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Abstract

This paper addresses the estimation of a semiparametric sample selection index
model where both the selection rule and the outcome variable are binary. Since the
marginal e¤ects are often of primary interest and are di¢ cult to recover in a semipara-
metric setting, we develop estimators for both the marginal e¤ects and the underlying
model parameters. The marginal e¤ect estimator only uses observations which are
members of a high probability set in which the selection problem is not present. A key
innovation is that this high probability set is data dependent. The model parameter
estimator is a quasi-likelihood estimator based on regular kernels with bias corrections.
We establish their large sample properties and provide simulation evidence con�rming
that these estimators perform well in �nite samples.

1 Introduction

Despite the substantial literature extending the sample selection model of Heckman (1974,

1979) there is no detailed semiparametric treatment of the model in which both the outcome

variable and the selection rule are binary.1 This represents a signi�cant void as important

empirical examples exist in many areas of micro economics. In the fully parametric setting

both the model parameters and the marginal e¤ects, the objects which are generally of

primary interest, are easily obtainable. Less is known for the semiparametric index model

considered here. In fact the literature does not address estimation of marginal e¤ects in such

a model. Even the index parameter estimator has not been developed explicitly, though

it would be possible to develop such an estimator within various frameworks (see, e.g.

Gallant and Nychka (1987), Klein and Spady (1993), Ichimura and Lee (1991), Lee (1995),

and Klein and Vella (2009)). Issues related to the identi�cation of the model we consider

are explicitly treated in Newey (2007) although that paper does not address estimation.

In a related literature Chesher (2005), Vytlacil and Yildiz (2007), and Shaikh and Vytlacil

1For a survey see Vella (1998).
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(2011) discuss identi�cation of the marginal impact of a discrete endogenous variable, but

do not consider the case of sample selection.

This paper develops semiparametric estimators for both the index parameters and the

marginal e¤ects. We make no distributional assumptions and allow a model structure more

general than threshold-crossing. Our primary focus is upon the marginal e¤ects as they

have not been addressed in this setting. In the fully parametric case the marginal e¤ects

can be retrieved as known functions of the parameter estimates. In the semiparametric case,

these e¤ects cannot be directly derived from parameter estimates because the error distri-

butions are unknown. Moreover, the relevant distribution is di¢ cult to estimate because

the outcome equation is only observed for the selected sample. We propose to estimate the

relevant distribution by focusing on those observations in an estimated high probability set

where the selection probability tends to one. The framework of this approach is developed

in Heckman (1990) and Andrews and Schafgans (1998) for a known high probability set.

This set depends on the tail behavior of index and error distributions. Therefore, in prac-

tice it is important to study the empirical tail behavior so as to �nd the appropriate high

probability set. In this paper we characterize the high probability set as one where the

probability exceeds a cuto¤ that approaches one as the sample size increases. We propose

and establish the theoretical properties for an estimator of this cuto¤ that depends on em-

pirical tail behavior. Based on the estimated high probability set, we formulate a marginal

e¤ect estimator and provide the theory for it which takes the estimation of this set into

account. In monte-carlo simulations, we �nd that the estimator performs very well in �nite

samples.

For our semiparametric model, estimation of the marginal e¤ects requires estimates of

the index parameters and we propose a likelihood-based procedure employing a double index

formulation. The resulting estimator employs bias adjustment mechanisms similar to those

developed for single index regression models in Klein and Shen (2010). Employing these

likelihood-based bias adjustments we show that our estimator based on regular kernels has

both desirable theoretical properties and good �nite sample performance.2

Section 2 describes the model while Section 3 discusses estimators for the marginal

e¤ects and the index parameters. Section 4 provides the assumptions and the details of the

estimators. Section 5 provides simulation evidence and concluding comments are o¤ered in

Section 6. The Appendix contains all proofs.

2There are other alternative methods that control for the bias under regular kernels. For example,
Powell and Honore (2005) employ a jackknife approach where the �nal estimator is a linear combination of
estimators using di¤erent windows.
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2 Model

The model is a semiparametric variant on the Heckman (1974, 1979) selection model where

the outcome of interest is binary. More explicitly:

Y1i = Y2i � I fg(X�0; �i) > 0g (1)

Y2i = I fh(Z�0) + ui > 0g ; (2)

where Y1i is only observed for the subsample for which Y2i = 1: Here If:g is an indicator
function; X and Z are vectors of exogenous variables; �i and ui are error terms with a non-

zero correlation; g(:) and h(:) are unknown functions with h(:) being increasing; and �0 and

�0 are unknown parameter values. When the model is additive, and the joint distribution of

the errors is parametrically known, it can be estimated by maximum likelihood. However,

without separability or known error distributions, the existing available estimators do not

apply. Our proposed estimator for index parameters also applies to the case where Y2
does not have a threshold-crossing structure. However, for the marginal e¤ect estimator,

the theory in this paper requires that the outcome equation (Y2) has a threshold-crossing

structure. Without loss of generality, we simplify the Y2-model by replacing h with the

identity function for notational purposes.

As in most semiparametric models the parameters are identi�ed up to location and scale.

Writing

X�0 = b1(X1i +X2i�10) + c1 � b1V10 + c1

Z�0 = b2(Z1i + Z2i�20) + c2 � b2V20 + c2;

the �00s are identi�ed, while the b0s and c0s are not identi�ed. We refer to V10 and V20 as
indices and assume that the model satis�es index restrictions:

Pr (Y1i = d1; Y2i = d2jXi) = Pr (Y1i = d1; Y2i = d2jV1i; V2i) (3)

Pr (Y2i = d2jXi) = Pr (Y2i = d2jV2i) . (4)

We impose this index structure, as opposed to a non-parametric one, to improve the

performance of the estimators.

3



3 Estimation

3.1 Marginal E¤ects

Our marginal e¤ect of interest is the change in Pr (Y1 = 1jV1) as V1 responds to a change in
one of the explanatory X-variables. To motivate this marginal e¤ect, let Y2 denote whether

or not an individual decides to be screened for a particular illness and let Y1 denote whether

or not an individual has that disease. For simplicity, assume that the screen is completely

accurate and necessary for diagnosis. We would like to know how a change in one of the

X-variables a¤ects the probability of having the disease for the entire population and not

just the subgroup that are screened. In the fully parametric case (e.g. bivariate probit with

selection) the probability of having the disease Pr (Y1 = 1jV1) is a known function, and the
corresponding marginal e¤ect of interest can be directly calculated once the parameters of

the model are estimated.

Now consider the semiparametric case where the functional form of this probability

function is not known. The probability of interest can be written as:

Pr (Y1 = 1jV1) = P (Y1 = 1jY2 = 1; V1; V2)P2
+P (Y1 = 1jY2 = 0; V1; V2) (1� P2) :

where P2 = P (Y2 = 1jV2). We can recover the �rst argument on the right hand side

semiparametrically. That is, we can estimate the probability of having the disease given that

the individual is screened and the probability that an individual elects to be screened. The

question then becomes how to recover the second part: P (Y1 = 1jY2 = 0; V1; V2) (1� P2).
In general, this probability is not estimable because we do not observe Y1 (disease) when

Y2 = 0 (no screening). However, if P2 = 1 this second term disappears and we can estimate

the marginal e¤ect of interest based only on the �rst term. In an approach related to

that in Heckman (1990) and Andrews and Schafgans (1998, hereafter referred to as A&S),

we estimate the marginal e¤ect by only using those observations for which P2 > 1 �N�a,

where a > 0 de�nes the high probability set of interest. The probability of being in this high

probability set is given by Ph = Pr(V2 > F�1 (1�N�a)) = 1�G
�
F�1 (1�N�a)

�
, where

F and G are the distribution functions for the selection error and index respectively. For

example, when the index has a Weibull distributionG = 1�exp(�v2), and the error follows a
Weibull distribution with thinner tail F = 1�exp(�uc); c > 1; Ph = exp(� [�Ln(N�a)]

1=c
):

As the error tails become thinner (c increases), Ph increases. This example demonstrates

that the appropriate value for a depends on the thickness of index tails relative to that for

the error. As these tails are unknown, we employ and establish asymptotic results for a

data-dependent value for a.
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To describe our estimation strategy, we introduce �0 (�v) � Pr(Y1 = 1jV1 = �v; ) and write
the true marginal e¤ect as:

ME = �0 (ve)� �0(vb);

where vb refers to a base or initial level of the index and ve refers to an index evaluated at

a new level for the explanatory variable of interest. Then, with �v referring to either ve or

vb :

�̂ (�v) � f̂M=ĝM ;

where with S as a smoothed indicator of the form in A&S that is one on a high probability

set (and also controls for small density denominators):

f̂M �
X
j

1

Nh
Y1jY2jK [(�v � V1j) =h]Sj

ĝM �
X
j

1

Nh
Y2jK [(�v � V1j) =h]Sj :

To motivate this estimator, notice that in a threshold-crossing model context, �(�) is the
distribution function for ". Beginning with f̂M , it converges to its expectation given as:

E
�
f̂M

�
= E

�
Pr(Y1 = 1jY2 = 1; V1; V2) Pr(Y2 = 1j; V2)

1

h
K [(�v � V1j) =h]Sj

�
' E

�
� (V1)

1

h
K [(�v � V1j) =h]Sj

�
' � (�v)

�
g
�
�V1
�
E [SjV1 = �v]

�
:

It can be shown that ĝM also converges to its expectation, which is approximately g (�v)E [SjV1 = �v] ;
on a high probability set. The ratio then converges to �(�v).

3.2 Index Parameters

While our proposed marginal e¤ect estimator is the primary focus, it depends on estimated

index parameters. These are obtained by maximizing a quasi or estimated likelihood:

�̂ � argmax
�

L̂ (�) ;

L̂ (�) �
NX
i=1

� i
X
d1;d2

Yi(d1; d2)Ln
�
P̂i (d1; d2; �)

�
;

where

Yi(d1; d2) =

(
IfY1i = d1; Y2i = d2g for d2 = 1

IfY2i = d2g for d2 = 0
;
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and

P̂i (d1; d2; �) � P̂ (Yi(d1; d2) = 1jVi (�) = vi (�))

Here Vi (�) � (V1i (�) ; V2i (�)); and � i is a trimming function de�ned below to control for

small density denominators.

The properties of the estimates depend on how the probabilities entering the likelihood

function are estimated. We employ adjusted probabilities with regular kernels (D8) and

several bias-reducing mechanisms in (D10-11) to ensure that the estimator has desirable

large sample properties and also performs well in �nite samples. We discuss the details of

these features when we present asymptotic results below.

To motivate these mechanisms we show below that the gradient to the quasi-likelihood is

a product of terms, one of which is the derivative of the probability function,r�P̂i(d1; d2; �0);
noting that �0 denotes the true value. Subject to some issues that we address below, the

key to our bias reduction mechanisms is the result due to Whitney Newey (see Klein and

Shen (2010) for a statement of Newey�s result) that:

E (r�Pi(d1; d2; �0) j Vi (�0)) = 0:

4 Assumptions and De�nitions

We now provide the assumptions and de�nitions that we employ to establish the asymptotic

properties for the estimators.

A1. The Data. The observations are i.i.d. from the model in (1)-(2). The matrices X

and Z have full rank with probability 1.

A2. Parameter Space. The vector of true parameter values (�10; �20) lies in the interior
of a compact parameter space, �:

A3. Model. The indices V1 and V2 each contains a continuous exogenous variable.

Further, V2 contains at least one continuous variable, which is excluded from V1. The

model satis�es index restrictions as in (3) and (4).

A4. Densities. Let g(v1; v2jY1; Y2) be the conditional density for the indices. Letting
rpg be any of the partials or cross partials of g up to order p, with r0g = g, assume

g > 0 on all �xed compact subsets of the support for the indices, and rpg, @
@� (r

pg),

and @2

@�@� (r
pg) are bounded for p = 0; 1; 2; 3; 4:

A5. Let F be the distribution for the selection error, G the distribution function for the

selection index, and Gc be the conditional distribution of v2jV1 = �v: For all t > T ,

assume that 1�G(t) > 1� F (t) and 1�Gc(t) > 1� F (t).
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A6. Let g (v2) be the marginal density for V2 and g(v2j�v) the density for V2 conditioned
on V1 = �v: For all t > T assume that O (g (t)) � O (g(tj�v)) :

A7. Assume P (Y1jY2; V1 = v1; V2 = v2) and g(v1; v2) have up to four bounded derivatives

with respect to v1 at �v:

The �rst three assumptions are standard in index models. Assumption A4 provides

required smoothness conditions for determining the order of the bias for density estimators.

Similar to A&S, assumption A5 is needed to develop the large sample distribution for the

estimator of marginal e¤ects in the outcome equation. As is well known in the literature

(see e.g. Kahn and Tamer (2010)) support conditions are needed for the consistency of

these types of estimators. Assumptions A6-7 are used in Lemma 3 to derive the order of the

bias in estimating marginal e¤ect components. In addition to the above assumptions, we

also need a number of de�nitions for densities, probability functions and estimators. The

next section discusses how these de�nitions relate to the asymptotic results. One of these

de�nitions (D4) provides moment conditions for selecting the high probability set.

D1. Unadjusted Probabilities. Let K(�) be a density symmetric about zero, �k be the
standard deviation for Vk; k = 1; 2, and � be a small positive value. For the Y2�model,
let:

P̂ (Y2i = d2jV2i = t2) � f̂2 (t2; d2) =
1X

d2=0

f̂2 (t2; d2) ;

f̂2 (t2; d2) �
NX
j=1

Y d22j (1� Y2j)1�d2

Nhm
K

�
t2 � V2j
hm

�
:

where hm � �2N
�rm ; rm =

1
6+� :

For the Y1-model, conditioned on Y2 = 1, let:

P̂ (Y1i = d1jY2i = 1; Vi = t) � f̂ (t; d1) =

1X
d1=0

f̂ (t; d1)

f̂ (t; d1) �
NX
j=1

Y d11j (1� Y1j)1�d1Y2j
Nhc1hc2

K(
t1 � V1j
hc1

)K(
t2 � V2j
hc2

)

where hc1 � �1hc; hc2 � �2hc; hc � N�rc ; rc =
1
8+� :

When the conditioning value tk, is replaced by the observation Vik; the above averages

are taken over the (N � 1) observations for which j 6= i:3

3 It can easily be shown that all estimators with windows depending on population standard deviations
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D2. Smooth Trimming. De�ne a smooth trimming function as:

� (z;m) � [1 + exp (Ln(N) [z �m])]�1 :

As we employ an index estimator that is
p
N -convergent, which is faster than the rate

at which the estimated marginal e¤ect converges, it can be shown that estimated index

parameters can be taken as known. Accordingly, in the next three de�nitions related to

marginal e¤ects all quantities are de�ned in terms of known indices for expositional

purposes.

D3. The S-function. With b > 0, k a large integer, the S-function (adapted from A&S)

is given as:

S(x) =

8><>:
0; R1 : x � 0

1� exp �xk
bk�xk ; R2 : 0 < x < b

1; R3 : x � b:

With � as an indicator restricting the density for V2 to be above O(N��) where � is a

small positive number4,

x � �

�
Ln

�
1

1� P

�
� Ln (Na)

�
:

With P̂ as an estimator for P � Pr(Y2 = 1jV2), let Ŝ = S(x(â; P̂ )) � S(â; P̂ ); and

S0 = S(x(a0; P )) � S(a0; P ):

D4. True and estimated high probability parameters a0 and â. With K2 a normal

twicing kernel (Newey et al. (2004)), h2 = O(N�:1);

Ê2

�
Ŝ
�

� 1

N

X
j

S(â; P̂aj) � Ê2

�
S(â; P̂aj)

�

Ê2

�
Ŝ�j�v

�
�

P
j S

�(â; P̂aj)K2 [(�v � V1j) =h2]P
jK2 [(�v � V1j) =h2]

� Ê2

�
S�(â; P̂aj)

�
where P̂aj �

X
j

Y2jK2 [(�v � V1j) =h2] =
X
j

K2 [(�v � V1j) =h2] :

are asymptotically the same as those based on sample standard deviations. For notational simplicity, we
employ population standard deviations throughout.

4 It can be shown that trimming based on a density estimator is asymptotically equivalent to trimming
on the true density.
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Then

a0 = argmin
a�A

"
[E (S0)]

2

E(S20 j�v)
�N2(a0�:4)+"��

#2

â = argmin
a�A

264
h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� �N2(â�:4)+"��

375
2

;

A =
�
a : 0 < a < :4� "��

2

	
where small positives numbers "; � satisfy " > �; [E(S)]

2

E(S2j�v) is

an increasing function of N�a for N su¢ ciently large.

The S-function in (D3) smoothly restricts observations to a high probability set where

P2 > 1 �N�a: The moment conditions in (D4) re�ect the bias/variance trade-o¤ in

estimating the marginal e¤ect. To maximize the rate at which the mean-squared error

for the marginal e¤ect estimator converges to zero, the order of the squared bias should

be the same as that for the variance. However, to establish normality, we need to send

the squared bias to zero a little faster than the variance, which is achieved by setting

� > 0 in the moment condition above. Detailed arguments are shown in Lemmas 3-4.

We note that a0 satis�es a moment condition in terms of expectations that depend on

the sample size, N . Accordingly, while a0 will not depend on the actual data, it may

not be a �xed parameter value. More speci�cally, it will depend not only on the tails

of index and error distributions but possibly also on the sample size. To illustrate the

solution to the moment condition, recall the Weibull tail example in Section 3.1 and

assume that the indices are independent and that b in (D3) is su¢ ciently small that

the middle region R2 is almost empty. Ignoring density trimming for simplicity, it can

be shown that a0 is an increasing function of N with limiting value a0 = :4� "��
2 as

N goes to in�nity. Replacing expectations with semiparametric estimators, we de�ne

the data-dependent value â to satisfy a similar moment condition.

D5. The estimator for marginal e¤ects.

�̂ (�v) �

P
j
1
NhY1jY2jK [(�v � V1j) =h]S

�
â; P̂aj

�
P
j
1
NhY2jK [(�v � V1j) =h]S

�
â; P̂aj

� ;

where K is a regular kernel with window h = O(N�:2�"); " is the small positive value

in (D4).

D6. Interior Index Trimming. Let V̂ Uk and V̂ Lk be the upper and lower sample index

quantiles for the indices: Vk � Vk (�) ; k = 1; 2. Referring to (D2), de�ne smooth

9



interior trimming functions as:

�̂ I (tk) � �
�
V̂ Lk ; tk

�
�
�
tk; V̂

U
k

�
:

D7. Density Adjustment. Referring to (D1), let q̂2 be a lower sample quantile for
f̂2 (V2; d2), and q̂ be a lower sample quantile for f̂ (V ; d1; d2). Then, de�ne adjusted

estimates as:

f̂�2 (t2; d2) = f̂2 (t2; d2) + �̂2(d2); �̂2(d2) � a2N [1� �̂ I (t2)] q̂2

f̂� (t; d1; d2) = f̂ (t; d1; d2) + �̂ (d1; d2) ; �̂ (d1; d2) � aN [1� �̂ I (t1) �̂ I (t2)] q̂;

where the window parameters are set to be a2N � N�rm=2 and aN � N�rc=2:

D8. Adjusted Semiparametric Probability Functions. Let:

P̂ � (Y2i = d2jV2i = t2) � f̂�2 (t2; d2) =
1X

d2=0

f̂�2 (t2; d2)

P̂ � (Y1i = d1jY2i = d2; Vi = t) � f̂� (t; d1; d2) =
1X

d1=0

f̂� (t; d1; d2) :

D9. Likelihood Trimming. De�ne � ix as an indicator that is equal to one if all of the
continuous X0s are between their respective lower and upper quantiles, and de�ne

� iv as an indicator that is equal to one if the index vector V0i is between its lower and

upper quantiles.

D10. First and Second Stage Estimators. We de�ne the �rst stage estimator as:

�̂ � argmax
�

L̂ (�) ;

L̂ (�) �
NX
i=1

� ix
X
d1;d2

Yi(d1; d2)Ln
�
P̂i (d1; d2; �)

�
:

Recall that � ix is a trimming function based on X while � iv is based on the index

vector.5 In the objective function above, replace P̂ with P̂ � de�ned as in (D8), replace

� ix with � iv, and term the new objective function as L̂� (�) : Then, de�ne the second

5De�ne �̂ ix and �̂ iv as estimated trimming functions based on sample quantiles of X and the estimated
index respectively. It can be shown using Lemma 2.18 in Pakes and Pollard(1989) that the estimators based
on known trimming functions are asymptotically equivalent to those based on the true ones. For expositional
simplicity, we take these trimming functions as known throughout.

10



stage estimator:

�̂
� � argmax

�
L̂� (�) :

D11. The Adjusted Estimator. Letting

P̂ �i (d1; d2; �) � P̂ � (Yi(d1; d2) = 1jVi (�) = vi (�))

�̂
�
i (d1; d2; �) � r�P̂ �i (d1; d2; �)=P̂ �i (d1; d2; �);

de�ne P̂ o (d1; d2; �) as an estimated semiparametric probability function where the

components are based on optimal window parameters: rom = 1=5 and r
o
c = 1=6: Then,

de�ne a gradient correction as:

Ĉ
�
�̂
�� � NX

i=1

� iv

�
�̂
�� X

d1;d2

h
P̂ �i

�
d1; d2; �̂

��� P̂ oi �d1; d2; �̂��i �̂�i �d1; d2; �̂�� :
With Ĥ

�
�̂
��
as the estimated hessian, the adjusted estimator is de�ned as:

�̂
o � �̂

� � Ĥ
�
�̂
���1

Ĉ
�
�̂
��
:

5 Asymptotic Results

5.1 Marginal E¤ects

We now provide the asymptotic results for the marginal e¤ect estimator. We begin with a

characterization theorem underlying consistency and normality. This result allows us to take

the estimated high probability set in (D4) as given and provides a linear characterization

of the estimator.

Theorem 1: Referring to (D5), de�ne


N (�v) �
P
j
1
Nh [Y1j � �0 (�v)]Y2jK [(�v � V1j) =h]Sj

E (SjV1 = �v) g(�v)
;

where 
N depends on true selection probabilities and a known high probability set. Then:

CN (�v)
h
�̂ (�v)� �0 (�v)

i
= CN (�v)
N (�v) + op(1)

where CN (�v) �
p
NhE(Sj�v)p
E(S2j�v)

satis�es C2N (�v) = O( 1
V ar(
N (�v))

):

The consistency and normality results now follow:

Theorem 2 (Consistency): Select the high probability set as in (D4) and assume

11



that

NhE(SjV1 = �v)!1

as N increases. Then, for the estimator de�ned in (D5):

�̂ (�v)
p! �0 (�v) :

As shown in the Appendix, this result follows from Theorem 1, because the bias and variance

of 
N (�v) both tend to zero as N increases.

Theorem 3 (Normality): Let

V̂ = dV ar(
N (ve)) + dV ar(
N (vb))
where dV ar(
N (�v)) =

�̂ (�v)
h
1� �̂ (�v)

iP
j
1
NhK

2 [(�v � V1j) =h] Ŝ2j

NhÊ22

�
Ŝj�v
�
ĝ2M

:

Then dME �MEp
V̂

d! Z~N(0; 1):

To see that this result follows from Theorem 1, we need to show that the covariance between


N (vb) and 
N (ve) tends to 0 as N increases and we need to establish the relevant Lindberg

condition. These results are established in the Appendix.

5.2 Index Parameters

To provide an overview of the theoretical arguments, we note that the consistency argu-

ment is rather standard except that we need to accommodate the bias controls used in the

normality arguments. Hence we start by giving an overview of the normality arguments.

Because indicators and probabilities sum to one over all possible cells, the gradient to

the objective function has the form:

Ĝ =
1

N

NX
i=1

X
d1;d2

"̂i (d1; d2) �̂i (d1; d2; �0) � i; (5)

where "̂i (d1; d2) � Yi (d1; d2)� P̂i (d1; d2; �0), �̂ (d1; d2; �0) � r�P̂i (d1; d2; �0) =P̂i (d1; d2; �0),
and we have taken the trimming function as known for expositional purposes. As is stan-

dard, the key part of the normality argument is to show that the normalized gradient

converges to a normal distribution.

Denoting "i (d1; d2) � Yi (d1; d2)�Pi (d1; d2; �0), � (d1; d2; �0) � r�Pi (d1; d2; �0) =Pi (d1; d2; �0),
and suppressing the (d1; d2; �0)notation for simplicity, for each cell we may write the nor-

12



malized gradient as:

1p
N

"
NX
i=1

"i�i� i +

NX
i=1

"i

�
�̂i � �i

�
� i +

NX
i=1

("̂i � "i)
�
�̂i � �i

�
� i +

NX
i=1

("̂i � "i) �i� i

#
:

We establish normality by showing that every term vanishes except the �rst.

The second term above readily vanishes from a mean-square convergence argument. For

the third term, a Cauchy-Schwartz argument would enable us to separate the individual

components and take advantage of the known convergence rate of each. However, the rates

are not fast enough; hence we employ the adjustment in (D11) to speed up the convergence

rates. It can be shown that for the adjusted estimator �̂
o
, the gradient for each cell will

have the following form:

1p
N

"
NX
i=1

"i�i� i +
NX
i=1

"i

�
�̂i � �i

�
� i +

NX
i=1

("̂oi � "i)
�
�̂i � �i

�
� i +

NX
i=1

("̂oi � "i) �i� i

#

where "̂oi (d1; d2) � Yi (d1; d2) � P̂ oi (d1; d2; �0). With P̂
o
i based on an optimal window, the

rate of convergence for "̂oi � "i is now fast enough so that the third term vanishes.

For the �nal term, we rely on a result due to Whitney Newey (see Klein and Shen

(2010), Theorem 0 for a statement of Newey�s result). Namely, that with F (Vi (�0)) �
E(Y (d1; d2)jV (�0)) :

r�Pi (d1; d2; �0) = r�F (Vi (�0))� E [r�F (Vi (�0)) jVi (�0)] :

From the above theorem, E (�ijVi) = 0: Therefore, this multiplicative gradient com-

ponent can serve as a source of bias reduction. To exploit this residual-like property of

the probability gradient, denote V0 as the matrix of observations on the indices and de�ne

H(V0) � E [("̂oi � "i) jX] : Then from an iterated expectations argument, conditioning on

X :

EE [("̂oi � "i) �i� ijX] = E [H(V0)�i� i] = E (H(V0)E [�i� ijV0] :

If the trimming function depended on the index, this gradient component would now have

zero expectation. We design a two-stage estimator where parameter estimates from the �rst

stage are used to construct the index and then index trimming is employed in the second

stage. We then show that this fourth term is equivalent to a centered U-statistic that

converges in probability to zero. To achieve consistency with index trimming, we use the

adjusted probabilities in (D7, D8) so that denominators are kept away from zero, while the

estimated probability still goes rapidly to the truth.

The remainder of this section provides the main asymptotic results in several theorems.

13



Each theorem will depend on a number of intermediate results, which we state and prove as

Lemmas in the Appendix. Theorem 4 below provides consistency and identi�cation results.

Theorem 5 provides the normality result using regular kernels throughout.

Theorem 4 (Consistency): Under (A1-4) and (D6-11):

�̂
p! �0; �̂

� p! �0; �̂
o p! �0:

In double index models it is usually necessary to impose continuous exclusion restrictions

on each index. Because we impose a single index restriction in estimating the Y2�model,
we are able to show that we do not require the exclusion restriction on V2.

Theorem 5 (Normality): With L (�) as the limiting likelihood of L̂� (�) de�ned in
(D10) and with H as its hessian matrix, de�ne H0 � EH (�0) : Then, with �̂

o
as the

estimator de�ned in (D11) and under (A1-4) and (D6-11):

p
N
h
�̂
o � �0

i
d! Z~N(0;�H�1

0 ):

6 Simulation Evidence

We now consider the �nite sample performance of the estimator in four di¤erent models.

These di¤er according to: i) whether or not the model is threshold-crossing; and ii) whether

or not the errors are normal. The �rst two models we consider have threshold-crossing

structures. The �rst model (TNorm design) has normal errors and is given as:

Y �1 = I
np

2 (X1 +X3) > "
o

Y2 = I
np
2 (X2 �X3) > v

o
;

where Y1 = Y �1 is observed when Y2 = 1: The errors and the continuous X0s (X1; X2) are
generated as:

v;X2 s N(0; 1)

" = 2v + z, z s N(0; 1)

X1 = X2 + 2z1, z1 s N(0; 1):

and re-scaled to each have variance 1, while X3 is a binary variable independent of the errors

and the continuous X0s above with probability .5 at each of its support points: -1,1. Notice
that the indices have bigger variance than the errors. For the second index, this ensures

that the index has fatter tails than the error, which is theoretically needed in estimating

the marginal e¤ect.
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In a second model (TWeibull design), the selection error is non-normal while the model

structure stays the same. The error v follows a Weibull (1,1.5) giving a right tail probability

of exp(�v1:5). We set the X2 to follow Weibull (1,1) so that the tail comparison condition is
satis�ed. As above, all the variables and errors are rescaled to have zero mean and variance

one.

In the third (NTNorm design) and fourth (NTWeibull design) models, the Y �1 equation

has a non-threshold-crossing structure:

Y �1 = I
n
X1 +X3 > s

h
1 + (X1 +X3)

2 =4
i
"
o

where the variables are generated as in the previous models. Note that s is chosen to ensure

the right-hand-side of the inequality is rescaled to have zero mean and variance one as above.

Similar to the �rst two models above, here the third and fourth models di¤er according to

whether Normal or Weibull distributions are employed.

For all models, we set N = 2000 and conduct 1000 replications. We compare the

�nite sample performance of our semiparametric marginal e¤ect estimator and the bivariate

probit with selection counterpart. We also compare the parameter estimates upon which

these marginal e¤ects are based. Finally, we also provide results for the estimation of the

high probability set. Results for the marginal e¤ects are shown in Table 1. Notice that

there are an in�nite number of marginal e¤ects because there are an in�nite number of

base levels and evaluation levels. Here we report the marginal e¤ect of moving X1 from

its median level to one unit above while keeping the binary variable X3 at zero. Overall,

the semiparametric estimator performs well with a small bias and standard deviation over

all designs. In contrast, the bivariate probit counterpart does not perform well outside of

the TNorm design where bivariate probit is correct. In the TNorm case, where bivariate

probit is the correct speci�cation, it does indeed have a small bias and standard deviation.

However, the advantage over the semiparametric marginal e¤ect is minimal. The RMSE

of bivariate probit is .06 compared with .07 from the semiparametric counterpart. In the

TWeibull case, the semiparametric method shows signi�cant advantage in terms of the bias.

The bias of the semiparametric marginal e¤ect estimator is almost zero, while the bivariate

probit counterpart has a bias of .08, which is almost 30% of the truth (.29). When we move

on to the non-threshold-crossing designs, we continue to see the semiparametric estimator

performing signi�cantly better. In the NTNorm case, the semiparametric estimator has both

smaller bias (.02 vs .10) and smaller standard deviation (.05 vs .07). In the NTWeibull case,

the semiparametric estimator still performs much better than the bivariate probit in terms

of RMSE (.08 vs .21). Most of the advantage comes from the standard deviation (.06 vs

.20).
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The direct comparison between parametric and semiparametric estimators is best done

in terms of marginal e¤ects as was done above. Nevertheless, we also provide the index

parameter estimation results in Table 2. For semiparametric estimation, the parameters

are identi�ed up to location and scale, hence we report Ratio31=
coef(X3)
coef(X1)

in the outcome

equation and Ratio32=
coef(X3)
coef(X2)

in the selection equation. Notice that for the non-threshold-

crossing designs, we report the median and median absolute deviation (MAD) for the bi-

variate probit estimators because there were a number of replications where bivariate probit

performed extremely poorly. The semiparametric estimator, however, does not have this

issue, hence we report not only median and MAD but also mean, standard deviation, and

RMSE. For the selection equation, over all designs, both parametric and semiparametric

estimators perform quite well. Turning to the outcome equation, both estimators perform

better in normal than in non-normal designs and also better in threshold-crossing than in

non-threshold-crossing designs. The non-threshold-crossing model with Weibull distribu-

tions poses the most challenge for both estimators. It is noteworthy that for all other

designs,the bias and the standard deviation for the semiparametric estimator are quite

small. Finally, we also investigated the performance of higher order kernels for estimating

index parameters as an alternative to the bias controls implemented here.6 Due to con-

vergence problems, we found it necessary to calculate this estimator on a two-dimensional

grid, which was quite time-consuming. Accordingly, we only examined 100 replications for

each design (at which point the estimator seemed quite stable). For the selection equation,

the RMSE�s were close with the exception of the TWeibull design where the RMSE using

higher order kernels was 2.5 times larger. For the output equation, in all designs the RMSE

under higher order kernels was approximately 3 times larger.

Lastly, we provide the estimation results for the high probability set parameters. The

means of â with standard deviations in parentheses are as follows: .31(.004), 28(.006),31(.004),

and .28(.005) for TNorm,TWeibull, NTNorm, and NTWeibull respectively. While the vari-

ances for all of the estimates are quite small, it is di¢ cult to evaluate the performance of the

estimator without knowing a0. Accordingly, we examined the performance of the estimator

for the example given earlier in section 4. Following the discussion in (D4), the moment

condition is equivalent to: h
2 + (a0 lnN)

1
c
�1
i
a0 = :8� ("� �) :

Since a0 depends on the sample size, we examined three di¤erent sample sizes: N = 500,

1000, and 2000. At each of these sample sizes, we solved the above equation for a0 and

conducted a monte-carlo with 100 replications to evaluate the performance of â at the base
6 In our monte-carlo studies, the higher order kernel we use is the twicing kernel for both index parameter

estimation and estimation of the high probability set parameter.
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level of the index. The results are as follows:

SAMPLE SIZE a0 jBIASj SD RMSE

500 :279 :037 :027 :046

1000 :280 :025 :025 :035

2000 :283 :019 :009 :020

where bias, standard deviation(SD) and RMSE are standardized by the truth a0. This

table shows that our â performs very well in terms of absolute bias, standard deviation and

RMSE. It also con�rms that the absolute bias, standard deviation and RMSE all decline as

the sample size increases. As expected, a0 increases slowly with the sample size.

7 Conclusions

This paper studies the binary outcome model with sample selection in a semiparametric

framework. As marginal e¤ects are often of primary interest in this type of model, we

propose a semiparametric marginal e¤ect estimator. This marginal e¤ect estimator is based

on observations in a high probability set where the selection probabilities are above a cuto¤.

We propose an estimator for this cuto¤ and establish its large sample properties. Based on

that, we establish the large sample properties for our marginal e¤ect estimator, which takes

into account that the cuto¤ and the selection probability are estimated. In a monte-carlo

study we �nd that our marginal e¤ect estimator based on an estimated high probability set

performs quite well in �nite samples.

This marginal e¤ect estimator is developed under an index framework so as to achieve

good performance in �nite samples. Accordingly, it depends on an estimator for index

parameters. In this paper, we propose an index parameter estimator based on regular kernels

with bias control mechanisms and show that the estimator is consistent and asymptotically

distributed as normal. While retaining these desirable large sample properties, the monte-

carlo results show that this estimator performs very well in �nite samples.
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Marginal E¤ect Estimators

Truth Bivariate Probit Semiparametric

TNorm .34 mean .33 .31

std .06 .06

RMSE .06 .07

TWeibull .29 mean .37 .29

std .06 .06

RMSE .10 .06

NTNorm .46 mean .36 .48

std .07 .05

RMSE .13 .05

NTWeibull .59 mean .63 .63

std .20 .06

RMSE .21 .08
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Index Parameters

Bivariate Probit Semiparametric

Outcome Selection Outcome Selection

Coef(X1) Coef(X3) Coef(X2) Coef(X3) Ratio31 Ratio32
TNorm
mean .98 1.02 1.01 -1.01 .95 -1.04

std .05 .23 .06 .04 .07 .05

RMSE .05 .22 .06 .04 .08 .06

TWeibull
mean 1.23 1.23 1.02 -1.06 .93 -1.04

std .09 .21 .06 .04 .06 .04

RMSE .25 .31 .06 .08 .10 .06

NTNorm
mean .96 -1.02

median 1.07 1.13 1.00 -1.00 .96 -1.01

std .05 .04

MAD .12 .15 .03 .03 .04 .03

RMSE .06 .04

NTWeibull
mean .84 -1.04

median 2.30 2.52 1.03 -1.07 .84 -1.04

std .04 .04

MAD 1.30 1.52 .05 .07 .16 .05

RMSE .16 .05
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8 Appendix

8.1 Main Results

8.1.1 Marginal E¤ects

Proof of Theorem 1: By de�nition,

CN (�v)
h
�̂ (�v)� �0 (�v)

i
= CN (�v)

P
j
1
Nh [Y1j � �0 (�v)]Y2jK [(�v � V1j) =h] ŜjP

j
1
NhY2jK [(�v � V1j) =h] Ŝj

:

Lemma 8 enables us to replace (up to op(1)) the denominator with E (SjV1 = �v) g(�v); while
Lemma 9 continues to show that the numerator has the desired form.

Proof of Theorem 2: By Theorem 1:

CN (�v)
h
�̂ (�v)� �0 (�v)

i
= CN (�v)
N (�v) + op(1):

Lemma 3 characterizes the order of the bias of the estimator. Recalling the de�nition of

high probability parameter in (D4), the bias in the estimator vanishes. From Lemma 4, the

reciprocal of the estimator variance has the order:

NhE (Sj�v)2 =E
�
S2j�v

�
> NhE (Sj�v)

which completes the proof.

Proof of Theorem 3: By de�nition, dME�ME =
h
�̂(ve)� �0(ve)

i
�
h
�̂(vb)� �0(vb)

i
:

We begin by showing that the covariance between these two components vanishes. Notice

that �̂(�v) � �0(�v) is close to 
N (�v) which we can write as a sample average
P
j
1
N tj (�v).

The covariance is then of the form E [tj (ve) tk (vb)] For j 6= k; from independence and the

vanishing bias of the expectation of each term, this expectation vanishes. For j = k, the

kernel function ensures that this expectation also vanishes as V1j cannot be close to both

ve and vb. Therefore, we can study the sum of the variances of 
N (ve) and 
N (vb).

To prove normality, we �rst establish a Lindberg condition for CN (�v)
h
�̂ (�v)� �0 (�v)

i
.

Namely, for " > 0; we must show that the following expectation converges to 0:

E

�
(Y1i � �o)2Y2ik2i S2i =h

E(S2j�v) 1
�
(Y1i � �o)2Y2ik2i S2i > Nh2E(S2j�v)

	�
:
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Since (Y1i � �o)2Y2ik2i S2i is bounded, it su¢ ces to show that Nh2E(S2jv)!1:

Nh2E(S2jv) > Nh2 Pr(R3j�v)

where Pr(R3j�v) = Pr(F (V1) > 1�N�a0= exp(b));

= 1�Gc(F�1(1�N�a0= exp(b)))

> 1� F (F�1(1�N�a0= exp(b))) from (A5).

Since h = O(N�:2) and 0 < a0 < :4, the normality of CN (�v)
h
�̂ (�v)� �0 (�v)

i
follows.

Turning to the marginal e¤ects, for expositional purposes, suppose O(V ar(
N (ve))) >

O(V ar(
N (vb))), then

1p
V ar(
N (ve)) + V ar(
N (vb))

= O

 
1p

V ar(
N (ve))

!
= O (CN (ve)) :

Therefore, the characterization results in Theorem 1 apply to yield:

dME �MEr
V ar

�dME
� = O (CN (ve))

h
�̂ (ve)� �0 (ve)

i
+ op(1):

Now asymptotic normality follows from the above Lindberg condition. A symmetric ar-

gument holds for the case where O(V ar(
N (ve))) < O(V ar(
N (vb))): For the case where

O(V ar(
N (ve))) = O(V ar(
N (vb))) a Lindberg condition similar to the above applies.

Therefore,
dME�MEq
V ar(dME)

d! Z~N(0; 1): Employing similar arguments as in Lemma 8, it can

be shown that
V ar(dME)�V̂
V ar(dME)

p! 0: Hence the theorem follows.

8.1.2 Index Parameters

Proof of Theorem 4: We provide the proof for �̂
�
, with the arguments for the other

estimators being very similar. Lemma 10 proves that we can replace the P̂ � with P � in the

objective function L̂�(�), and obtain L�(�) satisfying:

sup
�

���L̂�(�)� L�(�)��� p! 0:

From Lemma 11, we may ignore the probability adjustments �̂0s and therefore replace

adjusted probabilities P � in L�(�) with unadjusted ones P . With L(�) as the resulting
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objective function:

sup
�
jL�(�)� L(�)j p! 0:

From conventional uniform convergence arguments:

sup
�
jL(�)� E [L(�)]j p! 0:

To complete the argument, we must show that E [L(�)] is uniquely maximized at �0:

From standard arguments, �0 is a maximum, and the only issue is one of uniqueness. With

�� as any potential maximizer, it can be shown that any candidate for a maximum must

give correct probabilities for all three cells: (Y1 = 1; Y2 = 1); (Y1 = 0; Y2 = 1) ; and Y2 = 0:

It then follows that for the Y2 = 0 cell:

Pr(Y2 = 0jV2 (��2)) = Pr(Y2 = 0jX) = Pr(Y2 = 0jV2 (�20)):

Under identifying conditions for single index models, ��2 = �20: For the (Y 1 = 1; Y 2 = 1)

cell:

Pr(Y1 = 1jY2 = 1; V1 (��1) ; V2 (��2)) Pr(Y2 = 1jV2 (��2)) =

Pr(Y1 = 1jY2 = 1; V1 (�10) ; V2 (�20)) Pr(Y2 = 1jV2 (�20)):

Since ��2 = �20:

Pr(Y1 = 1jY2 = 1; V1 (�10) ; V2 (�20)) = Pr(Y1 = 1jY2 = 1; V1 (��1) ; V2 (�20)):

Solving the �rst probability function for V1 (�10) ; for some function � we have:

V1 (�10) = �(V1 (�
�
1) ; V2 (�20)):

Since V2 contains a continuous variable not contained in V1, di¤erentiating both sides with

respect to this variable yields rv2� = 0. Therefore, � must only be a function of the �rst
index. Calling this function G:

G (V1 (�
�
1)) = V1 (�10) :

Identi�cation now follows from conditions that identify single index models.

Proof of Theorem 5: From a Taylor expansion, the unadjusted estimator has the
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form:

�
�̂
� � �0

�
= �Ĥ

�
�+
��1 1

N

NX
i=1

X
d1;d2

h
Yi (d1; d2)� P̂ �i (d1; d2; �0)

i
�̂
�
i (d1; d2; �0) � iv:

where �+ is an intermediate point. To simplify the adjustment to this estimator, referring

to (D11) we will show below:

� � Ĥ
�
�̂
���1

Ĉ
�
�̂
��� Ĥ ��+��1 Ĉ (�0) = op(N

�1=2):

Rewriting the above expression, � = �1 +�2, where:

�1 � Ĥ
�
�+
��1

Ĥ
�
�̂
���1 h

Ĥ
�
�+
�
� Ĥ

�
�̂
��i

Ĉ
�
�̂
��

�2 � Ĥ
�
�+
��1 h

Ĉ
�
�̂
��� Ĉ (�0)i :

To study �1, note that lemma 15 gives a convergence rate for �̂
���+. Then, using a Taylor

series expansion on
h
Ĥ
�
�+
�
� Ĥ

�
�̂
��i

and Lemmas 1, 14 and 15, it can be shown thath
Ĥ
�
�+
�
� Ĥ

�
�̂
��i

and Ĉ
�
�̂
��
converge to zero su¢ ciently fast that �1 = op(1=

p
N):

For �2; Taylor expanding the second component:

�2 = Ĥ
�
�+
��1rĈ ��̂� � �0� ;

where rĈ is evaluated at an intermediate point. The �rst component is Op(1) from Lemma
1; the second component is Op( 1p

Nh3
) from Lemma 1; and the third component is Op

�
h4
�
;

hence we have �2 = op

�
1=
p
N
�
:

From the de�nition of �̂
o
in (D11) and employing the result above:

p
N
�
�̂
o � �0

�
=

p
N
�
�̂
o � �0 +�

�
+ op(1) = �Ĥ

�
�+
��1p

N
�
Â� � B̂o

�
+ op(1);

Â� =
1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �̂
�
i (d1; d2; �0) � iv

B̂o =
1

N

NX
i=1

X
d1;d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂
�
i (d1; d2; �0) � iv:

From Lemma 12:

Â� =
1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �i (d1; d2; �0) � iv + op(N�1=2)
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where �i (d1; d2; �0) is the probability limit of �̂
�
i (d1; d2; �0) : It can also be shown that:

B̂o =
1

N

NX
i=1

X
d1;d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) � iv + op(N

�1=2):

Lemma 14b shows that B̂o is of order op(1=
p
N): The theorem now follows.

8.2 Intermediate Lemmas

This section provides three types of lemmas: 1) basic lemmas required by all estimators, 2)

lemmas required to analyze the marginal e¤ects estimator, and �nally 3) lemmas relevant

for the index estimator.

8.2.1 Basic Lemmas

With V2 having conditional density g2 (v2jY2 = d2) supported on [a2(d2); b2(d2)] ; and V

having conditional density g (vjY1 = d1; Y2 = d2) supported on [ak (dk) ; bk (dk)] ; k = 1; 2;

" > 0; de�ne:

V2N = fv2 : a2(d2) + h1�"m < v2 < b2(d2)� h1�"m g (6)

VN = f(v1;v2) : ak (dk) + h1�"c < vk < bk (dk)� h1�"c g: (7)

We begin with two basic lemmas on uniform and pointwise convergence rates. As the proofs

of these lemmas are standard in the literature, they are not provided here but are available

upon request.

Lemma 1 (Uniform Convergence): For  any pth di¤erentiable function of �, let
rp� ( ) be the pth partial derivative of  with respect to �; r

0
� ( ) �  : Let f̂2 and f̂ be the

estimators in (D1) with respective probability limits f2 and f: Then, for � in a compact

set, t2�V2N as de�ned in 6, t�VN as de�ned in 7, the following rates hold for p = 0; 1; 2:

a) : sup
t2;�

���rp� �f̂2 (t2; d2)�� rp� (f2 (t2; d2))
��� = Op

�
min

�
h2m;

1p
Nhp+1m

��
b) : sup

t;�

���rp� �f̂ (t; d1; d2)�� rp� (f (t; d1; d2))
��� = Op

�
min

�
h2c ;

1p
Nhp+2c

��
:

Lemma 2 (Pointwise Convergence): Using the same notation as in Lemma 1:

a) :
���rp� �f̂2 (t2; d2)�� rp� (f2 (t2; d2))

��� = Op

 
min

"
h2m;

1p
Nh2p+1m

#!

b) :
���rp� �f̂ (t; d1; d2)�� rp� (f (t; d1; d2))

��� = Op

 
min

"
h2c ;

1p
Nh2p+2c

#!
:
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8.2.2 Marginal E¤ects Lemmas

Lemma 3:Under (A4,A6,A7), with �0 (�v) � Pr(Y1 = 1jV1 = �v) and 
N �
P
j

1
Nh

[Y1j��0(�v)]Y2jK[(�v�V1j)=h]Sj
E(SjV1=�v)g(�v) ;

jE (
N )j = O(N�a0E(S)=E(Sj�v)):

Proof: With P2 = Pr(Y2 = 1jV2) and �d(V1; V2) � E [Y1 � �0 (�v) jY2 = d; V1; V2] ; and


1N as the numerator of 
N :

E (
1N ) = E(
1

h
�1(V1; V2)K [(�v � V1) =h]S)P2

=

ZZ
�1(�v + hz; v2)K(z)SP2g(�v + hz; v2)dzdv2:

Using a Taylor series expansion,

jE (
1N )j �
����Z �1(�v; v2)P2Sg(�v; v2)dv2

����+ jRESj :
Note that �1(�v; v2)P2 + �0(�v; v2) (1� P2) = E [Y1 � �0 (�v) jV1 = �v; V2] = 0; hence for the

�rst term on the right-hand-side:����Z �1(�v; v2)P2Sg(�v; v2)dv2

���� =

����Z �0(�v; v2) (1� P2)Sg(�v; v2)dv2
����

� O

�
N�a0

Z
Sg(�v; v2)dv2

�
= O

�
N�a0g(�v)

Z
Sg(v2j�v)dv2

�
= O

�
N�a0E(Sj�v)

�
:

The second term on the right-hand-side (jRESj) is a residual term from the Taylor series

expansion, which is O
�
h2E(S)

�
: Therefore, combining those two terms, the slowest rate

would be jE (
1N )j = O(N�a0E(S)) since O(h2) < O (N�a0) and O(E(Sj�v)) � O(E(S))

from (A6).

Lemma 4: For 
N de�ned in Lemma 3 and a0 de�ned in (D4),

1p
V ar (
N )

= O

 p
NhE(Sj�v)p
E(S2j�v)

!
:
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Proof: For a0 set as in (D4),
(
N�E(
N ))2
V ar(
N )

! 0; hence

V ar (
N ) = O

 
E([Y1 � �0 (�v)]2 Y2K2 [(�v � V1) =h]S2)

Nh2 (E (SjV1 = �v))2 g2(�v)

!

= O

�
E(K2 [(�v � V1) =h]S2)
Nh2 (E (SjV1 = �v))2

�
:

Letting z = (V1 � �v) =h, the result follows from a Taylor series expansion about h = 0.

To obtain the convergence rate of â to a0, Lemma 5 below shows that the moment

condition for them are close.

Lemma 5: Let

cN (a) � N�2(a�:4)+"��

M1(a) � E(S)2

M2(a) � E(S2j�v)

and recall (D4), then:

cN (â)

0B@
h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� � M1(â)

M2(â)

1CA = Op

�
N��

�
where � > 0:

Proof: To prove the result, we need to show that:

cN (â)

0B@
h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� �
h
Ê2

�
Ŝ
�i2

M2(â)

1CA = Op

�
N��

�

and cN (â)

0B@
h
Ê2

�
Ŝ
�i2

M2(â)
� M1(â)

M2(â)

1CA = Op

�
N��

�
:

Here, we provide the proof for the �rst equation, as the proof of the second is very similar.

Employing the de�nition of â, we have cN (â)
[Ê2(Ŝ)]

2

Ê2(Ŝ2j�v)
= O(1): Hence the left-hand-side
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has order:

M2(â)� Ê2
�
Ŝ2j�v

�
M2(â)

=

h
Ê2
�
S2 [â; P ] j�v

�
� Ê2

�
Ŝ2j�v

�i
M2(â)

+

h
M2(â)� Ê2

�
S2 [â; P ] j�v

�i
M2(â)

� A+B:

Beginning with term A, from a Taylor series expansion:

S2
�
â; P̂a

�
� S2(â; P ) =

m�1X
k=1

�
S2
�0(k)

(â; P )

"
P̂a � P
1� P

#k
=k!

+
�
S2
�0(m) �

â; P+
� " P̂a � P
1� P+

#m
=m!

where
�
S2
�0(m) is the mth derivative of the function S2 w.r.t x. Hence we have to show

both of the following terms vanish in probability

Ak �

������
NX
i=1

1

N

�
S2
�0(k)

(â; P )

"
P̂a � P
1� P

#k
K2

�
�v � vi
h2

�
=M2(â)h2

������
Am �

�����
NX
i=1

1

N

�
S2
�0(m) �

â; P+
� " P̂a � P
1� P+

#m
K2

�
�v � vi
h2

�
=M2(â)h2

����� :
For Ak, setting k = 1 for expositional purposes, the term will be bounded above by

2 sup

�����
 
P̂ai � Pi
1� Pi

!
s1(â; P )

�����
NX
i=1

1

N
S(â; P )K2

�
�v � vi
h2

�
=M2(â)h2

where sm is the mth derivative of S w.r.t x. The sup
���� P̂ai�Pi1�Pi

�
s1(â; P )

��� vanishes in prob-
ability because P̂a is based on higher order kernels and converges to P faster than N�â,

which is the order of the denominator 1� P .7 Turning our attention to the second part of
7Note that â < :4; and s1 (â; P )) restricts 1� P to a middle region R2 where:

N�â

exp(b)
< 1� P < N�â:
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the above expression, it is bounded above by:

sup
a

�����
NX
i=1

1

N
S(a; P )K2

�
�v � vi
h2

�
=h2 � E(S(a; P )j�v)

����� =M2(â) +
E(S(a; P )j�v)

M2(â)
:

For the �rst term, from uniform convergence, the numerator is converging to zero at a rate

arbitrarily close to N�:4. For the denominator, referring to (D3), notice that S2 function

is bounded below by an indicator function set to be zero when x is in either R1 or R2, and

one when x is in R3. Hence M2(a) is bounded below by the conditional expectation of that

indicator function, which is a probability that is of order N�a provided that the tail of v2j�v
is fatter than the error tail (A5). Therefore, M2(â) > O(N�â) > O(N�(:4� "��

2 )) (see D4).

Hence it su¢ ces to show that sup
a
E(S(a; P )j�v)=M2(a) = O(1). Referring to (D3), notice

that
E(S(a; P )j�v)

M2(a)
=
c1 Pr(R2; � = 1j�v) + Pr(R3; � = 1j�v)
c2 Pr(R2; � = 1j�v) + Pr(R3; � = 1j�v)

where

c1 � E

�
1� exp �xk

bk � xk jR2; � = 1; �v
�

c2 � E

"�
1� exp �xk

bk � xk

�2
jR2; � = 1; �v

#
:

The above ratio converges to some constant irrespective of which of the regional probabilities

converges faster to zero.

For the remainder term Am, it vanishes for m su¢ ciently large. For term B, the argu-

ment is very similar to that above.

Lemma 6: Referring to Lemma 5, de�ne

z(a) � N�a

R (z (a)) � M1(a)
M2(a)

z0 � z(a0); ẑ � z (â) ; z+ � z (a+)

then, for � > 0 : jâ� a0j = op

�
N

��
�
:
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Proof: Lemma 5 shows that:

cN (â)

h
Ê2

�
Ŝ
�i2

Ê2

�
Ŝ2j�v

� = cN (â)R (z (â)) +Op

�
N��

�
= cN (a0)R (z (a0)) +Op

�
N��

�
�

Ln (N) cN
�
z+
� �
2R
�
z+
�
+ z+R0

�
z+
��
[â� a0] :

Therefore, since R = [E(S)]2

E(S2j�v) is increasing as in (D4), z
+R0 (z+) > 0; hence

[â� a0] = Op

�
N��=Ln (N) cN

�
z+
�
R
�
z+
��

:

Suppose â < a0 (the argument when â > a0 is the same), then â < a+ < a0, and

z0 < z+ < ẑ. Since R is increasing, R(z0) < R(z+) < R(ẑ): Therefore, cN (z0)R (z0) <

cN (z
+)R (z+) < cN (ẑ)R (ẑ) : The proof now follows from Lemma 5.

Lemma 7.(Expectations of Kernel Products): Let f"1j;"2j;"3jg be i.i.d. over j
with properties:

a) : E("
j) = O(h2p)

b) : E
h
"�
j;

i
=

1

h%�1
; � > 1:

Set h4p = O( 1
Mh) and denote �"
 =

1
M

PM
j=1 "1j ; 
 = 1; 2; 3;then

E
�
[�"1]

r [�"2]
s [�"3]

t	 = O
�
h2p4r=4

�
O
�
h2p4s=4

�
O
�
h2p2t=2

�
= O

�
h2p(r+s+t)

�
:

Proof: From the Cauchy�Schwartz inequality

E
�
[�"1]

r [�"2]
s [�"3]

t	 � nE [�"1]4ro1=4 nE [�"2]4so1=4 nE [�"3]2to1=2 :
It su¢ ces to order one of the three terms, hence we can study a general term: E [�"]q.

This general term has q types of terms, with kth (k = 1; :::; q) type:

1

M q�k

X
� � �
X

| {z }
k

1

Mk
"i1j1 � � � "

ik
jk

where i1 + :::+ ik = q and j1 6= � � � 6= jk:
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From i.i.d. property of the "0s; the expectation of this term is given as:

1

M q�kE
h
"i1j1

i
� � � E

h
"ikjk

i
:

Suppose we study a term E
h
"itjt

i
, where 1 6 t 6 k. There are two types of expectations:

single power of " and multiple powers of ". For the single power case, from property (a):

E
h
"itjt

i
= O(h2p) for it = 1.

For the multiple power case, from property (b):

E
h
"itjt

i
= O

 �
1

h

�(it�1)!
for it > 1

There are di¤erent combinations of i1; � � �; ik for a given q and k. To order 1
Mq�kE

h
"i1j1

i
�

� �E
h
"ikjk

i
, we next need to �nd the combination which yields the slowest convergence rate.

One observation we make here is that the slowest term is the one with the least number of

single power "0s.

When k 6 q
2 , the slowest term would have no single power of " in it (see below for an

example). Therefore, from property (b) the convergence rate will be:

O

�
(
1

Mh
)q�k

�
:

When k > q
2 , the slowest term would include at least one single power " in it, hence

from property (a) and (b) the rate will be:

O
�
(h2p)2k�q

�
O

�
(
1

Mh
)q�k

�
:

Suppose q is an even number (the odd number case is very similar), for example q = 6.

If we denote the type by the powers of the elements, for example 1122 would mean the
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"1j1"
1
j2
"2j3"

2
j4
term, then we have the following table:

2666666666664

k Slowest Type Rate

1 6 O
�
( 1
Mh)

5
�

2 33 O
�
( 1
Mh)

4
�

3 222 O
�
( 1
Mh)

3
�

4 1122 O
�
(h2p)2( 1

Mh)
2
�

5 11112 O
�
(h2p)4( 1

Mh)
�

6 111111 O
�
(h2p)6

�

3777777777775
For k = q

2 , the slowest term would be the one with k squared terms

1

M q�kE
�
"2j1
�
� � � E

�
"2jk
�

(examples of faster terms: 114 and 123 types) hence the rate would be

O

�
1

M q�k (
1

h
)k
�
= O

�
(
1

Mh
)q�k

�
:

It can be shown that this same expression holds for all smaller k. For k = q
2 +1, the slowest

term would have two single power "0s and the rest are squared terms, e.g.

1

M q�kE ["j1 ]E ["j2 ]E
�
"2j3
�
� � � E

�
"2jk
�

hence the rate would be

1

M q�kO

�
(h2p)2(

1

h
)k�2

�
= O

�
(h2p)2k�q(

1

Mh
)q�k

�
:

This same expression holds for all larger k.

We now need to �nd the kth term with the slowest convergence rate. Set h optimally,

i.e. h4p = O( 1
Mh) and substitute it in each term above, we have

O
�
(h4p)q�k

�
= O

�
(h2p)2q�2k

�
when k 6 q

2 ;

O
�
(h2p)2k�q(h4p)q�k

�
= O(h2pq) when k > q

2 :

hence the slowest convergence rate is O(h2pq). The lemma follows.
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Lemma 8:.De�ne

Ê (Y2S (a; P ) j�v) �
X
j

1

Nh
Y2jK [(�v � V1j) =h]S(a; Pj)

M3(a) � E(
X
j

1

Nh
Y2jK [(�v � V1j) =h]S(a; Pj)):

Then
M3(a0)� Ê

�
Y2S

�
â; P̂

�
j�v
�

M3(a0)

p�! 0:

Proof : The above term can be decomposed into the following as in Lemma 5:h
Ê (Y2S [a0; P ] j�v)� Ê

�
Y2S

h
â; P̂

i
j�v
�i

M3(a0)
+

h
M3(a0)� Ê (Y2S [a0; P ] j�v)

i
M3(a0)

:

The above two terms are similar to terms A and B in Lemma 5. Employing a Taylor

series argument and utilizing the result from Lemma 6, it can be shown that the �rst term

goes to zero in probability. The second term only requires pointwise convergence instead of

the uniform convergence arguments in Lemma 5.

Lemma 9: For notational simplicity, we denote CN = CN (�v) as in Theorem 1. Letting

#j � (Y1j � �0 (�v))Y2jK [(�v � V1j) =h] =h;

CN

h
�̂ (�v)� �0 (�v)

i
= CN

P
j
1
N #jS(a0; Pj)

M3(a0)
+ op(1):

Proof: From Lemma 8:

CN

h
�̂ (�v)� �0 (�v)

i
= CN

P
j
1
N #jS

�
â; P̂j

�
P
j
1
NhY2jK [(�v � V1j) =h]S

�
â; P̂j

�
= CN

P
j
1
N #jS

�
â; P̂j

�
M3(a0)

+ op(1):

It remains to be shown that

CN

P
j
1
N #j

h
S
�
â; P̂j

�
� S(a; Pj)

i
M3(a0)

p�! 0:

With sm as the mth derivative of S w.r.t x, for P+j �
h
P̂j ; Pj

i
, a+� [â; a0] ; a Taylor
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expansion provides:

S
�
â; P̂j

�
� S (a0; Pj) =

KX
k=1

LX
l=1

1

k!l!
Tkl

Tkl � sk+l
�
�a; �Pj

�
[Ln(N)]k [â� a0]k

"
P̂j � Pj
1� �Pj

#l

where

�a �
(

a0 k < K

a+ k = K
�Pj �

(
Pj l < L

P+j l = L
:

Substituting the Taylor series expansion, and noting that [Ln(N)]k [â� a0]k is converging
to zero, we now need to show that terms of the following form converge in probability to 0:

CN

P
j
1
N #js

k+l
�
�a; �Pj

� h P̂j�Pj
1� �Pj

il
M3(a0)

:

To show that, we study the expectation of the square of the above term. Squaring the above

term yields two types of elements:

1

N

C2N
NM3(a0)2

X
j

8<:#jsk+l ��a; �Pj�
"
P̂j � Pj
1� �Pj

#l9=;
2

and (8)

C2N
N2M3(a0)2

X
j

X
j

8<:#isk+l ��a; �Pi�
"
P̂i � Pi
1� �Pi

#l9=;
8<:#jsk+l ��a; �Pj�

"
P̂j � Pj
1� �Pj

#l9=; : (9)

For the �rst type, write:"
P̂j � Pj
1� �Pj

#l
=

�
�"1j
1� �Pj

�l �gj
ĝj

�l
where �"1j �

�
P̂j � Pj

� ĝj
gj
:

From a Taylor series expansion with �"2j � [ĝj � gj ] :

�
gj
ĝj

�l
=

mX
t=0

Ttj

Ttj = (�1)t 1
t!

(l + t� 1)!
(l � 1)!

�
�"2j
gj

�t�
(
ĝj
gj
)+
�(�l�m)Ift=mg

Substituting a typical term Ttj into (8) we must show that the following expression converges
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in probability to 0:

1

N

C2N
NM3(a0)2

X
j

(
#js

k+l
�
�a; �Pj

� � �"1j
1� �Pj

�l
Ttj

)2
:

For non-remainder terms in the above Taylor series expansion (k < K; l < L; t < m) , the

expectation of the above expression has the form:

C2N
NM3(a0)2

E
1

N

X
j

#2j

h
sk+l (a0; Pj)

i2 � �"1j
1� Pj

�2l ��"2j
gj

�2t

=
C2N

NM3(a0)2
E

(
E
�
#2j jXj

� h
sk+l (a0; Pj)

i2 � �"1j
1� Pj

�2l ��"2j
gj

�2t)

=
C2N

NM3(a0)2
E

(
E
�
#2j jXj

� h
sk+l (a0; Pj)

i2
E

 �
�"1j
1� Pj

�2l ��"2j
gj

�2t
jVj

!)
;

where E
�
#2j jXj

�
only depends on the indices Vj . From Lemma 7, the expectation condi-

tioned on the indices is o(1): Therefore, since C2N=N is converging to 0, the result follows

as:
1

M3(a0)2
E

�
E
�
#2j jXj

� h
sk+l (a0; Pj)

i2�
= O(1):

Turning to the expectation of the cross-product terms (9), de�ne P̂j [i] by removing from

P̂j its dependence on Y2i Similarly, de�ne P̂i [j]. Notice that P̂j [i] and do not depend on

Y2i and Y2j : Finally, denote:

P̂i � P̂i [j] + �j(1� Pi); P̂j � P̂j [i] + �i(1� Pj);

then the non-remainder terms in (9) have the following form:

C2N
M3(a0)2

E

8><>:#isk+l (a0; Pi)
24
�
P̂i [j]� Pi

�
1� Pi

+ �j

35l
9>=>;
8><>:#jsk+l (a0; Pj)

24
�
P̂j [i]� Pj

�
1� Pj

+ �i

35l
9>=>; :

Performing the binomial expansion on
�
(P̂i[j]�Pi)
1�Pi + �j

�l
and

�
(P̂j [i]�Pj)
1�Pj + �i

�l
; the slowest
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converging term has the following form:

C2N
M3(a0)2

E

8<:#isk+l (a0; Pi)#jsk+l (a0; Pj)�j�i
 
P̂i [j]� Pi
1� Pi

!l�1 
P̂j [i]� Pj
1� Pj

!l�19=;
=

C2N
M3(a0)2

E

8<:#isk+l (a0; Pi)#jsk+l (a0; Pj)�j�iE
24 P̂i [j]� Pi

1� Pi

!l�1 
P̂j [i]� Pj
1� Pj

!l�1
jVi; Vj

359=; :

Applying Lemma 7 in a similar manner as above yields:

E

24 P̂i [j]� Pi
1� Pi

!l�1 
P̂j [i]� Pj
1� Pj

!l�1
jVi; Vj

35 = B(Vi; Vj)

[(1� Pi) (1� Pj)]l�1
o(N�2a(l�1))

whereB(Vi; Vj) is a bounded function. Since �j�i = 1
(1�Pi)(1�Pj)h22N2YiYjK2 ([V2i � V2j ] =h2)2 ;

the absolute value of (9) is bounded above by

C2N
N2h22M3(a0)2

E

(���#isk+l (a0; Pi)#jsk+l (a0; Pj)���YiYjK2 ([V2i � V2j ] =h2)2
����� B(Vi; Vj)

[(1� Pi) (1� Pj)]l

����� o(N�2a(l�1))

)
:

Notice that the s derivatives restricts us to the middle region where 1 � P > N�a= exp(b)

and hence
��� B(Vi;Vj)

[(1�Pi)(1�Pj)]l

��� = O(N2al): Since h2 = N�:1; we have C2N=h2N = o(1) and

o(N2a)=h2N = o(1). Hence it su¢ ces to show E
��#isk+l (a0; Pi)#jsk+l (a0; Pj)�� =M3(a0)

2 =

O(1):

Recall that #j � (Y1j � �0 (�v))Y2jK [(�v � V1j) =h] =h. Further sm is the mth derivative

of S w.r.t x, and it is zero except in region R2:

E
��#isk+l (a0; Pi)#jsk+l (a0; Pj)��

M3(a0)2
=

�
c1 Pr(R2; � = 1j�v)

c2 Pr(R2; � = 1j�v) + c3 Pr(R3; � = 1j�v)

�2
where

c1 �
n
E
h
#sk+l (a0; P ) jR2; � = 1; �v

io
c2 � E

��
1� exp �xk

bk � xk

��
1

h
Y2K

�
�v � V1
h

��
jR2; � = 1; �v

�
c3 = E

��
1

h
Y2K

�
�v � V1
h

��
jR3; � = 1; �v

�
:

Then, similar to Lemma 5, it follows that

E
���#isk+l (a0; Pi)#jsk+l (a0; Pj)��� =M3(a0)

2 = O(1):
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8.2.3 Index Lemmas

The next lemma proves that the estimated second-stage objective function L̂� (�) is uni-

formly close to L� (�) � 1
N

P
i

P
d1;d2

Yi (d1; d2)Ln [P
�
i (d1; d2; �)].

Lemma 10: WithD � 1
N

P
i

P
d1;d2

Di;whereDi � Yi (d1; d2)Ln
h
P̂ �i (d1; d2; �) =P

�
i (d1; d2; �)

i
;

sup
�
jDj = op(1)

Proof: We prove this result when indices are restricted to be smoothly in VN and its

complement. Referring (D2), de�ne a smoothed indicator restricting vi to VN in (7) as:

l (vi) �
Y
k

� [ak (dk) + h
1�"
ck ; vki]� [vki; bk (dk)� h1�"ck ];

D =
1

N

X
i

X
d1;d2

Dil (vi) +
1

N

X
i

X
d1;d2

Di(1� l (vi)):

Taylor expanding the �rst term on the right, Lemma 1 proves that it converges to zero in

probability. For the second term,

sup
�
j 1
N

X
i

X
d1;d2

Di(1�l (vi))j � sup
i;�

������
X
d1;d2

Yi (d1; d2)Ln

"
P̂ �i (d1; d2; �)

P �i (d1; d2; �)

#������ sup� 1

N

X
i

[1�l (vi)]:

It can be shown that inf P �i (d1; d2; �) is bounded away from 0 and inf P̂
�
i (d1; d2; �) converges

to a term bounded away from zero. Therefore, the �rst term above is �nite. The second

term converges in probability to zero.

The next lemma proves that L�(�) which is the probability limit of L̂�(�)(de�ned in

D10) is uniformly close to L(�) � 1
N

P
i

P
d1;d2

Yi (d1; d2)Ln [Pi (d1; d2; �)] : Therefore, we

may ignore the probability adjustments �0s in the adjusted likelihood, L�.

Lemma 11: For � in a compact set:

sup
�
jL�(�)� L(�)j p! 0:

Proof: The proof is identical to the argument in Lemma 10 and follows directly by
establishing this result on both sets away from support boundaries and "low probability"

sets near the boundaries.

The following lemma shows that the trimming and the �0s can be taken as known.
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Lemma 12: For � = � v or �x; referring to (D10), with

Â� � 1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �̂
�
i (d1; d2; �0) �

A � 1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �i (d1; d2; �0) �

then

Â� �A = op(N
�1=2):

Proof: Klein and Shen (2010) establish this result in a semiparametric least squares
context for single index models. The argument extends to double index likelihood-based

models.

Using Lemma 12, Lemma 13 provides a useful convergence rate for the initial estimator

in (D10).

Lemma 13: For �̂ de�ned in (D10) and with h = O(N�r); r = 1
8+� :�

�̂ � �0
�
= Op(h

2):

Proof: From a Taylor series expansion:

�
�̂ � �0

�
= �Ĥ

�
�+
��1 1

N

NX
i=1

X
d1;d2

h
Yi (d1; d2)� P̂i (d1; d2; �0)

i
�̂i (d1; d2; �0) � ix = �Ĥ

�
�+
��1 h

Â� B̂
i
;

Â =
1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �̂i (d1; d2; �0) � ix;

B̂ =
1

N

NX
i=1

X
d1;d2

h
P̂i (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂i (d1; d2; �0) � ix:

Employing the same argument as in Lemma 12, Â � A = op(N
�1=2); and since A =

Op(N
�1=2) we have Â = Op(N

�1=2): From Lemma 2, B̂ = Op(h
2), which completes the

argument.

To obtain a convergence rate for the second-stage estimator and to analyze the �nal

bias-adjusted estimator, Lemma 14 shows that the gradient component which is responsible

for the bias in the estimator vanishes in probability.
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Lemma 14:

a) : B� =
1p
N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) � iv = op(1)

b) : Bo =
1p
N

NX
i=1

X
d1;d2

h
P̂ oi (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) � iv = op(1):

Proof: For a), under index trimming the adjustment factors within P̂ �i vanish exponen-
tially. Therefore:

B� = B + op(1); B =
1p
N

NX
i=1

X
d1;d2

h
P̂i (d1; d2; �0)� Pi (d1; d2; �0)

i
�i (d1; d2; �0) � iv:

Denote:

P̂m = P̂ (Y2i = d2jV2i = t2) ; Pm � p lim P̂m;

P̂c = P̂ (Y1i = d1jY2i = d2; Vi = t) ; Pc � p lim P̂c:

With d2 = 0 write:

P̂i (d1; d2; �)� Pi (d1; d2; �) = (P̂m � Pm):

Otherwise:

P̂i (d1; d2; �)� Pi (d1; d2; �) = P̂mP̂c � PmPc
= (P̂m � Pm)(P̂c � Pc) + (P̂m � Pm)Pc + Pm(P̂c � Pc):

For the second case (the �rst is similar and easier), we can rewrite B term as:

B =
1p
N

NX
i=1

X
d1;d2

h
(P̂m � Pm)(P̂c � Pc) + (P̂m � Pm)Pc + Pm(P̂c � Pc)

i
�i (d1; d2; �0) � iv:

For the �rst term in B, we may employ Cauchy�s inequality and Lemma 2 to show that it

vanishes in probability.

The di¤erence between the second term in B and the following U-statistic converges in
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probability to zero:

U � 1p
N

NX
i=1

X
d1;d2

"
(
f̂2 (t2; d2)

ĝ2 (t2; d2)
� Pm)Pc

# �
ĝ2 (t2; d2)

g2 (t2; d2)

�
�i (d1; d2; �0) � iv

=
1p
N

NX
i=1

X
d1;d2

h
(f̂2 (t2; d2)� ĝ2 (t2; d2)Pm)Pc

i ��i (d1; d2; �0) � iv
g2 (t2; d2)

�
:

Notice that the U-statistic vanishes in probability from standard projection arguments,

hence the second term in B vanishes. The third term in B has the same structure as the

second and therefore also vanishes in probability, which completes the proof for a). The

proof for b) is very similar.

Lemma 15: Referring to (D10), for the second stage estimator:����̂� � �0��� = Op

�
N
� 4
8+�

�
:

Proof: From Lemma 14, the initial estimator satis�es:
�
�̂ � �0

�
= Op

�
N�2r�. For

the estimator based on index trimming, from a standard Taylor series argument with � iv
replacing � ix :�

�̂
� � �0

�
= �Ĥ� ��+��1 hÂ� � B̂�i ;

Â� =
1

N

NX
i=1

X
d1;d2

[Yi (d1; d2)� Pi (d1; d2; �0)] �̂
�
(d1; d2; �0) � iv;

B̂� =
1

N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �0)� Pi (d1; d2; �0)

i
�̂
�
(d1; d2; �0) � iv:

Referring to Lemma 13, since A = Op(N
�1=2), Â� = Op(N

�1=2).

For the B̂�-term, with �Bi � [�̂
�
(d1; d2; �0) � iv � � (d1; d2; �0) � iv]:

B̂� = B�1 + B̂
�
2 ;

B�1 =
1

N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �0)� Pi (d1; d2; �0)

i
� (d1; d2; �0) � iv

B̂�2 =
1

N

NX
i=1

X
d1;d2

h
P̂ �i (d1; d2; �0)� Pi (d1; d2; �0)

i
�Bi

By showing that B̂�1 is close in probability to a centered U-statistic, Lemma 14, part a)

proves that B�1 = op
�
N�1=2� : From Cauchy�s inequality, the convergence rates in Lemma
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2, and with window parameters r = r� = 1
8+� , it follows that B̂

�
2 = Op

�
N
� 4
8+�

�
; � > 0: For

these window choices, from the uniform rates in Lemma 1: Ĥ� ��+� = H0 + op(1). It now

follows that
����̂� � �0��� = Op

�
N
� 4
8+�

�
:
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