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Abstract

We propose a new statistical test of the stochastic dominance effi ciency of a given portfolio

over a class of portfolios. We establish its null and alternative asymptotic properties, and define

a method for consistently estimating critical values. We present some numerical evidence that

our tests work well in moderate sized samples.

1 Introduction

The portfolio choice problem is a cornerstone of finance. There are two main approaches to this, the

mean variance approach and the stochastic dominance approach. In the mean variance approach

strong assumptions are made about the distribution of returns and/or preferences of the investor.

The rules for practical computation and statistical inference are well established, see for example

Markowitz (1952) and Gibbons, Ross, and Shanken (1989). The stochastic dominance approach

makes much weaker assumptions about the distribution of returns and/or preferences. On the other

hand, the practical implications of SD analysis has proven to be more diffi cult. The portfolio problem

is especially diffi cult, because we have to consider infinitely many portfolios, while the standard SD

rules rely on pairwise comparison of the individual alternatives. Recently, there has been significant
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financial support.
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progress on computational and statistical issues that have advanced the position of the stochastic

dominance method. See Levy (2006) for an overview and bibliography.

We propose a test of whether a given portfolio is effi cient with respect to the stochastic dominance

criterion in comparison with a set of portfolios formed from a given finite set of assets. Post (2003) and

Post and Versijp (2007) have recently proposed tests of the same hypothesis and provide a method of

inference based on a duality representation of the investor’s expected utility maximization problem.

Their approach uses a conservative bounding distribution, which may compromise statistical power

or the ability to detect ineffi cient portfolios in small samples. They also used a sampling scheme

that assumed iid observations and hence does not allow for the GARCH effects often seen in high

frequency returns.

We propose an alternative statistical approach to the problem. Specifically we suggest to use a

modification of the Kolmogorov-Smirnov test statistic of McFadden (1989) and Klecan, McFadden,

and McFadden (1991). Recently, Linton, Maasoumi, and Whang (2005) (hereafter LMW) have

provided a comprehensive theory of inference for a class of test statistics for the standard pairwise

comparison of prospects. We extend their work to the portfolio case. This entails a nontrivial

conceptual and computational issue. The null hypothesis in LMW was of stochastic maximality in a

finite set, i.e., that there was at least one prospect that weakly stochastically dominated some of the

others. The alternative was two-sided and the number of prospects considered was finite. Because

this only involved pairwise comparison it is not appropriate for the situation where an investor may

combine a set of basis assets into a portfolio. We consider the null hypothesis that a given portfolio

is not dominated by any other feasible portfolio. This requires a substantial modification to the test

statistics of LMW due to boundary problems, an issue raised in Kroll and Levy (1980). Specifically,

we estimate a ‘contact set’and compute the supremum in the test statistic only over the complement

of a small enlargement of this set. For this we need to develop new theory for the behavior of

these estimated sets and derived quantities. Our theory is related to recent work of Chernozhukov,

Hong, and Tamer (2007). There is also an issue of computation because one has to search over

a very large set of portfolios. We propose to solve this computational issue using a nested linear

programming algorithm. We provide the limiting distribution of our test statistic under the null

hypothesis of SD effi ciency, and give also some results on asymptotic power. We propose to use the

subsampling method for obtaining the critical values, and we establish that this is consistent under

general conditions. We evaluate the performance of our method on simulated data.

We focus on stochastic dominance criteria of order two and higher, meaning that risk aversion is

assumed throughout this study. For various reasons, we do not cover the first-order criterion, which

allows for risk seeking behaviour. We discuss this issue below. In general a portfolio may be second

order SD effi cient but not mean variance effi cient and vice versa so the two concepts might yield
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different predictions.

2 The Null Hypothesis

We consider a single-period portfolio decision under uncertainty model. Individuals chose portfolios

of assets to maximize the expected utility of the returns to their portfolio. Let X = (X1, . . . , XK)
>

be the vector of returns on a set of K assets, and let Y be the return on some benchmark asset

that is a portfolio of X. We consider portfolios with return X
>
λ, where λ = (λ1, . . . , λK)

>
, Λ =

{λ ∈ RK+ : e
>
λ = 1}, and e = (1, . . . , 1)

>
. The approach applies also for a portfolio possibilities set

with the shape of a general polytope, allowing for general linear constraints, such as short selling

constraints, position limits and restrictions on risk factor loadings. Let Λ0 be some subset of Λ

reflecting whatever additional restrictions if any are imposed on Λ. Let U1 denote the class of all von

Neumann-Morgenstern type utility functions, u, such that u′ ≥ 0, (increasing). Also, let U2 denote

the class of all utility functions in U1 for which u′′ ≤ 0 (strict concavity), and let U3 be the set of

functions in U2 for which u′′′ ≤ 0.

Definition 1. (SSD Effi ciency) The asset Y is SSD effi cient if and only if some u ∈ U2,

E[u(Y )] ≥ E[u(X
>
λ)] for all λ ∈ Λ0.

Likewise one can define third order effi ciency replacing U2 by U3. This is the definition of portfolio

effi ciency used in Post (2003). Bawa, Bodurtha, Rao, and Suri (1985) distinguish between the

admissible set of portfolios, which is a subset of the choice set that contains only portfolios that

are not pairwise dominated by any other portfolio, and the optimal set, which is a subset of the

admissible set that will be chosen by some utility function in the class.

Let Fλ(·) and FY (·) be the c.d.f.’s of X>λ and Y, respectively. For a given integer s ≥ 1, define

the s -th order integrated c.d.f. of X
>
λ to be

G
(s)
λ (x) =

∫ x

−∞
G

(s−1)
λ (y)dy,

where G(0)
λ (·) = Fλ(·), and likewise for G(s)

Y (x). A portfolio X
>
λ s-order dominates Yt if and only if

G
(s)
λ (x) − G(s)

Y (x) ≤ 0 for all x with strict inequality for at least one x in the support X . For s ≥ 2

this definition is equivalent to definition 1, but not so for s = 1, see Post (2005) for discussion. Thus

our results are only meaningful for s ≥ 2, although we retain the general definition. For notational

simplicity, we sometimes let the dependence on s of the quantities introduced below be implicit , i.e.,

we write G(s)
λ as Gλ and so on. We wish to test the null hypothesis that Y is s-th order SD effi cient

according to definition 1 in the sense that there does not exist any portfolio in {X>λ : λ ∈ Λ0}
that dominates it, where Λ0 is a compact subset of Λ. This hypothesis has previously been tested by
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Post (2003) and Post and Versijp (2007) among others. In the next section we discuss the general

approach for testing this hypothesis.

2.1 General Strategy

Let F be the joint distribution of X. The general approach is to find a functional d(F ) ∈ R such
that d(F ) ≤ 0 when F satisfies the null hypothesis, while d(F ) > 0 when F does not satisfy the null

hypothesis. One then replaces F by an estimate F̂ and computes the empirical functional d(F̂ ) and

rejects for large positive values of d(F̂ ). To carry out a statistical test one has to choose the cut-off

point cα to have certain properties, but we shall address this later.

Consider the functional

d = sup
λ∈Λ0

inf
x∈X

[GY (x)−Gλ(x)] . (1)

This is essentially a modification of the functional used in LMW to test for stochastic maximality.1

This functional satisfies (1)≤ 0 under the null hypothesis. Unfortunately, there are some elements of

the alternative for which (1)= 0 and so one cannot get a consistent test from this functional. Kroll

and Levy (1980) consider a similar example where Y is U [0, 1] and X is U [0, 2] so that X dominates

Y. They prove that Pr[min1≤i≤nXi < min1≤i≤n Yi] → 1/3 as n → ∞ so that one has approximately

at least one third chance of finding no dominance based on samples on X, Y.

The null and alternative hypotheses we are testing are quite complex, and to characterize them

we introduce some further notation. For each λ define the three subsets of X :

A−λ = {x : GY (x)−Gλ(x) < 0} ; A=
λ = {x : GY (x)−Gλ(x) = 0} ; A+

λ = {x : GY (x)−Gλ(x) > 0} .

If X>t λ dominates Yt, then A
−
λ = ∅, and A+

λ is nonempty. However, it can be that both A
=
λ and A

+
λ

are nonempty in which case infx∈X (GY (x)−Gλ(x)) = 0. The supremum over the entire support fails

to distinguish between weak and strict inequality. This is not an issue in testing the hypothesis of

stochastic maximality, since the reverse comparison will identify that infx∈X (Gλ(x)−GY (x)) < 0.

However, it does matter here. Specifically, suppose that A=
λ and A

+
λ are non-empty and A

−
λ = ∅ for

some λ’s. For these λ’s, we have infx∈X (GY (x)−Gλ(x)) = 0 even though X>t λ dominates Yt. If the

other λ’s are such that we have only A=
λ and A

−
λ non-empty so that infx∈X (GY (x)−Gλ(x)) < 0 for

those values, then we obtain that (1)= 0.

1Their null hypothesis was that there exists at least one prospect from a finite set that dominates some of the

others. They considered the functional

d∗ = min
λ6=µ

sup
x∈X

[Gµ(x)−Gλ(x)] ,

where λ, µ are chosen from a finite set. Under their null hypothesis d∗ ≤ 0, while under their alternative d∗ > 0.

4



We next suggest some modifications of (1) that properly characterize the null hypothesis. This

modification involves keeping away from the boundary points.

For each ε > 0, define the ε-enlargement of the set A=
λ and its complement in X :

(A=
λ )ε = {x+ η ∈ X : x ∈ A=

λ and |η| < ε} ,

Bε
λ =

{
X\(A=

λ )ε if A=
λ 6= X

X if A=
λ = X .

(2)

Then let

d∗(ε, F ) = sup
λ∈Λ0

inf
x∈Bελ

[GY (x)−Gλ(x)] . (3)

Under the null hypothesis, d∗(ε, F ) ≤ 0 for each ε ≥ 0, while under the alternative hypothesis we

have d∗(ε, F ) > 0 for some ε > 0. The idea is that you prevent the inner infimum ever being zero

through equality on some part of X . Now consider d(F ) = supε∈[0,ε] d∗(ε, F ) for some ε > 0. This

functional divides the null from alternative. An alternative approach is based on the idea that even

in cases where limε→0 d∗(ε, F ) = 0 under the alternative, one may have slow enough convergence in ε

so that one can distinguish null from alternative for these cases based on the ‘contact rate’. That is,

we can expect d∗(ε, F ) ' Φ(F )εα as ε→ 0 for some α > 0 and Φ(F ), where Φ(F ) = 0 under the null

hypothesis and Φ(F ) > 0 under the alternative hypothesis. This higher order difference is enough to

identify null from alternative as we show below.

In practice we have to estimate the set Bε
λ from the data, which we do below in a simple way.

See Chernozhukhov, Han, and Tamer (2007) for discussion of set estimation problems.

3 Test Statistics

We suppose now that we have a time series of observations on the assets, Xt = (X1t, . . . , XKt)
>
and

Yt for t = 1, . . . , T. The general approach is to define empirical analogues of (3) as our test statistics.

Let kT = c0 · (log T/T )1/2 and let εT denote a sequence of positive constants satisfying Assumption

2 below, where c0 is a positive constant. Define:

Â=
λ =

{
x ∈ X :

∣∣∣ĜY (x)− Ĝλ(x)
∣∣∣ ≤ kT

}
(4)(

Â=
λ

)εT
=

{
x+ η ∈ X : x ∈ Â=

λ , |η| < εT

}
(5)

B̂εT
λ =

{
X\(Â=

λ )εT if Â=
λ 6= X

X if Â=
λ = X

(6)
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QT (λ, x) =
√
T
[
ĜY (x)− Ĝλ(x)

]
(7)

ĜTλ(x) =

∫ x

−∞
Ĝ

(s−1)
Tλ (y)dy, F̂Tλ(x) =

1

T

T∑
t=1

1(X
>

t λ ≤ x)

dT = sup
λ∈Λ0

inf
x∈B̂εTλ

QT (λ, x), (8)

and likewise for ĜY (x). This is our proposed test statistic; rejection is for large positive values.

Notice that to compute (8) requires potentially high dimensional optimization of a discontinuous

non-convex/concave objective function. In the next section we discuss how to compute the test

statistic (8).

4 Computational Strategy

We next discuss our suggested computational strategy in detail. The supremum over the scalar x in

(8) is computed by a grid search, the main issue is with regard to the optimization over λ, which

may be high dimensional. The objective function QT (λ, x) can be written as

QT (λ, x) =
1

(s− 1)!
√
T

T∑
t=1

{
(x− Yt)s−11 (Yt ≤ x)− (x−X>t λ)s−11

(
X>t λ ≤ x

)}
,

see Davidson and Duclos (2000). When s = 1, QT (λ, x) is neither continuous in x nor in λ. When

s = 2, this function is not differentiable or convex in λ ∈ RK , but it is continuous in x. When

s = 3, the objective function is differentiable in x but not in λ. Therefore, one cannot use standard

derivative-based algorithms like Newton-Raphson to find the optima (in any case, these methods do

not work when the solution may be on the boundary of the parameter space). One could replace the

empirical c.d.f.’s by smoothed empirical c.d.f. estimates in order to impose additional regularity on

the optimization problem so that derivative based iterative algorithms could be used. There is a well-

established literature in econometrics concerning this class of non-smooth optimization estimators,

see Pakes and Pollard (1989). Nevertheless, it is a diffi cult problem computationally to achieve the

maximum over λ with high accuracy when K is large in the non-smooth case. We next show how

to write the optimization problem (in the second order dominance case s = 2) as a one-dimensional

grid search with embedded linear programming.

Every SSD effi cient portfolio is optimal for some increasing and concave utility function. Russell

and Seo (1989) show that each increasing and concave utility function can be represented by an
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elementary, two-piece linear utility functions characterized by a single scalar threshold parameter,

say µ:

uµ(x) = min{x− µ, 0}.

Thus every effi cient portfolio is the solution to the following problem

max
λ∈Λ

1

T

T∑
t=1

min{X>t λ− µ, 0}

for some value of µ. It is straightforward to show that this problem is equivalent to the following

linear programming problem:

max
θ∈RT ,λ∈RK

1

T

T∑
t=1

θt (9)

θt ≤
K∑
j=1

λjXjt − µ, t = 1, . . . , T (10)

θt ≤ 0, t = 1, . . . , T (11)

K∑
j=1

λj = 1 (12)

λj ≥ 0, j = 1, . . . , K, (13)

where θ = (θ1, . . . , θT ) and λ = (λ1, . . . , λK).

Let λ̂(µ), θ̂(µ) be the solution to (9)-(13) for each µ. In this problem, θt captures the discontinuous

term min{X>t λ − µ, 0}. Specifically, due to the maximization orientation in (9), constraint (10)
and/or (11) will be binding and hence θ̂t(µ) = min{X>t λ̂(µ) − µ, 0} at the optimum. In brief, the
SSD effi cient set reduces to a one-dimensional manifold and the elements can be identified by solving

the LP problem (9)-(13) for different values of the single threshold parameter µ. We then compute

QT (λ, x) for every λ from {λ̂(µ) : µ ∈M}, whereM is some set of values for µ (under no short-selling

we can take M = [µmin, µmax], where µmin, µmax are the minimum and maximum expected returns of

the individual assets respectively). The infimum and supremum in (8) can be computed by a grid

search. We can also take this approach for higher-order criteria, because the effi cient set then is a

subset of the SSD effi cient set. This approach works well for moderate sized samples and for single

replications. For Monte Carlo studies with large sample sizes it becomes too time consuming. The

standard simplex algorithm (employed in GAUSS/MATLAB type software) is exponential in the

dimensions (T +K − 1), and should be replaced by a polynomial time algorithm.

An alternative approach is to use one of the many algorithms appropriate for non-smooth op-

timization like the Nelder Mead or more recent developments. This method does not require any
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particular structure. For this algorithm to work well in high dimensional cases one needs good

starting values. We propose to obtain these by grid searching over the mean variance (MV) effi -

cient frontier. The MV effi cient set is a natural starting point, because for the normal distribution

the SD effi cient set and the MV effi cient set coincide. The set of mean variance effi cient portfolios

can be computed in terms of the unconditional mean µ and the covariance matrix Σ of the vector

Xt. For given µp there exists a unique portfolio λ(µp) that minimizes the variance σ
2
p of the port-

folios that achieve return µp. The set of mean variance effi cient portfolio weights are indexed by

the target portfolio return µp, specifically λp = g + hµp, where the vectors g(µ,Σ), h(µ,Σ) satisfy

g = 1
D

[BΣ−1i− AΣ−1µ] and h = 1
D

[CΣ−1µ− AΣ−1i] , with the scalars A = i
>

Σ−1µ, B = µ
>

Σ−1µ,

C = i
>

Σ−1i, and D = BC−A2, see Campbell, Lo, and McKinlay (1997, p185). Therefore, one takes

a grid of values of µp and obtains λp for this grid and then compute the test statistic. To impose

that there is no short selling it suffi ces to search in the range M = [µmin, µmax]. The optimal value

of λp can be used as a starting value in some more general optimization algorithm.

5 Asymptotic Properties

In this section we give the asymptotic properties of the test statistic under the null and alternative

hypothesis. We also present the subsampling method for obtaining critical values and establish that

our test is consistent against all alternatives under our conditions.

5.1 Null Distribution

We shall need the partition Λ0 = Λ1 ∪ Λ2, where Λ1 ∩ Λ2 = ∅, Λ1 = Λ−0 ∪ Λ=
0 , and Λ2 = Λ+

0 ∪ Λ'0

with:

Λ=
0 = {λ ∈ Λ0 : GY (x) = Gλ(x) ∀x ∈ X} (14)

Λ−0 =

{
λ ∈ Λ0 : inf

x∈X
[GY (x)−Gλ(x)] < 0

}
(15)

Λ+
0 =

{
λ ∈ Λ0 : inf

x∈X
[GY (x)−Gλ(x)] > 0

}
(16)

Λ'0 =

{
λ ∈ Λ0 : inf

x∈X
[GY (x)−Gλ(x)] = 0, inf

x∈Bελ
[GY (x)−Gλ(x)] > 0 for some ε > 0

}
. (17)

Under the null hypothesis, Λ2 = ∅ and hence Λ0 = Λ1. Under the alternative hypothesis, Λ1 = ∅ and
Λ0 = Λ2.

To discuss the asymptotic null distribution of our test statistic, we need the following assumptions:

Assumption 1. (i) {(X>t , Yt)> : t = 1, . . . , T} is a strictly stationary and α- mixing sequence

with α(m) = O(m−A) for some A > (q − 1)(1 + q/2), where Xt = (X1t, . . . , XKt)
> and q is an even
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integer that satisfies q > 2(K + 1). (ii) The supports of Xkt and Yt are compact ∀k = 1, . . . , K. (iii)

The distributions of Xt and Yt are absolutely continuous with respect to Lebesgue measure and have

bounded densities.

Assumption 2. (i) {εT : T ≥ 1} is a sequence of positive constants such that limT→∞ εT = 0 and

εT > kT ∀T ≥ 1. (ii) For each x ∈ X , constant C1 > 0 and λ ∈ Λ0 such that A=
λ 6= ∅, we have:

|GY (x)−Gλ(x)| ≥ C1 min

{
inf

x′∈A=λ
|x− x′| , εT

}
for T suffi ciently large.

Assumption 2 requires that the function GY (·)−Gλ(·) is monotonic on a εT - neighborhood of the
boundary ∂A=

λ of A
=
λ . It is satisfied when GY (x) and Gλ(x) have derivatives that are not equal on

the local neighborhood of ∂A=
λ because by Taylor expansion GY (x)−Gλ(x) ' [gY (x′)−gλ(x′)][x′−x]

for x close to x′, hence we can bound |GY (x)−Gλ(x)| from below for x close to A=
λ , while for x far

from A=
λ the minimum is eventually dominated by εT which can be made arbitrarily small.

Define the empirical process in λ and x to be

νT (λ, x) =
√
T
[
ĜY (x)− Ĝλ(x)−GY (x) +Gλ(x)

]
. (18)

Let ν̃(·, ·) be a mean zero Gaussian process on Λ0 ×X with covariance function given by

C((λ1, x1), (λ2, x2)) = lim
T→∞

EνT (λ1, x1)νT (λ2, x2). (19)

Then, the limiting null distribution of our test statistic is given in the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then, under the null hypothesis, we have

dT ⇒ Υ =

{
supλ∈Λ=0

infx∈X [ν̃(λ, x)] if Λ=
0 6= ∅

−∞ if Λ=
0 = ∅,

where Λ=
0 is defined in (14).

Theorem 1 shows that the asymptotic null distribution of dT is non-degenerate when Λ=
0 6= ∅

and depends on the joint distribution function of (X>t , Yt)
>. The latter implies that the asymptotic

critical values for dT can not be tabulated once and for all. However, we define below various

simulation procedures to estimate them from the data.

5.2 Critical Values

5.2.1 Subsampling

We propose a subsampling method to obtain consistent critical values. The subsampling method has

been proposed by Politis and Romano (1994) and works in many cases under very general settings,
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see, e.g., Politis, Romano, and Wolf (1999) and Horowitz (2003). The subsampling is useful in our

context because our null hypothesis consists of complicated system of inequalities which is hard to

mimic using the standard bootstrap. Furthermore, the subsampling-based test described below has

an advantage of being asymptotically similar on the boundary of the null hypothesis, see below and

LMW for details. It is also much more computationally convenient than full resampling.

The subsampling procedure is based on the following steps:

(i) Calculate the test statistic dT using the original full sample WT = {Zt = (X>t , Yt)
> : t =

1, . . . , T}.

(ii) Generate subsamples WT,b,t = {Zt, . . . , Zt+b−1} of size b for t = 1, . . . , T − b+ 1.

(iii) Compute test statistics db;T,t using the subsamples WT,b,t for t = 1, . . . , T − b+ 1.

(iv) Approximate the sampling distribution of dT by

ŜT,b(w) =
1

T − b+ 1

T−b+1∑
t=1

1 (db;T,t ≤ w) .

(v) Get the α-th sample quantile of ŜT,b(·), i.e.,

sT,b(α) = inf{w : ŜT,b(w) ≥ α}.

(vi) Reject the null hypothesis at the significance level α if dT > sT,b(α).

The circular block version (Kläver (2005) involves an edge modification in (ii) that wraps the

sample around. The above subsampling procedure can be justified in the following sense: Let b = b̂T

be a data-dependent sequence satisfying

Assumption 3. P [lT ≤ b̂T ≤ uT ] → 1 where lT and uT are integers satisfying 1 ≤ lT ≤ uT ≤
T, lT →∞ and uT/T → 0 as T →∞.
Then, the following theorem shows that our test based on the subsample critical value has as-

ymptotically correct size.

Theorem 2. Suppose Assumptions 1-3 hold. Then, under the null hypothesis, we have

(a) sT,̂bT (α)
p→
{
s(α) if Λ=

0 6= ∅
−∞ if Λ=

0 = ∅

(b) P [dT > sT,̂bT (α)]→
{
α if Λ=

0 6= ∅
0 if Λ=

0 = ∅

10



as T →∞, where s(α) denotes the α-th quantile of the asymptotic null distribution supλ∈Λ=0
infx∈X [ν̃(λ, x)]

of dT given in Theorem 1.

We now compare the subsampling and bootstrap procedures. Under suitable regularity conditions,

it is not diffi cult to show that the asymptotic size of the test based on bootstrap critical value hT (α)

is α if the least favorable case (when the marginal distributions all coincide) is true. Therefore, in this

case, we might prefer bootstrap to subsampling since the former uses the full sample information and

hence may be more effi cient in finite samples. However, as we have argued in other context (see LMW

(Section 6.1)), the least favorable case is only a special case of the boundary, i.e., Λ=
0 6= ∅, of the

null hypothesis H0, whereas the test statistic dT has a non-degenerate limit distribution everywhere

on the boundary. This implies that the bootstrap-based test is not asymptotically similar on the

boundary, which in turn implies that the test is biased, see Lehmann (1959, Chapter 4. On the other

hand, the subsample-based test is unbiased and asymptotically similar on the boundary and may be

preferred in this sense. In practice, one might wish to employ both approaches to see if the results

obtained are robust to the choice of resampling schemes, as we did in our empirical applications

below.

5.3 Asymptotic Power

In this section, we discuss consistency and local power properties of our test.

If the alternative hypothesis is true, Λ0 = Λ+
0 ∪ Λ'0 . When Λ+

0 is empty, we need the following

assumption for consistency of our test:

Assumption 4. When Λ0 = Λ'0 , limT→∞ (T/uT )1/2 ∆λ(εT ) > 0 for some λ ∈ Λ0, where ∆λ(ε) =

infx∈Bελ (GY (x)−Gλ(x)) and uT is defined in Assumption 3.

For each λ ∈ Λ'0 ,∆λ(ε) is a non-decreasing in ε, ∆λ(ε) > 0 ∀ε > 0 and ∆λ(0) = 0. Therefore,

from a Taylor expansion (T/uT )1/2 ∆λ(εT ) ' (T/uT )1/2 εT (∂∆λ(0)/∂ε), Assumption 4 holds if εT
goes to zero at a rate not too fast and and the derivative of ∆λ(ε) is strictly positive at ε = 0 for

some λ ∈ Λ'0 .

Then, we have the following result.

Theorem 3. Suppose that Assumptions 1-4 hold. Then, under the alternative hypothesis, we

have

P [dT > sT,̂bT (α)]→ 1 as T →∞.

Next, we determine the power of the test dT against a sequence of contiguous alternatives con-

verging to the boundary Λ=
0 6= ∅ of the null hypothesis at the rate 1/

√
T . That is, consider the set

of portfolio weights

Λ0T =
{
λ+ c/

√
T : λ ∈ Λ=

0 , c ∈ RK
}
.

11



Let FλT (·) = G
(0)
λT

(x) be the c.d.f.’s of X
>
t λT for λT ∈ Λ0T . Also, for s ≥ 1, define G(s)

λT
(x) =∫ x

−∞G
(s−1)
TλT

(y)dy. As before, we abbreviate the superscript s for notational simplicity. Then, we

assume that the functionals GλT (x) and GY (x) satisfy the following local alternative hypothesis:

Ha : GY (x)−GλT (x) =
δY λ(x)√

T
for λT ∈ Λ0T and λ ∈ Λ=

0 , (20)

where δY λ(·) is a real function such that infx∈X [δY λ(x)] > 0.

The asymptotic distribution of dT under the local alternatives is given in the following theorem:

Theorem 4. Suppose Assumptions 1 and 2 (with Λ0 replaced by Λ0T ) hold. Then, under the

sequence of local alternatives Ha, we have

dT ⇒ sup
λ∈Λ=0

inf
x∈X

[ν̃(λ, x) + δY λ(x)] ,

where ν̃(λ, x) is defined as in Theorem 1.

The result of Theorem 4 implies that asymptotic local power of our test based on the subsample

critical value is given by

lim
T→∞

P [dT > sT,̂bT (α)] = P [L0 > s(α)] , (21)

where L0 denotes the limit distribution given in Theorem 4 and s(α) denotes the α-th quantile of

the asymptotic null distribution of dT given in Theorem 1. Also, our test is asymptotically local

unbiased because, by Anderson’s lemma (see Bickel et. al. (1993, p.466)), the right hand side of (21)

is less than α.

6 Simulation Study

We report the results of a small simulation study based on multivariate normal distributions with

moments taken from the beta-sorted portfolios reported in Post and Versijp (2007). For every ran-

dom sample, we apply our test procedures for second order and third order stochastic dominance

to both test portfolios, the equally weighted portfolio (EP) and the tangency portfolio (TP). Recall

that the equally weighted portfolio is ineffi cient according to second order and third order dom-

inance, while the tangency portfolio is effi cient. The experiments are performed for sample sizes

T ∈ {50, 100, 200, 500, 1000, 2000}. Below we show some results for the special case of two portfolios
(numbers 2 and 9 in terms of β) in which case we just perform a grid search over 100 linear combi-

nations of these assets. We take kT = 0.3
√

log(T )/T and εT = 2 × kT . These results are based on
ns = 400 replications. We show the median p-value across 400 simulations against sample size. The

p-values are computed by comparing the test statistic with 200 recentered bootstrap resamples. The

results are shown in Figures 1-4 below.
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Figure 1. (Alternative hypothesis)

Figure 2. Null hypothesis
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Figure 3. Alternative hypothesis

Figure 4. Null hypothesis

These results seem to be encouraging: under the null hypothesis median p-values tend to one and

under the alternative hypothesis median p-values tend to zero with sample size. We show also the

distribution of the test statistics in the two case for the largest sample sizes; they have quite different

shapes and locations.
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Figure 5. Histogram of test statistic for EP case

Figure 6. Histogram for test statistic, TP case.

7 Conclusions

We have proposed a statistical test of the effi ciency in the stochastic dominance sense of a given

portfolio. We have shown that the test is consistent against alternatives and show that it works

reasonably well in small samples in a simple bivariate case based on plausible parameter values. Im-
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plementing the test for higher dimensions remains a formidable challenge, although we have suggested

some techniques that may help.

8 Appendix

Lemma 1. Suppose Assumption 1 holds, Then, we have

νT (·, ·)⇒ ν̃(·, ·). (22)

Proof of Lemma 1. For lemma 1, we need to verify (i) finite dimensional (fidi) convergence and

(ii) the stochastic equicontinuity result: that is, for each ε > 0 there exists δ > 0 such that

lim
T→∞

∥∥∥∥∥ sup
ρ∗((λ1,x1),(λ2,x2))<δ

|νT (λ1, x1)− νT (λ2, x2)|
∥∥∥∥∥
q

< ε, (23)

where the pseudo-metric on Λ0 ×X is given by

ρ∗ ((λ1, x1) , (λ2, x2))

=
{
E
[
(x1 − Yt)s−11 (Yt ≤ x1)− (x1 −X>t λ1)s−11

(
X>t λ1 ≤ x1

)
−(x2 − Yt)s−11 (Yt ≤ x2) + (x2 −X>t λ2)s−11

(
X>t λ2 ≤ x2

)]2}1/2

.

The fidi convergence result holds by the Cramer-Wold device and a CLT for bounded random variables

(see Hall and Heyde (1980, Corollary 5.1)) since the underlying random sequence {(X>t , Yt)> : t ≥ 1}
is strictly stationary and α - mixing with

∑∞
m=1 α(m) < ∞ by Assumption 1. On the other hand,

the stochastic equicontinuity condition (23) holds by Theorem 2.2 of Andrews and Pollard (1994)

with Q = q and γ = 2. To see this, note that their mixing condition is implied by Assumption 1(i).

Also, let

F = {ft(λ, x) : (λ, x) ∈ Λ0 ×X} ,where

ft(λ, x) = (x− Yt)s−11 (Yt ≤ x)− (x−X>t λ)s−11
(
X>t τ ≤ x

)
..

Then, F is a class of uniformly bounded functions that satisfy the L2-continuity condition: that is,

for some constants C1, C2 <∞,

E
∗

sup [ft(λ1, x1)− ft(λ, x)]2

≤ C1

{
E

∗
sup

[
(x1 − Yt)s−1 − (x− Yt)s−1

]2
+ E

∗
sup [1 (Yt ≤ x1)− 1 (Yt ≤ x)]2

+E
∗

sup
[
(x1 −X>t λ1)s−1 − (x−X>t λ)s−1

]2
+ E

∗
sup

[
1
(
X>t λ1 ≤ x1

)
− 1

(
X>t λ ≤ x

)]2}
≤ C2 · r,
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where sup∗ denotes the supremum taken over (λ1, x1) ∈ Λ0×X for which ‖λ1 − λ‖ ≤ r1, |x1 − x| ≤
r2 and

√
r2

1 + r2
2 ≤ r, the first inequality holds by several applications of Cauchy-Schwarz inequality

and Assumption 1(ii) and the second inequality holds by Assumptions 1(iii). This implies that the

bracketing condition of Andrews and Pollard (1994, p.121) holds because the L2-continuity condition

implies that the bracketing number satisfies N(ε,F) ≤ C3 · (1/ε)K+1 .This establishes Lemma 1.

Lemma 2. Suppose Assumptions 1 and 2 hold. Then, we have

P
(
B2εT
λ ⊂ B̂εT

λ ⊂ BεT
λ

)
→ 1 ∀λ ∈ Λ0

as T →∞.
Proof of Lemma 2. It suffi ces to show that for each λ ∈ Λ0,

P
(

(A=
λ )εT ⊂

(
Â=
λ

)εT)
→ 1 (24)

P
((
Â=
λ

)εT
⊂ (A=

λ )2εT
)
→ 1. (25)

Suppose A=
λ 6= X . (If A=

λ = X , (25) trivially holds and (24) holds by the same argument as (26)
below.) We first establish (24). Consider λ such that A=

λ 6= ∅. (Otherwise, (24) holds trivially.) Let
x∗0 ∈ (A=

λ )εT . Then, x∗0 = x0 + η0T for some x0 ∈ A=
λ and a fixed sequence |η0T | < εT . Now (24) holds

since

P
(
x∗0 ∈

(
Â=
λ

)εT)
≥ P (x0 ∈ Â=

λ )

= P
(∣∣∣Ĝλ(x0)− ĜY (x0)−Gλ(x0) +GY (x0)

∣∣∣ ≤ kT

)
= P

(
|Op(1)| ≤ (log T )1/2

)
→ 1, (26)

where the second equality holds by the fidi convergence result of Lemma 1.

We next establish (25). Let x∗1 ∈
(
Â=
λ

)εT
, i.e., x∗1 = x1 +η1T for some x1 ∈ Â=

λ and fixed sequence

|η1T | < εT . It suffi ces to show that P (x1 ∈ (A=
λ )εT ) → 1. Let C1 > 1 be a constant. Then, we have:

wp→ 1,

|GY (x1)−Gλ(x1)| ≤
∣∣∣ĜY (x1)−GY (x1)

∣∣∣+
∣∣∣Ĝλ(x1)−Gλ(x1)

∣∣∣+
∣∣∣ĜY (x1)− Ĝλ(x1)

∣∣∣
≤ C1kT ,

where the first inequality holds by triangular inequality and the second inequality holds using the

fidi convergence result as in (26) and the fact that x1 ∈ Â=
λ . Now, by Assumption 2, since εT > kT ,

we have infx′∈A=λ |x1 − x′| < εT wp→ 1, which implies that P (x1 ∈ (A=
λ )εT )→ 1, as required.

Proof of Theorem 1. Below, we shall establish

sup
λ∈Λ=0

inf
x∈B̂εTλ

QT (λ, x) ⇒ Υ (27)

sup
λ∈Λ−0

inf
x∈B2εTλ

νT (λ, x)− sup
λ∈Λ−0

inf
x∈B0λ

νT (λ, x) = op(1). (28)
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Then, Theorem 1 holds because of the following arguments: For any w ∈ R, we have

lim
T→∞

∣∣∣∣∣P (dT ≤ w)− P
(

sup
λ∈Λ=0

inf
x∈B̂εTλ

QT (λ, x) ≤ w

)∣∣∣∣∣
≤ lim

T→∞
P

(
sup
λ∈Λ−0

inf
x∈B̂εTλ

QT (λ, x) > w

)
(29)

≤ lim
T→∞

P

(
sup
λ∈Λ−0

inf
x∈B2εTλ

QT (λ, x) > w

)
(30)

≤ lim
T→∞

P

(
sup
λ∈Λ−0

inf
x∈B2εTλ

νT (λ, x) > w + T 1/4

)
(31)

= lim
T→∞

P

(
sup
λ∈Λ−0

inf
x∈B0λ

νT (λ, x) > w + T 1/4

)
(32)

= 0, (33)

where (29) holds by the fact that Λ0 = Λ−0 ∪Λ=
0 under the null hypothesis and the general inequality

|P (max(X, Y ) ≤ x)− P (Y ≤ x)| ≤ P (X > x) for any rv’s X and Y, (30) holds by Lemma 2, (31)

follows from the result limT→∞ supλ∈Λ−0
inf

x∈B2εTλ
T 1/4 (GY (x)−Gλ(x)) < −1, (32) holds by (28), and

(33) holds since supλ∈Λ−0
infx∈B0λ νT (λ, x) = Op(1) using Lemma 1 and continuous mapping theorem.

This result and (27) combine to yield Theorem 1.

We now establish (27) and (28). Let w ∈ R. Then, by Lemma 2, we have∣∣∣∣∣P
(

sup
λ∈Λ=0

inf
x∈B̂εTλ

QT (λ, x) ≤ w

)
− P

(
sup
λ∈Λ=0

inf
x∈X

QT (λ, x) ≤ w

)∣∣∣∣∣ ≤ P
(
B̂εT
λ 6= X for λ ∈ Λ=

0

)
→ 0.

Therefore, (27) holds by Lemma 1, continuous mapping theorem and the fact

sup
λ∈Λ=0

inf
x∈X

QT (λ, x) = sup
λ∈Λ=0

inf
x∈X

[νT (λ, x)] .

Next, consider (28). Let Z ⊂ R be a compact set containing zero. Define the stochastic process

lT (·, ·, ·) on Λ−0 ×X ×Z to be lT (λ, x, z) = νT (λ, x+ z). Then, by an argument similar to Lemma 1,

lT (·, ·, ·) is stochastic equicontinuous on Λ−0 ×X ×Z, which in turn implies that

sup
λ∈Λ−0

inf
x∈B2εTλ

νT (λ, x)− sup
λ∈Λ−0

inf
x∈B0λ

νT (λ, x)

= sup
λ∈Λ−0

inf
x∈B0λ, |z|≤2εT

lT (λ, x, z)− sup
λ∈Λ−0

inf
x∈B0λ

lT (λ, x, 0)

= op(1), as required.

This now completes the proof of Theorem 1.
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Proof of Theorem 2. The proof is similar to the proof of Theorem 2 of LMW, see also Politis

et. al (1999, Theorem 3.5.1).

Proof of Theorem 3. Under the alternative hypothesis, Λ0 = Λ+
0 ∪ Λ'0 . Let

Ŝ0
T,b(w) =

1

T − b+ 1

T−b+1∑
t=1

1
(
b−1/2db;T,t ≤ w

)
S0
b (w) = P

(
b−1/2dT,b,1 ≤ w

)
.

Using the inequality of Bosq (1998, Theorem 1.3) and Assumption 3 (see also LMW (proof of Theorem

2)), we can establish the uniform convergence result:

sup
∣∣∣Ŝ0

T,b(w)− S0
b (w)

∣∣∣ p→ 0. (34)

Therefore, (34) and the pointwise convergence result b−1/2dT,b,1
p→ d∗(0) yield:

s0
T,̂bT

(α) = inf{w : Ŝ0
T,b(w) ≥ α} → d∗(0) ≥ 0, (35)

where d∗(·) is defined in (3). Note that d∗(0) is strictly positive if Λ+
0 6= ∅, while d∗(0) = 0 if Λ+

0 = ∅.
Therefore,

P
(
dT > sT,̂bT (α)

)
≥ P

(
sup

λ∈Λ+0 ∪Λ'0

inf
x∈BεTλ

[
νT (λ, x) + T 1/2 (GY (x)−Gλ(x))

]
> b̂

1/2
T s0

T,̂bT
(α)

)
+ o(1)

≥ P

(
sup

λ∈Λ+0 ∪Λ'0

inf
x∈BεTλ

[
νT (λ, x) + T 1/2 (GY (x)−Gλ(x))

]
> u

1/2
T s0

T,̂bT
(α)

)
+ o(1)

≥ P

(
sup

λ∈Λ+0 ∪Λ'0

inf
x∈BεTλ

(
T

uT

)1/2 [
T−1/2νT (λ, x) + (GY (x)−Gλ(x))

]
> d∗(0)

)
+ o(1) (36)

where the first inequality holds by Lemma 2 and the second inequality holds by Assumption 3, and

the last inequality holds by (35). Now consider the right hand side of (36). Note that

T−1/2νT (λ, x)
p→ 0 (37)

by Lemma 1. Also,

limT→∞ sup
λ∈Λ+0 ∪Λ'0

(T/uT )1/2 ∆λ(εT ) > d∗(0) (38)

because, if Λ+
0 6= ∅, limT→∞∆λ(εT ) = d∗(0) > 0 ∀λ ∈ Λ+

0 and limT→∞ (T/uT )1/2 > 1 by Assumption

4 and, if Λ+
0 = ∅, limT→∞ supλ∈Λ'0

(T/uT )1/2 ∆λ(εT ) > 0 = d∗(0) by Assumption 4. Therefore, (36),

(37), and (38) imply that

P
(
dT > sT,̂bT (α)

)
→ 1,
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as required.

Proof of Theorem 4. Define the empirical process in (λ, z, x) ∈ Λ=
0 ×Z × X to be:

ν∗T (λ, z, x) =
√
T
[
ĜY (x)− ĜT,λ+z(x)−GY (x) +Gλ+z(x)

]
,

where Z is a compact set containing zero and GY (x) − GλT (x) = GY (x) − Gλ+c/
√
T (x) satisfies the

local alternative hypothesis (20). Similarly to Lemma 1, we can show that the stochastic process

{ν∗T (·, ·, ·) : T ≥ 1} is stochastically equicontinuous on Λ=
0 ×Z × X . Therefore, since

QT (λT , x) = ν∗T (λ, c/
√
T , x) + δY λ(x), (39)

we have,

sup
λT∈Λ0T

inf
x∈B̂εTλ

QT (λT , x)− sup
λ∈Λ=0

inf
x∈X

[ν∗T (λ, 0, x) + δY λ(x)]

= sup
λ∈Λ=0 ,c/

√
T∈Z

inf
x∈X

[
ν∗T (λ, c/

√
T , x) + δY λ(x)

]
− sup

λ∈Λ=0

inf
x∈X

[ν∗T (λ, 0, x) + δY λ(x)] (40)

= op(1), (41)

where (40) holds wp → 1 since P
(
B̂εT
λ = X

)
→ 1 for λ ∈ A=

0 by Lemma 2 and (41) holds by the

stochastic equicontinuity of {ν∗T (·, ·, ·) : T ≥ 1} . Now, the result of Theorem 4 holds by the weak

convergence of ν∗T (·, 0, ·) + δY λ(·) to ν̃(·, ·) + δY λ(·) and continuous mapping theorem.
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