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1 Introduction

The generalized ARCH or GARCH model (Bollerslev, 1986) is quite popular
as a basis for analyzing the risk of financial investments. Examples are the
estimation of value-at-risk (VaR) or the expected shortfall from a time series
of log returns. In practice, a GARCH process of order (1,1) often provides a
reasonable description of the data. In the following, we restrict ourselves to that
case.

We call {¢;} a (strong) GARCH (1,1) process if

&t = 012y

07:2 = W+0‘5§f1 +50-t271 (1)
with independent identically distributed innovations Z; having mean 0 and vari-
ance 1. A special case is the integrated GARCH model of order (1,1) or IGARCH(1,1)
model where a + 5 = 1 and, frequently, w = 0 is assumed, i.e.

ol =ac +(1—a)ol ;.

This model forms the basis for the J.P. Morgan RiskMetrics VaR analysis using
exponential moving averages (Franke, Hardle and Hafner, 2001, Chapter 15). The
general GARCH(1,1) process has finite variance 0> = w/(1—a—f) if a+ 8 < 1,
and it is strictly stationary if E{log(a ZZ + 8)} < 0. See Franke, Héirdle and
Hafner (2001, Chapter 12) for these and further properties of GARCH processes.

In spite of its popularity, the GARCH model has one drawback: Its symmetric
dependence on past returns does not allow for including the leverage effect into the
model, i.e. the frequently made observation that large negative returns of stock
prices have a greater impact on volatility than large positive returns. Therefore,
various parametric modifications like the exponential GARCH (EGARCH) or
the threshold GARCH (TGARCH) model have been proposed to account for
possible asymmetric dependence of volatility on returns. The TGARCH model,
for example, introduces an additional term into the volatility equation allowing

for an increased effect of negative £, ; on o7:

ee=017Z;, oi=w+tae +a e 11 <0)+Bor,.

To develop an exploratory tool which allows to study the nonlinear dependence of

squared volatility o7 on past returns and volatilities we introduce a nonparametric
GARCH(1,1) model

€ = 012y

o7 = gler-1,071) (2)



where the innovations Z; are chosen as above. We consider a nonparametric
estimator for the function g based on a particular form of local smoothing. Such
an estimate may be used to decide if a particular parametric nonlinear GARCH
model like the TGARCH is appropriate.

We remark that the volatility function g cannot be estimated by common kernel
or local polynomial smoothers as the volatilities o; are not observed directly.
Biithlmann and McNeil (1999) have considered an iterative algorithm. First, they
fit a common parametric GARCH(1,1) model to the data from which they get
sample volatilities o; to replace the unobservable true volatilities. Then, they
use a common bivariate kernel estimate to estimate g from e; and 7. Using this
preliminary estimate for g they obtain new sample volatilities which are used for
a further kernel estimate of g. This procedure is iterated several times until the
estimate stabilizes.

Alternatively, one could try to fit a nonparametric ARCH model of high order
to the data to get some first approximations 7 to o7 and then use a local linear
estimate based on the approximate relation

33 ~ g(&‘tfl, 8.?71).

However, a complete nonparametric approach is not feasible as high-order non-
parametric ARCH models based on o7 = g(e4_1,...,61—p) cannot be reliably
estimated by local smoothers due to the sparseness of the data in high dimen-
sions. Therefore, one would have to employ restrictions like additivity to the
ARCH model, i.e. 07 = g1(e4—1) + ...+ gp(g1—p), Or even use a parametric ARCH
model 67 = w+aae; 1 +...+a, Ef_p. The alternative we consider here is a direct
approach to estimating g based on deconvolution kernel estimates which does not
require prior estimates 7.

2 Deconvolution density and regression estimates

Deconvolution kernel estimates have been described and extensively discussed in
the context of estimating a probability density from independent and identically
distributed data (Carroll and Hall, 1988; Stefansky and Carroll, 1990). To ex-
plain the basic idea behind this type of estimates we consider the deconvolution
problem first. Let &,... &y be independent and identically distributed real ran-
dom variables with density p¢(z) which we want to estimate. We do not, however,
observe the & directly but only with additive errors 7;,... ,ny. Let us assume
that the 7, as well are independent and identically distributed with density p,(z)
and independent of the &;. Hence, the available data are

Xe=&+m, k=1,...,N.



To be able to identify the distribution of the & from the errors 7, at all, we have
to assume that p,(z) is known. The density of the observations Xj is just the
convolution of pg with py;:

Pa(z) = pe() * py () -

We can therefore try to estimate p,(x) by a common kernel estimate and extract
an estimate for pe(«) out of it. This kind of deconvolution operation is preferably
performed in the frequency domain, i.e. after applying a Fourier transform. As
the subsequent inverse Fourier transform includes already a smoothing part we
can start with the empirical distribution of Xi,..., Xy instead of a smoothed
version of it. In detail, we calculate the Fourier transform or characteristic func-
tion of the empirical law of X1,..., Xy, i.e. the sample characteristic function

1 N

n _ twX
k=1

Let

o0

fo(w) = B(™) = / € 4p, (u) du

—00
denote the (known) characteristic function of the 7. Furthermore, let K be a
common kernel function, i.e. a nonnegative continuous function which is sym-
metric around 0 and integrates up to 1: [ K(u)du =1, and let

brc(w) = / e K (u) du

be its Fourier transform. Then, the deconvolution kernel density estimate of pe(z)

is defined as

pr(z) = % /_"0 e T (wh) z:EZ; dw .

The name of this estimate is explained by the fact that it may be written equiv-
alently as a kernel density estimate

N
1 T — Xk
p(z) = — > K"
() = 77 . ( h )
with deconvolution kernel

1 * _; ¢K(W)
K"(u :—/ et ———— dw
(v) 21 J_ o én(w/h)
depending explicitly on the smoothing parameter h. Based on this kernel esti-

mate for probability densities, Fan and Truong (1993) considered the analogous
deconvolution kernel regression estimate defined as

mp(z) = Nihki:;Kh (x _th> Yy / bu(z).




This Nadaraya-Watson-type estimate is consistent for the regression function
m(z) in an errors-in-variables regression model

Yk:m(fk)+Wk; Xk:£k+nka kzlaaNa

where Wy,... Wy are independent identically distributed zero-mean random
variables independent of the X}, &, e which are chosen as above. The X, Y, are
observed, and the probability density of the n; has to be known.

3 Nonparametric ARMA Estimates

GARCH processes are closely related to ARMA processes. If we square a GARCH
(1,1) process {e:} given by (1) then we get an ARMA(1,1) process

g=w+(a+pB) e —BG1+ G

where (; = 07(Z2 — 1) is white noise, i.e. a sequence of pairwise uncorrelated
random variables, with mean 0. Therefore, we study as an intermediate step to-
wards GARCH processes the nonparametric estimation for ARMA models which
is more closely related to the errors-in-variables regression of Fan and Truong
(1993). A linear ARMA(1,1) model with non-vanishing mean w is given by

Xt+1:w—|—aXt—|—bet+et+1

with zero-mean white noise e;. We consider the nonparametric generalization of
this model

Xip1 = f(Xe, €) + eqa (3)

for some unknown function f(z,u) which is monotone in the second argument u.
Assume we have a sample X1, ..., Xy observed from (3). If f does not depend
on the second argument, (3) reduces to a nonparametric autoregression of order 1

Xip1 = f(Xy) + et

and the autoregression function f(z) may be estimated by common kernel esti-
mates or local polynomials. There exists extensive literature about that type of
estimation problem, and we refer to the review paper of Hardle, Liitkepohl and
Chen (1997). In the general case of (3) we again have the problem of estimating
a function of (partially) non-observable variables. As f depends also on the ob-
servable time series X;, the basic idea of constructing a nonparametric estimate
of f(x,u) is to combine a common kernel smoothing in the first variable z with a
deconvolution kernel smoothing in the second variable u. To define the estimate
we have to introduce some notation and assumptions.



We assume that the innovations e; have a known probability density p, with
distribution function P.(v) = [*_ pe(u) du and with Fourier transform ¢.(w) # 0
for all w and

[pe(w)] = ¢ [w]™ exp(—|w|”/y) for |w| — oo

for some constants ¢, 3,y > 0, By. The nonlinear ARMA process (3) has to be
stationary and strongly mixing with exponentially decaying mixing coefficients.
Let p(z) denote the density of the stationary marginal density of X.

The smoothing kernel K in z-direction is a common kernel function with com-
pact support [—1,+1] satisfying 0 < K%(u) < K*(0) for all u. The kernel K
which is used in the deconvolution part has a Fourier transform ¢ (w) which is
symmetric around 0, has compact support [—1,+1] and satisfies some smooth-
ness conditions (Holzberger, 2001). We have chosen a kernel with the following
Fourier transform:

dr(u) = 1—u? for |u| <0.5
dx(u) = 0.75 — (Ju| — 0.5) — (Ju| — 0.5)?

220 (|u| — 0.5)* + 1136 (ju| — 0.5)°

1968 (Ju| — 0.5)% + 1152 (|u| — 0.5)7 for 0.5 < |u| < 1.

For convenience, we use the smoothing kernel K% to be proportional to that
function: K%(u) o< ¢x(u). The kernel K* is hence an Epanechnikov kernel with
modified boundaries.

Let b = C/N'/® be the bandwidth for smoothing in z-direction, and let h =
A/log(N) be the smoothing parameter for deconvolution in u-direction where
A > m/2 and C > 0 are some constants. Then,

t=1

is a common Rosenblatt—Parzen density estimate for the stationary density p(x).

Let g(u) denote the stationary density of the random variable f(X;, e;), and let
q(u|z) be its conditional density given X; = x. An estimate of the latter is given
by

N
~ N 1 h u— X1 z T — X; ~
) = g S () e () Aw @

where the deconvolution kernel K" is

heoy L ooe—iwu ¢x(w) w0
K=y [




In (4) we use a deconvolution smoothing in the direction of the second argument
of f(z,u) using only pairs of observations (X;, Xyy1) for which |z — X;| < b, i.e.
X; ~ z. By integration, we get the conditional distribution function of f(X,e;)
given X; =z

v

Qvlz) = P(f(z,e)) < v|X, = 2) =/ o(ulz) du

—0oQ
and its estimate

Quatola) = [

—a

v

an
@)h(u\x)du// Qo (ulz) du

for some ay ~ N8 for N — oco. Due to technical reasons we have to cut off the
density estimate in regions where it is still unreliable for given N. The particular
choice of denominator guarantees that @ ,(an|z) = 1 in practice, since Q(v|z)
is a cumulative distribution function.

To estimate the unconditional density q(u) of f(X;, e;) = X1 — €441, we use a
standard deconvolution density estimate with smoothing parameter h* = A*/log(N)

N
~ 1 u—X
i) = e 5 (7).
t=1

Let pe(u|z) be the conditional density of e; given X; = z, and let P.(v|x) =
[° .. pe(ulz) du be the corresponding conditional distribution function. An esti-
mate of it is given as

Povlol) = [ (o — ) powyiu | [ B (& — ) pel) du

where again we truncate at ay ~ N'/6.

To obtain the ARMA function f, we can now compare Q(v|z) and P.(v|z). In
practice this means to relate Q\b,h(v|x) and 136,,1* (v|z). The nonparametric esti-
mate for the ARMA function f(z,v) depending on smoothing parameters b, h
and h* is hence given by

Fone (®,0) = Qyy (Pepp= (v]z) |)
if f(x,v) is increasing in the second argument, and
Fonpe(@,0) = Qpp(1 = Pepe(v|z) |2)

if f(z,v) is a decreasing function of v for any z. Q\b_,ll(\x) denotes the inverse of
the function Q\bh(\x) for fixed z. Holzberger (2001) has shown that ﬁ7h7h* (x,v) is



a consistent estimate for f(z,v) under suitable assumptions and has given upper
bounds on the rates of bias and variance of the estimate. We remark that the
assumption of monotonicity on f is not a strong restriction. In the application to
GARCH processes which we have in mind it seems to be intuitively reasonable
that the volatility of today is an increasing function of the volatility of yesterday
which translates into an ARMA function f which is decreasing in the second
argument.

Let us illustrate the steps for estimating a nonparametric ARMA process. First
we generate time series data and plot X;,; versus X;.

library("times")
n=1000

x=genarma(0.7,0.7,normal(n))

The result is shown in Figure 1. The scatterplot in the right panel of Figure 1
defines the region where we can estimate the function f(z,v).

ARMA(1,1) Time Series ARMA(1,1) Scatterplot

X(t)

E2 X(t+1)

Figure 1: ARMA(1,1) process.

To compare the deconvolution density estimate with the density of f(Xy,e;) we
use now our own routine (myarma) for generating ARMA(1,1) data from a known
function (f):

proc(f)=f(x,e,c)
f=c[1]+c[2]*x+c[3]*e
endp



proc(x,f)=myarma(n,c)
x=matrix(n+1)-1
f=x
e=normal (n+1)
t=1
while (t<n+1)
t=t+1
flt]l=f(x[t-1],el[t-1],c)
x[t]=f[t]+e[t]
endo
x=x[2: (n+1)]
f=f[2: (n+1)]
endp

n=1000
{x,f}=myarma(n,0/0.7[0.7)

h=0.4

library("smoother")

dh=dcdenest (x,h) // deconvolution estimate
fh=denest (f,3*h) // kernel estimate

Figure 2 shows both density estimates. Note that the smoothing parameter
(bandwidth k) is different for both estimates since different kernel functions are
used.

f = nparmaest (x {,h {,g {,N{,R} } } })
estimates a nonparametric ARMA process

The function nparmaest computes the function f(z,v) for an ARMA process
according to the algorithm described above. Let us first consider an ARMA(1,1)
with f(z,v) = 0.3 4+ 0.6z + 1.6, i.e.

Xt =03+ 0.6Xt,1 + 1.6675,1 + €.

Hence, we use myarma with ¢=0.3/0.6|1.6 and call the estimation routine by

f=nparmaest(x)



Deconvolution Density

q(u)*E-2

Figure 2: Deconvolution density estimate (solid) and kernel density estimate
(dashed) of the known mean function of an ARMA(1,1) process.

The optional parameters N and R are set to 50 and 250, respectively. N contains
the grid sizes used for x and v. R is an additional grid size for internal compu-
tations. The resulting function is therefore computed on a grid of size N x N.
For comparison, we also calculate the true function on the same grid. Figure 3
shows the resulting graphs. The bandwidths h (corresponding to h*) for the
one-dimensional deconvolution kernel estimator § and g for the two-dimensional
(corresponding to h and b) are chosen according to the rates derived in Holzberger
(2001).

As a second example consider an ARMA(1,1) with a truly nonlinear function
f(z,v) = —2.8 + 8F(6v), i.e.

Xt =—-28+ 8F(6 et_]_) + €y,

where F' denotes the sigmoid function F(u) = (1 + e *)~! In contrast to the
previous example, this function is obviously not dependent on the first argument.
The code above has to be modified by using

proc(f)=f(x,e,c)



Linear ARMA(1,1)

Figure 3: Nonparametric estimation of a (linear) ARMA process. True vs. esti-
mated function and data.

f=c[2]/(1+exp(-c[3]*e))+c[1]
endp
c=-2.81816

The resulting graphs for this nonlinear function are shown in Figure 4. The es-
timated surface varies obviously only in the second dimension and follows the
s-shaped underlying true function. However, the used sample size and the inter-
nal grid sizes of the estimation procedure do only allow for a rather imprecise
reconstruction of the tails of the surface.
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Nonlinear ARMA(1,1)
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Figure 4: Nonparametric estimation of a (nonlinear) ARMA process. True vs.
estimated function and data.

4 Nonparametric GARCH Estimates

In the following, we consider nonparametric GARCH(1,1) models which depend
symmetrically on the last observation:

Er = O'tZt, (5)
Utz = g(8§—170t2—1)'

Here, g denotes a smooth unknown function and the innovations Z; are chosen as
in as in Section 3. This model covers the usual parametric GARCH(1,1) process
(1) but does not allow for representing a leverage effect like the TGARCH(1,1)
process. We show now how to transform (5) into an ARMA model. First, we

11



define
X; = log(e7), e; = log(Z7).
By (5), we have now
X1 = IOg(5§+1) = log ‘7752+1 + €41
= logg(ef, o) + e
log g1 (log(e}), log(a7)) + ers1

= log g1 (X, Xi — ;) + €11
f( X, er) + e

with
gi(z,u) =g(e%€e"), fl(z,v)=logg(z,z —v).

Now, we can estimate the ARMA function f(z,v) from the logarithmic squared
data X; = log(e?) as in Section 4 using the nonparametric ARMA estimate

ﬁ,h,h* (x,v) of (5). Reverting the transformations, we get
91 (7, u) = exp{ fonn (2,2 —u)}, Gonp (Y, 2) = G1(logy, log 2)

or, combining both equations,

Goph= (Y, 2) = exp {fb,h,h* (logy,log(y/ Z))} , y,2>0,

as an estimate of the symmetric GARCH function ¢(y, ).

We have to be aware, of course, that the density p. used in the deconvolution
part of estimating f(z,v) is the probability density of the e; = log Z? | i.e. if
p.(z) denotes the density of Z,

1 —u —u
pe(u) = 5 {eu/2pz(eu/2)+e /2pz(e /2)}

If &; is a common parametric GARCH(1,1) process of form (1), then g(y, z) = w+
ay+ Bz, and the corresponding ARMA function is f(z,v) = log(w+ ae®+Fe” 7).
This is a decreasing function in v which seems to be a reasonable assumption in
the general case too corresponding to the assumption that the present volatility
is an increasing function of past volatilities.

As an example, we simulate a GARCH process from

proc(f)=gf(x,e,c)
f=c[1]+c[2] *x+c[3]*e

12



endp

proc(e,s2)=mygarch(n,c)
e=zeros (n+1)
f=e
s2=e
z=normal (n+1)
t=1
while (t<n+1)
t=t+1
s2[t]=gf(e[t-1]1"2,s2[t-1]1"2,¢)
e[t]l=sqrt(s2[t]).*z[t]
endo
e=e[2: (n+1)]
82=82[2: (n+1)]
endp

f = npgarchest (x {,h {,g {,N{,R} } } })
estimates a nonparametric GARCH process

The function npgarchest computes the functions f(z,v) and g(y, z) fora GARCH
process using the techniques described above. Consider a GARCH(1,1) with

9(y,z) =0.01+0.6y+ 0.2 2.
Hence, we use
n=1000
c=0.0110.6/0.2
{e,s2}=mygarch(n,c)
and call the estimation routine by

g=npgarchest (e)

Figure 5 shows the resulting graph for the estimator of f(z,v) together with the
true function (decreasing in v) and the data (X;; versus X;). Asin the ARMA

13



Nonparametric GARCH(1,1)

Figure 5: Nonparametric estimation of f(z,v) for a (linear) GARCH process.
True vs. estimated function, data X; = log(e?).

case, the estimated function shows the underlying structure only for a part of the
range of the true function.

Finally, we remark how the the general case of nonparametric GARCH models
could be estimated. Consider

er = 017y (6)
of = glev1,07 1)
where o7 may depend asymmetrically on &; ;. We write

g(x,2) = gt (2%, 2)1(xz > 0) + g (2%, 2) L(z < 0).
As g*, g~ depend only on the squared arguments we can estimate them as before.
Again, consider X; = log(¢?), e; = log(Z?). Let N, be the number of all t < N

14



with ¢, > 0, and N = N — N,. Then, we set

o _ ﬂc:l:—Xt
B (@) = N+bZK HCEY)

t=1

Blulz) = N+th () ke (S )1z 0/ B

1 u— X,
- = K- ) 1(e, > 0).
() NW; () 1 z0)

i (vlz), ﬁe - (v|z) are defined as in Section 3 with g, @, 4, Py replacing @y, and py,
and using both estimates of conditional distribution functions we get an ARMA
function estimate fb none (T50)- Reversmg the transformation from GARCH to
ARMA, we get as the estimate of g *(z?, 2)

ﬁ,;fh’h* (z%,2) = exp {fbfh’h* (log z?, log(mz/z))} )

The estimate for g~ (22, z) is analogously defined
Gy h (2%, 2) = exp {fl;h,h* (log z2, log(a:2/z))} )

where, in the derivation of ]/‘;;h’h*, N, and 1(g; > 0) are replaced by N_ and
1(8t < 0)

15
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