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A note on testing for purchasing power parity∗

Florian Heinen1

Institute of Statistics, Faculty of Economics and Management,

Leibniz University of Hannover, D-30167 Hannover, Germany

Abstract

We examine the asymptotic behavior of unit root tests against nonlinear alternatives

of the exponential smooth transition type if the data is erroneously nonlinearly trans-

formed.

We show analytically and by a Monte Carlo study that the probability of rejecting the

correct null of a random walk depends heavily on the type of data transformation.

JEL-Numbers: C12, C22, F31

Keywords: Unit roots · Misspecification · Nonlinear data transformation · Purchasing

Power Parity

1 Introduction

Purchasing power parity (PPP) is arguably one of the most important parities in inter-

national economics because ”most [economists] instinctively believe in some variant of

purchasing power parity as an anchor for long-run real exchange rates” (Rogoff (1996)).

At the same time there is an ongoing debate whether PPP holds or not. One popu-

lar way to test for PPP is to check whether real exchange rate data follows a mean

reverting process and is thus (globally) stationary. The first studies used the classical

Dickey-Fuller test (DF test) to check whether a random walk can be found in real ex-

change rates (see e.g. Adler and Lehmann (1983), Meese and Rogoff (1983), Meese and

Rogoff (1988) or Caporale et al. (2003)). As these studies could not reject the null of a

random walk and therefore found no evidence for PPP economists have turned to non-
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linear models to capture a possibly nonlinear adjustment towards PPP (see e.g Taylor

et al. (2001)). Especially models that allow for a symmetric adjustment towards PPP

have been found useful. The most notable is the exponential smooth transition autore-

gressive (ESTAR) model (see Teräsvirta (1994)). In this framework Kapetanios et al.

(2003) have developed a unit root test against an ESTAR alternative which subsequently

has been successfully applied to confirm PPP (see e.g. Liew et al. (2004), Chortareas

et al. (2002) and Chortareas and Kapetanios (2004)).

Many papers construct real exchange rates from log data to obtain the log real exchange

rate which is consistent with the theory. However, before the analysis is performed the

logarithm is applied a second time to the constructed series although, based on theory,

it is not a priori clear whether the suspected unit root behavior is in the logs or in the

levels (see e.g. Chortareas et al. (2002), Caporale et al. (2003), Bergman and Hansson

(2005), Kruse (2009)). It is therefore of interest whether the applied unit root tests

maintain their properties if applied to erroneously transformed data. For the linear case

this has been done by Krämer and Davies (2002) and Davies and Krämer (2003) (see

also de Jong (2010)). Krämer and Davies (2002) are able to analytically confirm parts

of the simulation results of Granger and Hallman (1991) that the DF test overrejects a

correct null of a random walk. Another striking feature of real exchange rates are the

unusual small estimated variances of the innovation term (see e.g. Taylor et al. (2001),

Rapach and Wohar (2006) or Smallwood (2005)). An important question is whether or

not the unit root tests maintain their properties if the innovation variance becomes very

small or very large.

This paper extends the analysis of Krämer and Davies (2002) to the nonlinear unit root

test of Kapetanios et al. (2003). We show analytically and by Monte Carlo evidence

that the behavior of the test statistic depends heavily on the innovation variance of the

underlying process if the data is erroneously nonlinearly transformed.

The rest of the paper is structured as follows: Section 2 presents the considered unit

root tests and derives their asymptotic behavior under nonlinear transformation. Sec-

tion 3 underpins the analytical results with some Monte Carlo evidence before section

4 concludes. All proofs are collected in the appendix A.
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2 Unit root tests and their asymptotic behavior under

misspecification

The first studies researching the PPP relied on the DF test for a unit root against a

linear alternative by Dickey and Fuller (1979). The DF test regression reads

yt = ρyt−1+εt . (1)

The pair of hypotheses is given as

H0 : ρ = 1 vs. H1 : ρ < 1 . (2)

The DF test checks if T (ρ̂−1) is sufficiently close to zero. The quantiles of the resulting

non-standard distribution of ρ are tabulated e.g. in Hamilton (1994, p. 762).

Kapetanios et al. (2003) extend the linear framework to the nonlinear ESTAR case (KSS

test). The prototypical ESTAR process they consider reads

yt = φyt−1+ θyt−1G(γ,c; ·)+εt, with εt
iid
∼ (0,σ2) . (3)

G(γ,c; ·) : IR→ [0,1] is a symmetrically u-shaped transition function governing the regime

switching behavior of the process in (3). It reads

G(γ,c;yt−d) = 1−exp
(

−γ (yt−d − c)2
)

. (4)

For simplicity Kapetanios et al. (2003) set c = 0 and d = 1. If φ = 1 the process is still

globally mean reverting as long as −2< θ < 0 which is assumed henceforth.

To derive the unit root test against the model in (3) they approximate the transition

function in (4) by a first order Taylor approximation resulting in the following auxiliary

regression model

∆yt = δy
3
t−1+εt . (5)

The pair of hypotheses in this framework reads

H0 : δ = 0 vs. H1 : δ < 0 , (6)

which is also tested via a conventional t-test. Critical values are reported in Kapetanios

et al. (2003, p. 364).

We first consider the case when the unit root test is applied to the levels of the time

series but the random walk is in the logs.
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In this case let zt ≔ ln(yt) and assume

zt = µ+ zt−1+σεt, with εt
iid
∼ (0,1) , (7)

and 0< σ <∞. The DF test is applied to the levels yt ≔ exp(zt). The OLS estimator for

ρ in the model

yt = ρyt−1+εt (8)

reads

ρ̂ =

T
∑

t=1
yt−1yt

T
∑

t=1
y2

t−1

. (9)

For the linear case the behavior of the DF test for σ2→ 0 and σ2→∞ (T fixed) and

for T →∞ (σ2 fixed) has been studied by Krämer and Davies (2002) and Davies and

Krämer (2003). For the case of T →∞ and fixed σ2 Davies and Krämer (2003) show

that the rejection probability tends to unity.

Krämer and Davies (2002) show that if σ→∞ the probability for rejecting the null

tends to zero if the random walk is in the logs but the DF test is erroneously applied

to the levels. In the appendix we show that a similar result also holds for the nonlinear

unit root test of Kapetanios et al. (2003).

Theorem 1. If the data is generated by (7), and δ̂ is the OLS estimator in (5) where

yt = exp(zt) we have:

(i) σ2→ 0 implies δ̂
D
→ 0.

σ2→ 0 implies s.e.
(

δ̂
) D
→ 0.

(ii) σ2→∞ implies δ̂
D
→−1.

σ2→∞ implies s.e.
(

δ̂
) D
→ 1.

The theorem shows that analog to the linear case the probability of rejecting the

unit root hypotheses tends to zero as σ→ 0 because the test statistic defined as

t̂KS S =
δ̂

s.e.
(

δ̂
) , (10)

where s.e.
(

δ̂
)

is the standard error of δ̂ tends to zero as well because δ̂ tends to zero

more quickly than s.e.
(

δ̂
)

.

For the part (ii) of the theorem it is important to note that the test statistic formally

tends to -1 but at such a slow rate that in finite samples with reasonable sample sizes
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and fairly large values of σ the test statistic will be large because s.e.
(

δ̂
)

approaches 1

from below and much slower than δ̂ approaches -1.

Now we consider the situation when the unit root test is applied to the logs but the

unit root process is in the levels. The true data generating process is now given by (7)

but the unit root test is applied to yt ≔ ln(zt). Of course this type of misspecification

can only happen if zt > 0 (t = 0,1, . . . ,T ). Theoretically this only happens if z0 is rather

large and/or a substantial drift component is present in the data generating process.

This is however of practical importance because given a finite sample of empirical data,

there is a good chance to encounter only positive values although negative values might

be possible from a theoretical argument. For the linear case Krämer and Davies (2002)

show that ρ̂ in (9) tends to one both as σ→ 0 and as σ→∞.

The next theorem, which is proven in the appendix A, gives the limiting behavior of the

OLS estimate for δ in (5).

Theorem 2. If the data is generated by (7), and δ̂ is the OLS estimator in (5) where

yt = log(zt) we have:

(i) σ2→ 0 implies δ̂
D
→ 0.

σ2→ 0 implies s.e.
(

δ̂
) D
→ 0.

(ii) σ2→∞ implies δ̂
D
→ 0.

σ2→∞ implies s.e.
(

δ̂
) D
→ 0.

This theorem implies that the test statistic of the KSS test in (10) converges to 0

because δ̂ converges faster than its standard error and hence the null is never rejected

given that the test is one-sided with negative critical values.

3 Monte Carlo evidence

This section illustrates the analytic results from the previous section by means of Monte

Carlo experiments. We start with the case that the random walk is in the logs but the

unit root test is applied to the levels.

To illustrate the asymptotic behavior from theorem 1 figure 1 shows plots of δ̂ and s.e.(δ̂)

for various values of σ and T = 100. Each point is obtained as a mean over 5000 Monte

Carlo repetitions.
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Figure 1: Illustration of theorem 1 part (i) I.

As predicted in the theorem both estimates tend to zero as σ→ 0. As a consequence

also t̂KS S tends to zero because δ̂ tends to zero more quickly. This is shown in figure 2.

The right panel clearly shows a faster convergence of δ̂.
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Figure 2: Illustration of theorem 1 part (i) II.

The associated power curves for the KSS test for this situation are depicted in figure

3.

- 6-



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

σεt

E
m

pi
ric

al
 P

ow
er

α = 1%
α = 5%
α = 10%

Figure 3: Power curves for exponential random walk I.

As expected the power curves are very low for small values of σ and eventually tend

to one as σ increases.

Part (ii) of theorem 1 is illustrated in the following figures. Note that for these figures

each point is obtained as the median over 5000 Monte Carlo repetitions rather than the

mean. This is due to numerical instabilities when dealing with very large standard devi-

ations. In such a case the noise dominates the signal and one obtains larger deviations

from the mean estimate. However in order to get a notion about the central value of

the distribution of the estimates we choose the more robust median as estimate.

Figure 4 shows the behavior of δ̂ and its standard deviation as σ→∞. As shown in the

theorem δ̂ goes to -1 with increasing σ while the standard deviation goes very slowly to

1.
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Figure 4: Illustration of theorem 1 part (ii) I.

Because of the slow convergence of s.e.
(

δ̂
)

the associated test statistic t̂KS S is rather

large (see figure 5) leading to a power of 1 displayed in figure 6.
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part (ii).
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Figure 6: Power curves for exponential ran-
dom walk II.

For the case that the random walk is in the levels but the unit root test is applied to

the logs analog Monte Carlo experiments have been conducted. For part (i) of theorem

2 figure 7 shows the convergence of δ̂ and its associated standard error to zero as σ→ 0.
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Figure 7: Illustration of theorem 2 part (i) I.

As predicted by theorem 2, δ̂ converges from negative values to zero and s.e.
(

δ̂
)

converges from positive values to zero. Figure 8 shows the associated test statistic and

illustrates the rates of convergence of δ̂ and s.e.
(

δ̂
)

.
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Figure 8: Illustration of theorem 2 part (i) II.

According to the theory the test statistic t̂KS S converges to zero for small values of

σ leading to non-rejection of the random walk hypotheses. The figures also clearly show

an abnormal non-monotonic behavior of δ̂, s.e.
(

δ̂
)

and t̂KS S . This induces even more

uncertainty regarding the test decisions in this situation.
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Figure 9 shows the associated power curves. As expected the power decreases with σ

tending to zero.
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Figure 9: Power curves for logarithmic random walk.

The second part of theorem 2 analyzes the behavior of the KSS test for the case of

σ→∞.

Figure 10 shows the convergence of the OLS estimates δ̂ and s.e.
(

δ̂
)

to zero as σ→∞.
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Figure 10: Illustration of theorem 2 part (ii).

The OLS estimates δ̂ is much faster than the convergence of s.e.
(

δ̂
)

causing the test

statistic t̂KS S to rapidly converge to zero as well. This leads the KSS test to lose its
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power properties as the null cannot be rejected even for moderate values of σ. This is

also supported by figure 11 that shows the power of the KSS test for large variances.
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Figure 11: Power curves for logarithmic random walk and large variances.

The power decreases rapidly to zero. The vertical dashed line shows the maximal

power value for the α = 5% level. Except in the region around σ ≈ 0.11 the power is

virtually zero and thus the unit root hypothesis is never rejected in this case.

4 Conclusion

This paper studies the asymptotic behavior of the unit root test against a globally sta-

tionary ESTAR model proposed by Kapetanios et al. (2003). In particular we study the

behavior of the test statistic if the innovation variance becomes very small or very large

and the data has been erroneously nonlinearly transformed. I.e. the unit root is in the

logs but the unit root test is applied to the levels or vice versa. We find that the behavior

of the test depends heavily on the innovation variance if the data is transformed. If the

unit root is in the logs but the unit root test is applied to the levels the test never rejects

the random walk hypotheses if σ→ 0.

The situation when the unit root is in the levels but the unit root test is applied to

the logs is even more severe. In this situation the test virtually never rejects the null.

Only in a very small region of around σ ≈ 0.11 the test rejects the null. This leads to a

non-monotonic power of the KSS test.

The consequences for testing for PPP are that one should be very careful if nonlinear

data transformation should be applied or not because in both considered cases the KSS

- 11-



test loses power and thus yields unreliable results.

Regarding data transformation in nonlinear time series future work should focus on dis-

criminating between linear or logarithmic model formulation for nonlinear time series.

A possible road is to extend the work of Kobayashi and McAleer (1999) or Spanos et al.

(2008) to nonlinear time series models.

Possibly the asymptotic distributions of unit root tests for the case of erroneously trans-

forming the time series according to log(|zt|) where zt is I(1) could be derived using the

results in de Jong (2004) (see also de Jong and Schmidt (2002)).
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A Appendix

A.1 Proof of Theorem 1

Assume without loss of generality that z0 = 0 and set the drift to µ = 0. Then write

zt = zt−1+σεt = σ

t
∑

i=1

εi , (11)

and notice that

∆yt = yt − yt−1 = exp(zt)−exp(zt−1) . (12)

With this the OLS estimator of δ̂ in (5) reads

δ̂ =

T
∑

t=1
y3

t−1∆yt

T
∑

t=1
y6

t−1

=

T
∑

t=1

[

exp(3zt−1+ zt)−exp(4zt−1)
]

T
∑

t=1
exp(6zt−1)

=

T
∑

t=1













exp













3σ
t−1
∑

i=1
εi+σ

t
∑

j=1
εi













−exp

(

4σ
t−1
∑

i=1
εi

)












T
∑

t=1
exp

(

6σ
t−1
∑

i=1
εi

) . (13)

As the numerator tends to zero and the denominator tends to T as σ→ 0 the first part

of (i) of the Theorem follows.

Now consider the OLS estimator of the standard deviation of δ̂

s.e.
(

δ̂
)

=

1
T−1

T
∑

t=1

(

∆yt − δ̂y3
t−1

)2

T
∑

t=1
y6

t−1

=

T
∑

t=1

[

(

exp(zt)−exp(zt−1)
)2
−2δ̂

(

exp(zt)−exp(zt−1)
)

exp(3zt−1)+ δ̂2 exp(6zt−1)
]

T
∑

t=1
exp(6zt−1)

. (14)

Given the representation from above we immediately see that the numerator tends to

zero and the denominator tends to T as σ→ 0. Consequently s.e.
(

δ̂
)

tends to zero as

claimed in part the second part of (i) in the theorem. Note that δ̂ tends to zero more
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quickly so that t̂KS S tends to zero as σ→ 0.

To prove the part (ii) note that for the case σ→∞ the slope of the exponential function

becomes much steeper with increasing positive values as for negative values where the

difference in the slopes eventually becomes negligible. We have from the representation

in (13) that the numerator tends to −∞ because of the higher power of the second term.

As the denominator tends to ∞ with σ→∞ the whole expression for δ̂ tends to -1 as

claimed. In the representation (14) for the standard deviation the denominator clearly

tends to ∞. In the numerator the crucial term is the last one. This expression also goes

to ∞ but much slower than the denominator (because
∣

∣

∣δ̂
∣

∣

∣ < 1). Thus the whole term will

eventually go to one but very slowly. �

A.2 Proof of Theorem 2

Assume without loss of generality that z0 = 0 and set the drift to µ = 0. Then write

zt = zt−1+σεt = σ

t
∑

i=1

εi , (15)

and notice that

∆yt = yt − yt−1 = log(zt)− log(zt−1)

= log

















σ

t
∑

i=1

εi

















− log

















σ

t−1
∑

i=1

εi

















= log(σ)+ log

















t
∑

i=1

εi

















− log(σ)− log

















t−1
∑

i=1

εi

















= log



































t
∑

i=1
εi

t−1
∑

i=1
εi



































= log



































1+
εt

t−1
∑

i=1
εi



































≕ log(η) . (16)
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With this the OLS estimator reads

δ̂ =

T
∑

t=1
y3

t−1∆yt

T
∑

t=1
y6

t−1

=

T
∑

t=1

[

log(zt−1)3 log(η)
]

T
∑

t=1

[

log(zt−1)6
]

=

T
∑

t=1















{

log(σ)+ log

(

t−1
∑

i=1
εi

)}3

log(η)















T
∑

t=1

[

log(σ)+ log

(

t−1
∑

i=1
εi

)]6
.

Using the binomial theorem we can expand the powers of the binomials in the numerator

and the denominator. Leading to the following expression for the numerator

T
∑

t=1





































log(σ)3
+3log(σ)2 log

















t−1
∑

i=1

εi

















+3log(σ) log

















t−1
∑

i=1

εi

















2

+ log

















t−1
∑

i=1

εi

















3
















log(η)



















.

And for the denominator

T
∑

t=1



















log(σ)6
+6log(σ)5 log

















t−1
∑

i=1

εi

















+15log(σ)4 log

















t−1
∑

i=1

εi

















2

+20log(σ)3 log

















t−1
∑

i=1

εi

















3

+

15log(σ)2 log

















t−1
∑

i=1

εi

















4

+6log(σ) log

















t−1
∑

i=1

εi

















5

+ log

















t−1
∑

i=1

εi

















6


















.

The numerator tends to −∞ as σ→ 0 and the denominator eventually tends to ∞. Thus

δ̂ tends to 0 as claimed. Note that, because of the complex interplay of the powers

of the logarithms involved and the associated changes of signs and the different slopes

of the logarithmic functions in the interval (0,1] the convergence is expected to be

slow. However because the denominator converges at a higher rate than the numerator

(because of the higher powers involved) the OLS estimate will eventually converge to

zero.

Analyzing the standard deviation of δ̂ in (14) for yt = log(zt) we see for the same reasons

as above that numerator slowly converges to zero (as δ̂ goes to zero) and the denominator

diverges to ∞. Thus s.e.
(

δ̂
)

→ 0 as claimed.

For the first part of (ii) notice that the numerator as well as the denominator diverge

to ∞. But again the denominator diverges much faster due to the high powers of log(σ)

involved. Therefore δ̂ will eventually diverge to zero as claimed. The result for the

standard error of δ̂ is obtained with the same reasoning. �
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