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Abstract

A pervasive empirical finding for the US economy is that inflation is neg-
atively correlated with the normalized market price of capital (Tobin’s q)
and growth. A dynamic stochastic general equilibrium model of endogenous
growth is developed to explain these stylized facts. In this model, human
capital is the principal driver of self-sustained growth. Long run comparative
statics analysis suggests that inflation diverts scarce time resource to leisure
which lowers human capital utilization. This impacts growth adversely and
modulates capital adjustment cost downward resulting in a decline in To-
bin’s q. For the short run, a Tobin effect of inflation on growth weakens

the negative association between inflation and gq.



1 Introduction

The negative association between the stock prices and inflation in general
equilibrium has been of the focus of work at least since Danthine and Don-
aldson (1986), who use a money-in-the-utility function with an endowment
economy. However, the negative relation between inflation and Tobin’s ¢
normalization of the market price of capital, as seen in Figure 1 postwar US
data, apparently still remains to be explained within a calibrated dynamic

stochastic general equilibrium (DSGE) monetary economy.!

Figure 1: g and Inflation, 1960Q1-2008Q2
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The Figure 1 negative correlation is particularly pronounced after 1965Q1
(the 1960:1 to 2008:2 correlation coefficient is -.55). The Tobin’s ¢ bottoms
out around early 1980s when inflation peaks. The subsequent remarkable
rise of ¢ coincides with an era of a steady disinflation. The ¢ then reaches
an all time high of 2.5 before the stock market crash when inflation reaches
about 1%. Since then the high frequency relationship is less clear cut

although ¢ is on a declining path while is inflation on the rise. McGrattan

'The Figure 1 data for q comes from the Smithers & Co (http://www.smithers.co.uk/).
The Figure 1 negative correlation holds alternatively using Hall’s (2001) Tobin’s q series
which goes up to 1999, or by constructing a q series from the S&P market index by
dividing it by the physical capital stock (which is derived by aggregating investment in
fixed capital using linear and nonlinear depreciation rules).



and Prescott (2005) argue that the rise until 2000 of the stock price to GDP
ratio is due to lower taxes on capital. In this paper, we offer a monetary
counterpart to the results of McGrattan and Prescott (2005). We argue
that inflation acts as a tax on human capital and it reduces the capacity
utilization rate of human capital by reducing the amount of time employed
productively. This inflation tax on human capital contributes to a fall in
the value of the firm just as the capital income tax on physical capital in
McGrattan and Prescott (2005) lowers the value of the firm.?

The paper models the effect of inflation on Tobin’s ¢ by including within
a real business cycle model the standard physical capital adjustment costs
of Lucas and Prescott (1971), and the implicit human capital adjustment
costs of Becker (1975) and Lucas (1988); the role of the latter is taken by
the diversion of productive human capital to further human capital creation.
This double adjustment cost combination allows the negative effect of the
inflation tax on growth, which occurs through a reduced utilization rate of
human capital, to translate directly into a reduced magnitude of Tobin’s ¢.
Such an approach using endogenous growth is reasonable given the empirical
support for endogenous growth models that goes back as far as Kocherlakota
and Yi (1996).

The paper starts with the previously modeled effect of how the infla-
tion tax reduces endogenous growth, as in Gomme (1993) and Gillman and
Kejak (2005). Inflation within a cash-only exchange economy induces the
representative agent to substitute from consumption towards leisure, thereby
reducing the return on human capital and the growth rate. The cost of ad-
justing the physical capital stock depends upon the growth rate as in Lucas
and Prescott (1971), and as specifically modeled in Basu (1987) and Her-
cowitz and Sampson (1991), except that in those papers the depreciation
rate is 100% and here it is more generally specified. The paper develops

a simple closed form relationship for Tobin’s ¢ and growth demonstrating

2While McGrattan and Prescott (2005) look at the behavior of stock price/GDP ratio,
we examine the Tobin’s q. The Tobin’s ¢ is the ratio of stock price index to the capital
stock which can be alternatively written as stock price/GDP multiplied by GDP /capital
stock. Given that the output/capital ratio is stable, as pointed out by McGrattan and
Prescott (2005), the stock price/GDP also reflects the behavior of Tobin’s g.



the long run relationship between inflation, human capital utilization and q.
These long run relationships form the baseline for the subsequent short run
analysis and calibration.

Both long run and short run forces have a role in the inflation trans-
mission effect on the market price of capital through the human capital
channel. In the short run, the relationship between inflation, ¢ and growth
depends on the shocks driving the correlation. The model has real and mon-
etary shocks. Real shocks are two productivity shocks, namely in each of the
goods and human capital investment sectors. The monetary shock is purely
a money supply shock. The productivity shocks tend to induce a negative
correlation between inflation and ¢ as well as between inflation and growth,
while ¢ and growth move inversely with respect to these productivity shocks.
The monetary shock, on the other hand, induces a Tobin (1965) increase in
physical capital accumulation thus weakening the negative growth-inflation
correlation and negative g-inflation correlation. The overall correlations
between ¢, inflation and growth depends on the relative strengths of real
and monetary shocks.

The paper is organized as follows. The following section lays out the
model. Section 3 analyzes the steady state and comparative statics. Sec-
tion 4 presents the short run analysis and calibration. Section 5 performs

sensitivity analysis. Section 6 concludes.

2 The Representative Household

The representative household allocates time between leisure (z;) and work in
the goods sector (Ig¢) at a nominal wage W3, and work in the human capital
investment (Iz;) . Households own the human capital (h;) and augment it
through human capital investment only. Firms own the physical capital
(k) and accumulate it through investment (if).

Sequencing of markets is as follows. Households trade in goods first
with the cash in advance (M;) and then they visit the asset markets to
trade in stocks at the ex-dividend prices V; and nominal bonds at the price

P} . Each such nominal bond pays 1 unit of currency with certainty in the



following periods; By is the number of bonds held at date t. Cash is only
used for transaction in goods, and augmented by the Central Bank through
lump-sum transfer.?

At date t the source of funds of the household are nominal dividends
D; from the shares, fractional claims z; to physical capital ownership of
the firm, proceeds from nominal bonds, By, the cash carried over from the

previous period (M;_1), and the lump sum transfer from the Central Bank,
ut]\_/[ +—1, where i, is the rate of growth of the money supply and M (—1 18

the money supply at date t-1.
The household thus solves:

Maz  Eog) B'{U(c) + 9T (z,)} (1)

t=0

subject to the flow budget constraint,

PtCt-i-Vt(ZtH—Zt)+Ptht+1+Mt = Diz+Wilgihi+Bi+My_1+p, M1, (2)
the time allocation constraint,
1=+ lgt + lpe, (3)

and the human capital accumulation constraint and exchange constraint.
Here, human capital investment is linear in effective labor time [g:h; as in
Lucas (1988), with a depreciation rate of 05 and with Ag; the exogenous
sectoral total factor productivity (TFP), giving the accumulation equation
of

hiv1 = (1 = n)he + Amelpihy. (4)

3The money supply is assumed to be passive in the sense that it is independent of
economic growth and inflation. A more sophisticated model can endogenize money supply
by either connecting the monetary policy to fiscal financing or add a Taylor type interest
rate rule. Since the thrust of the paper is to understand how real and monetary shocks
transmit to the market price of capital via human capital channel, we abstract from these
complications in the present paper.



The exchange constraint is that consumption purchases require money:
Piey < My1 + pyMy—q. (5)

The household first order conditions are found in Appendix A.1.

The stochastic discount factor facing the household is given by

Ct42 1
[Ptz ]
" (etr )Ct+1 L+ pygo

, 6
ct+1 1 ] (©)
R e

mi41 =
Et I:U’(CH_l)

which reflects the anticipated inflation tax effects via the monetary growth
terms. Using the equations (A.13) and (A.14) in Appendix A.1, the stock

price and bond price equations can be written in a compact form as

d
| = Bymypay {Ut+1+t+1} 7 (7)
Ut
and
—1
1= Emeaf{p] }, (8)
where v; is the real share price, vy = V;/P; and p} = %{7.

2.1 Firm Problem

A firm produces goods only with the production function AgiF (K¢, lgihe),
with Agy as the date t total factor productivity (TFP). It accumulates
physical capital (k;), and employs workers, and then distributes dividends
to households. Note that both the investment good and labor are credit
goods meaning the firm is not subject to any exchange constraint. The
firm is subject to an investment adjustment cost technology which makes an
increase in physical investment (zf) incur a cost that rises with the invest-
ment rate. The firm maximizes the discounted stream of dividends for the
household using the household’s perceived intertemporal marginal rates of

substitution as stochastic discount factor. With A\; (characterized in (A.8)



in Appendix A) as the shadow price of the flow nominal income of the
household in (2), the firm solves

o0
Maz By A |[PrAciF (ke laihi) — Wilcihy — Prif 9)
t=0
subject to the cost of physical capital accumulation relation which relates
the physical investment to the capital stock through the adjustment cost
technology ~(-) :

e (1
kit1 = kyy : (10)

Further, () is a monotonically increasing, strictly concave function with
7(0) > 0 and where the inverse function 6 = v~1(1) exists for d; € (0,1).4

We use a Cobb-Douglas specifications for the production function,
F(ke,laehe) = kf (lahe) ', (11)

with a € (0,1). For the adjustment cost function, similar to Basu (1987)

and Hercowitz and Sampson (1991), we assume

ik i1°
L R £ 12
7<kt> [ 6k+kt] ’ (12)

with 6 € (0,1). The parameter 6 represents the extent of adjustment cost.
For 6 = 1, the investment technology reduces to a standard linear deprecia-
tion rule.

Note that an approximation of (12) around a steady state investment

capital ratio (denoted by 71 ) yields

ki1 0 9 it 9(1—0) it 2
el G LR ST Pl Gl e s P

* Alternatively as in Basu (1987), the firm can maximize the present value of real cash
flows: ,
Max Fo Y, [ mi [AGtF(khthht) — Wi/ P)lgihe — zf] s.t. (10) and {m;} as given
=0 i=0
by (6). This is equivalent to (9).



This approximation resembles the quadratic level form adjustment cost func-
tion as in Christiano et al (2007). However, one major difference is that the
adjustment cost in Christiano et al is zero in the stationary state while in
contrast equation (12) implies a positive adjustment cost along the balanced

growth path equilibrium.

2.2 Characterization of Equilibrium

(E.1): Given the sequence {P;}, {W;}, {Q:}, {P}}, and the money growth
rates {1, }, the household maximizes utility in equation (1) subject to equa-
tions (2) to (5).

(E.2): Given the sequence {P;}, {W:}, {Act}, {Ant}, the goods producer
maximizes profit in equation (9) subject to equations (10) to (12).

(E.3) : Spot assets and goods markets clear, whereby z; = 1, By = 0,
and M; = Mt.5

2.2.1 Tobin’s g

Using the first order condition with respect to physical capital investment
and equation (A.17) of Appendix A.2, one immediately gets the following

relation which we will define as Tobin’s ¢ (call it ¢; hereafter):

w 1 k10

_ t t

= — =_|1—6x+ -+~ . 13
a P 0 [ k k‘J (13)

This defines Tobin’s ¢ in a standard way as the shadow price of physical
capital investment, wy, relative to the shadow price of consumption P;\;.%
As a result, the Tobin’s ¢q of equation (13) is the marginal cost of investment
in terms of output. With § =1, ¢ = 1.7

There is also an implicit labor market equilibrium condition which we omit for brevity.
In principle, one may distinguish between labor supply to the goods sector (say I¢;) and
the corresponding labor demand (say lét). In equilibrium 1%, = 1%, = lg:. To avoid
notational burden, we use lg: to represent both labour supply and demand.

®The shadow price of consumption is the shadow price of nominal income in (2) of the
household multiplied by the nominal price level P;.

"Equivalently, Tobin’s ¢ can be defined in terms of the asset pricing equation (7) as
vt /ke41. In Appendix A.4 this equivalence is established.



2.2.2 Exogenous Forcing Processes

The exogenous variables Ag: , Ant, p; follow the processes :

At — Ac = pg(Aci—1 — Ag) + € (14)
Ay — A = pr(Ami—1 — AH) + € (15)
py — = p gy — 1) + €' (16)

where €, el ¢! are white noises with a variance covariance matrix 3. Letters

with a bar represent steady state values.

3 Balanced Growth Path Equilibrium

The balanced growth rate depends positively on the steady state marginal
product of physical capital and the adjustment cost of capital, as well as
on the return to human capital. From these relations, Tobin’s ¢ can be
written as a function of the growth rate. Following this, a concept of the
adjustment cost wedge between the returns to physical and human capital

q can be formulated.

3.1 Growth and Tobin’s ¢

Proposition 1 The balanced growth rate in this economy is given by

0

36 <AGF1 r1- @)

1 = 17
in terms of the physical capital marginal product Fi, and by
149 =Bl =8+ An (1 - )] (18)

in terms of the human capital return of ;IH (1—2x).



Proof: Appendix B.

Corollary 2 The balanced growth path Tobin’s q is a function of the growth

rate and the adjustment cost parameter 0, as given by the following relation:

(14+9)7; (19)

D=

q =
a lower 0 for a positive g thus means a higher q.

Proof: Equation (19) follows directly from equations (13), (17) and
(B.3) in Appendix B. Note that % <0 for 0 e (0,1).
Note that solving for ¢ in equation (18), and then substituting this in

for g in equation (19), yields an alternative expression for ¢ :

0= 7 (B~ 0+ An(1 - 2))) 7" (20)

The implication is that a lower human capital utilization rate of 1 — x, or
greater leisure use, lowers Tobin’s ¢. The intuition for this is that a lesser
utilization rate of human capital, by which is meant a lower amount of the
time 1 — z that is spent productively, lowers growth and modulates the
adjustment cost of capital downward. This means a lower q.

The adjustment cost of capital and human capital utilization crucially
interact through the growth rate to have an effect on ¢. This interaction is
lost in cases when there is no physical capital cost adjustment or when there
is zero growth. To see this, shut down the adjustment cost by setting § = 1,
and then from (19) it follows that ¢ = 1, which means no human capital
effect on ¢q. For the second special case, when 6 € (0,1), if the household
invests just enough time to keep the human capital constant, so that the
balanced growth rate is zero, then the growth effect on ¢ in equation (19)

disappears, and ¢ equals 1/6.

3.2 The Physical Capital Adjustment Cost Wedge

Generally, with 0 € (0,1), the physical capital adjustment cost drives a

wedge between the returns to physical capital and to human capital. This



wedge depends on the human capital investment. To see this note that the

gross return to human capital can be defined from equation (18) as
R'M=1+Ap(1—1)— o).
Using (17), (18), and defining 1/(1 + p) = /3, the equivalence between the
returns to human and physical capital is given by
0

R'=(1+p) [pie] 0 [1 + AgF) — 5k] . (21)

In the benchmark case of no adjustment cost (6 = 1), it follows from equation

(17) that the traditional Euler equation holds, meaning

1+ g = B(AcF, +1— &), (22)

From equations (18) and (22) note that the returns on human and physical

capital are equal, in that

AH(l—.CL') _6h :AgFl _51:- (23)

In the present setting, the adjustment cost wedge or the user cost of
capital depends non-trivially on the long run growth rate. To see this, use

(21) and (17) to obtain the following expression for the user cost of capital:

1+ Ap(l—2)—6h _ 14p? 1 24
y O] (14 g)0m00
1+ AgFi — 0

For any growing economy, the right hand side of (24) is always a positive
fraction. This means that leH(l —x) —0p < f_lgFl — k. This inequality
result can be interpreted as implying that the physical capital adjustment
cost creates a user cost wedge that causes a lower physical capital to effective
labor ratio in equilibrium than when 8 = 1. And this is consistent with our
notion that accumulating physical capital is more costly in the presence of

adjustment cost, as in Lucas (1967). What is novel in the present setting is

10



the interaction between this user cost wedge and the investment in human
capital via the long run growth rate, g. For example, we demonstrate
later in the comparative statics section 4.3.1 that a higher inflation tax
adversely impacts the human capital investment and through this channel
it reduces this physical investment wedge by lowering q. Moreover, a higher
productivity of human capital could widen this user cost wedge by driving

the growth rate up and thus raising q.

3.3 The Human Capital ¢" and Tobin’s ¢

Consider defining a human capital ¢" in the same way as the physical capital
q : as the ratio of the shadow price of the (human) capital investment 7, to
the shadow price of output P;A;. Using (A.6), (A.7) and (A.16) of Appendix

A.1, write this ratio as the real wage normalized by Ap :

h U Wi Act ( ky )a
— — 1 — o . 25
W=y~ AmB ~ Am Y o (25)

The human capital ¢" is the cost of the foregone time that is devoted to
human capital investment instead of goods production which is simply the
ratio of the marginal product of labor in goods production (%) to the
marginal product of labor in human capital investment production Agy.
As more time is devoted to the human capital sector, real wage rises due to
relative scarcity of raw labor in the goods sector. This raises the opportunity
cost of human capital investment that is reflected by a higher ¢”. This is an
implicit adjustment cost of human capital.®

Tobin’s ¢ reflects marginal cost of physical investment while the ¢” re-
flects the human capital adjustment cost of shifting scarce time from the
goods sector to the human capital sector. These two adjustment costs move

in opposite directions in response to change in fundamentals. For example,

$0ur way of treating human capital adjustment cost differs from Merz and Yashiv
(2007) who assume that there is a common adjustment cost for both human and physical
capital in a one sector model. We have a two sector model in which the human capital
adjustment cost is measured in terms of the opportunity cost of diverting time from
goods to the human capital sector while in Merz and Yashiv, this adjustment cost is the
opportunity cost of diverting output from consumption to investment.

11



in response to an increase in the human capital TFP, Ay, the human capital
cost of adjustment reflected by ¢” falls, while from (20), the Tobin’s ¢ rises
if the amount of productively employed time, 1 — x rises.”

With inflation ¢ and ¢" also go in opposite directions. Should inflation
cause the real wage to rise and the output growth rate to fall, as is standard
in such models with human capital (see Gillman and Kejak, 2005, 2008),
this "Tobin inflation effect" results in an increase in the human capital ¢".

With the growth rate also falling, ¢ falls as the capital user cost falls.

4 Model Simulation

4.1 Calibration

Three issues that arise in the calibration are the frequency of data, the
sample period, and the particular data series to be used. For the frequency,
we use annual data to calculate the baseline model in order to target the
output growth rate, inflation, ¢, leisure and the investment rate. Using the
baseline deep parameter estimates from the annual data calibration, we use
the quarterly data to calibrate the second moments of the forcing processes
to match the second moments for ¢, growth and inflation.

The sample period for the baseline is 1960-1999, for which the average
q exceeds unity. Note that from 1999 onward ¢ is below unity following
the stock market crash. Thus rather than make the 1960-2008 period the
baseline, the additional subperiod of 1999-2008 is added to the baseline
period of 1960-1999 as an extension below. And this allows a view of the
effect of the rise and fall of stock prices during the 1999-2008 period.

For calibrating the long run g we use the series in Hall (2001), which gives
an annual average estimate of ¢ exceeding unity. For short run calibration,
we use more up to date estimates of ¢ constructed by Smithers and Co
(2008). Short run second moment properties of both Hall and Smithers ¢

series are similar. Leisure is estimated at 0.55 by using the annual average

9The comparative statics reported in the following section confirms that 1 — & indeed

rises in response to increase in Ag.

12



weekly hours of work based on Bureau of labor Statistics (BLS) data; total
daily time is 16 hours excluding 8 hours of sleeping time; daily leisure hours
is then [16-(average weekly hours of work/5)]/16 assuming a 5-day working
week. Note also that this BLS data start only in 1964 instead of 1960 as in

the other data series.

4.2 Baseline Growth Model

Table 1 presents the target variables based on the US annual data for 1960 —
1999: average GDP growth rate of 3.4%, an average inflation rate of 4.3%,
an average g of 1.25, an investment rate of 0.16, and a leisure usage rate of
0.55, which is similar to that of the Gomme and Rupert (2007) calibration

value of 0.505. The model performs reasonably well to match these targets.

Table 1: Values of the Target Variables: Actual and Model

Target Variables, 1960 — 1999 | Data | Model
GDP Growth 3.4% | 3.26%
Rate of Inflation 4.3% | 4.20%
q 1.25 | 1.26
i/y 0.16 | 0.20
Leisure x 0.55 | 0.52

Table 2 gives the baseline model parameters values. Standard values are
chosen for 3, «, and 1. The mean money supply growth rate, u is chosen to

target the 4.3% inflation rate. The human capital technology parameters

Apg and dy are fixed to target the 3.4% GDP growth rate and a human
capital utilization rate 1 — x equal to 0.45 based on equations (4) and (18).

The physical capital depreciation rate is fixed at 0.03 in line with Benk et
al (2009).

Table 2: Baseline Parameter Values

B a O op P 0 | Ag | An p
0.96 | 0.36 | 0.03 | 0.024 | 1.84 | 0.8 | 1.2 | 0.21 | 0.076

The adjustment cost parameter ¢ in our specification is novel. Hercowitz

13



and Sampson (1991) find an estimate of 6 at 0.44 but assume 100% depreci-
ation of physical capital while we allow partial depreciation of capital. To
get the baseline 6, we use the steady state solution for ¢ in (19). Plugging
a long run average value of ¢ of 1.26, and the target growth rate, g into (19)

we obtain an estimate of 6 equal to 0.80.

4.3 Results

The model with endogenous growth has two distinct components that com-
prise its equilibrium over time : (i) long run balanced growth and (ii) short
run transitional dynamics in response to shocks. First the balanced growth
results are examined with comparative static sensitivity analysis using the
baseline calibration based on annual data for the 1960-1999 period. Second,
using the same baseline parameter estimates we analyze the short run prop-
erties over an extended sample period, 1960Q1-2008Q2, which encompasses
the recent financial volatility. Here the impulse responses are derived along
with the model’s simulated correlations as compared to the data, in a real
business cycle tradition. This is followed with a sensitivity analysis with

respect to the adjustment cost and shock specification.

4.3.1 Comparative Statics

Table 3 reports comparative statics effects of a change in money growth
rates from the baseline level. The balanced growth path equilibrium effect
of an inflationary monetary policy is as follows. Agents tend to switch to
leisure which is not subject to inflation tax. Human capital investment and
human capital utilization decline and so does growth, as well as q. The rise
in leisure induces a rise in real wage, a fall in the real interest rate, a rise in
the physical to human capital ratio, as human capital is more labor intensive

in its production.
Table 4 reports the comparative statics of a change in A_H. A small

increase in human capital TFP has significant effects on agent’s allocation

of time between three activities. Agents cut back on leisure and reallocate

14



Table 3: Comparative Statics of a Change in p

1= 0.076 | ;1= 0.086 | 2 = 0.096

Growth 3.26% 3.15% 3.04%
T 0.52 0.53 .54

ly 0.269 0.26 0.259

Inflation 4.2% 5.28% 6.36%

q 1.2600 1.2597 1.2594
iy 0.20 0.20 0.20
k/h 1.42 1.44 1.47

time to human capital investment. The Tobin’s ¢ rises, while inflation falls,
growth rises and so does the physical investment rate. An increase in human

capital investment explains why k/h falls.”

Table 4: Comparative Statics of a Change in Ay

Ag =021 | Ag =022 | Ay =0.23

Growth 3.26% 4.29% 5.30%
T 0.52 0.50 0.47
ly 0.269 0.30 0.33
Inflation 4.2% 3.16% 2.17%

q 1.2600 1.2632 1.2662
iy 0.20 0.22 0.23
k/h 1.42 1.16 0.97

Table 5 reports the effects of a change in adjustment cost parameter 6.
A higher adjustment cost (lower ), lowers growth, and raises inflation. Two
opposing effects are at work on ¢ : (i) higher adjustment cost drives ¢ up and
(ii) a lower growth drives it down. The former effect dominates the latter.

These comparative statics effects provide insights about the long run as-

sociation between inflation and ¢. Inflation is driven by fundamentals which

include monetary policy (u), human capital TFP (A_H) and the adjustment

10A rise in Ag is offset by a fall in MPK via a rise in k/h. This leaves the balanced
growth ¢ in (17) unaffected which means ¢ and inflation do not change. However, shocks
to Ag have short run effects which we analyze in the next section.
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Table 5: Comparative Statics of a Change in 6

0=080=07]|60=0.6

Growth | 3.26% 3.18% 3.09%
T 0.52 0.53 0.53
lg 0.269 0.26 0.26
Inflation | 4.2% | 4.27% | 4.36%
q 1.26 1.45 1.70
iy 020 | 020 | 0.19
k/h 1.42 1.22 1.01

cost (f). How inflation impacts ¢ depends on the underlying cause of in-
flation. If inflation is purely a monetary phenomenon (driven by monetary
policy), it has little long run effects on g. On the other hand, if inflation
is driven by real fundamentals such as adjustment cost or human capital

investment TFP, it has a pronounced effect on g.

4.3.2 Impulse Responses

For the same baseline parameters, the short run analysis is summarized by
the impulse responses with respect to orthogonalized shocks to Ag, A and
1 based on the loglinearized version of the short run equation system (A.19)
through (A.25) in Appendix A.3. Figures 2 through 4 plot these responses
respectively.

A positive productivity shock in the goods sector makes agents substitute
time away from human capital investment and leisure to goods production.
Such a surge in current goods production temporarily lowers inflation (in f1).
The growth rate, however, falls due to lesser time devoted to human capital
sector. A temporary positive shock to the marginal product of physical
capital drives investment:GDP ratio (¢/y) up. This rise in investment rate
modulates adjustment cost upward which explains the rise in q. Increase
in saving due to decreased leisure and increased investment gives rise to an

intertemporal substitution in leisure which explains a subsequent rise in .
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Figure 2: Impulse Responses with respect to Ag

In response to a positive shock to Ap, agents switch from goods pro-
duction and leisure to human capital investment. Physical investment also
declines also since agents switch resources to human capital investment. De-
spite this the growth rises due to the long term effect of human capital on
GDP. Inflation initially rises slightly due to shortage of consumption goods
when agents switch time to human capital investment. The physical capital
investment rate thus declines reflected by the lower growth of the physical
capital stock. Consequently adjustment cost declines which explains the

decline in q.
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Figure 3: Impulse Responses with respect to Ag

A positive monetary shock via raising inflation induces agents to switch
time from goods production which is subject to inflation tax to leisure and
human capital investment. Consumption also falls due to this persistent
inflation tax. The consequent rise in physical investment rate resembles a
Tobin effect reflected by the growth of the capital stock. Adjustment cost
thus rises which explains the rise in q. Growth of output reflects the growth

of physical and human capital stocks.
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Figure 4: Impulse Responses with respect to u

The upshot of this short run analysis is that the correlation between
Tobin’s ¢ and inflation depends on the relative strengths of productivity
and monetary shocks. If the predominant shock is either a goods sector
TFP, Ag or a human capital TFP, Ay, they will contribute to a negative
association between ¢ and also negative correlation between ¢ and growth.
If the predominant shock emanates from monetary sources, the Tobin effect
of inflation will weaken the negative relation between ¢ and inflation as well
as inflation and growth; it will strengthen the positive correlation between

q and growth.
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4.3.3 Second Moments

We now turn to the second step of our calibration, that is calibrating the
second moments. Using the same baseline parameter estimates obtained
from calibrating the growth model, we pose the question whether the same
growth model can replicate the short run properties of the financial data.
Since the focus of the paper is on understanding the relationship between
q, inflation and growth, for short run calibration we focus only on these
three key endogenous variables. For this second step calibration, we need
to calibrate the baseline parameters of the forcing processes. The values of
these parameters are chosen through a process of iterative trial and error
to come closest to the sample correlations between ¢, inflation and growth.

Table 6 reports these baseline parameter estimates.

Table 6: Baseline Parameters for the Second Momemnts of the Forcing
Processes

PG | PH | Pu | OG | OH | Op
91 .9 .49 .08 | .08 | .25

Table 7 reports the second moments as found in the data for two sample
periods: 1960Q1 —1999Q4 and 1960Q1 —2008Q2. For both sample periods,
the model’s g-inflation correlation and growth-inflation correlation are not
too much at odds with the data. The model fits closely the 1960Q1—2008()2
sample correlation between output growth and ¢. The volatility of ¢ is
generally higher in the data than in the model, while the model’s volatility
of the growth rate and inflation is higher than in the data. Such a failing of

the volatility is familiar in consumption-based CAPM models.

5 Sensitivity Analysis

To consider the robustness of the results, different values of the adjustment

cost parameter @ are considered, and additional shocks are introduced.
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Table 7: Correlations of q, Growth, Inflation and Leisure

Data : 1960Q1 — 1999Q4 | Data: 1960Q1 — 2008Q2 | Model
corr(g,infl) | —0.56 —0.55 —0.40
corr(infl,g) | —0.22 —0.21 —0.35
corr(q,q) 0.15 0.05 0.04
sd(q) 0.42 0.45 0.07
sd(g) 0.009 0.008 0.26
sd(infl) 0.007 0.006 0.26

5.1 Variations in 0

Table 8 reports the performance of the model against the data for various

adjustment cost economies (different #). The model performs better in pre-

dicting the volatility of ¢ for economies with higher adjustment cost (lower

0).
Table 8: Correlations of q, Growth, Inflation and Leisure
Model Model Model
f=0.8 0 =0.7 0 =0.6
corr(q,infl) | —0.40 —0.37 —0.35
corr(infl,g) | —0.35 —0.36 —0.37
corr(q,q) 0.04 0.05 0.06
sd(q) 0.07 0.14 0.24
sd(g) 0.26 0.26 0.25
sd(mﬂ) 0.26 0.26 0.26

5.2 Additional Shocks

To check for further robustness, we introduce two additional shocks to the

model, namely to (i) to the preference, (ii) adjustment cost technology. The

instantaneous utility function now changes to:

Inc; + exp(&f) Y Inzy




and the physical investment technology (12) changes to:

ik

0
ki1 1
B oxp(Er) [1—5k+kj

We assume the following stochastic processes for £} and ff :

gtz = px€f71 + 'Uf
k k k
t = Ppréi-1t v

where v¥ ~ N(0,0,) and v} ~ N(0,0}).

As before, the calibrated values of p,, py, 04, 0k reported in Table 9 are
chosen by a trial and error process to minimize the difference between model
and actual second moments. Table 10 reports the model performances for

various adjustment cost scenarios based on these parameters .

Table 9: Baseline Parameters for the Second Moments of the Forcing
Processes of the 5-Shock Model

Pq PK Ox Ok
0.9 10.90.56 | 0.01

Table 10: Correlations of q, Growth, Inflation and Leisure: 5 Shock Model

and Actual: 1960-2006

Model Model Model
=038 0=0.7 6=0.6
corr(g,infl) | —0.46 —0.44 —0.42
corr(infl,g) | —0.41 —0.42 —0.43
corr(q,q) 0.11 0.12 0.13
sd(q) 0.08 0.16 0.28
sd(g) 0.30 0.29 0.29
sd(mﬂ) 0.28 0.28 0.28

The model predicts the g-growth correlations better in this environment.
This in-

crease in volatility of ¢ is primarily due to the shock to leisure preference and

The variability of ¢ increases in high adjustment cost economies.
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has very little do with the shock to adjustment cost technology.'’ How-
ever, this is accomplished at a cost. In order to match the g-growth and
g-inflation correlations well, the leisure shock has to have an implausibly
large standard error. Chari et al (2008) criticize the role of leisure shocks
in DSGE model.

The upshot of this quantitative analysis is as follows. Given the stylized
nature of the model, it performs very well in matching the long run target
variables. For the short run, the model predicts the three-way correlations
between ¢, inflation and growth reasonably well. As in any standard con-
sumption CAPM, the quantity side of the model (e.g. growth and inflation

in our context) is too volatile compared to the data.

6 Conclusion

The paper contributes an explanation of the empirical stylized negative cor-
relation between market price of capital and inflation. It does this in an
endogenous growth environment where human capital is a major driver of
growth. A DSGE endogenous growth model identifies plausible fundamen-
tals that determine the g¢-inflation-growth relationship. The importance of
this is that while there is an emerging literature that shows how monetary
policy affects the stock market boom-bust through sticky wages and inflation
targeting (Christiano et al, 2007), little is known of the effect of monetary
policy over the stock market via human capital-driven growth. The paper
develops a closed form solution for Tobin’s ¢ with physical adjustment cost
to understand the long run relation between inflation, ¢ and human capital
utilization. The long run comparative statics and the short run impulse
response analysis help us understand the transmission mechanism of real
and monetary shocks via a "human capital channel", which is novel in the

literature.

"1n fact, turning off the adjustment cost shock make the model overshoot the g-growth
correlation. An adjustment cost shock makes q and growth move in opposite direction
and thus dampens the correlation between q and growth and make the model g-growth
correlation come in line with the data.
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The results provide an explanation simultaneously of two particular styl-
ized facts: a negative correlation between (i) the market price of capital and
inflation, and (ii) the output growth rate and inflation. Here inflation affects
the value of the stock market via its distortionary effect on human capital
utilization, which causes agents to divert time from productive activities
towards leisure that is not subject to inflation tax. This lowers the growth
rate and at the same time the Lucas and Prescott (1971) cost of adjustment
of physical capital accumulation, Tobin’s g falls along with the growth rate.

The model can be enriched in several dimensions, with an aim to pre-
dict better the volatilities. An introduction of research and development
(R&D) sector in the firm could bring additional realism to the model, as
an alternative or supplement to the human capital channel for productiv-
ity increases. For example this might build upon the intangible capital of
McGrattan and Prescott (2008). A human capital externality can be in-
troduced as an additional engine of growth that would bring in convergence
towards the aggregate human capital level and physical capital can be added

to the human capital production process.

A Appendix

A.1 Equilibrium Conditions
A.1.1 Household

Define the lagrange multipliers associated with the flow budget constraint
(2) as A, the human capital technology (4) as 7, and the cash-in-advance

constraint (5) as 7,. The first order conditions facing the household are:

et BU"(er) = Pe(Ae +7,) = 0 (A1)

My =M+ Ee{ A1+ Y411 =0 (A.2)
Zt41 ¢ —)\tVt + Et>\t+1{v;f+1 + Dt+1} =0 (A3)
Biy1. — PPA\i4+ M1 =0 (A.4)
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hiy1 s =n + Eedepilairi Wit + By 1 (1 = 0n + Amprlinesr) =0 (AL)
loy — YT (1 —lgr — lge) B+ MWihy = 0 (A.6)

—yT'(1 = lge — lge) B* + Amemihe = 0 (A7)

Using (A.1) and (A.2)

!
A\ = Bt-‘rlEtU (Ct+1) (AS)
Py
which upon substitution in (A.3) and (A.4) yields
U'(e c
ViEy [(tﬂ)} BE |:Et+1 [ { t+2)} {Virr + Dt+1}] (A.9)
Py Py
U'(er+1) } { { (ct+2)
P'E { E —_— A.10
P P PE: Piia ( )
A binding cash in advance constraint means that (5) reduces to
M
7; = ¢, (A.11)
which implies that
P, 1
t _ Citl (A.12)

Pi1 o l+py

Upon substitution into (A.9) and (A.10) it results that

11 cir2 1
E, U — | = 8E; |E U _— d ,
Vg Ly (cty1)—— o 1+#t+1} B t|: t+1[ (Ct+2)ct+11+ﬂt+2:| {vep1 + t+1}]
(A.13)
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and

b / cer1 1 4 Gr2_ 1
B U () — | 8B, (B |07 —
Pyt (ct41) ct 1+ut+1} P t[ tH{ (t+2)ct+11+ﬂt+2:|:|
(A.14)

where v; = real share price(=V;/P;), p} = %b,wt real wage (=W:/P;).
Using (A.11) and (6), one obtains the following compact expression for

mi4+1 -

A1 P
it tvl Al

NP, mMi+1 (A.15)
A.2 Firm

Define w; as the Lagrangian multiplier associated with the adjustment cost

technology (10). Firms’ first order conditions are

Wi

1, B = AgiFa ke, 1L, he) (A.16)
Z.k 0—1
Zf P = Ow, <1 — 0 + ]{Itt> (Al?)

kip1 s —wi + By (PrpidiAceyi Fiee) +

ik 0 -k 0—1
Brorn [(1=0) 1= 0+ 2L 4 4 01— 6,) 41— 5 + L 0
ki1 ki1

(A.18)

A.3 Summary of the Equilibrium Conditions

Based on the first order conditions, the model can be summarized by the

following equations.

26



Tobin’s ¢ equation:

- k —(1—w) _
aAmH@g1<““> 41— 4 (1—0)8%/O=0g (=0

q = Em
t tIit+1 ht+1
(A.19)
lg equation:
At o [Ke]®
— 0o = :
Ay < |:ht (420
o (R
= E |:mt+1AGt+1lé;t+1 <ht+1> ] +
t+
o [k “ A
E; [ththH <t+1> (1 —0n + Amt+1lnis1) Gtﬂ}
ht—i—l AHt-i—l
T equation:
1/) 1 B kt a—1 ¢t -1
— —(1—)BE; | —Agilgy | — o = :
Tt ( @)BE, L+ pryqq v hy ki 0 (4.21)

k/h equation:

{(1 = 6) (ke /he) + Al (ke /ha)™ = (co/ke). (ke /) Y0 (52£) 10

hiv1 1 —0p+ Ame(1 = lge — o)
(A.22)

ki1

Output growth equation:

11—«

th+1
lagt

AGt+1
Act

Yt+1 (A.23)

yt_

kt+1/ht+1r
Apilye +1— 0y} -
P Al 1 1)
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Inflation equation:

Prr _ 1+ py g
P {(eer1/ken)/(ce/ke) H (ki1 /hesr) (ke /he H{ Al e + 1 — 6}
(A.24)
The discount factor equation:
S i+ P = i1} (ce/ke) (ke/he) 1
(14 (4 o) — py) (Corr/Resn) (Reea/hupa) 1 —=0n+ Amila
(A.25)

Equation (A.19) follows from (A.18), (13) and (A.15). Equation (A.20)
follows from (A.5), (A.6), (A.7), (A.8), A.15) and (A.16). Equation (A.21)
follows from (A.6), (A.8) and (A.16). Equation (A.22) follows by combining
(4) (11) and (12). The growth equation (A.23) follows from (4) and (11). To
obtain the inflation equation (A.24) rewrite the cash-in-advance constraint
(5) using (4) as:

Pryr (U4 ) (Amelge +1 = 6) 7"

P, ct1 Keg1 <ct ﬁ) -1

kt+1 ht+1 /?t ht

Regarding (A.25) use the log utility specification and (4) to rewrite this

as: 1
sl
me+1 = Bk; hi . 1+ Hi+2 . !
Cci+1 kiy1 1 1-— 6}1 + AHtlHt
kt41 hiy by | ———
T+ piyo

Next take a first order approximation around the steady state and use

the forcing process for money supply growth (16) to get the expression in
(A.25).

28



A.4 An Asset Pricing Based Formulation of Tobin’s ¢

In this appendix, we show that defining ¢ =v;/ks11 yields the same equi-
librium ¢ relationship (A.19) and the steady state g-growth relation as in
Corollary 2.

Rewrite (7) as

vy Vpy1 kig2 dt+1}
= FE:m . + A.26
ki1 i [kt+2 ki1 ki ( )

which can be rewritten by using (12) as

b 5 o d
qr = Etmt+1 |:9 [ qtl_;f + kiii:| (AZ?)

Next using the constant returns to scale property of the production func-

tion dy41/kiy1 can written as:

d 1
ﬁ = Agti1Fiee1 +1 — 0k — (0ge1) 10 (A.28)

which upon substitution in (A.27) yields (A.19).
To prove the Tobin’s ¢ equation (19), use (A.9) and (A.11) and log-utility

specification to get

S _ 5, F”l(vt“ ha dt“)} (A.29)
Ct Ct+1
where
1
=F |— A.30
& ! L + Nt+1:| ( )

Along a balanced growth path money growth rate is constant and thus

(A.29) reduces to:

which can be further simplified by plugging in d; = ;lgF (kt, lgihy)—(Wy/ P)lgihe—
&
if.
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Dividing through by k:11 and imposing the balanced growth condition

Ut

_ B 1
i (1+g) (A.32)

(AGFy +1— 6}, — <2“>
t

Finally using the adjustment cost function (12) and using (17) one gets

the same Tobins’q formula as in (19).

A.5 Balanced Growth Equilibrium

Based on (4), (17), the resource constraint, time constraint, (A.20) and

(A.21), the steady state can be represented as

1+g9g = 1—5h+Ath:(1—5k+%)0 (A.33)
l+g = Bl —0p+Ag(l—1x)) (A.34)
. e

S (1) a3

cy _ (1-a)fyl
ke (Tp) ki (4.36)
Bo(ar +1-0;) = [L-BL-6)(1+g) (A37)
1 = z4lg+lg (A.38)

Equating the 14 ¢ terms in the first equality of (A.33) and (A.34) yields
(with the help of (A.38)) a linear relationship between lg in terms of z

emerges as follows:

(1=0n)(1=8) = Anllg — (1 = B)(1 —=)] (A.39)

From (A.36) and the first part of (A.35) we can obtain ¥ in terms of %
and ;-. Substituting this into (A.37) and then writing % in terms of g from
g9

(A.33) yields a further expression for g in terms of % Finally we replace lg
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by its representation in terms of x, and ¢ in terms of = from (A.34) to get

an equation solely in x:

P 61 - a)(1 = 64+ Aul1 -y - L=,
+(1_5(11_+0;)(1_a)6é(1_5H+AH(1_$))61):U (A.40)
AR BC =N ygiors gy 4 A1 - ) =0

Once z is solved from (A.40), lg can be solved from (A.39). The re-
maining endogenous variables which are just functions of g and =z can be

computed.

B  Proof of Proposition 1

Note first from (6) and (A.8) that along the balanced growth path

P _ B
Pt)\t 1 + g

mi+1 = (B].)

Using (13), (A.19) , and (B.1), and imposing the balanced growth condi-
e

K
— M
k41

N 1-0 B .
<1—(5k+2é€> :/BegAgFl—l—ﬁg |:(1—0) (1—5k+;f> +9(1—(5k):| .

one obtains that

kt 1+ 1+ +
(B.2)
Use the adjustment cost function (12) to write
if 1/6
L (14 g 143, (B.3)

ky

which after plugging into equation (B.2) yields the proposition result of
equation (17). Also it is straightforward to verify from equation (A.20)
of Appendix A.1 the standard result in such Lucas (1988) human capital
models with leisure, that 1 + g = 8[1 — 05, + A (1 — 2)].
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