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Abstract

We develop inference tools in a semiparametric regression model with miss-
ing response data. A semiparametric regression imputation estimator and an
empirical likelihood based one for the mean of the response variable are de-
fined. Both the estimators are proved to be asymptotically normal, with
asymptotic variances estimated with Jackknife method. The empirical likeli-
hood method is developed. It is shown that when missing responses are im-
puted using the semiparametric regression method the empirical log-likelihood
is asymptotically a scaled chi-square variable or a weighted sum of chi-square
variables with unknown weights in the absence of auxiliary information or in
the presence of auxiliary information. An adjusted empirical log-likelihood
ratio, which is asymptotically standard chi-square, is obtained. Also, a boot-
strap empirical log-likelihood ratio is also derived and its distribution is used
to approximate that of the imputed empirical log-likelihood ratio. A simu-
lation study is conducted to compare the imputed, adjusted and bootstrap
empirical likelihood with the normal approximation based methods in terms
of coverage accuracies and average lengths of confidence intervals. Based on
biases and standard errors, a comparison is also made by simulation between
the proposed two estimators. The simulation indicates that the empirical
likelihood methods developed perform competitively and the use of auxiliary
information provides improved inference.
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1 Introduction

In many scientific areas, a basic task is to assess the simultaneous influence of several

factors (covariates) on a quantity of interest (response variable). Regression mod-

els provide a powerful framework, and associated parametric, semiparametric and

nonparametric inference theories are well established. However, in practice, often

not all responses may be available for various reasons such as unwillingness of some

sampled units to supply the desired information, loss of information caused by un-

controllable factors, failure on the part of investigator to gather correct information,

and so forth. In this case, the usual inference procedures cannot be applied directly.

A common method for handling missing data in a large dataset is to impute (i.e., fill

in) a plausible value for each missing datum, and then analyze the result as if they

were complete. Commonly used imputation methods for missing response include

linear regression imputation (Yates (1993); Healy and Westmacott (1996)), kernel

regression imputation (Cheng (1994)) and ratio imputation (Rao (1996)) and among

others.

Let X be a d-dimensional vector of factors and Y be a response variable influ-

enced by X. In practice, one often obtains a random sample of incomplete data

(Xi, Yi, δi), i = 1, 2, . . . , n, (1.1)

where all the X ′
is are observed and δi = 0 if Yi is missing, otherwise δi = 1. It is

desired to estimate the mean of Y , say θ. This kind of sampling scheme can arise

due to double or two-stage sampling, where first a complete sample of response and

covariate variables is obtained and then some additional covariate values obtained,

perhaps because it is expensive to acquire more Y ′s.

Cheng (1994) applied kernel regression imputation to estimate the mean of Y ,

say θ. Cheng (1994) imputed every missing Yi by kernel regression imputation and

estimated θ by

θ̂ =
1

n

n∑
i=1

(δiYi + (1 − δi)m̂n(Xi)),

where m̂n(·) is the Nadaraya-Watson kernel estimator based on (Xi, Yi) for i ∈ {i :

δi = 1}. Under the assumption that the Y values are missing at random (MAR),
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Cheng (1994) established the asymptotic normality of a trimmed version θ̂ and gave

a consistent estimator of its asymptotic variance. In practice, however, it may be

difficult to estimate θ well by the kernel regression imputation because the dimension

of X may be high and hence the curse of dimensionality may occur. Although

this does not affect the first order asymptotic theory, it does affect the practical

performance of estimators, and the reliability of the asymptotic approximations;

indeed, this effect shows up dramatically in the higher order asymptotics, see Linton

(1995) for example. Wang and Rao (1999) considered the linear regression model

and developed empirical likelihood method by filling in all the missing response

values with linear regression imputation. In many practical situations, however,

the linear model is not complex enough to capture the underlying relation between

the response variables and its associated covariates. A natural generalization of

the linear model is to allow only some of the predictors to be modelled linearly,

with others being modelled nonlinearly. This motivates us to consider the following

semiparametric regression model

Yi = Xτ
i β + g(Ti) + εi, (1.2)

where Y ′
i s are i.i.d. scalar response variables, X ′

is are i.i.d. d-variable random

covariate vectors, T ′
is are i.i.d. scalar covariates, the function g(·) is unknown and

the model errors εi are independent with conditional mean zero given the covariates.

The semiparametric regression model was introduced by Engle, Granger, Rice and

Weiss (1986) to study the effect of weather on electricity demand. The implicit

asymmetry between the effects of X and T may be attractive when X consists of

dummy or categorical variables, as in Stock (1989, 1991). This specification arises

in various sample selection models that are popular in econometrics, see Ahn and

Powell (1993), and Newey, Powell, and Walker (1990). In fact, the partially linear

model has also been applied in many other fields such as biometrics (see, e.g., Gray

(1994)) and have been studied extensively for complete data settings (see, e.g.,

Heckman (1986), Rice (1986), Speckman (1988), Cuzick (1992a, b), Chen (1988)

and Severini and Staniswalis (1994)).

In this paper, we are interested in inference on the mean of Y , say θ, under

regression imputation of missing responses based on the semiparametric regression
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model (1.2). For this model, we consider the case where some Y -values in a sample

of size n may be missing, but X and T are observed completely. That is, we obtain

the following incomplete observations

(Yi, δi, Xi, Ti), i = 1, 2, . . . , n

from model (1.2), where all the X ′
is and T ′

is are observed and δi = 0 if Yi is missing,

otherwise δi = 1. Throughout this paper, we assume that Y is missing at random

(MAR). The MAR assumption implies that δ and Y are conditionally independent

given X and T . That is, P (δ = 1|Y,X, T ) = P (δ = 1|X,T ). MAR is a common

assumption for statistical analysis with missing data and is reasonable in many prac-

tical situations (see Little and Rubin (1987), Chapter 1). We propose an estimator

of θ in the partially linear model that does not rely on high dimensional smoothing

and thereby avoids the curse of dimensionality. We also develop empirical likeli-

hood and bootstrap empirical likelihood methods that deliver better inference than

standard asymptotic approximations. The empirical likelihood method, introduced

by Owen (1988), has many advantages over normal approximation methods and

the usual bootstrap approximation approaches for constructing confidence intervals

when data are observed completely. How does empirical likelihood method work in

the presence of missing responses for the semiparametric regression model? This is

just one of the problems we need to investigate.

The outline of the paper is as follows. In Section 2, we define the estimator

of θ and states the main results. Section 3 defines an improved estimator of θ

and states the corresponding results when auxiliary information is available. In

Section 4, an adjusted empirical log-likelihood ratio is derived and its asymptotic

distribution is shown to be a standard chi-square with one degree of freedom. In

Section 5, we define an adjusted empirical log-likelihood ratio, which is shown to

be asymptotically distributed as a standard chi-square, when auxiliary information

on X is available. In Section 6, a simulation study is conducted to calculate the

bias and the standard errors of the proposed estimators and compare the finite

sample properties of the proposed empirical likelihood methods with the normal

approximation methods based on the different estimators. The proofs for the main

results are delayed to the Appendix. We use “
L−→” to denote convergence in
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distribution and “
p−→” to denote convergence in probability.

2 Semiparametric Imputation Estimator and Asymp-

totic Normality

Let K(·) be a kernel function and hn be a bandwidth sequence tending to zero as

n → ∞. Let

Wnj(t) =
K

(
t−Tj

hn

)
n∑

j=1
δjK

(
t−Tj

hn

) .

Let g̃1n(t) =
n∑

j=1
δjWnj(t)Xj, g̃2n(t) =

n∑
j=1

δjWnj(t)Yj. Then, for every fixed β, the

fact that g(t) = E[Y −Xτβ|T = t] suggests an estimator of g(t) can be defined to

be

g̃n0(t, β) = g̃2n(t) − g̃τ
1n(t)β, (2.1)

based on the observed triples (Xi, Ti, Yi) for i ∈ {i : δi = 1}. The estimator of β is

then defined as the one satisfying

min
β

n∑
i=1

δi(Yi −Xτ
i β − g̃n0(Ti, β))2 (2.2)

¿From (2.2), it is easy to obtain that the estimator of β is given by

β̂n =

[
n∑

i=1

δi(Xi − g̃1,n(Ti))(Xi − g̃1,n(Ti))
τ

]−1 n∑
i=1

δi(Xi − g̃1,n(Ti))(Yi − g̃2,n(Ti))

based on the observed triples (Xi, Ti, Yi) for i ∈ {i : δi = 1}. This is the Robinson

(1988) estimator based on the complete subsample. The final estimator of g(·) is

then given by

ĝn(t) = g̃2n(t) − g̃τ
1n(t)β̂n

by replacing β in (2.1) by β̂n. By regression imputation, the estimator of θ is then

defined to be

θ̂ =
1

n

n∑
i=1

[δiYi + (1 − δi)(X
τ
i β̂n + ĝn(Ti))] (2.3)
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Let P1(t) = P (δ = 1|T = t), P (x, t) = P (δ = 1|X = x, T = t), m(x, t) = xτβ +

g(t), σ2(x, t) = E[(Y −Xτβ − g(T ))2|X = x, T = t], u(x, t) = P (x, t)(x−E[X|T =

t]), and Σ = E[P (X,T )(X − E[X|T ])(X − E[X|T ])τ ].

Theorem 2.1. Under all the assumptions listed in the Appendix except for condition

(C.K)iii, we have

√
n(θ̂ − θ)

L−→ N(0, V (θ)),

where

V (θ) = E

(
P (X,T )

P1(T )

)2
σ2(X,T )

P (X,T )

 + var[m(X,T)]

+E[u(X,T )τ ]Σ−1E

[
u(X,T )u(X,T )τ σ

2(X,T )

P (X,T )

]
Σ−1E[u(X,T )]

−2E[u(X,T )τ ]Σ−1E

[
u(X,T )

P (X,T )

P1(T )

σ2(X,T )

P (X,T )

]
.

There are a number of other estimators here that compete with ours in addition

to the Cheng estimator that is also consistent here. First, θ̃r = n−1
n∑

i=1
[Xτ

i β̂n+ĝn(Ti)],

the average of the semiparametric regression function. It can be shown that θ̃r has

the same asymptotic distribution as θ̂. Second, the estimator θ̃HIR = n−1 ∑n
i=1 Yi ·

δi/P̂ (Xi, Ti) based on an estimator of the propensity score P̂ (x, t) constructed by

kernel smoothing the participation indicator against covariate values. This estimator

is considered in Hirano, Imbens, and Ridder (2000); it is a version of propensity score

matching, which is very popular in applied work. They show that θ̃HIR achieves

the semiparametric efficiency bound of Hahn (1998) [for the case where m(x, t) is

unrestricted], which is

VHIR = E

[
σ2(X,T )

P (X,T )

]
+ var[m(X,T)].

This is exactly the same variance as obtains for the Cheng estimator (1994, Theorem

2.1). We rewrite the first line of V (θ) as

E

(
P (X,T )

P1(T )

)2
σ2(X,T )

P (X,T )
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= E

[
σ2(X,T )

P (X,T )

] {
1 + E

[
var[P(X,T)|T]

P 2
1 (T )

]}
+ cov

(
P(X,T)

P1(T)

)2

,
σ2(X,T)

P(X,T)

 ,

where the first two terms are positive but the last term can be negative. Also,

the other terms in V (θ) could collectively be positive or negative, so there is no

uniform ranking of the variances of the two estimators. In the special case that

σ2(X,T ) = σ2(T ) and P (X,T ) = P1(T ) we have

V (θ) = E

[
σ2(T )

P1(T )

]
+ var[m(X,T)],

which is the same as VHIR. The disadvantage of θ̃HIR here is that it requires a high-

dimensional smoothing operation to compute the propensity score, and so its actual

distribution may be very different from that predicted by the asymptotic theory due

to the curse of dimensionality.

To define a consistent estimator of V (θ), we may first define estimators of

P (X,T ), P1(T ), σ2(X,T ) and E[X|T = t] by kernel regression method and then

define a consistent estimator of V (θ) by “plug in” method. However, this method

may be difficult to estimate V (θ) well when the dimension of X is high. Instead,

take

V̂ =
1

n

n∑
i=1

η̂iη̂
τ
i ,

where, with ε̂i = Yi −Xτ
i β̂n − ĝn(Ti):

η̂i =

[
δi

P̂1(Ti)
+ Γ̂τ Σ̂−1δi(Xi − g̃1n(Ti))

]
ε̂i + (Xτ

i β̂ + ĝn(Ti) − θ̂)

Γ̂ =
1

n

n∑
i=1

[(1 − δi)(Xi − g̃1n(Ti)]; Σ̂ =
1

n

n∑
i=1

δi(Xi − g̃1n(Ti))(Xi − g̃1n(Ti))
τ ].

It should be pointed out that this method uses an estimator of the main term of the

asymptotic expansion of θ̂n − θ (see (A.1) to construct asymptotic variance. Hence,

it is not a natural method.

Another alternative is the jackknife variance estimator. Let θ̂(−i)
n is θ̂ based on

{(Yj, δj, Xj, Tj)}n
j=1 − {(Yi, δi, Xi, Ti)} for i = 1, 2, . . . , n. Let Jni be the jackknife

pseudo-values. That is,

Jni = nθ̂ − (n− 1)θ̂(−i)
n , i = 1, 2, . . . , n

6



Then, the jackknife variance estimator can be defined as

V̂nJ =
1

n

n∑
i=1

(Jni − J̄n)2,

where J̄n = 1
n

n∑
i=1

Jni.

Theorem 2.2. Under assumptions of Theorem 2.1, we have

V̂nJ

p

−→V (θ).

By Theorem 2.1 and 2.2, the normal approximation based confidence interval

with confidence level 1 − α is θ̂ ±
√

V̂nJ

n
u1−α

2
, where u1−α

2
is the 1 − α

2
quantile of

standard normal distribution.

3 Semiparametric Empirical Likelihood Based Es-

timator and Asymptotic Normality

In this section, we will construct an empirical likelihood based estimator to improve θ̂

when auxiliary information on X is available. We assume that auxiliary information

on X of the form

EA(X) = 0

is available, where A(·) = (A1(·), . . . , Ar(·))τ , r ≥ 1 is a known vector (or scalar)

function. For example, when the mean or median of X is known in the scalar X

case.

To use the auxiliary information, we first maximize
∏n

i=1 pi subject to
n∑

i=1
pi =

1 and
n∑

i=1
piA(Xi) = 0. Provided that the origin is inside the convex hull of

A(X1), . . . , A(Xn), by the method of Lagrange multipliers, we get

pi =
1

n

1

1 + ζτ
nA(Xi)

where ζn is the solution of the following equation

1

n

n∑
i=1

A(Xi)

1 + ζτ
nA(Xi)

= 0. (3.1)
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An empirical likelihood-based semiparametric estimator (BLSE) of θ is then defined

by

θ̂n,AU =
n∑

i=1

pi[δiYi + (1 − δi)(X
τ
i β̂n + ĝn(Ti))]. (3.2)

Theorem 3.1. Under the assumption of Theorem 2.1, if EA(X)Aτ (X) is a positive

definite matrix, then we have

√
n(θ̂n,AU − θ)

L −→N(0, VAU(θ))

where VAU(θ) = V (θ) − V0(θ) with

V0(θ) = E [(Xτβ + g(T ) − θ)A(X)]τ (EA(X)Aτ (X))−1E [(Xτβ + g(T ) − θ)A(X)]

and V (θ) defined in Theorem 2.1.

Clearly, θ̂n,AU is asymptotically more efficient than θ̂ due to the use of auxiliary

information. Similar to the definition of V̂nJ , we can define a jackknife consistent

variance estimator, say V̂nJ,AU , for VAU(θ). Based on Theorem 3.1, the normal

approximation based confidence interval is then defined to be θ̂n,AU ±
√

V̂nAU,J

n
u1−α

2
.

4 Estimated, Adjusted and Bootstrap Empirical

Likelihood

4.1 Estimated and adjusted empirical likelihood

In this section, we derive an adjusted empirical likelihood (ADEL) method to make

global inference for θ. Let Ỹi = δiYi +(1−δi)(X
τ
i β+g(Ti)). We have EỸi = θ0 under

the MAR assumption if θ0 is the true value of θ. This implies that the problem of

testing H0 : θ = θ0 is equivalent to testing EỸi = θ0. If β and g(·) were known, then

one could test EỸi = 0 using the empirical likelihood of Owen (1990):

ln(θ) = −2 sup{
n∑

i=1

log(npi)|
n∑

i=1

piỸi = θ,
n∑

i=1

pi = 1, pi > 0, i = 1, 2, . . . , n}.

It follows from Owen (1990) that, under H0 : θ = θ0, ln(θ) has an asymptotic central

chi-square distribution with one degree of freedom. An essential condition for this

result to hold is that the Ỹ ′
i s in the linear constraint are i.i.d. random variables.
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Unfortunately, β and g(·) are unknown, and hence ln(θ) cannot be used directly to

make inference on θ. To solve this problem, it is natural to consider an estimated

empirical log-likelihood by replacing β and g(·) with their estimators. Specifically,

let Ŷin = δiYi + (1 − δi)(X
τ
i β̂n + ĝn(Ti)). An estimated empirical log-likelihood

evaluated at θ is then defined by

l̂n(θ) = −2 sup{
n∑

i=1

log(npi)|
n∑

i=1

piŶin = θ,
n∑

i=1

pi = 1, pi > 0, i = 1, 2, . . . , n}. (4.1)

By using the Lagrange multiplier method, when min1≤i≤n Ŷin < θ < max1≤i≤n Ŷin

with probability tending to one, l̂n(θ) can be shown to be

l̂n(θ) = 2
n∑

i=1

log(1 + λ(Ŷin − θ)), (4.2)

where λ is the solution of the equation

1

n

n∑
i=1

(Ŷin − θ)

1 + λ(Ŷin − θ)
= 0. (4.3)

Unlike the standard empirical log-likelihood ln(θ), l̂n(θ) is based on Ŷ ′
ins that

are not independent. Consequently, l̂n(θ) does not have an asymptotic standard

chi-square distribution. Actually, l̂n(θ) is asymptotically distributed as a scaled

chi-squared variable with one degree of freedom. Theorem 4.1 states the result.

Theorem 4.1. Assuming conditions of Theorem 2.1. Then, under H0 : θ = θ0,

l̂n(θ)
L −→V (θ)

Ṽ (θ)
χ2

1,

where χ2
1 is a standard chi-square variable with one degree of freedom, V (θ) is defined

in Theorem 2.1 and Ṽ (θ) is defined in Lemma A.1.

By Theorem 4.1, we have under H0 : θ = θ0

γ(θ)l̂n(θ)
L −→χ2

1, (4.4)

where γ(θ) = Ṽ (θ)/V (θ). If one can define a consistent estimator, say γn(θ), for

γ(θ), an adjusted empirical log-likelihood ratio is then defined as

l̂n,ad(θ) = γn(θ)l̂n(θ) (4.5)

9



with adjustment factor γn(θ). It readily follows from (4.4) and (4.5), l̂n,ad(θ0)
L

−→χ2
1 under H0 : θ = θ0.

We now provide a consistent estimator γn(θ) of γ(θ). By Theorem 2.2 and

Lemma A.1, a consistent estimator of γn(θ) can be defined as

γn(θ) =
Ṽn(θ)

V̂nJ

where V̂nJ is defined in Section 2 and

Ṽn(θ) =
1

n

n∑
i=1

(Ŷin − θ)2. (4.6)

It should be pointed out that it may increase efficiency that we leave θ in γn(θ) not

to be estimated.

Theorem 4.2. Assume the conditions in Theorem 2.1. Then, under H0 : θ = θ0

l̂n,ad(θ0)
L −→χ2

1.

From Theorem 4.2, it follows immediately that an approximation 1−α confidence

region for θ is given by

{θ : l̂n,ad(θ) ≤ χ2
1,α}

where χ2
1,α is the upper α percentile of the χ2

1 distribution. Theorem 4.2 can also be

used to test the hypothesis H0 : θ = θ0. One could reject H0 at level α if

l̂n,ad(θ0) > χ2
1,α.

4.2 Partially Smoothed Bootstrap Empirical Likelihood

Next, we develop a bootstrap empirical likelihood method. Let {(X∗
i , T

∗
i , δ

∗
i , Y

∗
i ), 1 ≤

i ≤ m} be the bootstrap sample from {(Xj, Tj, δj, Yj), 1 ≤ j ≤ n}. Let Ŷ ∗
im be the

bootstrap analogy of {Ŷin}. Then, the bootstrap analogy of l̂n(θ) can be defined to

be

l̂∗m(θ̂n) = 2
m∑

i=1

log{1 + λ∗
m(Ŷ ∗

im − θ̂n)},

10



where λ∗ satisfies

1

m

m∑
i=1

Ŷ ∗
im − θ̂n

1 + λ∗(Ŷ ∗
im − θ̂n)

= 0.

To prove that the asymptotic distribution of l̂∗m(θ̂) approximates to that of l̂n(θ)

with probability one, we need that T ∗
1 , . . . , T

∗
m have a probability density. This

motivates us to use smooth bootstrap. Let T ∗∗
i = T ∗

i + hnζi for i = 1, 2, . . . ,m,

where hn is the bandwidth sequence used in Section 2 and ζi, i = 1, 2, . . . , n are

independent and identically distributed random variables with common probability

density K(·), the kernel function in Section 2. We define l̂∗∗m (θ̂) to be l̂∗m(θ̂) with

T ∗
i replaced by T ∗∗

i for 1 ≤ i ≤ m. This method is termed as partially smoothed

bootstrap since it used smoothed bootstrap sample only partially.

Theorem 4.3. Assuming conditions of Theorem 2.1 and condition (C.K)iii. Then,

under H0 : θ = θ0, we have with probability one

sup
x

|P (l̂n(θ) ≤ x) − P ∗(l̂∗∗m (θ̂n) ≤ x)| → 0

as n → ∞ and m → ∞, where P ∗ denotes the bootstrap probability.

The bootstrap distribution of l̂∗∗m (θ̂n) can be calculated by simulation. The result

of Theorem 4.3 can then used to construct a bootstrap empirical likelihood confi-

dence interval for θ. Let c∗α be the 1 − α quantile of the distribution of l̂∗∗n (θ̂m). We

can define a bootstrap empirical log-likelihood confidence region to be

{θ : l̂n(θ) ≤ c∗α}.

By Theorem 4.3, the bootstrap empirical likelihood confidence interval has asymp-

totically correct coverage probability 1 − α.

Compared to the estimated empirical likelihood and the adjusted empirical likeli-

hood, an advantage of the bootstrap empirical likelihood is that it avoids estimating

the unknown adjusting factor. This is especially attractive in some cases when the

adjustment factor are difficult to estimate efficiently.

11



5 Estimated, Adjusted and Bootstrap Empirical

likelihood with Auxiliary Information

5.1 Estimated and adjusted empirical likelihood

In this section, we develop an adjusted empirical likelihood method to construct

confidence interval for θ when auxiliary information on X of the form EA(X) = 0

is available, where A(X) is as defined in Section 3. This problem is to maximize∏n
i=1 npi subject to

∑n
i=1 pi = 1,

∑n
i=1 piA(Xi) = 0 and

∑n
i=1 pi(Ŷin − θ) = 0, where

Ŷin is as defined in Section 4. An empirical log-likelihood evaluated at θ is then

defined by

l̂n,AU(θ) = −2 sup{
n∑

i=1

log(npi)|
n∑

i=1

pihni(θ) = 0,
n∑

i=1

pi = 1, i = 1, 2, . . . , n},

where hni(θ) = (Aτ (Xi), Ŷin − θ)τ . Provided that the origin is inside the convex hull

of points hn1(θ), . . . , hnn(θ) with probability tending to one, the method of Lagrange

multipliers may be used to show

l̂n,AU(θ) = 2
n∑

i=1

log(1 + ητ
nhni(θ)), (5.1)

where ηn satisfies the following equation

1

n

n∑
i=1

hni(θ)

1 + ητ
nhni(θ)

= 0. (5.2)

Let V1(θ) = E(A(X)Aτ (X)), V2(θ) = E [(A(X)(Xτβ + g(T ) − θ)] , V3(θ) = V2(θ),

and let

V1,AU(θ) =

 V1(θ), V2(θ)

V τ
2 (θ), Ṽ (θ)

 and V2,AU(θ) =

 V1(θ), V3(θ)

V τ
3 (θ), V (θ)

 ,

where V (θ) and Ṽ (θ) are as defined in Theorem 2.1 and Lemma A.1 respectively.

Theorem 5.1. Assume conditions of Theorem 2.1. If EA(X)Aτ (X) is a positive

definite matrix, then, under H0 : θ = θ0

l̂n,AU(θ)
L −→w1χ

2
1,1 + · · · + wr+1χ

2
1,r+1,
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where the weights wi for 1 ≤ i ≤ d+1 are the eigenvalues of V0,AU(θ) = V −1
1,AU(θ)V2,AU(θ),

and χ2
1,i for 1 ≤ i ≤ d + 1 are independent χ2

1 variables.

To apply Theorem 5.1 to construct confidence intervals for θ, we must estimate

the unknown weights wi consistently. Let Vn1(θ) = 1
n

n∑
i=1

A(Xi)A
τ (Xi), Vn2(θ) =

1
n

n∑
i=1

A(Xi)(Ŷin−θ), Vn3(θ) = 1
n

∑n
i=1 A(Xi)(X

τ
i β̂n + ĝn(Ti)−θ) and denote Vn1,AU(θ)

and Vn2,AU(θ) to be V1,AU(θ) and V2,AU(θ) with V1(θ), V2(θ), V3(θ), Ṽ (θ) and V (θ) in

V1,AU(θ) and V2,AU(θ) replaced by Vn1(θ), Vn2(θ), Vn3(θ), Ṽn(θ) and V̂n(θ) respectively.

By the “plug in” method, V1,AU(θ) and V2,AU(θ) can be estimated consistently by

Vn1,AU(θ) and Vn2,AU(θ) respectively. This implies that the eigenvalues of Vn0,AU(θ) =

V −1
n1,AU(θ)Vn2,AU(θ), say ŵi, estimate wi consistently for i = 1, 2, . . . , r + 1. Let ĉα

be the 1 − α quantile of the conditional distribution of the weighted sum Ŝn =

ŵ1χ
2
1,1 + · · · + ŵ1+rχ

2
1,r+1 given the data. Then, the confidence interval for θ with

asymptotically correct coverage probability 1 − α can be defined to be

Iα,AU(θ) = {θ : l̂n,AU(θ) ≤ ĉα}.

In practice, the conditional distribution of the weighted sum Ŝn given data

{(Xi, Ti, Yi, δi)
n
i=1} can be obtained using Monte Carlo simulation by repeatedly gen-

erating independent samples χ2
1,1, . . . , χ

2
1,r+1 from χ2

1 distribution. Following Rao &

Scott (1981), the distribution of r̃(β)
(∑r+1

i=1 wiχ
2
1,i

)
can be approximated by χ2

τ+1,

where r̃(β) =)r + 1)/tr {V0,AU(θ)} and tr(A) denotes the trace of a certain matrix

A. This implies that the asymptotic distribution of l̃n,AU(θ) = r̃n(θ)l̂n(θ) can be

approximated by χ2
d by Theorem 5.1 and the consistency of Vn1,AU(θ) and Vn2,AU(θ),

where r̃n(θ) = (r + 1)/tr {Vn0,AU(θ)}. However, this provides only approximation

distribution of the asymptotic distribution and this accuracy of this approximation

depends on the values of w′
is. Next, we give an adjusted empirical log-likelihood

whose asymptotic distribution is exactly a standard chi-squares. Note that

r̃n(θ) =
tr

{
V −1

n2,AU(θ)Vn2,AU(θ)
}

tr
{
V −1

n1,AU(θ)Vn2,AU(θ)
} . (5.3)

By examining the asymptotic expansion of l̂n,AU(θ), we replace Vn2,AU(θ) in (5.3) by

13



Hn(θ) =
(

1
n

∑n
i=1 hni(θ)

) (
1
n

∑n
i=1 hni(θ)

)τ
and get a different adjustment factor

r̂n(θ) =
tr

{
V −1

n2,AU(θ)Hn(θ)
}

tr
{
V −1

n1,AU(θ)Hn(θ)
} .

By replacing r̃n(θ) in l̃n,AU(θ) by r̂n(θ), we can define an adjusted empirical log-

likelihood by

l̂ad,AU(θ) = r̂n(θ)l̂n,AU(θ).

The following theorem proves that l̂ad,AU(θ) is asymptotically standard χ2.

Theorem 5.2. Assume the conditions of Theorem 5.1. Then, under H0 : θ = θ0,

l̂ad,AU(θ)
L −→χ2

d.

Based on Theorem 5.2, lad,AU(θ) can be used to construct a confidence interval for

θ, {θ : l̂ad,AU(θ) ≤ χ2
p,α}, where χ2

p,α is the upper α percentile of the χ2
p distribution.

5.2 Partially smoothed bootstrap empirical likelihood

Let {(X∗
i , T

∗
i , δ

∗
i , Y

∗
i ), 1 ≤ i ≤ m} be the bootstrap sample from {(Xj, Tj, δj, Yj), 1 ≤

j ≤ n}. Similar to Subsection 4.2, the partially smoothed bootstrap analogy of

l̂n,AUθ) can be defined to be

l̂∗∗m,AU(θ̂n) = 2
m∑

i=1

log{1 + η∗∗m
τ ( h∗∗

mi(θ̂n)},

where h∗∗
mi(θ̂n) = (Aτ (X∗

i ), Ŷ ∗∗
im − θ̂n)τ ), Ŷ ∗∗

im is the Ŷ ∗
im with T ∗

i in it replaced by T ∗∗
i ,

where Ŷ ∗
im and T ∗∗

i are as defined in Subsection 4.2 for i = 1, 2, . . . ,m. the partially

smoothed bootstrap bootstrap analogy of Ŷin as defined in Subsection 4.2 and η∗m
satisfies

1

m

m∑
i=1

h∗∗
mi(θ̂n)

1 + η∗∗m
τh∗∗

mi(θ̂n)
= 0.

Theorem 5.3.Assuming conditions of Theorem 4.3. If EA(X)Aτ (X) is a positive

definite matrix, then, under H0 : θ = θ0, we have with probability one

sup
x

|P (l̂n,AU(θ) ≤ x) − P ∗(l̂∗∗m,AU(θ̂n) ≤ x)| → 0
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as n → ∞ and m → ∞, where P ∗ denotes the bootstrap probability.

Similar to Theorem 4.3, Theorem 5.3 can be used to define the confidence interval

for θ. Let c∗α,AU be the 1 − α quantile of the distribution of l̂∗∗m (θ̂n). We can define

a bootstrap empirical likelihood confidence interval to be I∗α,AU with l̂n,AU(θ) and

ĉα in Iα,AU replaced by l̂∗∗m (θ̂n) and c∗α,AU respectively. Then, by Theorem 5.3, the

bootstrap empirical likelihood confidence interval, I∗AU,α, has asymptotically correct

coverage probability 1 − α.

6 Simulation Results

In this section, we conducted simulation to understand the finite-sample perfor-

mance of the proposed estimators and estimated, adjusted and bootstrap empirical

likelihood methods. We compare the three empirical likelihood methods with the

normal approximation-based methods in terms of coverage accuracies of confidence

intervals in the two cases where auxiliary information is available or not.

The simulation used the partial linear model Y = Xβ + g(T ) + ε with X and

T simulated from the normal distribution with mean 1 and variance 1 and the

uniform distribution U [0, 1] respectively, and ε generated from the standard normal

distribution, where β = 1.5, g(t) = 3.2t2 − 1 if t ∈ [0, 1], g(t) = 0 otherwise. The

kernel function was taken to be

K(t) =

{
15
16

(1 − 2t2 + t4), −1 ≤ t ≤ 1
0, otherwise

and the bandwidth hn was taken to be n−2/3.

We generated 1000 Monte Carlo random samples of size n=30, 60 and 100 based

on the following three cases respectively:

Case 1: P (δ = 1|X = x, T = t) = 0.8 + 0.2(|x− 1|+ 1−T ) if |x− 1|+ 1−T ≤ 1,

and 0.95 elsewhere;

Case 2: P (δ = 1|X = x, T = t) = 0.9 − 0.2|x− 1| + 1 − T if |x− 1| + 1 − T ≤ 4,

and 0.1 elsewhere;

Case 3: P (δ = 1|X = x, T = t) = 0.6 for all x and t.

The average missing rates corresponding to the above three cases are approxi-

mately 0.10, 0.25 and 0.40 respectively. For nominal confidence level 1 − α = 0.95,
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using the simulated samples, we calculated the coverage probabilities and the aver-

age lengths of the confidence intervals, which are reported in Tables 1 and 2. From

the 5000 simulated values of θ̂n and θ̂n,AU , we calculated the biases and standard

errors of the two estimators. These simulated results are reported in Table 3.

For convenience, in what follows AEL and AAUEL represent the adjusted em-

pirical likelihood confidence interval given in Subsection 4.1 and Subsection 5.1

respectively. BEL and BAUEL denote the smoothed bootstrap empirical likelihood

confidence intervals given in Subsection 4.2 and 5.2 respectively. AUEL denotes

the estimated empirical likelihood confidence interval given in Subsection 5.1. NA

and NAAU denote the normal approximation based confidence intervals given in

Section 2 and 3 respectively. The auxiliary information EX = 1 was used when we

calculated the empirical coverages and average lengths of AUEL, BAUEL, AAUEL

and NAAU.

Insert Tables 1 and 2 here

¿From Tables 1 and 2, we observe the following:

(1) BAUEL, NAAU, AAUEL and AUEL achieve higher coverage accuracies but

similar or shorter average lengths than AEL, BEL and NA. This suggests the use of

auxiliary improves inference.

(2) BAUEL do perform competitively in comparison to AUEL, AAUEL and

NAAU since BAUEL have generally higher coverage accuracies but only slightly

bigger average lengths. NAAU has higher slightly coverage accuracy than AUEL

and AAUEL. But. it does this using much longer intervals. This implies that AUEL

and AAUEL might be preferred over NAAU. This also applies to the comparison

between NA and AEL.

(3) BEL has generally higher coverage accuracy, but bigger slightly average

length than AEL and NA as n = 60 and 100. This suggests, for n = 60 and

100, BEL perform relatively better. For n = 30, AEL might be preferred since it

has much smaller average length and the coverage accuracy is also not so low.

(4) All the coverage accuracies increase and the average lengths decreases as

n increase for every fixed missing rate. Clearly, the missing rate also affects the
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coverage accuracy and average length. Generally, the coverage accuracy decreases

and average length increases as the missing rate increases for every fixed sample

size.

Insert Table 3 here

¿From Table 3, we observe:

(a) Biases and SE decrease as n increases for every fixed censoring rate. Also,

SE increases with missing rate for every fix sample size n.

(b) θ̂n,AU has not only smaller SE but also smaller bias than θ̂n. This further

suggests that the use of auxiliary information improve inference.

7 Concluding Remarks

We have proposed a new method for estimating the average effect parameter in a

semiparametric model with missing response data. Our estimator is not generally ef-

ficient but has the considerable practical advantage of not requiring high dimensional

smoothing operations. Our simulation results confirm the enhanced performance of

the various empirical likelihood and bootstrap procedures that were used to obtain

inference.

8 Appendix: Assumptions and Proofs of Theo-

rems

Appendix: Assumptions and Proofs of Theorems

Let g1(t) = E[X|T = t], g2(t) = E[Y |T = t]. Denote by g1r(·) the rth component

of g1(·). Let ‖ · ‖ be the Euclid norm. The following assumptions are needed for the

asymptotic normality of θ̂n.

(C.X): supt E[‖X‖2|T = t] < ∞,
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(C.T): The density of T , say r(t), exists and satisfies

0 < inf
t∈[0,1]

r(t) ≤ sup
t∈[0,1]

r(t) < ∞.

(C.Y): supx,t E[Y 2|X = x, T = t] < ∞.

(C.g): g(·), g1r(·) and g2(·) satisfy Lipschitz condition of order 1.

(C.P1): i: P1(t) has bounded partial derivatives up to order 2 almost surely.

ii: infx,t P (x, t) > 0.

(C.Σ) Σ = E[P (X,T )(X−E[X|T ])(X−E[X|T ])τ ] is a positive definite matrix.

(C.K)i: There exist constant M1 > 0,M2 > 0 and ρ > 0 such that

M1I[|u| ≤ ρ] ≤ K(u) ≤ M2I[|u| ≤ ρ].

ii: K(·) is a kernel function of order 2.

iii: K(·) has bounded partial derivatives up to order 2 almost surely.

(C.hn): nhn → ∞ and nh2
n → 0.

REMARK: Condition (C.T) implies that T is a bounded random variable on

[0, 1]. (C.K)i implies that K(·) is a bounded kernel function with bounded support.

Sketch of Proof of Theorem 2.1 Standard arguments can be used to prove

θ̂n − θ =
1

n

n∑
i=1

η(Yi, δi, Xi, Ti) + op(n− 1
2 ), (A.1)

where

η(Yi, δi, Xi, Ti) = { δi

P1(Ti)
+ E[(1 − δ)(X − E[X|T ])τ ]Σ−1δi(Xi − E[Xi|Ti])}εi

+(Xτ
i β + g(Ti) − θ).

By central limit theorem and some direct calculation, Theorem 2.1 is then proved.

Sketch of Proof of Theorem 2.2. Similar to (A.1), we can get

V̂nJ =
1

n

n∑
i=1

(η(Yi, δi, Xi, Ti) − 1

n

n∑
i=1

η(Yi, δi, Xi, Ti))
2 + op(1).

This proves V̂nJ
p→ V (θ).

Sketch of Proof of Theorem 3.1 θ̂n,AU can be represented as

θ̂n,AU =
1

n

n∑
i=1

Ŷin−E[(Xτβ+g(T )−θ)Aτ (X)](EA(X)Aτ (X))−1

(
1

n

n∑
i=1

A(Xi)

)
+op(n− 1

2 ).

(A.3)
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It is easy to get

Cov

(
1√
n

n∑
i=1

(Ŷin − θ),
1√
n

n∑
i=1

A(Xi)

)
−→ E[Aτ (X)(Xτβ + g(T ) − θ). (A.4)

(A.3) and (A.4) together prove Theorem 3.1

Sketch of Proofs of Theorem 4.1 and 4.2. Standard arguments can be used to

prove

l̂n(θ) = Ṽ −1
n (θ)

[
1√
n

n∑
i=1

(Ŷin − θ)

]2

+ op(1). (A.5)

and Ṽn(θ)
p→ Ṽ (θ), where Ṽ (θ) is defined in Theorem 4.1. This together with

Theorem 2.1 and 2.2 proves Theorem 4.1.

Recalling the definition of l̂n,ad(θ), by (A.5) we get

l̂n,ad(θ) =

 1√
n

n∑
i=1

Ŷin − θ√
V̂nJ

2

+ op(1). (A.6)

Hence, (A.6), Theorem 2.1 and Theorem 2.2 together prove Theorem 4.2.

Sketch of Proof of Theorem 4.3Under assumptions (C.X), (C.T), (C.Y), (C.P1),

(C.Σ) and (C.K)iii, standard arguments can be used to prove with probability 1:

(i) supt E
∗[‖X∗‖2|T ∗∗ = t] < ∞; (ii) 0 < inft∈[0,1] rn(t) ≤ supt∈[0,1] rn(t) < ∞; (iii)

supx,t E
∗[Y ∗|X∗ = x, T ∗∗ = t] < ∞; (iv) infx,t P

∗(δ∗ = 1|X∗ = x, T ∗∗ = t] > 0; (v)

Σ∗ = E∗{P ((X∗, T ∗∗)(X∗ − E∗[X∗|T ∗∗])(X∗ − E∗[X∗|T ∗∗])]}τ is a positive definite

matrix; (vi): P ∗
1 (t) = P ∗(δ∗ = 1|T ∗∗ = t) has bounded partial derivatives up to

order 2 almost surely. By (i)–(vi), conditions (C.g), (C.K) and (C.hn) and similar

arguments to those used in the proof of Theorem 4.1, we can prove that along almost

all sample sequences, given (Xi, Ti, Yi, δi) for 1 ≤ i ≤ n, as m and n go to infinitey

l̂∗m(θ̂n) has the same asymptotic scaled chi-square distribution as l̂n(θ). This together

with Theorem 4.1 proves Theorem 4.3.

Sketch of Proofs of Theorem 5.1 and 5.2 By Lemma A.4(b) and Lagrange mu-

tiplier method, (5.1) and (5.2) follows from the definition of l̂n,AU(θ). Applying

Taylor’s expansions to (5.1) and (5.2) and using the results max1≤i≤n hni(θ) =

op(n
1
2 ), 1√

n

∑n
i=1 hni(θ) = Op(1) and ηn = Op(n

1
2 ), it follows that

l̂n,AU(θ) =

(
1√
n

n∑
i=1

V
− 1

2
2,AU(θ)hni(θ)

)τ

V0,AU(θ)

(
1√
n

n∑
i=1

V
− 1

2
2,AU(θ)hni(θ)

)
+ op(1)

(A.7)
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Let D = diag(w1, · · · , wr+1), where wi, 1 ≤ i ≤ r + 1 are defined in Theorem

5.1. Then, an orthonormal matrix Q exists such that QτDQ = V0,AU . This together

with (A.7) yields

l̂n,AU(θ) =

(
1√
n

n∑
i=1

QV
− 1

2
2,AU(θ)hni(θ)

)τ

D

(
1√
n

n∑
i=1

QV
− 1

2
2,AU(θ)hni(θ)

)
+ op(1). (A.8)

Standard arguments can be used to prove

1√
n
QV − 1

2 (θ)
n∑

i=1

hni(θ)
L−→ N(0, Ir+1), (A.9)

where Ip is the p× p identity matrix. (A.8) and (A.9) together prove Theorem 5.1

Next, we prove Theorem 5.2. Recalling the definition of l̂ad,AU(θ), we have

l̂ad,AU(θ) =

(
1√
n

n∑
i=1

hni(θ)

)τ

V̂
− 1

2
n2,AU(θ)

(
1√
n

n∑
i=1

hni(θ)

)
+ op(1). (A.10)

where V̂n2,AU(θ) is defined in Section 5. It can be proved that V̂n2,AU(θ)
p−→ V2,AU(θ),

This together with (A.9) and (A.10) proves Theorem 5.2.

Sketch of Proof of Theorem 5.3 Similar to Theorem 4.3, we can prove Theorem

5.3.
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Table 2. Average lengths of the confidence intervals on θ under different missing
functions P (x) and sample sizes n when nominal level is 0.95

P (x) n AEL BEL AUEL BAUEL AAUEL NA NAAU

30 0.8700 1.1400 0.8400 1.1000 0.8100 1.1734 1.1002
P1(x) 60 0.6900 0.7900 0.6200 0.7400 0.6500 0.8539 0.7342

100 0.5400 0.6000 0.4600 0.5600 0.5200 0.6691 0.5635

30 0.9900 1.4500 0.9100 1.4300 0.9100 1.3599 1.3194
P2(x) 60 0.7700 0.9500 0.6100 0.8700 0.7200 0.9460 0.8829

100 0.6000 0.7300 0.4900 0.6900 0.5900 0.7290 0.6293

30 1.1200 1.5100 0.9800 1.5300 0.9200 1.4587 1.3985
P3(x) 60 0.7800 1.0500 0.6400 0.9600 0.7000 0.9983 0.9084

100 0.6200 0.7600 0.4700 0.7000 0.6100 0.7664 0.7901

Table 3. Biases and standard errors (SE) of θ̂n and θ̂n,AU under different missing
functions P (x) and different sample sizes n

Bias SE

P (x) n θ̂n θ̂n,AU θ̄n θ̂n,AU

30 -0.0040 -0.0034 0.3172 0.3020
P1(x) 60 0.0038 0.0027 0.2208 0.1980

100 -0.0021 -0.0011 0.1707 0.1403

30 -0.0088 0.0052 0.3441 0.3337
P2(x) 60 -0.0073 -0.0025 0.2438 0.2115

100 -0.0040 -0.0021 0.1860 0.1599

30 0.0055 0.0041 0.3606 0.3589
P3(x) 60 -0.0043 -0.0036 0.2520 0.2224

100 0.0023 -0.0011 0.1939 0.1700
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