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Abstract

In this selective review, we �rst provide some empirical examples that motivate the usefulness of
semi-nonparametric techniques in modelling economic and �nancial time series. We describe popular
classes of semi-nonparametric dynamic models and some temporal dependence properties. We then
present penalized sieve extremum (PSE) estimation as a general method for semi-nonparametric
models with cross-sectional, panel, time series, or spatial data. The method is especially powerful
in estimating di¢ cult ill-posed inverse problems such as semi-nonparametric mixtures or conditional
moment restrictions. We review recent advances on inference and large sample properties of the
PSE estimators, which include (1) consistency and convergence rates of the PSE estimator of the
nonparametric part; (2) limiting distributions of plug-in PSE estimators of functionals that are
either smooth (i.e., root-n estimable) or non-smooth (i.e., slower than root-n estimable); (3) simple
criterion-based inference for plug-in PSE estimation of smooth or non-smooth functionals; and (4)
root-n asymptotic normality of semiparametric two-step estimators and their consistent variance
estimators. Examples from dynamic asset pricing, nonlinear spatial VAR, semiparametric GARCH,
and copula-based multivariate �nancial models are used to illustrate the general results.
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1 Introduction

In this paper we review some recent developments in large sample theory for estimation of and infer-

ence on semi-nonparametric time series models via the method of penalized sieves. To avoid confusion,

we use the same terminology as that in Chen (2007). An econometric (or statistical) model is a family

of probability distributions indexed by unknown parameters. We call a model �parametric�if all of its

unknown parameters belong to �nite dimensional Euclidean spaces. We call a model �nonparametric�

if all of its unknown parameters belong to in�nite dimensional function spaces. A model is �semipara-

metric� if its parameters of interest belong to �nite dimensional spaces but its nuisance parameters

are in in�nite dimensional spaces. Finally, a model is �semi-nonparametric� if it contains both �nite

dimensional and in�nite dimensional unknown parameters of interest.

Semi-nonparametric models and methods have become popular in much theoretical and empirical

work in economics. This is partly because it is often the case that economic theory suggests neither

parametric functional relationships among economic variables nor particular parametric forms for er-

ror distributions. Another reason for the rising popularity of semi-nonparametric models is rapidly

declining costs of collecting and analyzing large data sets. The semi-nonparametric approach is very

�exible in economic structural modelling and policy and welfare analysis. Compared to parametric and

semiparametric approaches, semi-nonparametrics are more robust to functional form misspeci�cation

and are better able to discover nonlinear economic relations. Compared to fully nonparametric meth-

ods, semi-nonparametrics su¤er less from the �curse of dimensionality� and allow for more accurate

estimation of structural parameters of interest.

Semi-nonparametric time series models and methods should be very useful for economic structural

time series analysis. Many economic and �nancial time series (and panel time series) are nonlinear

and non-Gaussian; see, e.g., Granger (2003). Examples include but are not restricted to (1) nonlinear

macro/�nancial models: nonlinear VAR, nonlinear ARCH/GARCH, stochastic volatility (SV), di¤u-

sion, thresholding, Markov switching, copula-based Markov models, conditional value-at-risk, nonlinear

duration models, nonlinear observed and/or latent factors, nonlinear spatial dependence; (2) nonlinear

dynamic asset pricing models: endogenous default, option pricing, cash-in-advance, �nancial frictions;

(3) semi-nonparametric Markov decision/game models: nonlinear pricing, dynamic contracting; (4)

semi-nonparametric dynamic program evaluations; and (5) DSGE models.

As we shall illustrate in Section 2, it is very di¢ cult to correctly specify nonlinear dynamic func-

tional relations. Even if the nonlinear functional relation is correctly speci�ed by chance, misspecifying

distributions of nonseparable latent variables or laws of motion (LOM) generally leads to inconsistent

estimates of structural parameters of interest. Among some econometricians, a common view is that

for simple forecasting purposes or certain reduced form data analyses misspecifying conditional mean
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or other nonlinear functional relations among observed variables is not a serious problem. However,

for policy and welfare analysis, it is important to uncover complicated nonlinear economic relations in

dynamic structural models. Since most low frequency macro time series data sets are not large enough

to allow for purely nonparametric analysis, various semi-nonparametric models and methods should be

attractive to economists conducting time series structural analyses.

In this selective review, we �rst motivate the usefulness of semi-nonparametric techniques in mod-

elling economic and �nancial time series via empirical examples. We describe popular classes of semi-

nonparametric dynamic models and some temporal dependence properties. Once we move beyond the

linear and Gaussian modelling framework, there are too many semi-nonparametric dynamic models to

list them all. In addition to statistical speci�cation tests, one�s economic questions of interest, economic

theories, empirical stylized facts, and data issues should guide one�s semi-nonparametric model choice

in empirical work. We then present Penalized Sieve Extremum (PSE) estimation as a very �exible,

computable and general method for semi-nonparametric models with cross-sectional, panel, time se-

ries, or spatial data. The penalized sieve method is especially powerful in estimating di¢ cult ill-posed

inverse problems such as semi-nonparametric mixtures and semi-nonparametric conditional moment

restrictions. Semi-nonparametric mixture models have been widely used to �exibly capture unobserved

individual heterogeneity and/or latent state dynamic factors in labor economics, industrial organiza-

tion, public economics, �nance, international trade, development, etc. Semi-nonparametric conditional

moment restriction models or semi-nonparametric nonlinear instrumental variables models have been

widely used in asset pricing, dynamic games, and other economic models derived from agents�optimizing

behaviors.

In Chen (2007), we described a very important class of PSE, sieve extremum estimation, as a general

method for semi-nonparametric models, listed some applications of the sieve method, presented many

classes of sieves (�exible combinations of simple basis functions that can approximate unknown functions

well), and provided detailed large sample properties available as of 2006. Since then, the amount of

empirical work applying the sieve method has been rapidly growing, and there have been theoretical

advances in sieve estimation and inference.

This paper gives an update of the survey of Chen (2007). We review recent advances in inference

and large sample properties of the PSE estimators, which include (1) consistency and convergence rates

of the PSE estimator of the nonparametric part, allowing for di¢ cult (nonlinear) ill-posed inverse prob-

lems; (2) limiting distributions of plug-in PSE estimators of functionals that are either smooth (i.e.,

root-n estimable) or non-smooth (i.e., slower than root-n estimable); and (3) simple criterion based

inference and consistent variance estimators of plug-in PSE estimators of smooth or non-smooth func-

tionals. In empirical work in economics and �nance, semiparametric two-step (or multi-step) estimation

procedures are commonly used. We shall describe very recent results on simple consistent estima-
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tors of the asymptotic variances of general semiparametric two-step estimators of smooth functionals

when unknown functions are estimated by the penalized sieve method in the �rst step. Examples

from semi-nonparametric consumption capital asset pricing models, varying coe¢ cient spatial VAR,

semi-nonparametric multivariate GARCH and copula-based �nancial models are presented.

There are already many books and review articles on semiparametric and nonparametric models

and methods. For recent books see Bickel et al. (1993), Fan and Gijbels (1996), Pagan and Ullah

(1999), Fan and Yao (2003), Yatchew (2003), Haerdle et al. (2004), Li and Racine (2007), Gao (2007),

or Horowitz (2009), to name only a few. For recent surveys relevant to economics see all of the chapters

in the book edited by Barnett, Powell and Tauchen (1991), several chapters in the Handbook of Econo-

metrics Volume 4 edited by Engle and McFadden (1994), Handbook of Econometrics Volume 6 edited

by Heckman and Leamer (2007), and some of the surveys in Advances in Econometrics, World Congress

of the Econometric Society book volumes.1 Our survey complements the existing books and review

papers by focusing on the latest developments in the general method of PSE estimation and allowing

for (nonlinear) ill-posed inverse problems that typically appear in semi-nonparametric structural models

in econometrics.

Notation: We use the same notation as in Chen (2007). Let j�je denote Euclidean norm for

Euclidean parameters � 2 <d� . The notation b1n � b2n means that the ratio b1n=b2n is bounded

below and above by positive constants that are independent of n. For random variables Vn and positive

numbers bn, n � 1, we de�ne Vn = OP (bn) as limc!1 lim supn P (jVnj � cbn) = 0 and de�ne Vn = oP (bn)
as limn P (jVnj � cbn) = 0 for all c > 0. We suppose there is an underlying complete probability space,
the data fZt = (Y 0t ; X 0

t)
0gnt=1 is stationary ergodic, Zt 2 <dz , 1 � dz <1, and all probability calculations

are done under the true probability measure Po. Let It denote the information set up to time t and
E(�j It) denote the conditional expectation given It.

2 Vast Classes of Semi-nonparametric Dynamic Models

2.1 Motivating empirical applications

In this subsection we illustrate the usefulness and �exibility of semi-nonparametric dynamic models and

PSE methods by three empirical applications in macroeconomics and �nance.

Example 2.1 (Consumption-based asset pricing models): A standard consumption-based asset pricing

model assumes that at time zero a representative agent maximizes the expected present value of the

utility function Ef
P1
t=0 �

tU(Ct) j I0g, where � is the time discount factor and U(Ct) is period t utility.
Consumption-based asset pricing models state that for any traded asset indexed by j, with a gross

1These include Bierens (1987), Gallant (1987), Robinson (1994), Tauchen (1997), Florens (2003), Blundell and Powell
(2003), and others.
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return at time t+ 1 of Rj;t+1, the following Euler equation holds:

E [Mt+1Rj;t+1 j It] = 1; j = 1; :::; N; (2.1)

where Mt+1 = �
@U=@Ct+1
@U=@Ct

is the intertemporal marginal rate of substitution (IMRS) in consumption and

also a pricing kernel or stochastic discount factor (SDF). Di¤erent speci�cations ofMt+1 imply di¤erent

consumption asset pricing models. See Cochrane (2001), Singleton (2006), Hansen et al. (2007), or

Hansen and Renault (2010) for many examples of Mt+1.

Hansen and Singleton (1982) assume that the period t utility takes the power speci�cation u(Ct) =

[(Ct)
1�
 � 1]=[1 � 
], where 
 is the curvature parameter of the utility function at each period,

which implies that the SDF takes the form Mt+1 = �
�
Ct+1
Ct

��

and the Euler equation becomes:

E

�
�o

�
Ct+1
Ct

��
o
Rj;t+1 � 1 j It

�
= 0; j = 1; :::; N . They estimate the unknown scalar parameters

�o; 
o using Hansen�s (1982) generalized method of moment (GMM) based on the following uncondi-

tional moment restrictions

E

 "
�o

�
Ct+1
Ct

��
o
Rj;t+1 � 1

#
Zt

!
= 0; j = 1; :::; N;

where the instruments Zt consists of a constant, lagged consumption growth, lagged EWR (the equal

weighted market return) and lagged VWR (the value weighted market return). However, this classical

power utility based asset pricing model has been rejected empirically. Stock and Wright (2000) suggest

it might be due to the weak instrumental variable problem.

Many �nance and macro economists suspect there is misspeci�cation due to the assumption of time

separable utility in consumption. One popular theoretical �x is to let period t utility depend on habit

level Ht, which is some function of current and lagged consumption; see, e.g., Constantinides (1990),

Abel (1990), Campbell and Cochrane (1999). But, is habit linear or nonlinear? Is habit internal or

external? Economic theories do not provide clear answers to these questions, but they are of importance

for welfare and pricing implications.

In a recent paper, Chen and Ludvigson (2009) specify the SDF, Mt+1, to be semi-nonparametric

in order to encompass di¤erent versions of the habit model. They combine the power utility spec-

i�cation with a nonparametric habit formation: Ef
P1
t=0 �

t[(Ct �Ht)1�
 � 1]=[1 � 
] j I0g, where
Ht = H(Ct; Ct�1; :::; Ct�L) is the period t habit level. HereH(�) is a homogeneous of degree one unknown
function of current and past consumption and can be rewritten as Ht = Ctho (c�t ) with ho(�) unknown,
0 � ho(�) < 1; ho(�) nondecreasing in �rst argument of c�t =

�
Ct�1
Ct
; :::;

Ct�L
Ct

�
. Then Mt+1 = �

@U=@Ct+1
@U=@Ct

,

where for external habit @U=@Ct = C
�

t (1� h (c�t ))

�
 , and for internal habit @U=@Ct =

C�
t

24(1� h (c�t ))�
 � Etf LX
j=0

�j
�
Ct+j
Ct

��

(1� h(c�t+j))�


@Ht+j
@Ct

g

35 :
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Chen and Ludvigson (2009) apply a sieve Minimum Distance (MD) procedure with conditional moment

restrictions:

E [Mt+1(�o; 
o; ho(�))Rj;t+1 � 1jwt] = 0; j = 1; :::; N; wt � It,

where the unknown ho () is approximated by a sigmoid Arti�cial Neural Networks (ANN) sieve,2 and

the law of motion of f Ct
Ct�1

; R1;t; :::; RN;t;wtg is not parametrically speci�ed except that the data are
assumed to be stationary weakly dependent. Using quarterly data from 1952:4-2001:4, some of the

(statistically signi�cant) empirical �ndings are: estimated habit is nonlinear, internal habit �ts the data

signi�cantly better than external habit, estimated �; 
 are sensible, and the estimated habit generated

SDF performs well in explaining cross-sectional stock returns. See Chen and Ludvigson (2009) for

details.

One can easily generalize their habit formation model and modify their method to estimate many

other semi-nonparametric speci�cations of the SDFMt+1 satisfying the Euler equation (2.1). See Chen,

Favilukis and Ludvigson (2009) for a semiparametric estimation of a recursive preference asset pricing

model.

Example 2.2 (Semi-nonparametric spatial VAR): Chen and Conley (2001) present an econometric

model for high-dimensional vector time series with a panel structure where there is dependence across

variables as well as over time. Examples of this type of data include quarterly observations on sector-

speci�c variables and weekly price data for many retail �rms in a region. In situations like these, there

are too few degrees of freedom to permit unrestricted time series estimation; restrictions are needed

to make progress. In particular, Chen and Conley (2001) wish to study how an industry�s sector-

speci�c shock a¤ects its own next period output growth and those of other industries. The data set

consists of N = 20 industry sectors, 72:2-92:4 quarterly data of output growth Yt =
�
Y1;t; Y2;t; :::; YN;t

�0
and inputs variables fsi;tgNi=1. Let Dt = (Dt(1; 2); :::; Dt(1; N); Dt(2; 3); :::; Dt(2; N); :::; Dt(N � 1; N))0

where Dt(i; j) = jsi;t � sj;tje is the �economic distance.� They propose a semi-nonparametric spatial
VAR model:

Yt+1 = A(Dt)Yt +Q(Dt)�t+1; t = 1; :::; n,

where E[�t+1jIt] = 0; E[�t�0tjIt] = IN , It = �(f(Yt�l; Dt�l); l � 0g), the conditional mean is E[Yt+1jIt] =
A(Dt)Yt with

A(Dt) =

2664
�1 g1(Dt(1; 2)) ::: g1(Dt(1; N))
g2(Dt(2; 1)) �2 ::: g2(Dt(2; N))
::: ::: ::: :::
gN (Dt(N; 1)) gN (Dt(N; 2)) ::: �N

3775 ;
2ANN sieves can approximate unknown nonlinear functions of high dimensional variables well; see, e.g., Chen and

White (1999) and Chen (2007).
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and the conditional covariance �(Dt) = Q(Dt)Q(Dt)0 is:

�(Dt) =

2664
�21 + C(0) C(Dt(1; 2)) ::: C(Dt(1; N))
C(Dt(2; 1)) �22 + C(0) ::: C(Dt(2; N))
::: ::: ::: :::
C(Dt(N; 1)) C(Dt(N; 2)) ::: �2N + C(0)

3775 ;
C(k�k) =

R1
0 exp

�
� [y j� je]

2
�
d�(y), � an unknown bounded nondecreasing function, and j� j2e =PN

i=1 �
2
i for � 2 <N . This speci�cation of the conditional covariance �(Dt) is called �conditional

isotropic�. It ensures that �(Dt) is always positive de�nite and is intuitive for modelling how a sector

speci�c shock a¤ects other sectors. The classic VAR models assume that �(Dt) � Q(Dt)Q(Dt)
0 is

diagonal i.e., C() = 0, which is unable to capture how a sector speci�c shock a¤ects other sectors.

Chen and Conley (2001) estimate �j ; gj(), �2j and C() via a simple two-step sieve Least Squares (LS)

procedure, where the unknown functions gj() and C() are approximated by shape-preserving cardinal

B-spline wavelet sieves. One of their empirical �nding is that the estimated C() is a strictly decreasing

function of the economic distance and statistically signi�cantly bounded away from zero. See their paper

for details.

One can generalize this model in many ways. For instance, the economic distance variable Dt

could be endogenous in some applications. For endogenous Dt the sieve LS estimators will no longer

be consistent, and one can apply sieve MD or sieve GMM procedures instead. The recent theoretical

advances on sieve MD by Ai and Chen (2003) and Chen and Pouzo (2008, 2009a, 2010) can be adapted

to models of spatial time series with endogeneity.

Example 2.3 (Semi-nonparametric GARCH + residual copula models): Many explanations of the

recent �nancial crisis have emphasized the role of �nancial frictions and collateral; see, e.g., Geanakpolos

(2010) for a review. The story is that �nancial frictions or leverage e¤ects amplify the impact that

unexpected bad news or bad shocks (in, for example, the mortgage market) have on prices and real

activity. Central to the �Leverage Cycle�theory of Geanakoplos (2010) is his assumption that bad news

(or an unexpected negative return shock) increases uncertainty (volatility). Fostel and Geanakoplos

(2010) provide a theoretical explanation for why bad news tends to increase volatility and good news

decreases volatility. We would like to use �exible econometric models and methods to empirically recover

the shapes of the �news impact curve�for individual �nancial series. In addition, we wish to empirically

address �risk assessment�and tail dependence among shocks to di¤erent �nancial series, which are also

important in understanding the �nancial crisis; see, e.g., Engle (2010).

Let "i;t and �2i;t respectively denote the time t shock (innovation) and volatility associated with

return series i. Note that the standard GARCH(1,1) model, �2i;t = !i + 
i (�i;t�1"i;t�1)
2 + �i�

2
i;t�1,

implies a symmetric impact of shocks on subsequent volatility. We model the �news impact curve�

of the i-th series via a semi-nonparametric GARCH(1,1) model: �2i;t = !i + hi (�i;t�1"i;t�1) + �i�
2
i;t�1,
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where the part �!i+hi (�)�is called the �news impact curve�for series i. It represents how unexpected
return shocks a¤ect subsequent volatility. The functional form hi (�) is not speci�ed and is estimated
nonparametrically from data.3

To accurately assess risk, our �nancial models must account for (i) the possibility of fat tailed

marginal distributions of innovations and (ii) the dependence between shocks to di¤erent assets. The

class of semiparametric copula based multivariate dynamic (SCOMDY) models proposed in Chen and

Fan (2006a) can easily capture both characteristics.

In this empirical illustration, we use daily data from March 20, 2007 to December 31, 2010, and

consider three series: daily excess returns on the Barclays mortgage-backed security (MBS) index (Set ),

daily excess stock market (the daily Fama-French factor) returns (M e
t ), and daily excess returns on

the Barclays bond index (Bet ). The data on M
e
t are from the �Fama/French Factors [Daily]�dataset

on the website of Kenneth French. The data on Set and B
e
t are log-di¤erences of, respectively, the

total return Barclays MBS index (�MBB�) and the total return Barclays bond index (�AGG�). These

indexes attempt to replicate the aggregate performance of their respective sectors, MBS and investment

grade bonds, in the US; see http://us.ishares.com for further details.

We propose the following multivariate semi-nonparametric time series model:

MBS Market : Set = cS + �SS
e
t�1 + �SM

e
t�1 + �S;t"S;t

Stock Market : M e
t = cM + �MM

e
t�1 + �M;t"M;t

Bonds Market : Bet = cB + �MB
e
t�1 + �BM

e
t�1 + �B;t"B;t

V olatility : �2i;t = !i + �i�
2
i;t�1 + hi (�i;t�1"i;t�1) ; i 2 fS;M;Bg ;

where E ("i;t) = 0 and E
�
"2i;t

�
= 1 for i 2 fS;M;Bg. "t = ("S;t; "M;t; "B;t)

0 are independent, identi-

cally distributed across time. "t has a joint distribution F (") = C(FS("S); FM ("M ); FB("B);�), where

C(�;�) : [0; 1]3 ! [0; 1] is a copula function4 with unknown parameters �. In the empirical application,

the marginal distributions Fi (�), i 2 fS;M;Bg, are not speci�ed, but the copula function is assumed
to be one with tail dependence, in particular the Student�s t-copula C (u;�), � = (�; v). Its density is

c (u; �; v) =
�
�
v+3
2

� �
�
�
v
2

��2p
det (�)

�
�
�
v+1
2

��3 �1 + x0��1xv

�� v+3
2 Y
i2fS;M;Bg

�
1 +

x2i
v

� v+1
2

;

where � is the correlation matrix, x0 = (xS ; xM ; xB) ; xi = T�1v (ui) ; Tv is the univariate Student�s

t distribution with degrees of freedom v. In the t-copula case, the bivariate tail dependence between

3Previously, Engle and Ng (1993) used piecewise linear splines to model the Japanese stock market �news impact curve�.
Linton and Mammen (2005) used kernel methods to estimate �news impact curves�and applied their method to the study
of S&P 500 returns.

4A copula function is a multivariate distribution function with uniform marginal distributions.
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shocks to series i and series j is

�ij = 2Tv+1

 
�
p
v + 1

p
1� corr (i; j)p

1 + corr (i; j)

!
:

We estimate this multivariate time series model via a semi-nonparametric multi-step procedure.

In the �rst step, we estimate each set of conditional mean and GARCH parameters via sieve quasi

maximum likelihood (QMLE), where each unknown hi() is approximated via cubic B-spline sieves

excluding a constant term. In the second step, we estimate each unknown marginal distribution Fi (�)
using the empirical cdf associated with the �tted standardized residuals. In the third step, we estimate

the unknown t-copula correlation matrix and degree of freedom via pseudo MLE. See Subsection 5.2

for details.

Our empirical �ndings are as follows. All three estimated news impact curves exhibit the same

asymmetry: bad news increases volatility more than does good news. For mortgage-backed securities

and stocks, some good news actually decreases volatility, as in Fostel and Geanakoplos (2010). As in

Linton and Mammen (2005), most good news in the stock market does not have much e¤ect on volatility.

As we see in the MBS case (see �gure and table below), for negative shocks Sieve-GARCH(1,1) predicts

more volatility than does standard GARCH(1,1), and for positive shocks Sieve-GARCH predicts less

volatility than does GARCH. For the concurrent dependence among the innovations that is described by

the Student�s t-copula, we �nd that (i) shocks to bonds and shocks to mortgage-backed securities (MBS)

are highly positively correlated, (ii) shocks to MBS and shocks to stocks are moderately negatively

correlated, (iii) shocks to bonds and shocks to stocks are moderately negatively correlated, and (iv)

shocks to MBS and shocks to bonds exhibit substantially positive tail dependence. See the below table, in

which standard errors are in parentheses.5 Note that with estimated semi-nonparametric GARCH and

residual copula dependence parameters, we could easily calculate Value-at-Risk (VaR) for a portfolio

comprised of mortgage-backed securities, stocks, and bonds.

Copula Parameter Estimates

corr (S;M) corr (S;B) corr (M;B) v �SM �SB �MB

�:2801
(:0320)

:9144
(:0064)

�:3590
(:0307)

5:3903
(:6484)

:0137
(:0057)

:6110
(:0239)

:0097
(:0042)

5Additional details on conditional mean/variance estimates, their standard errors, and �gures and tables are available
upon request.
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MBS Parameter Estimates

Model cS �S �S !S �S 
S

GARCH(1,1)
:0194
(:0057)

:0754
(:0356)

:0132
(:0051)

:0007
(:0004)

:8922
(:0252)

:1022
(:0219)

Sieve-GARCH(1,1)
:0134
(:0060)

:0734
(:0376)

:0117
(:0049)

:2369
(:1724)

:9118
(:0597)

see �gure

2.2 Partial list of semi-nonparametric time series models

If we allow for nonlinear and/or non-Gaussian economic and �nancial time series, there are too many

parametric time series models to fully list. Any one of these models can be slightly modi�ed into various

semi-nonparametric models. See, e.g., Tong (1990), Tiao and Tsay (1994), Teräsvirta, Tj�stheim and

Granger (1994), Härdle, Lütkepohl and Chen (1997), Granger (2003), Fan and Yao (2003), Fan (2005),

Tsay (2005), Gao (2007), Aït-Sahalia, Hansen and Scheinkman (2009), Franke, Kreiss and Mammen

(2009), Patton (2009), Linton (2009), Linton and Yan (2011), Giraitis, Leipus and Surgailis (2009)

and numerous recent reviews on univariate and multivariate nonlinear/semi-nonparametric time series

models. In this subsection, we mention some popular classes of such models in macro and �nancial
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econometrics and suggest ways to generate new semi-nonparametric time series models.6

(I) Univariate semi-nonparametric dynamic models

(I.1) Autoregressive and/or conditional heteroskedastic regression models:

Yt+1 = E[Yt+1jIt] +
p
V ar(Yt+1jIt)�t+1;

where E[�t+1jIt] = 0; V ar(�t+1jIt) = 1. Di¤erent speci�cations of conditional mean, E[Yt+1jIt],
and/or conditional variance, �2t � V ar(Yt+1jIt), lead to many nonlinear time series models, such as
the ARCH/GARCH models of Engle (1982) and Bollerslev (1996), the threshold model of Tong and

Lim (1980) and Hansen (1996), and the smooth transition model of Granger and Teräsvirta (1993), to

name only a few. If economic theories do not suggest particular nonlinear functional forms for E[Yt+1jIt]
and/or �2t , one may model these parts fully nonparametrically and estimate them from data. However,

due to the �curse of dimensionality�and modest sample sizes, fully nonparametric estimation is often

not practical. One could use various semi-nonparametric models, which reduce dimensionality, instead.

For example, let fXt; Ztg � It where Xt and Zt could include di¤erent Yt�j for j � 0. Then E[Yt+1jIt]
and/or �2t could be modelled in any of the following ways:

� partially linear: X 0
t� + h(Zt); see, e.g., Engle, Granger, Rice and Weiss (1986), Robinson (1988)

Haerdle, Liang and Gao (2000), Chen, Racine and Swanson (2001).

� functional coe¢ cient:
Pq
j=1 hj(Zt)X

0
j;t; see, e.g., Chen and Tsay (1993a), Cai, Fan and Yao (2000),

Chen and Conley (2001), Huang and Shen (2004).

� single index: h(X 0
t� + Z

0
t
); see, e.g., Ichimura (1993), Wang and Yang (2009a).

� additive: h1(Xt) + h2(Zt); see, e.g., Stone (1985), Andrews and Whang (1990), Chen and Tsay
(1993b), Mammen, Linton and Nielsen (1999), Huang and Yang (2004).

The semiparametric ARCH(1) model, �2t = ��2t�1 + h(Yt), of Engle and Ng (1993), Linton and

Mammen (2005), and others is an example of a partially linear regression model for volatility. This

simple model is widely used to allow for �exible �news impact curves� in �nance; see, e.g., Example

2.3. The conditional mean speci�cation in Chen and Conley (2001) could be viewed as a functional

coe¢ cient regression model; see, e.g., Example 2.2.

The methods used to model time series conditional mean and conditional variance could be easily

extended to model dynamic duration (or survival) data. For instance, one can easily modify the results

of Engle and Russell (1998), Zhang, Russell and Tsay (2001) and others on Autoregressive Conditional

Duration (ACD) models to allow for more �exible semi-nonparametric speci�cations.

6Due to the lack of space and time, we describe in a relatively detailed way only a few models, ones that will be revisited
in the rest of this paper.
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(I.2) Transformation autoregressive regression models. As observed by Granger (2003), in order to

perform economic policy evaluations and risk management, we need to model aspects of time series

beyond conditional means and conditional variances. Engle and Mangenelli (2004) and Koenker and

Xiao (2006) proposed autoregressive conditional quantile regressions to model conditional Value-at-Risk

(VaR). Their models have been generalized to allow for various semi-nonparametric forms.

To allow for an internally coherent way to model conditional VaR as well as tail risk, Chen and

Fan (2006b) proposed a class of Copula-based autoregressive regressions. They use the fact that any

strictly stationary �rst order Markov time series fYtgnt=1 with continuous marginal distribution F can

be equivalently characterized by a bivariate copula function, C(u0; u1), and the marginal F . That is, the

bivariate joint distribution of (Yt�1; Yt) is F (Yt�1; Yt) = C(F (Yt�1); F (Yt)), and the conditional density

of Yt given Yt�1 is f(YtjYt�1) = c(F (Yt�1); F (Yt))f(Yt). Leaving marginal cdf F unspeci�ed, di¤erent

parametric speci�cations of the copula density function, c(u0; u1;�), lead to di¤erent semiparametric

transformation autoregressive regression models:

�1;�1(F (Yt)) = �2;�2(F (Yt�1)) + "t; E["tjYt�1] = 0;

where �1;�1(�) is a parametric increasing function, �2;�2(u) � Ef�1;�1(F (Yt))jF (Yt�1) = ug, and the
conditional density of "t given F (Yt�1) = u is

f"tjF (Yt�1)=u(") = c(u;�
�1
1;�1
("+ �2;�2(u));�)�

d�1;�1("+ �2;�2(u))

d"
.

As demonstrated by Chen and Fan (2006b), Chen, Koenker and Xiao (2009), Chen, Wu and Yi (2009)

and others, copula based �rst order Markov models are useful for modelling conditional VaR of Yt given

Y t�1, which is simply the conditional quantile of Yt given Y t�1:

QYq (y) = F
�1
�
C�12j1 [qjF (y);�]

�
;

where C2j1[�ju;�] � @
@uC(u; �;�) is the conditional distribution of Ut � F (Yt) given Ut�1 = u; and

C�12j1 [qju;�] is the q�th conditional quantile of Ut given Ut�1 = u. This class of models is also useful in
capturing tail dependence of the time series fYtg:

lim
y!�1

Pr (Yt � yjYt�1 � y) = lim
y!�1

Pr (F (Yt) � F (y)jF (Yt�1) � F (y)) = lim
u!0+

C(u; u;�)

u
;

lim
y!+1

Pr (Yt � yjYt�1 � y) = lim
u!1�

1� 2u+ C(u; u;�)
1� u ;

provided the limits exist. See Patton (2006, 2009), Ibragimov (2009) and others for additional time

series autoregressive models generated via copulas.

(I.3) Distribution-based models: There are many nonlinear time series models that directly specify

�exible conditional distributions. See, e.g., Markov switching (Hamilton, 1989), hidden Markov, gen-

eralized hidden Markov, mixtures, random iterative models (Du�o, 1997), and nonlinear state space
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models (Hamilton (1994), Hansen and Sargent (2007)). There are many potential ways to semi-

nonparametrically relax aspects of these models.

(I.4) Discrete time data sampled from continuous-time models: Many theoretical models in macro-

economics, �nance and survival analysis are presented as continuous-time stochastic processes such

as stochastic volatility (Andersen, 1996), di¤usions, jump-di¤usions, Levy processes, continuous time

Markov models (Hansen and Scheinkman, 1995), etc., while economic and �nancial time series data

are sampled in low frequency from the underlying continous-time models. See Aït-Sahalia, Hansen and

Scheinkman (2009) and others for reviews of these models.

(II) Multivariate semi-nonparametric dynamic models

All of the existing univariate nonlinear time series models can easily be generalized to multi-

ple time series models, such as Sims� structural vector autoregression (VAR) model, Engle�s vector

ARCH/GARCH model and others.

In addition and, perhaps more interestingly, we may add complexity and/or �exibility in modelling

multivariate economic time series by specifying comovements in various ways. Currently, there are two

main approaches for modelling comovements, factors (e.g., Stock and Watson, 2002) and copulas (e.g.,

Embrechts, 2008). Either approach could be used to model

� concurrent comovements among multiple observed time series;

� concurrent comovements among multiple innovations;

� auto-comovements among multiple observed time series;

� auto-comovements among multiple innovations.

For example, Chen and Fan (2006a) proposed a large class of semiparametric copula based multi-

variate dynamic (SCOMDY) models:

Yj;t+1 = E[Yj;t+1jIt] +
q
V ar(Yj;t+1jIt)�j;t+1; j = 1; :::; N;

where the innovation f�t+1 � (�1t+1; : : : ; �Nt+1)
0 : t � 0g is assumed to be i.i.d. and independent of

It = �(fYt;Xtg). E(�jt) = 0, E(�2jt) = 1, and each �jt has unknown marginal cdf Fj(�). �t has joint
distribution F (�) = C(F1(�1); : : : ; FN (�N );�), where C(�;�) : [0; 1]N ! [0; 1] is a copula function with

copula dependence parameter �.

Di¤erent speci�cations of E[Yj;t+1jIt], V ar(Yj;t+1jIt) and C(�;�) lead to many di¤erent examples
of SCOMDY models; see, e.g., Example 2.3. These models are easy to estimate and useful for �exibly

estimating conditional VaR and contagion. Recently Cherubini et al (2010) apply SCOMDY to build

models of term structure of multivariate equity derivatives.
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(III) Speci�cation of semi-nonparametric dynamic models

As the reader can tell from the above descriptions, there are already many semi-nonparametric

dynamic models and one can easily introduce new ones. In empirical applications in economics and

�nance, several di¤erent nonlinear semi-nonparametric models could generate similar empirical patterns.

So which model(s) should one use? As illustrated by the three empirical examples in Subsection 2.1, the

answer should depend on which question(s) the researcher wishes to address. Guidance from economic

theories and empirical stylized facts could be as important as data structures and formal statistical

speci�cation tests.

For example, any strictly stationary �rst order Markov time series fYtgnt=1 with a continuous marginal
distribution F can be equivalently generated using a copula function C(u0; u1) and the marginal F as

follows: (i) generate n independent random variables fXtgnt=1 from the standard uniform distribution

U(0; 1); (ii) let U1 = X1, Ut = C�12j1 [XtjUt�1], and Yt , F�1(Ut). In the next graph, a strictly stationary
�rst order Markov series fYtgnt=1 is generated using a bivariate Clayton copula with a Student�s t
marginal: C�12j1 [XtjUt�1] = [(X

�15=16
t � 1)U�15t�1 + 1]

�1=15 and F = cdf of t(3). However, applying a

recent structural break test of Davis et al. (2005), one will detect 5 breaks (vertical black lines). A

Markov switching model also �ts well. In fact, many Markov models with tail dependent copulas and

fat tailed marginals will also have time series plots displaying patterns like structural breaks, Markov

switching and long memory. If the researcher cares about conditional VaR or tail dependence, a copula-

based Markov model is a sensible choice. See, e.g., Chen and Fan (2006b), Chen, Koenker and Xiao

(2009), Bouyé and Salmon (2009), or Ibragimov and Lentzas (2009).

2.3 Digression: nonlinearity and temporal dependence

Concepts that capture temporal dependence of linear time series models (autocorrelation, long memory,

fractional integration, unit roots, cointegration, etc.) are inadequate and sometimes misleading in

describing temporal dependence of nonlinear time series models. For example, many researchers have

asked the question, is the daily US interest rate series unit root or long memory? The answer is very

likely to be yes if the interest rate is modelled as a linear process. However, the answer is very likely

to be no if the interest rate is modelled as a nonlinear �rst order Markov process or as a discrete time

realization of a continuous-time Markov di¤usion process. Another example is in Chen, Hansen and

Carrasco (2010). They show that a strictly stationary scalar di¤usion process is always beta-mixing (see

de�nition below); but some of the beta-mixing decay rate could be very slow, in which case some of its

transformations behave like long memory (in the sense that the spectral density blows up at frequency

zero in a manner like long memory in a linear time series). As a third example, any strictly stationary

�rst order Markov time series fYtgnt=1 can be generated using a copula C(u1; u2) that links Yt and Yt+1
and a marginal cdf F . Ibragimov and Lentzas (2009) found in Monte Carlo studies that a Markov time

13



­ 2

­ 1

0

1

2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 0 02 0 03 0 04 0 05 0 06 0 07 0 08 0 09 0 01 0 0 0

M SR Probs.

Y

14



series generated via a Clayton copula and a fat tailed marginal looks like long memory. Chen, Wu and

Yi (2009) and Beare (2010) show that it is really beta-mixing with an exponential decay rate.

There are many di¤erent notions of temporal dependence of nonlinear time series. The ones that

have been used in the econometrics literature include:

� ergodicity for Markov processes, see, e.g., Tong (1990), Meyn and Tweedie (1993);

� mixing, see, e.g., Rosenblatt (1956), Doukhan (1994), Bradley (2007);

� near epoch dependence of mixing, see, e.g., Billingsley (1968), Andrews (1984), Gallant and White
(1988), Wooldridge and White (1988), Davidson (1994), Pötscher and Prucha (1997);

� physical and predictive dependence measures, see, e.g., Wu (2005, 2011);

� new weak dependence, see, e.g., Doukhan and Louhichi (1999);

� martingales, see, e.g., Hall and Heyde (1980);

� semimartingales, see, e.g., Ibragimov and Phillips (2008);

� long memory, see, e.g., Robinson (1994);

� nonlinear transformation of a unit root, or null recurrent Markov processes, see, e.g., Phillips and
Park (1998), Park and Phillips (2001), Wang and Phillips (2009a), Karlsen and Tj�stheim (2001).

In principle any of the above dependence concepts could be used for semi-nonparametric time series

models. In fact, there are already published work on kernel density estimation and kernel conditional

mean regression for time series data displaying any of the above dependence properties; see. e.g., Robin-

son (1994), Hidalgo (1997), Gao (2007) and others for long memory processes; Phillips and Park (1998),

Wang and Phillips (2009a), Karlsen and Tj�stheim (2001) and others for nonlinear and nonstationary

processes. Currently all the existing papers on semi-nonparametric density and regression estimation of

time series models with strong dependence rely heavily on the closed form expressions of their estimators

as well as the speci�c model structures.

In this survey, we focus on estimation and inference of a large class of semi-nonparametric dynamic

models via a general penalized sieve extremum estimation method. Although �exible, a penalized sieve

extremum estimator typically does not have a close form solution for complicated semi-nonparametric

models such as the empirical examples in Subsection 2.1. In the literature, the large sample properties of

penalized sieve extremum estimators, especially the rates of convergence, have been established mainly

using the tools from empirical process theory in probability and mathematical statistics; see, Pollard

(1984), Van der Vaart and Wellner (1996), van de Geer (2000), Kosorok (2008). At this moment,
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empirical process theory has been well developed mainly for strictly stationary ergodic processes that

satisfy various mixing conditions; see, e.g., Yu (1994), Andrews (1994a), Doukhan, Massart and Rio

(1995), Chen and Shen (1998), Rio (2000). Luckily, most widely used nonlinear time series models in

econometrics and �nance can be shown to be beta-mixing and/or strong-mixing.

Let It�1 and I1t+j be ���elds generated respectively by (Y�1; � � � ; Yt) and (Yt+j ; � � � ; Y1 ). De�ne

�(j) � sup
t
E supfjP (BjIt�1)� P (B)j : B 2 I1t+jg:

�(j) � sup
t
supfjP (A \B)� P (A)P (B)j : A 2 It�1; B 2 I1t+jg:

fYtg1t=�1 is called beta mixing if �(j)! 0 as j !1 and is strong mixing if �(j)! 0 as j !1:
There are alternative yet equivalent de�nitions of various mixing conditions for Markov processes.

For a strictly stationary Markov process fYtg1t=0 on a set 
 � Rd, let jj�jjpp =
R

 j�(y)j

pdQ(y) and

Tt�(y) = E[�(Yt)jY0 = y]: The Markov process fYtg is said to be ��mixing if

�(t) = sup
�:E[�(Yt)]=0;jj�jj2=1

jjTt�jj2 ! 0 as t!1;

the Markov process fYtg is ��mixing if

�(t) = sup
�:E[�(Yt)]=0;jj�jj1=1

jjTt�jj1 ! 0 as t!1;

and the Markov process fYtg is � �mixing if

�(t) =

Z
sup
0���1

����Tt�(x)� Z �dQ

���� dQ! 0 as t!1:

It is well-known that 2�(t) � �(t) and �(t) � �(t), but �(t) and �(t) are not related in general. For

Markov models, either �(t) � 1 (strong dependence) or �(t) decays exponentially fast, but �(t) and �(t)
could go to zero arbitrarily slowly. See, e.g., Bradley (2007).

The notion of ��mixing for a Markov process is closely related to the concept called V �ergodicity
(in particular 1 � ergodicity), see e.g., Meyn and Tweedie (1993). Given a Borel measurable function
V � 1 , the Markov process fYtg is V � ergodic if

lim
t!1

sup
0���V

����Tt�(y)� Z �dQ

���� = 0 , for all y;
the Markov process fYtg is V � uniformly ergodic if for all t � 0,

sup
0���V

����Tt�(y)� Z �dQ

���� � cV (y) exp(��t)
for positive constants c and �. A stationary process that is V-uniformly ergodic will be ��mixing with
exponential decay rate provided that E[V (Yt)] <1. This connection is valuable because one can show
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that a Markov time series is beta mixing by applying the famous drift criterion (for ergodicity): There

are constants � 2 (0; 1) and d 2 (0;1), a norm-like function �() � 1 and a small set K such that

E[�(Yt)jYt�1] � ��(Yt�1) + d� 1fYt�1 2 Kg:

In this case, fYtg is geometric ergodic and beta mixing with exponential decay rate. There is also a
drift criterion for sub-geometric ergodicity or beta mixing decay at a slower than exponential rate. See,

e.g., Tong (1990) and Meyn and Tweedie (1993).

Many nonlinear time series econometrics models are shown to be beta mixing or strong mixing via

Tweedie�s drift criterion approach. See, e.g., Tong (1990) for threshold models, Chen and Tsay (1993a,

b) for functional coe¢ cient autoregressive models and nonlinear additive ARX models, Doukhan (1994)

for nonlinear ARX(p,q), Masry and Tj�stheim (1995) for nonlinear ARCH, Yao and Attali (2000) for

nonlinear AR with Markov switching, Carrasco and Chen (2002) for GARCH, stochastic volatility (SV)

and autoregressive conditional duration (ACD), Chen, Hansen and Carrasco (2010) for di¤usions, Chen,

Wu and Yi (2009) and Beare (2010) for copula-based Markov models, and many more. In addition, a

large class of generalized hidden Markov models, including, for example, nonlinear state space models,

can also be shown to satisfy beta-mixing via the drift criterion. See, e.g., Carrasco and Chen (2002),

Douc, Moulines, Olsson and van Handel (2011).

Most of the popular nonlinear semi-nonparametric time series models assume that innovations have

positive density against Lebesgue measure, which turns out to be a crucial assumption in establishing

their beta-mixing (and hence strong mixing) properties. Andrews (1984) presents a famous counter

example: Yt = �Yt�1 + "t where � 2 (0; 1=2] and the innovation "t is i.i.d. Bernoulli(q), q 2 (0; 1).
Andrews (1984) shows that this simple AR(1) process fYtg with discrete innovations fails to be strong
mixing but is Near Epoch Dependent (NED), which is a more general dependence concept that still

satis�es central limit theorems; see, e.g., Billingsley (1968). Andrews (1984) motivates the popularity

of the NED of mixing processes in econometrics. See, e.g., Wooldridge and White (1988), Wooldridge

(1994) and Davidson (1994). For a stochastic sequence fVtg+1�1 that is weakly dependent mixing, let

F t+mt�m = �(Vt�m; :::; Vt+m) be such that fF t+mt�mg1m=0 is an increasing sequence of �-�elds. If, for p > 0,
a sequence of integrable r.v.s fYtg+1�1 satis�es

Yt � E �YtjF t+mt�m

�


p
� dtvm;

where vm ! 0 and fdtg+1�1 is a sequence of positive constants, then fYtg+1�1 is said to be near-epoch

dependent in Lp-norm (Lp-NED) on fVtg+1�1.
The NED dependence concept is widely used in nonlinear parametric time series models. However,

the currently available exponential inequality associated with NED is not su¢ cient for establishing

sharp empirical process results and hence fails to achieve the optimal rates of convergence for general
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penalized sieve extremum estimators for nonlinear semi-nonparametric models. Andrews (1991b), Chen

(1995), Chen and White (1998, 2002), Lu and Linton (2007), Li, Lu and Linton (2010) have obtained

some limiting distribution results for semi-nonparametrc time series models that are NED of mixing

processes. These papers have established their results relying on closed form expressions or some speci�c

properties of their estimators that general penalized sieve extremum estimators do not have.

Another useful dependence measure for strictly stationary nonlinear time series is the so-called

physical and predictive dependence measure; see, e.g., Wu (2005, 2011). Suppose that fYtg1t=�1 is

strictly stationary and can be represented as

Yt = H(: : : ; "t�1; "t) = H(F t�1); (2.2)

where "t, t 2 Z, are independent and identically distributed (iid) random variables, F t�1 = �(: : : ; "t�1; "t),

and H is a measurable function such that Yt is well-de�ned. In (2.2), (Yt) is causal in the sense that

Yt does not depend on the future innovations "j ; j > t. Let ("�i )i2Z be an iid copy of ("i)i2Z. Hence

"�i ; "j ; i; j 2 Z, are iid. Let

Y �t = H(F t��1); F t��1 = �(: : : ; "�1; "
�
0; "1; : : : ; "t�1; "t):

Assume kYtkp := (EjY jp)1=p <1 for p > 0. For t � 0 de�ne the physical dependence measure

�p(t) = kYt � Y �t kp;

and the predictive dependence measure (p � 1)

�p(t) = kE(YtjF0�1)� E(YtjF�1�1)kp; or !p(t) = kE(YtjF0�1)� E(YtjF0��1)kp:

The process (Yt) de�ned in (2.2) is p-stable if
P1
j=0 �p(j) <1; and is weakly p-stable if

P1
t=0 �p(t) <1

(or equivalently if
P1
t=0 !p(t) < 1). It is a special case of NED processes and allows for the famous

example of Andrews (1984). Wu and his co-authors have shown that many nonlinear time series models

satisfy these dependence measures and are developing limiting theorems and empirical process results

for strictly stationary time series models that can be represented as (2.2).

3 Penalized Sieve Extremum (PSE) Estimation

A semi-nonparametric structural model speci�es a family of probability distributions of fZtgnt=1 up
to some �nite dimensional Euclidean parameter � and some unknown functions h. Let � = (�; h) 2
� = B � H be an in�nite dimensional parameter space endowed with a (pseudo-) metric d. There

is a population criterion function Q : � ! <, which is maximized at a (pseudo-) true parameter
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�o = (�o; ho) 2 �. The choice of Q(�) and the existence of �o are suggested by the identi�cation of the
semi-nonparametric model.

Let bQn : � ! < be an empirical criterion, which is a jointly measurable function of � and data

fZtgnt=1 and converges to Q in some sense (to be more precise later) as n ! 1. One general way to
estimate �o is by maximizing bQn over �. In particular, an approximate extremum estimator �̂n satis�es

bQn(�̂n) � sup
�2�

bQn(�)�OP (�n); with �n ! 0 as n!1:

Examples of the criterion function bQn() include ML, MD, GMM, GEL and many more. See Amemiya
(1985), Newey and McFadden (1994), White (1994) and others.

It is well known that if the following two conditions are satis�ed,

� (IU condition) �o 2 � is said to satisfy �identi�able uniqueness�if

Q(�o) > sup
�2�:d(�o;�)�"

Q(�) for all " > 0:

� (ULLN condition) sup�2�
��� bQn(�)�Q(�)��� = op(1):

then the approximate extremum estimator �̂n is consistent for �o, i.e., d(�̂n; �o) = op(1).

3.1 Ill-posed versus well-posed problems and PSE estimation

When � is in�nite dimensional and possibly not compact with respect to the (pseudo-) metric d,

maximizing bQn over � may not be well-de�ned; and even if a maximizer arg sup�2� bQn(�) exists, it
is generally di¢ cult to compute. Even if one is able to compute �̂n = arg sup�2� bQn(�), it may be
inconsistent for �o; and even if consistent, it may converge to �o at a very slow convergence rate. These

di¢ culties arise because the problem of optimization over an in�nite dimensional non-compact space

may no longer be well-posed.

Following Chen (2007), we say the optimization problem is

� well-posed if for all sequences f�kg in � with Q(�o)�Q(�k)! 0 then d(�o; �k)! 0;

� ill-posed (or not well-posed) if there exists a sequence f�kg in � with Q(�o) � Q(�k) ! 0 but

d(�o; �k)9 0.

Therefore, the semi-nonparametric problem becomes ill-posed whenever the �identi�able uniqueness�

condition fails. It is clear that �identi�able uniqueness� fails if �o is not point identi�ed (i.e., if Q() is

maximized at more than one point in �). Even if Q() is uniquely maximized at �o 2 � and is upper

semicontinuous in (�; d), the �identi�able uniqueness�condition may still fail if � is not compact in d,
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which is typically the case in semi-nonparametric mixture models and semi-nonparametric conditional

moment restriction problems.

Example 3.1 (Semi-nonparametric mixture models): data fZt = (Yt; X
0
t)
0gnt=1 are assumed drawn

from a semi-nonparametric mixture density f(YtjXt;�o; ho) =
R 1
0 f(YtjXt;�o; u)ho(u)du, where �o 2 B,

a compact subset in <d� , and ho 2 H, a space of Lipschitz continuous probability density functions over
[0; 1]. It is clear that �o = (�o; ho) 2 arg sup�2B;h2HQ(�; h), where

Q(�; h) = E

�
log

�Z 1

0
f(YtjXt;�; u)h(u)du

��
:

Without any restriction on the parametric functional form of f(YtjXt;�; u), �o 2 � = B � H is not

point identi�ed. Even if we impose restrictions on f(YtjXt;�; u) so that Q(�) is uniquely maximized
at �o, the �identi�able uniqueness� condition still fails and the problem is ill-posed for (�; d) when

d(�; �o) = j� � �oje + dH(h; ho) for dH(h; ho) = supu2[0;1] jh(u)� ho(u)j or
R 1
0 jh(u)� ho(u)j du.

Example 3.2 (Single index instrumental variables regression): data fZt = (Y1t; Y
0
2t; Y3t; X

0
t)
0gnt=1 are

assumed to satisfy E[Y1t � ho(Y 02t�o + Y3t)jXt] = 0 almost surely, where �o 2 B, a compact subset in
<d� , and ho 2 H, a space of increasing functions with continuous derivatives over <. It is clear that
�o = (�o; ho) 2 arg sup�2B;h2HQ(�; h), where

Q(�; h) = �E
��
E[Y1t � h(Y 02t� + Y3t)jXt]

	2�
:

Recently Chen, Chernozhukov, Lee and Newey (2011) provided su¢ cient conditions for local identi�-

cation of �o = (�o; ho). However, even if we assume that Q(�) is uniquely maximized at �o 2 � =

B � H, the problem is still ill-posed for (�; d) when d(�; �o) = j� � �oje + dH(h; ho) for dH(h; ho) =
supu jh(u)� ho(u)j or

q
E[jh(Y 02t�o + Y3t)� ho(Y 02t�o + Y3t)j

2]. This example is a special case of semi-

nonparametric conditional moment restrictions (3.7) (see below for further discussion).

Whether or not the semi-nonparametric problems are well-posed or ill-posed, the method of sieves

provides one general approach to resolve the di¢ culties associated with maximizing bQn over an in�nite
dimensional space � by maximizing bQn over a sequence of approximating spaces �k(n), called sieves
by Grenander (1981), which are less complex but dense in �. Popular sieves are typically compact,

non-decreasing (�k � �k+1 � � � �) and are such that � � cl ([k�k), that is, for any � 2 � there exists
an element �k(n)� in �k(n) satisfying d(�; �k(n)�) ! 0 as n ! 1, where we may interpret �k(n) as a
projection mapping from � to �k(n).

Like the method of sieves, the method of penalization (or regularization) is a general approach for

solving possibly ill-posed, in�nite dimensional optimization problems. This method estimates �o by

maximizing
n bQn(�)� �nPen(�)o, a penalized criterion, over the entire in�nite dimensional parameter

space �, where �n > 0 is a penalization parameter such that �n ! 0 as n ! 1 and the penalty

Pen() > 0 is typically chosen such that f� 2 � : Pen(�) �Mg is compact in d for all M 2 (0;1).
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Let � = B �H be an in�nite dimensional space endowed with a (pseudo-) metric d, where for any

�j = (�j ; hj) 2 �, j = 1; 2, d(�1; �2) = j�1 � �2je + dH(h1; h2) with Euclidean distance j�je on B and a

pseudo-metric dH(h1; h2) on H. We assume that B is a compact subset in <d� but that the function
space H may not be compact in dH . We introduce a class of approximate penalized sieve extremum

(PSE) estimators, b�n = (b�n;bhn) 2 �k(n) = B �Hk(n), de�ned by:n bQn(�̂n)� �n bPn(bhn)o � sup
�2B�Hk(n)

n bQn(�)� �n bPn(h)o�OP (�n); (3.1)

where f�ng1n=1 is a sequence of positive real values such that �n = o(1); Hk(n) is a sieve parameter space
whose complexity (denoted k(n) � dim(Hk(n))) grows with sample size n and becomes dense in the
original function space H under the (pseudo-) metric dH ; �n � 0 is a penalization parameter such that
�n ! 0 as n ! 1; and the penalty bPn() � 0, which is an empirical analog of a non-random penalty

function Pen : H ! [0;+1), is jointly measurable in h and the data fZtgnt=1.
The sieve space Hk(n) in the de�nition of the PSE (3.1) could be �nite dimensional, in�nite dimen-

sional, compact or non-compact (in dH). Commonly used �nite-dimensional linear sieves (also called

series) take the form:

Hk(n) =

8<:h 2 H : h(�) =
k(n)X
k=1

akqk(�)

9=; ; k(n) <1; k(n)!1 slowly as n!1; (3.2)

where fqkg1k=1 is a sequence of known basis functions of a Banach space (H; dH) such as wavelets,
splines, Fourier series, Hermite polynomial series, Power series, Chebychev series, etc. Linear sieves

with constraints, which are commonly used, can be expressed as:

Hk(n) =

8<:h 2 H : h(�) =
k(n)X
k=1

akqk(�); Rn(h) � Bn

9=; ; Bn !1 slowly as n!1; (3.3)

where the constraint Rn(h) � Bn re�ects prior information about h0 2 H such as smoothness properties.
The sieve spaceHk(n) in (3.3) is �nite dimensional and compact (in dH) if and only if k(n) <1 andHk(n)
is closed and bounded; it is in�nite dimensional and compact (in dH) if and only if k(n) =1 and Hk(n)
is closed and totally bounded. For example, Hk(n) =

n
h 2 H : h(�) =

Pk(n)
k=1 akqk(�); khkH � log(n)

o
is

compact if k(n) <1, but it is not compact (in dH) if k(n) =1. Linear sieves (or series) are widely used
in econometrics. But, to approximate h(�) that depends on a high dimensional variable, nonlinear sieves
such as Neural Networks, radial basis, ridgetlets, mixtures of some known distributions (or densities)

or others could be more useful. See Chen (2007), DeVore and Lorentz (1993) and the references therein

for additional examples of linear and nonlinear sieves.

The penalty function Pen() is typically convex and/or lower semicompact (i.e., the set fh 2 H :

Pen(h) � Mg is compact in (H; dH) for all M 2 [0;1)) and re�ects prior information about h0 2 H.
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For instance, when H � Lp(d�), 1 � p < 1, a commonly used penalty function is bPn(h) = jjhjjpLp(d�)
for a known measure d�, or bPn(h) = jjhjjpLp(db�) for an empirical measure db� when d� is unknown. When
H is a mixed weighted Sobolev space fh : jjhjj2L2(d�)+ jjr

rhjjpLp(leb) <1g, 1 � p <1, r � 1, we can let
jj � jjH be the L2(d�)�norm, and bPn(h) = jjhjj2L2(db�) + jjrkhjjpLp(leb) or bPn(h) = jjrkhjjpLp(leb) for some
k 2 [1; r].

Our de�nition of PSE (3.1) includes both the method of sieves and the method of penalization (or

regularization) as special cases. In particular, when �n bPn() = 0, the (approximate) PSE (3.1) becomes
the solution to:

bQn(�̂n) � sup
�2B�Hk(n)

bQn(�)�OP (�n); with �n ! 0 as n!1; (3.4)

which is the original (approximate) sieve extremum estimator de�ned in Chen (2007). When �n bPn() > 0,bPn() = Pen() and Hk(n) = H (i.e., k(n) =1), the (approximate) PSE (3.1) becomes the solution to:n bQn(�̂n)� �nPen(bhn)o � sup
�2B�H

n bQn(�)� �nPen(h)o ; (3.5)

which is a function space penalized (or regularized) extremum estimator.

Which method should one use?

(1) Both the sieve method (3.4) and the function space penalization method (3.5) are quite �exible.

A researcher has to make similar choices in applying either method. For the sieve method (3.4), one must

choose the sieve space Hk(n) (and, for a given �nite dimensional sieve, the number of sieve terms k(n)).
For the penalization method (3.5), one must choose the penalty function Pen(�) and the regularization
parameter �n. Both the choices of Hk(n) and Pen(h) should be guided by prior information about
smoothness and/or shape properties of the unknown function h as well as computational issues. In

general, the smoothing parameters (k(n) and �n) could be chosen via cross validation.

(2) From a theoretical point of view, sieve extremum estimators (3.4) and function space penalized

extremum estimators (3.5) have similar large sample properties. For example, with an optimal choice

of sieve number of terms k(n) for the nonparametric part the sieve estimator b�n = (b�n;bhn) de�ned in
(3.4) can simultaneously achieve root-n asymptotic normality of the smooth functional part (b�n) and
the optimal convergence rate for the nonparametric part (bhn). Likewise, with an optimal choice of the
regularization parameter �n for the nonparametric part the penalization estimator b�n = (b�n;bhn) de�ned
in (3.5) can simultaneously achieve root-n asymptotic normality of b�n and the optimal convergence rate
for bhn. See Section 4 for details.

(3) The sieve extremum estimator (3.4) with �nite dimensional sieves is much easier to compute.

Once the unknown functions are approximated by �nite dimensional sieves, the implementation of the

sieve extremum estimation (3.4) is the same as parametric nonlinear extremum estimation. Also, with
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the sieve method it is easy to impose shape restrictions on unknown functions, such as monotonicity, con-

cavity, additivity, non-negativity and other restrictions. In the numerical implementation of functional

space penalized estimation (3.5), one typically expands the unknown function h() in terms of in�nite di-

mensional linear sieves, h(�) =
P1
k=1 akqk(�), and then penalizes the sieve coe¢ cients fak : k � 1g. See,

e.g., Donoho, et al. (1995) for regularized wavelets and Eliers and Marx (1996) for penalized splines.

This makes the penalized estimation very similar to penalized sieve estimation.

(4) When the problem is ill-posed (or when the identi�able uniqueness condition fails), in terms of

�nite sample performance as well as conditions for asymptotic optimal rate of convergence, it is better

to use the sieve extremum estimator (3.4) with �nite dimensional compact sieves such as (3.3) or the

PSE estimator (3.1) with high but �nite dimensional linear sieves (series) (3.2). See, e.g., Newey and

Powell (2003), Ai and Chen (2003), Blundell, Chen and Kristensen (2007), Chen and Pouzo (2008,

2009a). This motivates us to present the more general penalized sieve method.

3.2 Penalized sieve M estimation

(Penalized) sieve M estimation is a special case of (penalized) sieve extremum estimation whenbQn(�) in (3.1) is bQn(�) = 1

n

nX
t=1

l(�; Zt);

where l : ��<dz ! < is the criterion based on a single observation. In estimating �o = arg sup�2�E[l(�; Zt)],
this is a natural procedure. It is called (penalized) sieve minimum contrast estimation in statistics.

Di¤erent choices of the criterion l(�; Zt) yield special cases of (penalized) sieve M estimation. Exam-

ples include (penalized) sieve Maximum Likelihood (ML), (penalized) sieve Quasi Maximum Likelihood

(QML), (penalized) sieve Least Squares (LS), (penalized) sieve Generalized Least Squares (GLS), (pe-

nalized) sieve Quantile Regression (QR), and many others.

In econometrics, the SNP estimator proposed by Gallant and Nychka (1987) is really a special case

of sieve MLE using Hermite polynomial sieves to approximate an unknown density. Heckman and

Singer�s (1984) nonparametric MLE (NPMLE) is simply a sieve MLE using a �rst order spline sieve to

approximate the latent heterogeneity distribution.

Example 3.1 continued (Semi-nonparametric mixture models): Recall that

�o = (�o; ho) 2 arg sup
�2B;h2H

E

�
log

�Z 1

0
f(YtjXt;�; u)h(u)du

��
:

We can estimate �o via a sieve MLE b� = (b�;bh) 2 B �Hk(n), which solves
sup

�2B�Hk(n)

1

n

nX
t=1

log

�Z 1

0
f(YtjXt;�; u)h(u)du

�
;
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where the sieve space Hk(n) could be mixtures of Bernstein densities (see, e.g., Ghosal (2001)):

Hk(n) =

8<:h(u) = k(n)
k(n)X
j=1

aj;k(n)

�
k(n)� 1
j � 1

�
uj�1(1� u)k(n)�j : aj;k(n) � 0;

k(n)X
j=1

aj;k(n) = 1

9=; :
We could also estimate �o via a penalized MLE b� = (b�;bh) 2 B �H, which solves

sup
�2B�H

(
1

n

nX
t=1

log

�Z 1

0
f(YtjXt;�; u)h(u)du

�
� �nPen(h)

)
;

where �n > 0 and �n ! 0 slowly as n!1. The penalty could be, for example, Pen(h) =
R
[rh(u)]2du

or
R
jrh(u)j du. See, e.g., Eggermont and LaRiccia (2001) for other penalties.

In empirical work, most people use �nite dimensional sieve M estimation without any penalty. In

terms of practical implementation of functional space penalized M estimation, there are two popular

approaches. The �rst one is the smoothing spline approach; see, e.g., Wahba (1990), Koenker, Ng

and Portnoy (1994) and Gu (2002). The second approach is to expand the unknown function h() in

terms of in�nite dimensional linear sieves, h(�) =
P1
k=1 akqk(�), and then penalizes the sieve coe¢ cients

fak : k � 1g; see, e.g., Donoho, et al. (1995) and Eliers and Marx (1996).7

An important special case of sieve M estimation in econometrics is series estimation, which is sieve

M estimation with concave criterion functions bQn(�) = 1
n

Pn
t=1 l(�; Zt) and �nite-dimensional linear

sieve spaces �k(n).

Example 3.3 (Series LS estimation): Yt = �o(Xt) + "t, E["tjXt] = 0. Let fpj(X); j = 1; 2; :::g be a
sequence of known basis functions that can approximate any � 2 � well. pkn(X) = (p1(X); :::; pkn(X))0.
Then �k(n) = fh : h(x) = pkn(x)0A : A 2 <kng, with kn !1 slowly as n!1, is a �nite-dimensional
linear sieve for �. And b� is a sieve (or series) LS estimator of �o = arg inf�2�E �[Yt � �(Xt)]2�:

b� = arg max
�2�k(n)

�1
n

nX
t=1

[Yt � �(Xt)]2 = pkn(�)0(P 0P )�
nX
t=1

pkn(Xt)Yt:

Partial list of empirical applications of sieve M estimation to economic time series mod-

els: Engle et al. (1986) forecast electricity demand using a partially linear spline LS regression. Engle

and Gonzalez-Rivera (1991) apply sieve MLE to estimate ARCH models where the unknown density of

the standardized innovation is approximated by a �rst order spline sieve. Chen and Conley (2001) apply

a simple two-step sieve LS procedure to estimate a spatial temporal model where both the unknown

conditional mean and unknown conditional covariance are approximated by shape-preserving cardinal

B-spline wavelet sieves. Engle and Rangel (2007) propose a new Spline GARCH model to measure

7For example, a function penalty Pen(h) =
R
jrh(u)j du would become `1 penalty on �rst di¤erence of wavelet or spline

sieve coe¢ cients, which looks like a LASSO penalty for high-dimensional sparse models (see, e.g., Van de Geer (2008),
Belloni and Chernozhukov (2011)).
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unconditional volatility and have applied it to equity markets for 50 countries for up to 50 years of daily

data. Audrino and Bühlmann (2009) leave the entire volatility process unspeci�ed and approximated by

B-spline sieves. White (1990) and Granger and Teräsvirta (1993) suggest nonparametric LS forecasting

via sigmoid ANN sieves. Hutchinson et al. (1994) apply radial basis ANN to option pricing. Chen et

al. (2001) use partially linear ANN and ridgelet sieves to forecast US in�ation. McCa¤rey et al. (1992)

estimate the Lyapunov exponent of a chaotic system via ANN sieves. Phillips (1998) applies ortho-

normal bases to analyze spurious regressions. See Fan and Yao (2003) and Gao (2008) for additional

applications to �nancial time series models.

3.3 Penalized sieve MD estimation

(Penalized) sieve MD estimation is a special case of (penalized) sieve extremum estimation in which

� bQn(�) in (3.1) can be expressed as some distance from zero.

One typical minimum distance criterion takes the following quadratic form:

bQn(�) = �n�1 nX
t=1

bm(Xt; �)0fb�(Xt)g�1 bm(Xt; �); (3.6)

where bm(Xt; �) is a consistently estimated vector-valued function m(Xt; �) of �xed �nite dimension,
and b�(Xt) is a consistently estimated weighting matrix �(Xt) that is introduced for e¢ ciency. This is
a natural procedure for estimating �o = arg inf�2�E

�
m(Xt; �)

0f�(Xt)g�1m(Xt; �)
�
.

We can apply the (penalized) sieve MD procedure to estimate models belonging to the class of

semi-nonparametric conditional moment restrictions

E[�(Zt; �o; ho(�))jXt] = 0; (3.7)

where the di¤erence �(Zt; �; h(�))��(Zt; �o; ho(�)) depends on the endogenous variables Yt. In particular,bm(Xt; �) could be any nonparametric estimator, such as a kernel, local linear regression or series LS
estimator, of the conditional mean function m(Xt; �) = E[�(Zt; �)jXt] with � = (�; h). For example, a
series LS estimator is bm(Xt; �) = pJn(Xt)0(P 0P )� nX

i=1

pJn(Xi)�(Zi; �); (3.8)

where fpj()g1j=1 is a sequence of known basis functions that can approximate any square integrable
function of X well, Jn is the number of approximating terms such that Jn ! 1 slowly as n ! 1,
pJn(X) = (p1(X); :::; pJn(X))

0, P = (pJn(X1); :::; p
Jn(Xn))

0, and (P 0P )� is the generalized inverse of

the matrix P 0P . See, e.g., Newey and Powell (1989, 2003), Ai and Chen (1999, 2003), Chen and Pouzo

(2008, 2009a) and others for more details and applications of this estimator.

Another typical minimum distance criterion is the following sieve GMM :

bQn(�) = �bgn(�)0cWbgn(�) (3.9)

25



with bgn(�o)! 0 in probability. Here bgn(�) is a sample average of some unconditional moment restriction
of increasing dimension, and cW is a possibly random weighting matrix of increasing dimension that is

introduced for e¢ ciency. Note that E[�(Z; �o)jX] = 0 if and only if the following increasing number of
unconditional moment restrictions hold:

E[�(Zt; �o)pj(Xt)] = 0; j = 1; 2; :::; Jn, (3.10)

where fpj(X); j = 1; 2; :::; Jng is a sequence of known basis functions that can approximate any real-
valued square integrable function of X well as Jn ! 1. Let pJn(X) = (p1(X); :::; pJn(X))0. It is now
obvious that the semi-nonparametric conditional moment restrictions (3.7) can be estimated via the

sieve GMM criterion (3.9) using bgn(�) = 1
n

Pn
t=1 �(Zt; �)
 pJn(Xt).

Partial list of empirical applications of sieve MD estimation to economic time series

models: Chen and Ludvigson (2009) apply the sieve MD procedure to estimate a semi-nonparametric

habit formation consumption asset pricing model where the unknown habit function is approximated

via a sigmoid ANN sieve. Chen et al. (1998) employ a shape-preserving spline-wavelet sieve to estimate

the eigenfunctions of a fully nonparametric scalar di¤usion model from discrete-time low-frequency

observations. Gallant and Tauchen (1989) and Gallant et al. (1991) employ Hermite polynomial sieves

to study asset pricing and foreign exchange rates. Gallant and Tauchen (1996, 2004) use a combination

of Hermite polynomial sieves and the simulated method of moments to solve many complicated asset

pricing models with latent factors, and their methods have been widely applied in empirical �nance.

Bansal and Viswanathan (1993), Bansal et al. (1993) and Chapman (1997) consider sieve approximation

of the whole stochastic discount factor (or pricing kernel) as a function of a few macroeconomic factors.

4 Large Sample Properties of PSE Estimators

The general theory on large sample properties of PSE estimation of unknown functions is technically

involved and relies on the theory of empirical processes. Chen (2007) presented a detailed review

on large sample properties of sieve extremum estimators that were available as of 2006. Since then,

there have been additional convergence rate results for sieve M estimators, and there have been rapid

advances on convergence rates of penalized sieve MD estimators for nonparametric conditional moment

restriction models, a large class of nonparametric nonlinear (possibly ill-posed inverse) problems with

unknown operators. Perhaps more importantly, there have been some recent developments on limiting

distributions of plug-in PSE estimators of functionals that may or may not be root-n estimable and on

simple inference methods.
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4.1 Consistency, convergence rates of PSE estimators

In Chen (2007, theorem 3.1) we provide a consistency theorem for approximate sieve extremum esti-

mators that allows for possibly ill-posed semi-nonparametric problems. Chen and Pouzo (2008) present

a slightly more general consistency theorem for approximate PSE estimators, allowing for ill-posed

problems and noncompact parameter spaces.

(I) Convergence rates of penalized sieve M estimators

Let �o = (�o; ho) = arg sup(�;h)2B�HE[l(�; h; Zt)]. Let b�n = (b�n;bhn) be either the approximate
sieve M estimator (with �n = o(1)):

1

n

nX
t=1

l(�̂n; Zt) � sup
�2B�Hk(n)

1

n

nX
t=1

l(�; Zt)�OP (�n);

or the approximate functional space penalized M estimator (with �n = o(1)):

1

n

nX
t=1

l(�̂n; Zt)� �nPen(bhn) � sup
�2B�H

(
1

n

nX
t=1

l(�; Zt)� �nPen(h)
)
�OP (�n):

There are many results on convergence rates of sieve M estimators of unknown functions for i.i.d.

data; see Chen (2007) for a detailed review and the references therein. Chen and Shen (1998) obtain

the convergence rate for general sieve M estimation with stationary beta-mixing data; their convergence

rate is the same as if the data were iid. Huang (2002) derives the convergence rate for a polynomial

spline series LS estimator for weakly dependent strong mixing time series data. Both papers establish

the convergence rates under a metric k� � �ok �
p
E [l(�o; Zt)� l(�; Zt)]. For series LS regression

Example 3.3, there are also some results on the convergence rate under the sup-norm k� � �ok1 =

supx2X j�(x)� �o(x)j for iid data; see, e.g., Stone (1982), Newey (1997), de Jong (2002), and Song
(2008). One could easily extend these sup-norm convergence rate results for iid data to series LS

regression for strong mixing dependent data.

There are also many convergence rate results for functional space penalized M estimators for i.i.d.

data; see, e.g., Shen (1997), van de Geer (2000) and the references therein. Chen (1997) established

the convergence rates of the functional space penalized M estimators for weakly dependent data such

as uniform mixing, beta mixing and strong mixing. Her convergence rate for uniform mixing and beta

mixing time series can achieve the optimal rates of general penalized M estimators for iid data.8

The optimal rates of convergence are achieved by choosing the smoothing parameters, k(n) for

sieve M estimation and �n for penalized M estimation, to balance the bias and the complexity of the

nonparametric models (or, roughly, the standard errors in nonparametric regression models). There are

many theoretical results on data driven choices of smoothing parameters (k(n) or �n) in nonparametric

8Chen (1997) has never been submitted for any journal publication because the author feels that function space penalized
M estimation is not as practical as sieve M estimation.
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M estimation of ho. See Arlot and Celisse (2010), Hansen and Racine (2010), Leeb and Pötscher (2009),

Ruppert et al. (2003), Barron et al. (1999), Shen and Ye (2002), Li (1987), Andrews (1991a), Hurvich

et al. (1998), Stone et al. (1997), Coppejans and Gallant (2002), Phillips and Ploberger (2003) and

others. In practice, cross-validation (CV) and small sample corrected AIC have been used; see, e.g.,

Ichimura and Todd (2007) for a recent review on implementation of series M estimators.

(II) Convergence rates of penalized sieve MD estimators

Many structural econometric models belong to the class of semi-nonparametric conditional moment

restrictions (3.7). Recently, there has been a lot of work on identi�cation and estimation of two impor-

tant examples of this class of models. The �rst example is the nonparametric instrumental variables

regression (NPIV):

E[Y1t � h0(Y2t)jXt] = 0;

see, e.g., Newey and Powell (2003), Hall and Horowitz (2005), Blundell, Chen and Kristensen (2007),

Carrasco, Florens and Renault (2007), Chen and Reiss (2010), Horowitz (2011), Darolles, Fan, Flo-

rens and Renault (2011) and others. The second example is the nonparametric quantile instrumental

variables regression (NPQIV):

E[1fY1t � h0(Y2t)gjXt] = 
 2 (0; 1);

see, e.g., Chernozhukov and Hansen (2005), Chernozhukov, Imbens and Newey (2007), Horowitz and

Lee (2007), Chen and Pouzo (2008, 2009a), Chernozhukov, Gagliardini and Scaillet (2010) and others.

Most asset pricing models also imply the conditional moment restrictions (3.7); see, e.g., Example 2.1

(habit based asset pricing) and Chen and Pouzo (2009b, 2010) for nonparametric pricing of endogenous

default risk.

Chen, Chernozhukov, Lee and Newey (2011) provide some su¢ cient conditions for identi�cation

of this class of models (3.7). Chen and Pouzo (2008, 2009a) propose a class of penalized sieve MD

estimators b�n = (b�n;bhn) 2 �k(n) = B �Hk(n) de�ned as:
b�n = arg inf

(�;h)2B�Hk(n)

(
1

n

nX
i=1

bm(Xi; �; h)0b�(Xi)�1 bm(Xi; �; h) + �n bPn(h)) :
See their papers for a detailed study of consistency and the rate of convergence of this class of estimators,

which allows for nonlinear ill-posed inverse problems such as the partially linear quantile IV regression

E[1fY3t � Y 01t�o + ho(Y2t)gjXt] = 
. Horowitz (2010) considered a data-driven way to select sieve

number of terms k(n) in a sieve estimation of the NPIV model E[Y1t � h0(Y2t)jXt] = 0. There is little
work on model selection for the penalized sieve MD estimation for the general model (3.7).
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4.2 Limiting distributions and inference for PSE estimation of functionals

Recall that a semi-nonparametric (or semiparametric) model consists of two sets of parameters � =

(�; h), where � is a vector of �nite dimensional parameters of interest, and h is a vector of in�nite

dimensional parameters of interest (or nuisance parameters). In many economic applications, we are

interested in conducting inference on a real valued functional � : �! <. Examples include �(�o) = �0�o
for 0 6= � 2 <d� and (ho(y�1); :::; ho(y�d))� for 0 6= � 2 <d, where ho() is a real valued function.

A functional can be classi�ed into three categories:

� either (a) �(�o) can be estimated at a
p
n�rate, (i.e., �(�o) is a regular functional, a smooth

functional or a bounded functional); see van der Vaart (1991), Newey (1990) and Bickel et al.

(1993);

� or (b) �(�o) can be best estimated at a slower than
p
n�rate, (i.e., �(�o) is a non-smooth functional

or an unbounded functional);

� or (c) �(�o) can be estimated at a faster than
p
n�rate, typically at an n�rate such as in settings

with structural breaks, parameters at the boundary, unit roots, etc.

Let b�n = (b�n;bhn) be a consistent estimator of �o = (�o; ho) that is identi�ed by a semi-nonparametric
(or semiparametric) model. Then �(b�n) is a simple plug-in estimator of the functional of interest �(�o).
There are many general theoretical results on

p
n�asymptotic normality and semiparametric e¢ ciency

of various plug-in estimators of smooth functionals (category (a)); see, e.g. Chen (2007) for a recent

review and the references therein. Also, there are some recent developments in estimation and inference

of non-smooth functionals (category (b)). However, there is not yet well developed general theory on

faster than
p
n�rate of functionals (category (c)) in semi-nonparametric models.

In this section we brie�y survey recent results for categories (a) and (b) in which b�n is estimated via
the method of penalized sieve extremum estimation.

4.2.1 Simultaneous penalized sieve M estimators

(I) Smooth (or regular) functional case

For i.i.d data and when �(�o) is a smooth functional, there are many general theory papers about

the
p
n�asymptotic normality of simultaneous sieve M estimators �(b�n) of �(�o). See, e.g., Wong and

Severini (1991) on pro�le nonparametric MLE, Shen (1997) on sieve MLE, Murphy and Van der Vaart

(2000) on pro�le nonparametric MLE, van de Geer (2000) on semiparametric penalized M estimation,

Shen (2002) on Bayesian sieve MLE, to name only a few. There are also several general theory papers on

inference for smooth functionals; see, e.g., Murphy and Van der Vaart (2000) on the pro�led nonpara-

metric likelihood ratio, Shen and Shi (2005) on the sieve likelihood ratio, Cheng and Kosorok (2009) on
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the pro�le sampler, Cheng and Huang (2010) on the bootstrap of pro�le nonparametric M estimation,

Kleijn and Bickel (2010) on semiparametric Bayesian Bernstein-Von Mises theorem, to name only a few.

For weakly dependent time series data, Chen and Shen (1998) and Chen (1997) respectively establish
p
n asymptotic normality of sieve M estimation and penalized M estimation of �(�o). They also show

that sieve MLE and penalized MLE are asymptotically e¢ cient. One advantage of this (penalized)

sieve M estimation of �(�o) is that the optimal choice of smoothing parameter for nonparametric part

can also lead to root-n asymptotic normality of �(b�n). Recently Chen, Liao and Sun (2011) provide a
simple consistent estimator of the asymptotic variance of the sieve M estimator �(b�n) of �(�o).

(II) Possibly non-smooth functional case

When �(�o) is a non-smooth functional such as (ho(y�1); :::; ho(y
�
d))� for 0 6= � 2 <d, where ho() is

a real valued function, there are not many general theory papers about the limiting distributions and

inference for simultaneous sieve M estimators �(b�n) of �(�o).
For i.i.d. data, Wang and Yang (2009b) provide uniform con�dence bands for �rst order polynomial

spline LS regression, Krivobokova, Kneib and Claeskens (2010) and Koenker (2010) respectively obtain

uniform con�dence bands for penalized spline LS regression and additive penalized quantile regression.

Chen, Chernozhukov and Liao (2010) obtain uniform con�dence bands for sieve M estimators of unknown

functions ho(). Their work extends earlier results (Newey (1997), Huang (2003) and others) on pointwise

normality of series LS estimators or series density estimators.

For weakly dependent strongly mixing data, Yang and his co-authors have recently established some

uniform con�dence bands for a �rst order polynomial spline LS regression estimator; see, e.g., Song and

Yang (2009, 2010), Wang and Yang (2010). For NED time series data, Andrews (1991b) obtained the

pointwise limiting distribution of a series LS regression estimator. For beta mixing time series data,

Chen, Liao and Sun (2011) derive the limiting distributions of sieve M estimators �(b�n) of possibly
non-smooth functionals �(�o), and provide a simple consistent estimator of the variance.

(III) Partially identi�ed case

The above results all rely on the assumption that �o = (�o; ho) is the unique maximizer of E[l(�; h; Zt)]

over � = B�H. In many semi-nonparametric mixture models, such as structural search models, mod-
els with latent heterogeneity and state dependence, or dynamic discrete choice models with unspeci�ed

initial distributions, it is impossible to check whether the parameter of interest �o is point identi�ed or

not. Recently, Chen, Tamer and Torgovitsky (2010) provided a simple weighted bootstrap method for

inference for sieve MLE of � in partially identi�ed semiparametric models.

4.2.2 Simultaneous penalized sieve MD estimators

In Subsection 3.1, we mentioned the existing results on identi�cation of �o = (�o; ho) in the semi-

nonparametric conditional moment model (3.7) and the consistency and the convergence rate of penal-
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ized sieve MD estimators b� � (b�;bh) of �o = (�o; ho). In this subsection we brie�y describe the recent
advances on asymptotic properties of the plug-in PSMD estimator �(b�) of any real-valued functional
�(�o).

(I) Smooth (or regular) functional case

Chamberlain (1992) and Ai and Chen (1999, 2003) derive the semiparametric e¢ ciency bound for

�o satisfying the conditional moment restriction (3.7). For iid data and for the particular real-valued

smooth functional �(�o) = �0�o that is identi�ed by the model (3.7), Ai and Chen (1999, 2003) establish

the
p
n�asymptotic normality of the simultaneous sieve MD estimator b� of �o. Although the asymptotic

variance of b� in general does not have a closed-form expression, they provide a simple consistent sieve

estimator of the asymptotic covariance of b�. They also show that the optimally weighted sieve MD

estimator of �o achieves the semiparametric e¢ ciency bound of �o.

Ai and Chen (1999, 2003) establish their results under the assumption that the generalized residual

functions �(Z; �; h(�)) are pointwise di¤erentiable in �o = (�o; ho). In particular, their simple consistent
asymptotic variance estimator of b� hinges on the continuous pointwise di¤erentiability of the residual
functions �(Z;�; h(�)) in �o = (�o; ho). Chen and Pouzo (2009a) relax these assumptions and generalize
Ai and Chen�s results in several major ways. First, they show that, for the general semi-nonparametric

conditional moment restrictions (3.7) with nonparametric endogeneity, the PSMD estimator b� � (b�;bh)
can simultaneously achieve root-n asymptotic normality of b� and the optimal convergence rate of ĥ
(in strong norm jj � jjH), allowing for possibly nonsmooth residuals and/or a possibly noncompact (in
jj � jjH) function space (H) or noncompact sieve spaces (Hk(n)). Second, Chen and Pouzo (2009a) show
that a simple weighted bootstrap procedure can consistently estimate the limiting distribution of the

PSMD b�, even when the residual functions �(Z;�; h(�)) could be non-smooth in �o = (�o; ho). This is
the case in a partially linear quantile IV regression example E[1fY3 � Y 01�o + ho(Y2)gjX] = 
 2 (0; 1).
They propose a weighted bootstrap to consistently approximate the con�dence region. Third, Chen

and Pouzo (2009a) show that their optimally weighted PSMD procedure achieves the semiparametric

e¢ ciency bound of �o under nonsmooth residuals. Fourth, Chen and Pouzo (2009a) show that the

pro�led optimally weighted PSMD criterion is asymptotically chi-square distributed. This leads to

an alternative con�dence region construction method which involves inverting the pro�led optimally

weighted criterion function. This should be easier to compute than the weighted bootstrap. Finally, all

the general theoretical results are established in terms of any nonparametric estimator of the conditional

mean functions E[�(Z;�; h)jX = �]. They also provide low level su¢ cient conditions in terms of the
series least squares (LS) estimator of E[�(Z;�; h)jX = �].

For i.i.d. data, Ai and Chen (2007) consider an extension of (3.7) to a more general semiparametric
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conditional moment restriction with a di¤erent information set:

E[�j(Z; �o; ho())jXj ] = 0; j = 1; 2; :::; J (3.11)

with �nite J . Here Z = (Y 0; X 0)0 2 Z denotes all the random variables, and Xj 2 Xj denotes the
conditioning variables used in the jth equation �j(Z; �; h) for j = 1; :::; J . Xj is either equal to a subset of

X or a degenerate random variable; and ifXj is degenerate, the conditional expectation E[�j(Z; �; h)jXj ]
is the same as the unconditional expectation E[�j(Z; �; h)]. There are many applications where di¤erent

equations may require di¤erent sets of instruments. The semiparametric hedonic price system where

some explanatory variables in some equations are correlated with the errors in other equations is one

such example. Another example is the simultaneous equations model with measurement error in some

exogenous variables or some omitted variables correlated with what would otherwise be exogenous

variables. A semiparametric panel data model where some variables that are uncorrelated with the

error in a given time period are correlated with the errors in previous periods is a third example.

The triangular simultaneous equations system studied in Newey, Powell and Vella (1999), the dynamic

panel sample selection model, and semiparametric game models with incomplete information also �t the

general framework (3.11). Moreover, Ai and Chen (2007) allow for the possibility of misspeci�cation,

which is when

E[

JX
j=1

fE[�j(Z; �; h())jXj ]g2] > 0 for all � = (�; h) 2 � = B �H:

Let m(X; �) � (m1(X1; �); :::;mJ(XJ ; �))
0 with mj(Xj ; �) � Ef�j(Z; �)jXjg and �(X) be a J � J�

positive de�nite weighting matrix. They assume that �� = (��; h�) 2 � is the unique solution to

inf�2�Efm(X; �)0�(X)�1m(X; �)g. Clearly m(X; ��) = 0 if and only if the semiparametric conditional
moment restriction model (3.11) is correctly speci�ed, and in this case �� = �o.

For the general model (3.11) allowing for misspeci�cation and for iid data, Ai and Chen (2007)

propose a modi�ed sieve MD estimator b� = (b�;bh) for �� = (��; h�) and derive the asymptotic properties
of b�. Under low-level su¢ cient conditions, they show that: (i) b� converges to the pseudo-true value
�� in probability; (ii) the plug-in sieve MD estimator �(b�) of smooth functionals �(��), including the
estimators of �� and the average derivative of h�, are

p
n�asymptotically normally distributed; and

(iii) the estimators for the asymptotic covariances of �(b�) of smooth functionals are consistent and easy
to compute. To the best of our knowledge, these results in Ai and Chen (2007) are the �rst to allow

researchers to perform asymptotically valid tests of various hypotheses on the smooth functionals �(��)

regardless of whether model (3.11) is correctly speci�ed or not.

(II) Possibly non-smooth functional case

For the semi-nonparametric conditional moment restrictions (3.7) with nonparametric endogeneity, it

is in general di¢ cult to check whether a real-valued functional �(�o) is a smooth (or regular) functional
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or not, since the problem could be a nonlinear ill-posed inverse problem with unknown operators.

Recently, Chen and Pouzo (2010) established asymptotic normality of the plug-in PSMD estimator �(b�)
of a functional �(�o) that could be non-smooth (or slower than root-n estimable). They also provide

two ways to construct asymptotically valid con�dence sets for �(b�). The �rst one is by inverting the
optimally weighted criterion function. The second one is based on weighted bootstrap and is valid

even for non-optimally weighted criterion functions. The authors are currently working on time series

extensions.

(III) Partially identi�ed case

The above results all rely on the assumption that EfE[�(Z; �; h)jX]0�(X)�1E[�(Z; �; h)jX]g is
uniquely minimized at �o = (�o; ho) 2 �. For the special case of NPIV model: E[�(Z; �o)jX] =
E[Y1t � h0(Y2t)jXt] = 0, Santos (2010) considers how to construct con�dence sets for �(�o) without

imposing point identi�cation. Currently we are working on a simple weighted bootstrap procedure for

inference for the pro�led, continuously updated optimally weighted penalized sieve MD estimator of �0
when the model E[�(Z; �; h)jX] = 0 may have multiple solutions.

5 Semiparametric Two-step Estimation

For a semi-nonparametric model, �o 2 � consists of two parts �o = (�o; ho) 2 � = B � H, where
B denotes a �nite dimensional compact parameter space and H denotes an in�nite dimensional pa-

rameter space. In complicated empirical work, it is often di¢ cult to jointly estimate (�o; ho) =

arg sup(�;h)2B�HQ(�; h). For an arbitrary � 2 B, let

h�(�; �) = arg sup
h2H

Q1(�; h); �o = argmax
�2B

Q2(�; h�(�; �)); ho = h�(�; �o):

A computationally attractive alternative method is the semiparametric two-step procedure:

� Step 1: for an arbitrarily �xed � 2 B, estimate the unknown h�(�; �) using some nonparametric
estimator eh(�; �), say, using a sieve extremum estimator eh(�; �) = argmaxh2Hk(n)

bQ1;n(�; h);
� Step 2: estimate the unknown �o by plugging in the estimated h(�) and using an existing nonlinear
extremum procedure, say, b�n = argmax�2B bQ2;n(�;eh(�; �)). Then bhn(�) = eh(�; b�n).

We call b�n a semiparametric two-step M estimator if

bQ2;n(�;eh(�; �)) = 1

n

nX
t=1

l2(�;eh(�; �); Zt)
and Q2(�; h�(�; �)) = E[l2(�; h�(�; �); Zt)] is maximized at � = �o 2 B.
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We call b�n a semiparametric two-step GMM estimator if

bQ2;n(�;eh(�; �)) = �Mn(�;eh(�; �))0WnMn(�;eh(�; �))
and Q2(�; h�(�; �)) = �M(�; h�(�; �))0WM(�; h�(�; �)), where dM � d� and M(�; h�(�; �)) = 0 at

� = �o 2 B. Mn : B �H ! <dM is a random vector-valued function depending on the data fZtgnt=1,
such that Mn(�; h�(�; �))0WMn(�; h�(�; �)) is close to M(�; h�(�; �))0WM(�; h�(�; �)) for a symmetric
matrix W . Wn is a possibly random weighting matrix such that Wn �W = oP (1).

The (approximate) pro�le sieve extremum estimation procedure is a special case of the

semiparametric two-step procedure in which both steps use the same criterion function:

Step 1: for an arbitrarily �xed value � 2 B, compute bQn(�;eh(�; �)) � suph2Hk(n)
bQn(�; h)�OP (�n)

with �n = o(1);

Step 2: estimate �o by b�n solving bQn(b�;eh(�; b�)) � max�2B bQn(�;eh(�; �)) � OP (�n), and then
estimate ho by bhn = eh(�; b�n).
Depending on the speci�c structure of a semi-nonparametric model, the (approximate) pro�le sieve

extremum estimation procedure may be easier to compute. Nevertheless, the pro�le sieve extremum

estimation is numerically equivalent to joint (or simultaneous) sieve extremum estimation of (�o; ho) by

solving bQn(b�n;bhn) � sup�2B;h2Hk(n)
bQn(�; h)�OP (�n).

Compared to a joint estimation procedure (i.e., simultaneous estimation of all the unknown para-

meters (�o; ho)), semiparametric two-step procedures are easier to compute, and with them it is easier

to establish consistency and root-n asymptotic normality of smooth functionals (�). However, there

are two main drawbacks of semiparametric two-step procedures. First, they are not semiparametrically

e¢ cient in general. Second, it is di¢ cult to derive the asymptotic variance of b�n, Avar(b�n), in closed
form. Hence, it is di¢ cult to provide consistent estimators of Avar(b�n).
5.1 Consistent sieve estimators of Avar(b�n)
There are many general theory papers on consistency and root-n asymptotic normality of semipara-

metric two-step estimators b�n of smooth functionals � for various semiparametric models under various
assumptions. See, e.g., Andrews (1994b), Newey (1994), Newey and McFadden (1994), Pakes and Olley

(1995), Chen, Linton and van Keilegom (2003), Chen (2007), Ai and Chen (2007), and Ichimura and

Lee (2010), to name a few. The results in Chen (2007, theorem 4.1 and lemma 4.2) allow for time

series beta mixing processes. Ai and Chen (2007) and Ichimura and Lee (2010) allow for misspeci�ed

semiparametric models.

As we already mentioned, for complicated semiparametric models, it is di¢ cult to derive the asymp-

totic variance of b�n, Avar(b�n), in closed form, and hence it is di¢ cult to provide consistent estimators
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of Avar(b�n). For example, for the semiparametric two-step GMM estimator

b�n = argmin
�2B

Mn(�;eh(�; �))0WnMn(�;eh(�; �)); (5.1)

Chen, Linton and van Keilegom (2003) and Chen (2007) establish root-n asymptotic normality under

mild regularity conditions, allowing the unknown functions ho(�) = h�(�; �o) to depend on endogenous
variables and to be estimated by any consistent nonparametric estimator eh(�; �) in the �rst step. Let
�1 � �1(�o; ho), where �1(�; ho) is the ordinary partial derivative ofM(�; ho) in �, and let �2(�o; ho)[h�
ho] = lim�!0[M(�o; ho + �(h� ho))�M(�o; ho)]=� be the pathwise derivative of M(�o; h) in direction
[h� ho]. They show that

p
n(b� � �o) d�! N [0; (�01W�1)�1�01WV1W�1(�01W�1)�1];

where �01W�1 is nonsingular, W = p limWn, and the �nite matrix V1 is such that

p
nfMn(�o; ho) + �2(�o; ho)[

eh(�; �o)� ho]g d�! N [0; V1]:

To compute a consistent estimator of Avar(b�n)= (�01W�1)
�1�01WV1W�1(�

0
1W�1)

�1, one typically

needs to estimate V1 consistently. Unfortunately, without any information about the �rst step non-

parametric estimator eh(�; �) it is generally very di¢ cult to provide any consistent estimator of V1. For
complicated semi-nonparametric problems, say when there are several unknown functions or when un-

known functions depend on endogenous variables, there is no closed form expression for V1. Hence,

it is di¢ cult to estimate it consistently. This is why for iid data, Chen, Linton and van Keilegom

(2003) suggest constructing an asymptotically valid con�dence set for � via a nonparametric boot-

strap. But, nonparametric bootstrap procedures are computationally intensive and work less well for

semi-nonparametric time series models.

For i.i.d. data, Ai and Chen (2007) provide a consistent sieve estimator of the Avar(b�n) for their
modi�ed sieve MD estimator for the general semiparametric conditional moment restrictions (3.11)

with di¤erent information sets, where the unknown functions h(�) may depend on endogenous vari-
ables and the model (3.11) may not be correctly speci�ed. A special case of their model is the

so-called plug-in problem: h�() = arg infh2HE
h
(E[�1(Zt; h(�))jX1t])2

i
, E[�2(Z; �o; h�())] = 0 with

dim(�2) = dim(�). For this special case, their joint modi�ed sieve MD estimation is equivalent to

semiparametric two-step estimation where the �rst step is a sieve MD estimation of h�(), eh(�) =
arg infh2Hk(n)

1
n

Pn
t=1

� bE[�1(Z; h(�))jX1t]�2 with bE[�1(Z; h(�))jX1t] a series LS estimator of E[�1(Zt; h(�))jX1t],
and the second step is a method of moments estimation using Mn(�;eh(�)) = 1

n

Pn
i=1 �2(Zi; �;

eh(�)) in
(5.1).

Newey (1984), Murphy and Topel (1985), Newey and McFadden (1994) and others present a general

formula for computing the consistent asymptotic covariance matrix of the second stage estimator b�n in a
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parametric two-step estimation framework. For iid data, Ackerberg, Chen and Hahn (2010) show that in

a large class of semiparametric models, one can greatly simplify the estimation of Avar(b�n), provided
that the �rst stage unknown function h is estimated by a sieve (or series) method. They show, by

extending earlier work of Newey (1994), that the consistent estimate of the semiparametric Avar(b�n)
using the method of Ai and Chen (2007) is numerically identical to the estimate of the parametric

asymptotic variance using the standard parametric two-step framework of Murphy and Topel (1985).

For weakly dependent time series data, Chen, Hahn and Liao (2011) �rst propose a consistent

sieve estimator of the Avar(b�n) for a semiparametric two-step GMM estimator (5.1) when the �rst

step unknown function is estimated via sieve M estimation. They then show that this consistent

estimate of the semiparametric Avar(b�n) is numerically identical to the estimate of the parametric
asymptotic variance using the standard parametric two-step framework for time series data. These

results greatly simplify the computation of semiparametric standard errors of semiparametric two-step

GMM estimators for time series models.

5.2 Semiparametric multi-step estimation

In empirical work using complicated semiparametric models arising from dynamic games, Markov de-

cisions, models with latent state variables, auctions, multivariate nonlinear time series with GARCH

errors, and others, applied researchers sometimes have to perform the estimation of all the parameters

of interest in multiple steps. Since it is already di¢ cult to compute standard errors for semiparametric

two-step estimators, it seems it would be a daunting task to characterize the asymptotic variance for

the �nal step estimator b�n in a multi-step procedure and provide consistent estimates of Avar(b�n).
For i.i.d. data, Hahn and Ridder (2010) provide a characterization of the asymptotic variance for

a class of semiparametric three-step estimators b�n, but they do not provide consistent estimates of
Avar(b�n). We conjecture that if the �rst or second step nonparametric parts are estimated by �nite
dimensional sieves, the results of Ackerberg, Chen and Hahn (2010) and Chen, Hahn and Liao (2011)

can be generalized to the setting of semiparametric three-step estimation. This is a subject of ongoing

research.

In speci�c applications, one could use the special properties of a semi-nonparametric model to

characterize the asymptotic variances and to compute standard errors. We conclude this section with

such an example.

Example 2.3 continued (Semi-nonparametric GARCH + residual copula models): We estimate all

the parameters and functions of interest by a simple three-step sieve M estimation procedure.

Step 1: For each series i, we perform sieve QMLE of the conditional mean and the semi-nonparametric

GARCH(1,1) parameters as if the standardized innovation "i;t were standard normal. Since the para-

meters associated with each series are estimated separately, we will suppress subscripts for now and let
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Yt denote any of the three return processes (Set ;M
e
t ; B

e
t ):

Yt = c+ �Yt�1 + �M
e
t�1 + �Y;t"Y;t;

�2Y;t = ! + ��2Y;t�1 + h(�Y;t�1"Y;t�1);

where � = 0 for the stock market process (M e
t ). We approximate each unknown function h() (suppress-

ing asset subscripts for now) via hk(n)(), which is a 5 term cubic B-spline sieve or a 3rd order polynomial

spline sieve excluding a constant term.

Let ' =
�
c; �; �; !; �; hk(n)

�0. We estimate ' via sieve QMLE e':
e' = argmax

'

�1
2n

nX
t=1

 �
Yt � c� �Yt�1 � �M e

t�1
�2

�2Y;t (')
+ log �2Y;t (')

!
;

where given ', �2Y;t (') = ! + ��
2
Y;t�1 + hk(n) (�i;t�1"i;t�1) is de�ned recursively (letting �

2
Y;0 (') be the

sample variance of Yt).9

Step 2: estimation of the marginal distributions of standardized innovations. From Step 1, we can

compute the �tted residual as:

e"Y;t = Yt � ec� e�Yt�1 � e�M e
t�1

�Y;t (e') :

Given e' from Step 1, we estimate each Fi with the rescaled empirical distribution of e"i;t:
eFni (x) = 1

n+ 1

nX
t=1

1 (e"i;t � x) :
Step 3: estimation of copula parameters. We estimate �, the vector of copula dependence parameters,

via pseudo MLE:

b� = argmax
�

1

n

nX
t=1

log c
� eFnS (e"S;t) ; eFnM (e"M;t) ; eFnB (e"B;t) ;�� :

Asymptotic properties and Inference: By applying existing results for GARCH models, one can show

that each series is stationary beta mixing with an exponential decay rate. Step 1 estimation is a special

case of sieve M estimation. By applying Chen and Shen (1998) for sieve M estimation with beta mixing

data, we obtain root-n asymptotic normality of conditional mean and GARCH parameters as well as the

optimal rate of convergence for the unknown function h(). By applying Chen, Liao and Sun (2011) for

sieve M estimation with time series data, we can easily compute simple consistent variance estimators of

9We use Matlab to perform the QMLE computations. OLS estimates provide initial values for the conditional mean
parameters. Standard GARCH(1,1) estimates provide initial values for the volatility parameters. Initial spline sieve
coe¢ cients are chosen so that the initial news impact curve matches the standard quadratic GARCH(1,1) estimate. Given
these initial values, we �rst use the derivative-free, unconstrained �fminsearch�optimization function. We use the output
of this step to initialize the derivative-based, constrained optimization routine �fmincon.� Nonlinear constraints ensure
positive volatility estimates.
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sieve QMLEs of �nite dimensional parameters as well as the pointwise con�dence bands for eh(). Steps 2
and 3 follow directly from Chen and Fan (2006b) and Chan et al (2009). A surprising result established

in Chen and Fan (2006b) and Chan et al (2009) is that the �rst step estimation of conditional mean and

conditional variance of their parametric GARCH(p,q) model only a¤ects the asymptotic variance of the

second step rescaled empirical cdf eFni () of the standardized innovations; the �rst step estimation does
not a¤ect the asymptotic variance of the �nal step pseudo MLE of copula dependence parameters. The

only di¤erence between our Example 2.3 and theirs is that our �rst step is a sieve GARCH(1,1) instead

of a parametric GARCH(p,q). But we can adapt their results to obtain root-n asymptotic normality of

the copula dependence parameter estimator b� in step 3 as well as a simple consistent estimator of its
asymptotic variance.

6 Concluding Remarks

In this selective review, we demonstrate the usefulness of semi-nonparametric models and methods for

nonlinear economic and �nancial time series data. We brie�y discuss a large class of �exible semi-

nonparametric time series models and some of their temporal dependence properties. We present a

general Penalized Sieve Extremum (PSE) estimation method that is very powerful and easy to compute

for virtually all the semi-nonparametric problems. We review some recent large sample theory (consis-

tency, convergence rate, limiting distribution) for penalized sieve M estimation for weakly dependent

time series models. The method and results can be easily adapted to treat semi-nonparametric panel

time series models and spatial models. We also present recent advances on large sample properties (con-

sistency, convergence rate, limiting distribution) of penalized sieve MD estimation for cross sectional

and panel data semi-nonparametric structural models, allowing for di¢ cult (nonlinear) ill-posed inverse

problems such as nonparametric instrumental variables problems. Some of these results can be easily

extended to weakly dependent time series data and spatially dependent data. Recent advances in simple

criterion based inference and consistent sieve estimation of asymptotic variances are also presented.

There are many unsolved issues in the study of semi-nonparametric dynamic models. For example,

in empirical work it is di¢ cult both to decide which class of semi-nonparametric nonlinear time series

models to use and how many lagged dependent variables to include. It is also di¢ cult to provide simple

restrictions on the parameter spaces that are necessary and su¢ cient for particular temporal depen-

dence properties. Also, estimation procedures originally designed for cross sectional semi-nonparametric

models might have quite di¤erent performance in a time series context. For example, the non-stationary

nonparametric instrumental variables example of Wang and Phillips (2009b) has properties which are

quite di¤erent from those in the corresponding cross-sectional data case. As another example, the �rst

order strictly stationary Markov process generated via Clayton copula and a fat tailed marginal distrib-
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ution is beta mixing with an exponential decay rate, and hence the popular two-step pseudo maximum

likelihood estimator of the copula dependence parameter originally proposed for bivariate iid data is still

consistent and root-n asymptotically normally distributed. However, although this estimator performs

well for bivariate iid data, it works terribly for time series with strong tail dependence. In particularly,

it severely underestimates the tail dependence and hence underestimates the tail risk; see, Chen, Wu

and Yi (2009).

There are also many open questions in the method of penalized sieve extremum estimation and its

applications to economic semi-nonparametric time series models. We conclude this survey by listing

a few of them. First, we need to establish large sample properties of PSE estimators for strongly

dependent and nonstationary data. Second, it will be very fruitful to combine the PSE method with

simulation based methods for semi-nonparametric dynamic models with nonlinear, non-Gaussian latent

structures. Third, we need to design procedures that are robust to the lack of point identi�cation

and/or weak identi�cation in complicated semi-nonparametric dynamic models. Recent theoretical

work by Chernozhukov, Hong and Tamer (2007), Andrews and Cheng (2010), Andrews and Shi (2010),

Chernozhukov, Lee and Rosen (2009) and others could be extended to semi-nonparametric settings.

Fourth, there is little work on data-driven choices of smoothing parameters in penalized sieve MD

estimation. Fifth, although for PSE estimators the optimal smoothing parameter choices that lead to

nonparametric optimal rates of convergence could also lead to root-n asymptotic normality of smooth

functionals, we need to investigate data driven methods of choosing smoothing parameters for plug-in

PSE estimation of non-smooth functionals.
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