < 0, which implies that ra = re

a = 0 is the unique optimal value.
If τa < da, then F (0) > 0. Since F (1) < 0, and F is monotone decreasing, then there is an
optimal value ra = re

a > 0 where F (re
a) = 0.

(iii) When τa/da increases, then F (0) decreases but dF/dra is not changed. This implies
that ra decreases in τa/da. �

Proof of Lemma 9.1. Assume R(T1, ω)/Z(T1, ω) = r1. Define T3(c, rp/r1) as the first time
after T1 where either R(T1 +T3, ω)/Z(T1 +T3, ω) = cr1 or R(T1 +T3, ω)/Z(T1 +T3, ω) = rp

for a constant 0 < c < 1. Define

vc
a(r1, rp) =

E{
∫ T3

0
Rηa(T1 + s, ω) exp(−βs)ds}

E{
∫ T3

0
Zηa(T1 + s, ω) exp(−βs)ds}

,

i.e., limc→1− vc
a(r1, rp) = va(r1, rp). Let r2 < cr1 and consider the function vc

a(r2, rp).
Assume R(T2, ω)/Z(T2, ω) = r2 and define T4(c, rp/r2) as the first time after T2 where
either R(T2 + T4, ω)/Z(T2 + T4, ω) = cr2 or R(T2 + T4, ω)/Z(T2 + T4, ω) = rp. The interval
(T2, T2+T4) may consist of several intervals (t1i , t

2
i ), i.e., T2 < t1i < t2i ≤ T2+T4 that satisfies

the properties of a (T1, T1+T3) interval, i.e., R(t1i , ω)/Z(t1i , ω) = r1, cr1 < R(s, ω)/Z(s, ω) <
rp for t1i < s < t2i and R(t2i , ω)/Z(t2i , ω) = cr1 or R(t2i , ω)/Z(t2i , ω) = rp. Let Ω1 = ∪i(t

1
i , t

2
i )

and Ω2 = (T2, T2 + T4) \ Ω1. Then

vc
a(r2, rp)

=
E{

∫
Ω1

Rηa(T1 + s, ω) exp(−βs)ds}+ E{
∫

Ω2
Rηa(T1 + s, ω) exp(−βs)ds}

E{
∫

Ω1
Zηa(T1 + s, ω) exp(−βs)ds}+ E{

∫
Ω2

Zηa(T1 + s, ω) exp(−βs)ds}
.

We have that

vc
a(r1, rp) =

E{
∫

Ω1
Rηa(T1 + s, ω) exp(−βs)ds}

E{
∫

Ω1
Zηa(T1 + s, ω) exp(−βs)ds}

,
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since each interval (t1i , t
2
i ) has the same properties as (T1, T1 + T3). Furthermore, we have

that

E{
∫

Ω2

Rηa(T1 + s, ω) exp(−βs)ds} = γcE{
∫

Ω2

Zηa(T1 + s, ω) exp(−βs)ds}

for a value (cr2)
ηa < γc < rηa

1 since γc is a weighted average of Rηa(T1 + s, ω) divided by
the weighted average of Zηa(T1 + s, ω) where the ratio R/Z is varying in the same interval
for each ω and pointwise in the integral. This implies that

vc
a(r2, rp) =

[
vc

a(r1, rp)E{
∫

Ω1

Zηa(T1 + s, ω) exp(−βs)ds}

+ γcE{
∫

Ω2

Zηa(T1 + s, ω) exp(−βs)ds}
]

×
[
E{

∫
Ω1

Zηa(T1 + s, ω) exp(−βs)ds}

+ E{
∫

Ω2

Zηa(T1 + s, ω) exp(−βs)ds}
]−1

= (1− d)vc
a(r1, rp) + dγc,

for 0 < d < 1. Note that γc < rηa

1 and d > 0 also when c → 0 since Ω2 cannot be empty
due to the first interval 0 < s < t11 where cr2 < R(T1 +s, ω)/Z(T1 +s, ω) < r1. This implies
that vc

a(r2, rp) < vc
a(r1, rp). Since limc→1− vc

a(r1, rp) = va(r1, rp), then va(r1, rp) is increasing
in r1. The function va(r1, rp) is increasing and continuous in rp since this makes it possible
with high R(t, ω)/Z(t, ω) values and the probability for reaching rp changes continuously.
From the definition of va we have that cva(r1, rp) = va(cr1, crp). This implies that va(r1, rp)
also is continuous in r1. The function vp(ra, rp) has similar properties. This function is
decreasing in both arguments since ηp < 0.

The proof that

∂va

∂rp

< (β − µa,z)
∂ua

∂rp

is quite similar to the above argument. Assume R(T5, ω)/Z(T5, ω) = r1/c where 0 < c < 1.
Define T6(c, rp/(cr1)) as the first time after T5 where either R(T5+T6, ω)/Z(T5+T6, ω) = r1

or R(T5 +T6, ω)/Z(T5 +T6, ω) = rp. Consider vc
a(r1/c, rp) and compare this with ua(r1, rp)

where R(s, ω)/Z(s, ω) starts at 1 and ends at either r1 or rp. Define T7 > 0 as the first
time R(T5 + T7, ω)/Z(T5 + T7, ω) = 1, if this value is obtained. Define Ω1 = (T7, T6) and
Ω2 = (T5, T6) \ Ω1. Note that Ω1 may be empty. Then

vc
a(r1/c, rp)

=
E{

∫
Ω1

Rηa(T5 + s, ω) exp(−βs)ds}+ E{
∫

Ω2
Rηa(T5 + s, ω) exp(−βs)ds}

E{
∫

Ω1
Zηa(T5 + s, ω) exp(−βs)ds}+ E{

∫
Ω2

Zηa(T5 + s, ω) exp(−βs)ds}
.
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Using (4) assuming for a moment that τa = 0 and using Lemma 9.2 gives

(β − µa,z)
fa

1− ha

=
E{

∫
Ω1

Rηa(T5 + s, ω) exp(−βs)ds}
E{

∫
Ω1

Zηa(T5 + s, ω) exp(−βs)ds}
,

since the interval (T7, T6) has the same properties as in the variation of ua. Furthermore,
we have that

E{
∫

Ω2

Rηa(T5 + s, ω) exp(−βs)ds} = γcE{
∫

Ω2

Zηa(T5 + s, ω) exp(−βs)ds}

for a value rηa

2 < γc < 1 by the same argument as above since in this case r2 < R/Z < 1.
This implies that

vc
a(r2, rp) =

[
(β − µa,z)

fa

1− ha

E{
∫

Ω1

Zηa(T5 + s, ω) exp(−βs)ds}

+ γcE{
∫

Ω2

Zηa(T5 + s, ω) exp(−βs)ds}
]

×
[
E{

∫
Ω1

Zηa(T5 + s, ω) exp(−βs)ds}

+ E{
∫

Ω2

Zηa(T5 + s, ω) exp(−βs)ds}
]−1

= (1− d)(β − µa,z)
fa

1− ha

+ dγc,

for 0 < d < 1. Note that γc is independent of rp and d > 0 since Ω2 cannot be empty due
to the first interval 0 < s < T7. Since limc→1− vc

a(r1/c, rp) = va(r1, rp) and ∂ha/∂rp < 0,
we have

∂va

∂rp

< (β − µa,z)
∂

∂rp

( fa

1− ha

)
< (β − µa,z)

∂

∂rp

(fa − τa

1− ha

)
= (β − µa,z)

∂ua

∂rp

.

Correspondingly, it is proved that

∂vp

∂ra

> (β − ηpαz)
∂up

∂ra

.

Note that since ηp < 0 both expressions above are negative. �

Proof of Lemma 9.2. Let ti = it/n and Z(0, ω) = 1. Then

E{1−Zην (t, ω) exp(−βt)}

= E{
n∑

i=0

(
Zην (ti, ω) exp(−βti)− Zην (ti+1, ω) exp(−βti+1)

)
}

= E{
n∑

i=0

Zην (ti, ω) exp(−βti)(1−
Zην (ti+1, ω)

Zην (ti, ω)
exp(−β(ti+1 − ti))}
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=
1

t1
E{1− Zην (t1, ω) exp(−βt1)}E{

n∑
i=0

Zην (ti, ω) exp(−βti)t1}.

We have that

lim
t→0

E{1− Zην (t, ω) exp(−βt)

t
} = lim

t→0

1− E{Zην (t, ω)} exp(−βt)

t

= lim
t→0

1− exp(t(µν,z − β))

t
= β − µν,z

and

lim
n→∞

E{
n∑

i=0

Zην (ti, ω) exp(−βti)t1} = E{
∫ t

0

Zην (s, ω) exp(−βs)ds}.

Combining these three calculations proves the lemma. �

Appendix A. Approximate formulas

Given the weak assumptions we impose on the stochastic processes, explicit formulas are
difficult to obtain. However, we can derive some approximate formulas that may provide
useful intuition for how the model works, and to get some sense of the numerical magnitudes
that are involved.

We will first explore the effect on the payoff of a player from a marginal reduction in his
threshold. Let the principal and agent have threshold rp and r1 respectively, and consider
the situation at T1 when R(T1, ω)/Z(T1, ω) = r1. If the agent sticks to the threshold r1,
there will be an immediate renegotiation at T1. In contrast, if the agent adopts a new
threshold r2 < r1, there will be a renegotiation at T2, where T2 denotes the first time after
T1 where either the real contract payment relative to the real renegotiation payment has
decreased by a factor r2/r1, or increased by a factor rp/r1. Formally

T2 = inf{s > 0 | R(T1 + s, ω)/Z(T1 + s, ω) 6∈ (r2, rp)}.

Considering the payoffs associated with r2, when we let r2 converge towards r1 from below,
we obtain the effect of a marginal reduction in r1. The limit of the average ratio of the
real contract payment to the real renegotiation payment, is then

va(r1, rp) = lim
r2→r1−

E{
∫ T2

0
Rηa(T1 + s, ω) exp(−βs)ds}

E{
∫ T2

0
Zηa(T1 + s, ω) exp(−βs)ds}

.

Define vp(ra, r1) correspondingly.
Assume there is a Gaussian component in either Z or Q, i.e., that either az > 0 or aq > 0.

Then a well-known property of Gaussian processes implies that when r1 is reached, the
probability of reaching rp before r2 vanishes when r2 → r1− and that

(17) lim
r2→r1−

E{T2(r2/r1, rp/r1, ω)} = 0.
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Equation (17) implies that

(18) va(r1, rp) ≈ rηa

1

and quite insensitive with respect to variation of rp. We do not have equality in the limit
when r2 → r1, since with probability zero, the time T2(r2/r1, rp/r1, ω) is positive and
in this time period we have that R(s, ω)/Z(s, ω) > r2 and R(s, ω)/Z(s, ω) may reach rp

before r2. In the approximation we neglect the possibility that T2 does not vanish in the
limit. The more volatile the ratio R(t, ω)/Z(t, ω) is, and the closer r1 and rp are to 1, the
more va(r1, rp) is sensitive with respect to variation of rp. By a similar argument, we have
vp(ra, rp) ≈ r

ηp
p . The function vp(ra, rp) is decreasing in rp since ηp < 0.

In the proof of Theorem 4.1, equation (16), it is shown that the optimal threshold satisfies

(19) va(ma(rp), rp) = (β − µa,z)(ua(ma(rp), rp)− τa)

if ua(ma(rp), rp) > τa. Correspondingly, if up(ra, mp(ra)) > τp, then

vp(ra, mp(ra)) = (β − µp,z)(up(ra, mp(ra))− τp).

Lemma 9.2 gives an interpretation of the coefficient on the right-hand side.
When combining (18) and (19) we get the approximations

ua(ma(rp), rp) ≈
1

β − µa,z

mηa
a (rp) + τa,(20)

up(ra, mp(ra)) ≈
1

β − µp,z

mηp
p (ra) + τp.(21)

It is assumed that the optimal thresholds satisfy ra > 0 and rp < ∞. Comparing with
the numerical simulations in Section 4, these approximations underestimate ua and up by
about 2 percent. The approximation is better the smaller the volatility.

To obtain more intuition for the expression, consider the case with time invariant rene-
gotiation payment, Z = 1, implying that µν,z = 0. If in addition, ηa = 1 and ηp = −1,
then (20) and (21) read ua ≈ ra/β + τa and up ≈ 1/(rpβ) + τp, which can be rearranged to
ra ≈ (ua − τa)β and 1/rp ≈ (up − τp)β.

The following heuristic argument explains these expressions: By renegotiating the con-
tract, a player incurs the renegotiation fee, and then obtains the expected utility after a
renegotiation, uν . Multiplying by the discount rate β, we obtain the equivalent flow pay-
off. A player should demand a renegotiation when the real contract payment equals the
flow payoff from requiring a renegotiation, i.e., the critical thresholds are given by these
formulas.

These approximations imply that the volatility only influences the thresholds through
the expected objective functions uν. These relations may be useful in order to find the
optimal thresholds.
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