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SET IDENTIFICATION WITH TOBIN REGRESSORS

VICTOR CHERNOZHUKOV, ROBERTO RIGOBON, AND THOMAS M. STOKER

Abstract. We give semiparametric identi�cation and estimation results for econo-

metric models with a regressor that is endogenous, bound censored and selected,

called a Tobin regressor. First, we show that true parameter value is set identi-

�ed and characterize the identi�cation sets. Second, we propose novel estimation

and inference methods for this true value. These estimation and inference methods

are of independent interest and apply to any problem where the true parameter

value is point identi�ed conditional on some nuisance parameter values that are set-

identi�ed. By �xing the nuisance parameter value in some suitable region, we can

proceed with regular point and interval estimation. Then, we take the union over

nuisance parameter values of the point and interval estimates to form the �nal set

estimates and con�dence set estimates. The initial point or interval estimates can

be frequentist or Bayesian. The �nal set estimates are set-consistent for the true

parameter value, and con�dence set estimates have frequentist validity in the sense

of covering this value with at least a prespeci�ed probability in large samples. We

apply our identi�cation, estimation, and inference procedures to study the e¤ects

of changes in housing wealth on household consumption. Our set estimates fall in

plausible ranges, signi�cantly above low OLS estimates and below high IV estimates

that do not account for the Tobin regressor structure.
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1. Introduction

In economic surveys, �nancial variables are often mismeasured in nonrandom ways.

The largest values of household income and wealth are often eliminated by top-coding

above prespeci�ed threshold values. Income and wealth are also typically reported as

nonnegative, which may neglect large transitory income losses, large debts (negative

components of wealth), or other aspects that could be modeled as bottom-coding

below a prespeci�ed threshold value. In addition to mismeasurement problems related

to upper and lower bounds, income and wealth are often missing due to nonresponse.1

These measurement problems are particularly onerous when they obscure key fea-

tures of the economic process under study. For instance, suppose one is studying the

impact of liquidity constraints on consumption spending using data from individual

households. It is a widespread practice to drop all household observations when

there are top-coded income values. However, that practice seemingly eliminates

households that are the least a¤ected by liquidity constraints, which would provide

the most informative depiction of baseline consumption behavior. Likewise, if one

is studying the household demand for a luxury good, the most informative data is

from rich households, who, for con�dentiality reasons, often won�t answer detailed

questions about their income and wealth situations.

These problems can be compounded when the observed �nancial variable is itself

an imperfect proxy of the economic concept of interest. For instance, suppose one

is studying the impact of the availability of cash on a �rm�s investment decisions.

Only imperfect proxies of �cash availability�are observed in balance sheet data, such

1For many surveys, extensive imputations are performed to attempt to ��ll in�mismeasured or

unrecorded data often in ways that are di¢ cult to understand. For instance, in the U.S.Consumer

Expenditure (CEX) survey, every component of income is top-coded;namely wages, interest, gifts,

stock dividends and gains, retirement income,transfers, bequests, etc., and there is no obvious re-

lation between the top-coding on each component and the top-coding on total income. The CEX

makes extensive use of ad hoc multiple imputation methods to �ll in unrecorded income values.
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as whether the �rm has recently issued dividends. The mismeasurement of those

proxies is not random; positive dividends indicate positive cash availability but zero

dividends can indicate either mild cash availability or severe cash constraints. Thus,

observed dividends represent a censored (bottom coded at zero) version of the cash

availability status of a �rm.

The study of mismeasurement due to censoring and selection was initiated by the

landmark work of Tobin(1958). In the context of analyzing expenditures on durable

goods, Tobin showed how censoring of a dependent variable induced biases, and how

such bias could be corrected in a parametric framework This work has stimulated

an enormous literature on parametric and semiparametric estimation with censored

and selected dependent variables. The term �Tobit Model� is common parlance for

a model with a censored or truncated dependent variable.

We study the situation where an endogenous regressor is censored or selected. This

also causes bias to arise in estimation; bias whose sign and magnitude varies with the

mismeasurement process as well as the estimation method used (Rigobon and Stoker

(2006a)). With reference to the title, we use the term �Tobin regressor�to refer to

a regressor that is bound censored, selected and endogenous.

When the mismeasurement of the regressor is exogenous to the response under

study,2 consistent estimation is possible by using only �complete cases,�or estimating

with a data sample that drops any observations with a mismeasured regressor.3 When

endogenous regressors are censored or selected, the situation is considerably more

complicated. Dropping observations with a mismeasured regressor creates a selected

sample for the response under study. Standard instrumental variables methods are

2That is, both the correctly measured regressor and the censoring/selection process is exogenous.
3The existence of consistent estimates allows for tests of whether bias is evident in estimates

computed from the full data sample. See Rigobon and Stoker (2006b) for regression tests and

Nicholetti and Peracchi (2005) for tests in a GMM framework.
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biased when computed from the full data sample, and are also biased and inconsistent

when computed using the �complete cases�only.

In this paper, we provide a full identi�cation analysis and estimation solution for

situations with Tobin regressors. We show how the true parameter value is set identi-

�ed and characterize the identi�cation sets. Second, we propose novel estimation and

inference methods for this true value. These estimation and inference methods are

of independent interest and apply to any problem where the true parameter value is

point identi�ed conditional on some nuisance parameter values that are set-identi�ed.

Indeed, �xing the nuisance parameter value in some suitable region, we can proceed

with regular point and interval estimation. Then, we take the union over nuisance

parameter values of the point and interval estimates to form the �nal set estimates

and con�dence set estimates. The initial point or interval estimates can be frequentist

or Bayesian. The �nal set estimates are set-consistent for the true parameter value,

and con�dence set estimates have frequentist validity in the sense of covering this

value with at least a prespeci�ed probability in large samples.

Our approach is related to several contributions in the literature. Without censor-

ing or selection, our framework is in line with work on nonparametric estimation of

endogeous model with non-additivity, as developed by Altonji and Matzkin (2005),

Chesher (2003), Imbens and Newey (2005) and Chernozhukov and Hansen (2005),

among others. Our accommodation of endogeneity uses the control function ap-

proach, as laid out by Blundell and Powell (2003). In terms of dealing with cen-

soring, we follow Powell�s (1984) lead in using monotonicity assumptions together

with quantile regression methods (see Koenker�s(2005) excellent review of quantile

regression). Our inference results complement the inferential procedures proposed in

Chernozhukov, Hong and Tamer (2007) and other literature.

There is a great deal of literature on mismeasured data, some focused on regressors.

Foremost is Manski and Tamer (2002), who use monotonicity restrictions to propose
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consistent estimation with interval data. For other contributions in econometrics, see

Ai (1997), Chen, Hong and Tamer (2005), Chen, Hong and Tarozzi (2004), Liang,

Wang, Robins and Carroll (2004), Tripathi (2004), among many others, which are

primarily concerned with estimation when data is missing at random. The large

literature in statistics on missing data is well surveyed by Little and Rubin (2002),

and work focused on mismeasured regressors is surveyed by Little (1992). The expo-

sition proceeds by introducing our approach within a simple framework, in Section 2.

Section 3 gives our general framework and a series of generic results on identi�cation

and estimation. Section 4 contains an empirical application, where we show how

accommodating censoring and selection gives rise to a much larger estimates of the

impact of housing wealth on consumption.

2. A Simplified Framework and the Basic Identification Approach

2.1. A Linear Model with a Tobin Regressor. We introduce the ideas in a

greatly simpli�ed setting, where a linear model is the object of estimation. We do

this in order the highlight the main concepts of our approach. Our main results do not

rely on a linear model, but are based on a very general (parametric or nonparametric)

framework. We spell this out in in Section 3.

Consider the estimation of a linear model with a (potentially) endogenous regres-

sor:

Y = X��+ U� (2.1)

X� = Z 0
 + V � (2.2)

U� = �V � + " (2.3)

where

" is mean (or median or quantile) independent of (V �; X�); (2.4)

V � is median independent of Z (2.5)
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Here X� is the uncensored regressor, which is endogenous when � 6= 0, and Z rep-

resents valid instruments (without censoring or selection). We make no further as-

sumption on the distribution of " or V �.

The regressor X� is not observed. Rather, we observe a censored version of X�:

X = IfR = 1gIfX� > 0gX� (2.6)

R =

8<: 1 with prob 1� �
0 with prob �

; independent of Z: (2.7)

The observed X matches X� unless one of two sources of censoring arises, in which

case X = 0. . The �rst source is bound censoring, which occurs when X� � 0 or
V � � �Z 0
. The second source is an independent censoring method, which selects

X = 0 when R = 0 (or equivalently, selects to observe positive X� when R = 1). We

sometimes refer to the probability � as the �selection�probability in the following;

it would be more complete to refer to � as �the probability of independent selection

for censoring.�

In this sense, the observed regressor X is censored, selected and endogenous, which

we refer to as a Tobin regressor. There exists an instrument Z for the uncensored

regressorX�, but that instrument will typically be correlated withX�X�. Therefore,

Z will not be a valid instrument if X is used in place of X� in the response equation

(2.1).

In our simpli�ed setup, censoring is modeled with the lower bound (bottom-coding)

of 0, but top-coding or di¤erent bound values are straightforward to incorporate. The

selection probability � is taken as constant here, but is allowed to vary with covariates

in our general framework. We assume that P [Z 0
 > 0] > 0, which is both convenient

and empirically testable.

It is also straightforward to include additional controls in the response equation

(2.1). With that in mind, we develop some examples for concreteness.
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Example 1. Income and Consumption: Suppose X is income and Y is household

consumption expenditure. X is typically endogenous, top-coded and missing for

various households.. Bound censoring arises for large income values, and selection

refers to missing values, possibly due to households declining to report their income.

For instance, if one is estimating a permanent income model of consumption, then X

would be observed permanent income (or wealth). If one is investigating excess sen-

sitivity (or liquidity constraints), then X would be observed current income (and the

equation would include lagged consumption). Here, the instruments Z could include

unanticipated income shocks, lagged income values, and demographic variables that

are not included in the consumption equation. Finally, the same censoring issues can

arise in an Engel curve analysis, where Y is the expenditure on some commodity and

X is total expenditures on all commodities.

Example 2: Dividends and Firm Investment: Suppose X is declared dividends

and Y is investment, for individual �rms. Here X� is the level of cash availability (or

opposite of cash constraints). Positive dividendsX indicate positive cash availability,

but zero dividends arises with either mild or severe cash constraints (small or large

negative X�). The instruments Z could include exogenous variables that a¤ect the

cost of debt, such as foreign exchange �uctuations.

Example 3: Day Care Expenditures and Female Wages: Suppose you are study-

ing the economic situation faced by single mothers, where Y is expenditure on day

care and X is the observed wage rate. X is potentially endogenous (work more to

pay for higher quality day care), and is selected due to the labor participation choice.

Here, the instruments Z could include job skills and other factors a¤ecting the labor

productivity of single mothers, as well as exogenous household income shocks.
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2.2. Basic Identi�cation and Estimation Ideas. The strategy for identi�cation

is to set the amount of selection �rst, which allows the rest of the model to be

identi�ed. That is, suppose we set a value �� for � = Pr[R = 0]. The following steps

give identi�cation:

1) Note that the conditional median curve QX�(1
2
jZ) = Z 0
 is partially identi�ed

from the estimable curve

QX

�
1

2
(1� ��) + ��jZ

�
= max[Z 0
; 0]; (2.8)

since Z 0
 > 0 with positive probability.

2) Given 
, we can estimate the control function

V � = X� � Z 0
 = X � Z 0
; (2.9)

whenever X > 0.

3) Given the control function V �, we can recover the regression function of interest

(mean, median or quantile) for the sub-population where X > 0 and Z 0
 > 0. For

instance, if " is mean independent of (V �; X�), we can estimate the mean regression

E[Y jX;V �] = X 0�+ �V �: (2.10)

If " is quantile independent of (V �; X�), we can estimate the quantile regression

QY (� jX;V �) = X 0�+ �V �: (2.11)

4) All of the above parameters depend on the value ��. We recognize this func-

tional dependence by writing �(��), �(��), 
(��) for solutions of steps 1), 2), and 3).

For concreteness, suppose the particular value �0 = �(�0) is of interest. If we can

determine the set P0 of all feasible values of ��, the set

A0 = f�(�); � 2 P0g
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clearly contains �0. Likewise, if we denote �(�) = f�(�); �(�); 
(�)g, then �0 = �(�0)
is contained in the set

�0 = f�(�); � 2 P0g:

5) It remains to characterize the set P0. In the absence of further information, this
set is given by:

P0 = [0; inf
z2support(Z)

Pr[D > 0jZ = z]]: (2.12)

where

D � 1� IfR = 1gIfX� > 0g

is the index of observations that are censored. In words, P0 is the interval containing
all values between 0 and the smallest probability of censoring in the population.

This outlines the basic identi�cation strategy. It is clear that point identi�cation

is achieved if � is a known value. For instance, if there is only bound censoring (no

R term in (2.6)), then � = 0. Then estimation (step 1) uses median regression to

identify the (single) control function needed.

Estimation proceeds by the analogy principle: empirical curves are used in place

of the population curves above to form estimators . In Section 3 we justify this for

our general framework. We also show how inference is possible by simply constructed

con�dence sets. That is, suppose �0 is of interest and the set P0 is known. Given �,
a standard con�dence region for �(�) is

CR1��(�(�)) = [�̂(�)� c1��s:e:(�̂(�))]:

We note that a 1� �-con�dence region for �0 = �(�0) is simply

[�2P0CR1��(�(�)): (2.13)

Reporting such a con�dence region is easy, by reporting its largest and smallest ele-

ments.
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We also discuss adjustments that arise because of the estimation of P0, the range
of selection probabilities. In particular, a con�dence region for P0 can be developed,
as well as adjustments for the level of signi�cance of the parameter con�dence regions

such as (2.13).

2.3. A Geometric View of Identi�cation and Estimation. We illustrate the

basic idea of identi�cation through a sequence of �gures that illustrate a simple one-

regressor version of our empirical example. In the �rst step, we �x a set of values

of � in a set from 0 to .08 (the range for the true �0) and �t a family of censored

conditional quantile estimates. Thus, we obtain a family of ��rst stage" estimates,

shown in Figure 1, indexed by the admissible values of �. In the second step, we

form a control function V� using the results of the �rst step, and then we run mean

regressions of Y on X and V�. The results are indexed by the values of � 2 [0; 0:08].
Thus, we obtain a family of �second stage" estimates, shown in Figure 2, indexed by

the admissible values of �. Finally, Figure 3 shows the construction of a conservative

though consistent upper bound on �. The illustration here corresponds to roughly

to the results obtained in the empirical section of the paper. The panels of Figure

3 show the �tted probabilities of missing data on X. The top panel shows a naive

plug-in upper bound on �. The bottom panel shows the upper bound of � adjusted

up by the two times standard error times a logarithmic factor in the sample size.

We now turn to our general framework and main results.

3. Generic Set Identification and Inference

3.1. The General Framework. The stochastic model we consider is given by the

system of quantile equations:

Y = QY (U jX�;W; V ) (3.1)

X� = QX�(V jW;Z) (3.2)
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where QY is the conditional quantile function of Y givenX�;W; V and QX� is the con-

ditional quantile function of X� given Z. Here U is Skorohod disturbance such that

U � U(0; 1)jX�;W; V , and V is Skorohod disturbance such that V � U(0; 1)jW;Z.
The latent true regressor is X�, which is endogenous when V enters the �rst equation

nontrivially. Z represents �instruments�for X� and W represents covariates.

The observed regressor X, the Tobin regressor, is given by the equation

X = IfR = 1gIfX� > 0gX� (3.3)

where

R =

8<: 1 with probability 1� �(W )
0 with probability �(W )

(3.4)

conditional on W;Z; V :

There are two sources of censoring of X� to 0. First there is bound censoring,

occurring when X� � 0. Second is independent selection censoring, which occurs

when R = 0. As such, X is endogenous, censored and selected.

The model (3.1), (3.2) is quite general, encompassing a wide range of nonlinear

models with an endogenous regressor. The primary structural restriction is that the

system is triangular; that is, V can enter both (3.1) and (3.2) but U does not enter

(3.2). The Skohorod disturbances U and V index the conditional quantiles of Y and

X�. We have by de�nition that

U = FY (Y jX�;W; V )

V = FX�(X�jW;Z)

where FY is the conditional distribution function of Y given X�;W; V and FX� is the

conditional distribution function of X� given W;Z. The random variables U and

V provide an equivalent parameterization to the stochastic model as would additive

disturbances or other (more familiar) ways capturing randomness. For example, the
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linear model (2.1)-(2.2) is written in the form of (3.1), (3.2) as

Y = X��+QU� (U jV )

X� = Z 0
 +QV � (V jZ)

where the additive disturbances U� and V � have been replaced by U and V through

the equivalent quantile representations U� = QU� (U jV ) and V � = QV � (V jZ).

The primary restriction of the Tobin regressor is that selection censoring is inde-

pendent of bound censoring, (conditional onW;Z and V ). We have left the selection

probability in the general form � (W ), which captures many explicit selection mod-

els. For instance, we could have selection based on threshold crossing. In that case,

the selection mechanism is R � 1
�
W

0
� + � � 0

�
, with � an independent disturbance,

which implies the selection probability is � (W ) = Pr
�
� < �W 0

�
	
.

3.2. Set Identi�cation without Functional Form Assumptions. We now state

and prove our �rst main result. We require the following assumption

Assumption 1: We assume that the systems of equations (3.1)-(3.4) and inde-

pendence assumptions hold as speci�ed above, and that v 7! QX�(vjW;Z) is strictly
increasing in v 2 (0; 1) almost surely.

Our main identi�cation result is

Proposition 1. The identi�cation regions for QY (�jX�; V;W ) and FY (�jX�; V;W )

on the subregion of the support of (X�; V;W ) implied by X > 0 are given by

Q = fQY (�jX;V�;W ); � 2 Pg

and

F = fFY (�jX;V�;W ); � 2 Pg
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where when X > 0

V� =
FX(XjZ;W )� �(W )

1� �(W ) ; (3.5)

or equivalently when X > 0

V� =

Z 1

0

1 fQX ((�(W ) + (1� �(W ))vjW;Z) � Xg dv: (3.6)

Finally,

P =
�
�(�) measurable : 0 � �(W ) � min

z2supp(Z)jW
FX(0jW; z) a.s

�
: (3.7)

Proposition 1 says that given the level of the selection probability � (W ), we can

identify the quantile function of Y with respect to X� by using the (identi�ed) quan-

tile function of Y with respect to the observed Tobin regressor X, where we shift the

argument V to V� of (3.5,3.6). The identi�cation region is comprised of the quantile

functions for all possible values of � (W ). The proof is constructive, including indi-

cating how the quantiles with respect to X� and to X are connected. It also makes

clear that point identi�cation of the functions is possible where X > 0 and � (W ) is

known (or point identi�ed), including the no selection case with �(W ) = 0.

In empirical applications, one is typically not interested in (nonparametrically)

estimating the full conditional distribution of Y given X;V;W , but rather in more

interpretable or parsimonious features. That is, one wants to estimate

�(�) = �
�
Q(�; �)

�
, (3.8)

a functional of � taking values in�, where the quantileQ can either be the conditional

quantile QY or QX�, or equivalently

�(�) = ��
�
F (�; �)

�
(3.9)

where the conditional distribution F is either FY or FX� .The functional � (�) can

represent parameters of a model of Q or F , average policy e¤ects, average derivatives,

local average responses and other features (including representing the full original
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functions Q or F ). The following corollary establishes identi�cation of such aspects

of interest.

Corollary 1. The identi�cation region for the functional �(�0) is

f�(�); � 2 Pg:

Given Proposition 1, the proof of this Corollary is immediate. We now give the

proof of our �rst main result.

Proof of Proposition 1 (Identi�cation):. We follow the logic of the identi�-

cation steps outlined in the previous section. Suppose we �rst set a value �(W ) for

Pr[R = 0jW ]. For x > 0, we have that

Pr [X � xjW;Z] = Pr [R = 0jW;Z] + Pr [R = 1 and X� � xjW;Z]

= Pr [R = 0jW;Z] + Pr [R = 1jW;Z] � Pr [X� � xjW;Z]

That is,

FX [xjW;Z] = �(W ) + (1� �(W ))FX� [xjW;Z]

In terms of distributions, whenever X > 0,

V� = FX� [XjW;Z] = FX(XjZ;W )� �(W )
1� �(W )

Thus V� is identi�ed from the knowledge of FX(XjZ;W ) and �(W ) whenever X > 0.

In addition

X� = X:

when X > 0:
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In terms of quantiles,

QX�(V�jW;Z) = QX
�
FX(XjZ;W )� �(W )

1� �(W )

����W;Z�

= QX ((�(W ) + (1� �(W ))V�jW;Z) :

(3.10)

This implies that for any X > 0

V� =

Z 1

0

1fQX�(vjW;Z) � X�gdv

=

Z 1

0

1fQX ((�(W ) + (1� �(W ))vjW;Z) � Xgdv

Thus V� is identi�ed from the knowledge of QX(�jZ;W ) whenever X > 0.

Inserting

X;V� for cases X > 0

into the outcome equation we have a point identi�cation of the quantile functional

QY (�jX;V�;W )

over the region implied by the condition X > 0. This functional is identi�able from

the quantile regression of Y on X;V�;W .

Likewise, we have the point identi�cation of the distributional functional

FY (�jX;V�;W )

over the region implied by the condition X > 0. This functional is identi�ed either by

inverting the quantile functional or by the distributional regression of Y onX;V�;W .

Now, since the (point) identi�cation of the functions depends on the value �(W ),

by taking the union over all �(�) in the class P of admissible conditional probability
functions of W , we have the following identi�ed sets for both quantities:

fQY (�jX;V�;W ); �(�) 2 Pg
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and

fFY (�jX;V�;W ); �(�) 2 Pg:

The quantities above are sets of functions or correspondences.

It remains to characterize the admissible set P. From the relationship

FX [0jW;Z] = �(W ) + (1� �(W )) � FX� [0jW;Z]

we have

0 � �(W ) = FX [0jW;Z]� FX� [0jW;Z]
1� FX� [0jW;Z] � FX(0jW;Z);

where the last observation is by the equalities

0 = min
0�x�F

�
F � x
1� x

�
� max

0�x�F

�
F � x
1� x

�
= F:

Taking the best bound over z, we have

0 � �(W ) � min
z2ZjW

FX(0jW; z);

Hence

P =
�
�(�) measurable : 0 � �(W ) � min

z2ZjW
FX(0jW; z) a.s

�
:

which demonstrates Proposition 1. �

3.3. Estimation and Inference. Our constructive derivation of identication facili-

tates a general treatment of estimation. Here we present the general results. In the

following section, we discuss some particulars of estimation as well as related results

in the literature.

Estimation can be based on the analogy principle. Here we consider a plug-in

estimator b�(�) = �� bQ(�; �)� or ��� bF (�; �)�:
where the true quantile or distribution function is replaced by an estimator. We

assume that the model structure is su¢ ciently regular to support a Central Limit
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Theorem for �̂ (�) for each value of �, and that estimates of con�dence intervals are

available for for each �. This is summarized in the following two assumptions.

Assumption 2.1 For each � 2 P , suppose an estimate bQ or bF is available such

that

Zn(�) := An(�)
�b�(�)� �(�)�) Z1(�); for each � 2 P

where convergence occurs in some metric space (B; k � kB), where An(�) is a sequence
of scalers, possibly data dependent.

Assumption 2.2 Let

c(1� �; �) := �-quantile of kZ1(�)kB

and suppose that the distribution function of kZ1(�)kB is continuous at c(1��; P ).
Estimates are available such that bc(1� �; �)!p c(1� �; �) for each �.

With these assumptions, we can show the following generic result. This shows

how to construct con�dence intervals when the set P is known. The answer is simple;
construct the con�dence intervals for all values of � 2 P and take their union.

Proposition 2. Let

C1��(�) :=
n
� 2 � :




An(�)�b�(�)� �)�



B
� bc(1� �; �)o:

Let

CR1�� :=
[

�2P
C1��(�):

Then

lim inf
n!1

P
n
�(�0) 2 CR1��

o
� 1� �:

Proof of Proposition 2. We have that

P
n
�(�0) 2 CR1��

o
� P

n
�(�0) 2 CR1��(�0)

o
= P

n
kZ1(�)kB � ĉ(1� �; �0)

o
= P

n
kZ1(�)kB � c(1� �; �0)

o
+ o (1) = 1� �+ o (1)
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where we have used the continuity of the map c 7�! P
n
kZ1(�)kB � c

o
at c =

c(1� �; �0) and the consistency property ĉ(1� �; �0) = c(1� �; �0) + op (1). �

In applications, the set P is a nuisance parameter that needs so be estimated, and
the above con�dence intervals need to be adjusted for that estimation. Estimation of

P poses some new challenges. From (3.7), estimation of P is equivalent to estimation
of the boundary function:

`(W ) = min
z2Z

FX [0jW; z]:

Let b̀(W ) be a suitable estimate of this function. One example is
b̀(W ) = min

z2Z
bFX [0jW; z]: (3.11)

We require that the precision of b̀(W ) can be approximated. In particular, we assume
that the model structure is su¢ ciently regular to justify the following assumption:

Assumption. 2.3 Let b�n(1� �) and the known scaler Bn(W ) to be such that
`(W )� b̀(W ) � Bn(W )b�n(1� �)

for all W with probability at least 1� �.

Conservative forms of con�dence regions of this type are available from the lit-

erature on simultaneous con�dence bands. For instance, Assumption 2.3 holds forb̀(W ) = minz2Z bFX [0jW; z]: if we set
ẑ = argmin

z2Z
bFX [0jW; z]

and

Bn(W ) :=
h
s.e.( bF (W; z))i

z=ẑ0(W )
; �n(1) = 2

p
log n:

Sharper con�dence regions for minimized functions are likely available, but their

construction is relatively unexplored. For some initial results of this type, see Cher-

nozhukov, Lee and Rosen (2008).
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Let �(W ) belong to the parameter set P. From Assumption 2.3, the con�dence

region for �(W ) is given by

CR01�� = f� 2 � : �(W )� bl(W ) � Bn(W )b�n(1� �)g (3.12)

We combine this with Proposition 2 to obtain:

Proposition 3. Let

CR1�� :=
[

�2CR01��
C1��(�):

Then

lim inf
n!1

P
n
�(�0) 2 CR1��

o
� 1� �� �:

Proof of Proposition 3. We have that

P
n
�(�0) 2 CR1��

o
� P

n
�(�0) 2 CR1��(�0) \ �0 2 CR01��

o
� P

n
�(�0) 2 CR1��

o
� P

n
�0 =2 CR01��

o
� P

n
�(�0) 2 CR1��

o
� P

n
�0(W ) � bl(W ) +Bn(W )b�n(1� �)go

By the proof of Proposition 2, the lower limit of the �rst term is bounded below by

1 � � and by construction the lower limit of the second term is bounded below by

��. �

Thus, we construct parameter con�dence intervals by taking the union of con�dence

intervals for all � (W ) in the con�dence interval CR01��, which is an expanded version

of the estimate of the parameter set P. More conservative parameter intervals are
obtained by choosing a larger con�dence set CR01��.

This completes our general estimation results. We now discuss some speci�cs

features, as well as the related literature.
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3.4. Some Estimation Speci�cs. At this point it is useful to summarize the steps

in estimation, and relate our general results to the literature.

The �rst step is to estimate the allowable values of selection probabilities P, using
a boundary estimator such as (3.11). Then we widen the set to accomodate for

estimation, obtaining the con�dence set CR01�� of (3.12). This set gives the values of

selection probabilities � (W ) to be used in the subsequent estimation steps. That is, if

� is a scalar parameter, then we choose values in a grid f��k; k = 1; :::; Kg representing
CR01��. If � (W ) is modeled to depend nontrivially on covariates W , then the range

of values of � (W ) are represented; for instance, if � (W ) depends on a vector of

parameters, then a grid over the possible parameter values could be used. We

summarize the grid as f��k (W ) ; k = 1; :::; Kg in the following.

The second step is to estimate the control function for the Tobin regressor for

each value ��k (W ). With an estimator F̂X(�jZ;W ) of the distribution FX(�jZ;W ), we
compute (3.5) for X > 0 as:

V̂�;k =
F̂X(XjZ;W )� �k(W )

1� �k(W )
(3.13)

Alternatively, with an estimator Q̂X (�jW;Z) of the quantile function QX (�jW;Z), we
compute (3.6) for X > 0 as:

V̂�;k =

Z 1

0

1
n
Q̂X ((�k(W ) + (1� �k(W ))vjW;Z) � X

o
dv: (3.14)

Either approach to estimating the control function can be used. If the model is

restricted, then simpler methods of estimating the control function may be applicable.

For instance, under the linear model discussed in Section 2, the general formulae (3.13)

or (3.14) can be replaced by the simpler linear version (2.9):

V̂�;k = X � Z 0
̂k

where 
̂k is from the estimation of (2.8) with � = �k.
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The third step estimates the response model for each control function estimate

V̂�;k. This may involve estimating the conditional distribution FY [�jX;W; V̂�;k] or the
conditional quantile function QY [�jX;W; V̂�;k], either under a structural parameteriza-
tion or using a nonparametric procedure. Or, this could involve estimating the mean

regression E[Y jX;W; V̂�;k] or some other interpretable function such as local policy
e¤ects, average derivatives or local average responses; again with either a parametric

model or nonparametric procedure. Using our notation for the functional of interest,

this step results in the estimate �̂k = �̂ (�k (W )) of the parameter of interest. This

step also yields an estimate of the con�dence interval Ck = C1��(�k (W )) for each

component of �. For expositional ease, now we suppose that � is a scalar parameter,

so that �̂k is a scalar and Ck is its estimated con�dence interval in the following.

The �nal step is to assemble the results for all the grid values f�k (W ) ; k = 1; :::; Kg
into the �nal estimates. That is, the set estimate for � is formed as the intervalh

min
k
�k;max

k
�k

i
:

The con�dence interval for � is given as the union of the con�dence intervals over all

�k (W ) values, namely

CR :=
[K

k=1
Ck:

For a vector-valued �, we would compute set estimates and con�dence intervals for

each component, and for function-valued �, we could do the same for functional

aspects of interest. This completes the procedure we have justi�ed by our general

derivations and results.

It is important to stress that our constructive identi�cation approach relates set

identi�cation and inference to results for point identi�cation and inference. We were

brief in describing details for our third step - estimation of the response model given

�k (W ) and estimated control � because most of the necessary properties for esti-

mation and inference are established in the existing literature.The foremost reading

here is Imbens and Newey (2005), who discuss nonparametric series estimation in
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triangular equation systems with estimated regressors, and give detailed coverage to

the properties needed for estimating many common functions such as policy e¤ects

and average derivatives. For parametric response models with an estimated regres-

sor, much of the theory is available in Newey, Powell and Vella (2004), as well as in

the classic Newey and McFadden (1994). Turning to censored quantile regression

in a parametric framework (such as (2.8) here), see Powell (1984) and Chernozhukov

and Han (2002), and for quantile regression with an estimated regressor, see Koenker

and Ma (2006) and Lee (2006). Nonparametric quantile regression with estimated

regressors is covered in Chaudhuri (1991), Chaudhuri, Doskum, and Samarov (1997),

Belloni and Chernozhukov (2007), and Lee (2006). Finally, for estimation of the

conditional distribution function of the response, see Hall, Wol¤, Yao (1997) and

Chernozhukov and Belloni (2007), among others.

We now turn to a substantive empirical application to illustrate our method in-

cluding inference.

4. The Marginal Propensity to Consume out of Housing Wealth

Recent experience in housing markets has changed the composition of household

wealth. In many countries such as the United States, housing prices have increased

over a long period, followed by substantial softening. The market for housing debt,

especially the risky subprime mortgage market, has experienced liquidity shortages

that �rst resulted in increased volatility in many �nancial markets and later led to

the collapse of credit markets.

In terms of economic growth, much interest centers on the impact of changes in

housing wealth on household consumption. That is, if housing prices are permanently

lower in the future, will household consumption, and therefore aggregate demand, be

substantially lower as well? For this, one requires an assessment of the marginal

propensity to consume out of housing wealth.
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Surprisingly, the literature does not agree on the �right�measure of the marginal

propensity of consumption out of housing wealth. Some papers �nd marginal propen-

sities of 15 to 20 percent (e.g. Benjamin, Chinloy and Jud (2004)) while others report

relatively low estimates of 2 percent in the short run and 9 percent in the long run

(e.g.Carroll, Otsuka and Slacalek (2006)). Research in this area is very active, but

no concensus has arisen about the impacts.4

One of the problems of estimation is the fact that variables such as income and

housing wealth are endogenous and, in most surveys, also censored. The literature

typically drops the censored observations, and tries to estimate the relationship by

incorporating some non-linearities. As we have discussed, this is likely to bias the

results, and therefore could have a role in why there is no agreement on a standard set

of estimates. We feel that the estimation of the marginal propensity of consumption

out of housing wealth is a good situation for using the methodologies developed here

to shed light an a reasonable range of parameter values applicable to the design of

policy.

We have data on U.S. household consumption and wealth from Parker (1999).

These data are constructed by imputing consumption spending for observed house-

holds in the Panel Survey of Income Dynamics (PSID), using the Consumer Expendi-

ture Survey (CEX). Income data is preprocessed � original observations on income

are top-coded, but all households with a top-coded income value have been dropped

in the construction of our data.

4This impact of housing wealth is of primary interest for the world economy, not just the US.

See, for instance, Catte, Girouard, Price and Andre (2004) and Guiso, Paiella and Visco (2005) for

European estimates in the range of 3.5 percent. Asian estimates are in a simlar range; see Cutler

(2004) for estimates of 3.5 percent for Hong Kong.
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We estimate a �permanent income�style of consumption model:

lnCit = �+ �PY lnPYit + �H lnHit=Wit + �W lnWit + �Y lnYit + U
�
it (4.1)

= �+ �PY lnPYit + �H lnHit + (�W � �H) lnWit + �Y lnYit + U
�
it

Here Cit is consumption spending, PYit is a constructed permanent component of

income (human capital), Hit is housing wealth, Wit, is total wealth and Yit is current

income. Our focus is the elasticity �H , the propensity to consume out of housing

wealth.

Log housing wealth takes on many zero values, which we model as the result of

bound censoring and selection. These features arise �rst by the treatment of mort-

gage debt (we do not observe negative housing wealth values) and by the choice of

renting versus owning of a household�s residence. We view the composition of wealth

between housing and other �nancial assets as endogenous, being chosen as a function

of household circumstances and likely jointly with consumption decisions. Thus, we

model lnHit is a Tobin regressor, and treat current income, permanent income and

total wealth as exogenous. For instruments, we use lagged values of of the exogenous

regressors..

One implication of the Tobin regressor structure is that all standard OLS and

IV estimates are biased; including estimates that take into account either censoring

or endogeneity, but not both. In Table 1, we present OLS and IV estimates for

various subsamples of the data. The OLS estimates are all low; 2.7% for all data,

3.3% for households with observed lag values, and 5.3% for the �complete cases, �or

households with nonzero housing values. The IV estimate for the complete cases is

roughly a four-fold increase, namely 21.3%.

Estimation begins with establishing a range for the selection probability by studying

the probability of censoring. Once the range is set, the estimates are computed
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Table 1. Basic Estimates of Housing E¤ects

All Households Households with Nonzero Housing Wealth

observed IV (Complete Cases)

Sample Size 8,735 3,771 2,961

OLS .027 0.033 0.053

(.004) (0.006) (0.010)

IV (TSLS) 0.213

(0.030)

in two steps. First, we compute quantile regressions of the Tobin regressor using

censored LAD as in (2.8), for di¤erent values of the selection probability, and then

estimate the control function for each probability value. Second, we estimate the

model (4.1), including the estimated control function, as in (2.10) or (2.11). Our set

estimates coincide with the range of coe¢ cients obtained for all the di¤erent selection

probability values. Their con�dence intervals are given by the range of upper and

lower con�dence limits for coe¢ cient estimates. All estimates were computed using

Stata 10.0, and the code is available from the authors.

To set the range for the selection probability, we estimated the probability that

lnH = 0 given values of PY , Y andW , and found its minimum over the range of our

data, as in (3.11). Speci�cally, we used a probit model, including linear and quadratic

terms in all regressors. The minimum values were small, and, as a result we chose

a rather low yet conservative value of b̀(W ) = :04. After adjusting by two times

standard error times a log factor, the upper bound estimate became :08. (We have

illustrated this calculation graphically in Figure 3). Thus, we set the range for the
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selection probability to � 2 [0; :08]:5 Speci�cally, each estimation step is done over
the grid of values 0, .008, .016, ....08

For the �rst estimation step, we implement the censored LAD estimation algorithm

of Chernozhukov and Hong (2002). This requires (again) estimating the probability

of censoring, and the performing standard quantile regression on samples with low

censoring probability. These estimates are used to construct the control function V�

for each grid value. For the second estimation step, we computed mean regression,

median regression, and quantile regression for the 10% and 90% quantiles.

We present some representative estimates in Figures 4 and 5. Figure 4 displays

the di¤erent estimates of the housing e¤ect, and Figure 5 gives the estimates of all

coe¢ cients for median regression. Each �gure plots the estimates for each grid value

of �, as well as the associated con�dence interval, obtained by bootstrapping (denote

�bci�in the legend). The set estimates are the projections of those curves onto the

left axis.

Overall, there is very little variation in the estimates with �, the selection probabil-

ity. The housing e¤ect increases over quantiles, and there are other level di¤erences

not displayed. The bootstrap con�dence interval values are fairly wide, re�ect-

ing variation from censored LAD estimation (as well as the selection probability) as

well as the second step regressions. For what they are worth, Figure 5 includes the

con�dence interval estimates from the second step only (denoted �ci�); so that the

di¤erence with the bootstrap intervals gives a sense of the impact of the censored

LAD estimation and control function construction.

The results on housing e¤ects are summarized in Table 2. Interval estimates are

fairly tight, evidencing the lack of sensitivity with the selection probability. We

5We tried several variations, including using a probit model with Cauchy tails ( as in Koenker

and Yoon (2007)), without changing out conclusion that [0; :08] is a conservative (wide) choice of

range.
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Table 2. Con�dence Sets for Housing E¤ects

Set Estimate Bootstrap Con�dence Region

Housing coe¢ cient �H

Mean Outcome [:133; :161] [�:015; :312]
Median Outcome [:151; :162] [:026; :293]

90% Quantile [:172; :196] [:015; :357]

10% Quantile [:120; :141] [�:077; :341]

Selection Probability � [0; :04] [0; :08]

note that all results are substantially larger than the OLS estimates (2.7%-5.3%),

which ignore endogeneity. All results are substantially smaller than the IV estimate

of 21.3%, which ignores censoring. Relative to the policy debate on the impact of

housing wealth, our interval estimates fall in a very plausible range. However, the

bootstrap con�dence intervals are too wide to discriminate well among these ranges of

values. We do see that bootstrap con�dence intervals are smaller for median regression

than mean regression, and much smaller than for the 10% and 90% quantiles, as

expected.

5. Summary and Conclusion

We have presented a general set of identi�cation and estimation results for models

with a Tobin regressor, a regressor that is endogenous and mismeasured by bound

censoring and (independent) selection. Tobin regressor structure arises very com-

monly with observations on �nancial variables, and our results are the �rst to deal

with endogeneity and censoring together. As such, we hope our methods provide

a good foundation for understanding of how top-coding, bottom-coding and selec-

tion distort the estimated impacts of changes in income, wealth, dividends and other

�nancial variables.
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Our results are restricted to particular forms of censoring. It is not clear how

to get around this issue, because endogeneity requires undoing the censoring, and

undoing the censoring (seemingly) requires understanding its structure. Here we

separate selection and bound censoring with independence, use quantile regression

to address bound censoring, and identify parameter sets for the range of possible

selection probability values.

We have developed estimation and inference methods for set identi�ed parameters.

In particular, our results apply to any problem where the parameter value of interest

is point identi�ed conditional on the values of some nuisance parameters that are set

identi�ed. The procedure is quite simple: by �xing the nuisance parameter value

in some suitable region, one �rst proceeds with regular point and interval estima-

tion. Then, take the union over nuisance parameter values of the point and interval

estimates to form the �nal set estimates and con�dence set estimates. The �nal

set estimates are set-consistent for the true parameter value, and the con�dence set

estimates cover this value with at least a prespeci�ed probability in large samples.

One essential feature of our framework is that the censoring is not complete, namely

that some true values of the censored variable are observed. Such �complete cases�

provide the data for our estimation of the main equation of interest. However, not all

forms of censoring involve observing complete cases. Suppose, for instance, that we

were studying household data where all that we observe is whether the household is

poor or not; or that their income falls below the poverty line threshold. In that case,

using the �poor� indicator is a severely censored form of income, and no complete

cases (income values) are observed. Our methods do not apply in this case, although

it is of substantial practical interest.
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Figure 4: Housing Coefficient Estimates

Note:  Grid from 0.0 to 0.08
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Figure 5: Quantile Regression Estimates 

Note:  Grid from 0.0 to 0.08 




