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MEASUREMENT ERROR� BIASES� AND THE

VALIDATION OF COMPLEX MODELS

Raymond J� Carroll and Christian D� Galindo �

January ��� ����

Abstract

There are three major points to this article�

�� Measurement error causes biases in regression �ts� The line one would obtain if
one could accurately measure exposure to environmental lead media will di�er in
important ways when one measures exposure with error�

�� The e�ects of measurement error vary from study�to�study� It is dangerous to
take measurement error corrections derived from one study and apply them to
data from entirely di�erent studies or populations�

	� Measurement error can falsely invalidate a correct 
complex mechanistic� model�
If one builds a model such as the IEUBK carefully using essentially error�free
lead exposure data� and applies this model in a di�erent data set with error�
prone exposures� the complex mechanistic model will almost certainly do a poor
job of prediction� especially of extremes� While mean blood lead levels from such
a process may be accurately predicted� in most cases one would expect serious
under� or over�estimates of the proportion of the population whose blood lead
level exceeds certain standards�

�Raymond J� Carroll is Professor of Statistics� Nutrition and Toxicology� and Christian D� Galindo is a
graduate student� both at the Department of Statistics� Texas A�M University� College Station� TX �����	
�
��� This research was supported by a grant from the National Cancer Institute �CA	����� Carroll�s
research was partially completed while visiting the Institut f�ur Statistik und �Okonometrie� Sonderforschungs�
bereich ���� Humboldt Universit�at zu Berlin� with partial support from a senior Alexander von Humboldt
Foundation research award� We can be reached by email to carroll�stat�tamu�edu� or through the world
wide web in the Department of Statistics home page� http���stat�tamu�edu�



� INTRODUCTION

��� Overview

This article focuses on the role of measurement error in linear regression� with special em�

phasis on relating a single environmental lead media exposure to blood lead in children�

and validating complex mechanistic models� For further details and a general overview of

the topic� including work on multiple media exposures and nonlinear regression models� see

Carroll� et al� ���� Fuller �	� should also be consulted for the linear model� Our emphasis

on the simplest model is deliberate� because the ideas are best understood in this context�

However� all of the global conclusions carry over to more complex models�

There are three major points to this article


�� Measurement error causes biases in regression �ts� The line one would obtain if one

could accurately measure exposure to the environmental lead media will dier in im�

portant ways when one measures exposure with error�

�� The eects of measurement error vary from study�to�study� It is dangerous to take

measurement error corrections derived from one study and apply them to data from

entirely dierent studies or populations�

�� Measurement error can falsely invalidate a correct �complex mechanistic� model� If one

builds a model such as the IEUBK carefully using essentially error�free lead exposure

data� and applies this model to a dierent data set with error�prone lead exposures� the

complex mechanistic model will almost certainly do a poor job of prediction� especially

of extremes� While mean blood lead levels from such a process may be accurately

predicted� in most cases one would expect serious under� or over�estimates of the

proportion of the population whose blood lead level exceeds certain standards�

This section discusses some basic background� Section � describes points � and �� while

point � is discussed in section ��

��� Measurement Error Models

Measurement error models have a common structure�



� An underlying model for a response �e�g�� blood lead levels� in terms of predictors�

e�g�� the IEUBK model� This is the model we would �t if all variables were observed

without error� In what follows� we will call Y the response�

� A variable which is measured subject to error �e�g�� exposure to lead via wipe samples��

We will call this variableX� e�g�� the average environmental lead level one might obtain

in wipe sampling if one does many wipe samples per day for a fairly large number of

days� In other words� X is the �true� exposure� It is often called the error�prone

predictor or the latent predictor�

� The observed value of the mismeasured variable� e�g�� the average of a few wipe samples

done on a single day� We will call thisW�

� Those predictors which for all practical purposes are measured without error� e�g�� age�

race� gender� which we will call Z�

� We are interested in relating the responseY to the true predictors �Z�X�� One method�

often called the naive method� simply replaces the error�prone predictor X with its

measured versionW� This substitution typically leads to biases in parameter estimates

and can lead to misleading inferences�

� The goal of measurement error modeling is to obtain nearly unbiased estimates and

inferences� Attainment of this goal requires careful analysis� Substituting W for X�

but making no adjustments in the usual �tting methods for this substitution� leads to

estimates that are biased� sometimes seriously� In assessing measurement error� careful

attention needs to be given to the type and nature of the error� and the sources of data

which allow modeling of this error�

Of course� it should be obvious that one should design studies and instruments in such a

way as to best lessen or eliminate measurement error�

��� Computer Programs

Splus and SAS computer programs �on SPARC architecture SunOS versions 	 and � and for

Windows on PC�s� are available on the world wide web at http
��stat�tamu�edu�qvf�qvf�html�

�



They have been developed by Raymond Carroll� Henrik Schmiedieche and H� Joseph Newton

with the help of a grant from the National Cancer Institute �CA��������

��� Models for Measurement Error

There are many models for measurement error� see Chapter � of Carroll� et al� ���� For

purposes of speci�city� we will base our discussion on the additive error model� i�e�� observed

lead exposure W diers from accurately measured lead exposure X because of a random

addition of measurement error� The random measurement error will be said to have variance

��

u�

We are not suggesting that observed lead exposure �usually of course in the log scale�

necessarily diers from true lead exposure �again in the log scale� in an additive way� There

are many other ways that measurement error can occur� The purpose of this paper is to

point out some of the eects of measurement error� and it seems preferable to illustrate these

eects in an important special case� While the formulae and techniques dier depending on

the form of measurement error� our basic three points remain essentially invariant to this

form�

Carroll� et al� ��� discuss in detail various ways that one can go about understanding the

form of measurement error�

��� Transportability of Models and Parameters

In some studies� the measurement error process is not assessed directly� but instead data

from other independent studies �called external data sets� are used� We say that parameters

of a model can be transported from one study to another if the model holds with the same

parameter values in both studies�

In many instances� approximately the same error model holds across dierent populations�

For example� consider wipe sampling at two dierent locations� Assuming similar levels

of training for technicians making the measurements and a similar protocol� it may be

reasonable to expect that the distribution of the error in the recorded measure depends only

on the long�term result and not on the location� the technician making the measurement� or

on the value of X being measured� Thus� in classical error models it is often reasonable to

�



assume that the error distribution is the same across dierent populations� i�e�� transportable�

One of the most common mistakes made in the area is to over�do the idea of trans�

portability� in particular to transport a correction for measurement error from one study to

the next� For instance� while the properties of errors of measurement may be reasonably

transportable� the properties of the true �or latent� predictor X are rarely transportable�

since they depend so heavily on the population being sampled� and the corrections for mea�

surement error in the two populations will be strikingly dierent� As another example� the

distribution of true wipe sampling in a population de�ned in a single area is hardly likely to

be transportable to the nation at large� Carroll � Stefanski ��� give an explicit example of

the dangers of assuming transportability�

� LINEAR REGRESSION AND THE EFFECTS OF

MEASUREMENT ERROR

��� Overview

A comprehensive account of linear measurement error models can be found in Fuller �	��

Carroll� et al� ��� give a briefer overview of the essential issues�

In what follows� we will be pretending for illustrative purposes that blood lead is related

to lead exposure linearly �possibly after a logarithmic transformation�� We will refer to this

as a �complex model� and will even blur the distinction between it and the IEUBK model�

We hope that the reader will forgive us these simpli�cations� Our main three points hold

generally� but explicit and easy answers are available in the linear case� and thus are ideal

for illustrating the main ideas�

Many textbooks contain a description of measurement error in linear regression� usually

focusing on simple linear regression and arriving at the conclusion that the eect of measure�

ment error is to bias the slope estimate in the direction of �� Bias of this nature is commonly

referred to as attenuation or attenuation to the null� We will repeat some of this work� but

with a more pronounced emphasis on prediction than is typical� However� before proceeding�

it is important to place this topic in a broader context�

In general �linear and nonlinear� regression problems� the eects of measurement error can

	



 

Figure �
 Illustration of additive measurement error model� The �lled circles are the true
�Y�X� data and the line is the least squares �t to these data� For these data ��

x � ��

u � ��
���� �x� � ��� �� and ��

� � ����

be complex� In multiple linear regression� the eects of measurement error vary depending

on
 �i� the regression model� be it simple or multiple regression� �ii� whether or not the

predictor measured with error is univariate or multivariate� and �iii� the presence of bias

in the measurement� The eects can range from the simple attenuation described above

to situations where
 �i� real eects are hidden� �ii� observed data exhibit relationships that

are not present in the error�free data� and �iii� even the signs of estimated coe�cients are

reversed relative to the case with no measurement error�

The key point is that the measurement error distribution determines the eects of mea�

surement error� and thus appropriate methods for correcting for the eects of measurement

error depend on the measurement error distribution�

��� Simple Linear Regression with Additive Error� Regression to

the Mean

We start with the simple linear regression model with intercept ��� slope �x and variance

about the line ��

� � The true values of the predictor are calledX� and with considerable license

we will refer to this as true lead exposure� and assume that it has mean �x and variance ��

x�

�



The error model is additive with error variance ��

u�

To illustrate the attenuation associated with the additive measurement error� we simu�

lated data from �� observations� with ��

x � ��

u � �� �� � �� �x � � and �
�

� � ���� In Figure

�� we plot the blood lead levels Y against the true environmental lead exposures X� Note

the steep slope in the plot and that the observations are tightly bunched near the line� This

indicates that in actuality� there is a strong and nearly direct relationship between blood

lead levels and environmental exposure�

We next illustrate the eects of measurement error by displaying in Figure � what might

happen if lead exposure were measured with error� In this plot� in addition to the true �ts of

Figure �� the empty circles and attenuated line depict the blood lead levels Y and observed�

error�prone environmental lead levelsW� along with the �tted regression line� There are

two important� indeed critical points that this �gure illustrates�

�� The eect of ignoring measurement error is to produce a biased estimate of the line�

In fact� it is well known that the line �tted with error�prone exposure data estimates

not the true slope �x� but instead of �x� � ��x� where

� � reliability ratio �
��

x

��

x � ��

u

� �� ���

The attenuating factor� �� is called the reliability ratio�

�� Figure � also illustrates that the �t to the line has seriously degraded� Not only is the

line attenuated� but the error about the line has vastly increased� Indeed� while the

error about the line with reliably measured lead exposure is ��

� � the error about the

line with the error�prone lead exposure measures is

residual variance of observed data � ��

� � ���

x�
�

u�

This facet of the problem is often ignored� but it is important� Measurement error

causes a double�whammy
 not only is the slope attenuated� but the data are more

noisy� with an increased error about the line�

Figure � is indicative of a phenomenon called Regression to the Mean� Intuitively� what

this means is that the extremes in the observed �in this illustration lead exposure� data are

�
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Figure �
 Illustration of additive measurement error model� The �lled circles are the true
�Y�X� data and the steeper line is the least squares �t to these data� The empty circles and
attenuated line are the observed �Y�W� data and the associated least squares regression line�
For these data ��

x � ��

u � �� ���� �x� � ��� �� and ��

� � ����

too extreme� and that the true lead exposure is closer to the mean of the data� In fact�

in normally distributed data� if true lead exposure has a population mean �x� then having

observed the fallible instrument� the best prediction of true lead exposure is �x�������W�

where the reliability ratio is � � � and is de�ned in ���� The net eect is that the best �linear�

predictor of true lead exposure is always closer to the overall mean than any observed but

error�prone lead exposure�

The foregoing is one facet of regression to the mean� A more common de�nition is

complementary� For a child with an extreme observed but error�prone exposure� if one

repeats the measurementand obtains a second �replicated�measure� this replicate is generally

less �and often much less� than the original extreme value�

��� Transportability

We now are in a position to see why it is that corrections for measurement error derived from

one study should not be applied directly to a second study� The reason is that the reliability

ratio ��� depends critically on the variance of true lead exposure� This variability of lead

exposure may dier greatly from study�to�study� leading to dierent reliability ratios�
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��� Multiple Regression� Single Covariate Measured with Error

In multiple linear regression the eects of measurement error are more complicated� even for

the additive error model� The full details are beyond the scope of this paper� see Carroll� et

al� ���� especially chapters � and ���

��� Multiple Covariates Measured with Error

If multiple covariates are measured with error� then the direction of the bias induced by this

error does not follow any simple pattern� One may have attenuation� reverse�attenuation�

changes of sign� an observed positive eect even at a true null model� etc� This is especially

the case when the predictors measured with error are correlated or their errors are correlated�

In such problem� there really seems to be no substitute to a careful measurement error

analysis�

��� Correcting for Bias

As we have just seen� the ordinary least squares estimator is typically biased under measure�

ment error� and the direction and magnitude of the bias depends on the regression model and

the measurement error distribution� The usual method of correcting for such measurement

error is the method of moments� see Fuller �	�� especially Chapter ��

Another well publicized method for linear regression in the presence of measurement error

is orthogonal regression� see Carroll � Ruppert ��� for criticism� This method is used too

often for our taste�

� PREDICTION

We are now in a position to describe the third of the major points we advertised in section

�� Speci�cally� it is our contention that if one builds a complex mechanistic model such as

IEUBK using reliable environmental lead exposure data� one can expect that it will do a poor

job of prediction when applied to error�prone lead exposures� except possibly in predicting

the mean blood lead level�

�



The point is best made graphically� Consider Figure �� This is meant to illustrate the

�tted prediction line from a complex model built using the best available data� In actuality�

the line is �� � �xX� where �� � �� �x � �� For a given true lead exposure level X� we

predict that on average the blood lead level will be �� � �xX�

In Figure 	� we add in the �dashed� line that occurs if one has error�prone lead exposure

levels� That is� for a given error�prone� observed lead exposure levelW� this is the average

blood lead level which will be observed� A mathematical justi�cation is given in the appendix�

but eectively this is the observed �dashed� line in Figure � based on large sample sizes�

In considering Figure 	� note what happens� Even though the complex model �e�g��

IEUBK� is a perfectly correct model in relating blood lead levels to true lead exposure� it

does a poor job of predicting blood lead levels from error�prone lead exposures� While the

predicted blood lead level at the mean lead exposure is approximately correct� the complex

model simply grossly misestimates the eect of lead exposure at high levels�

Another way to think of Figure � is in terms of exceedances� Suppose that one is in�

terested in the percentage of individuals whose blood lead exceeds a threshold t� That is�

one builds one�s complex model� then applies it to a new data set which has error�prone

lead exposures� One method is simply to write down the predictions in the new data� and

count the percentage of blood lead predictions which exceed the threshold� Figure � makes

it clear that this prediction will simply be in error� and thus the true eect of lead exposure

on blood lead levels will be misjudged�

More complicated procedures for estimating the percentage of a population exceeding a

threshold are available� see the appendix for a technical analysis of one such method� The

bottom line is this
 if one carefully �ts a model such as the IEUBK using reliable data�

and then applies this model to error�prone lead exposures� one can expect predictions of

the percentage of the population exceeding a blood led level threshold to have bias� often

serious bias� If one really wants to validate a complex model on error�prone exposure data� a

more complex process is required that carefully takes into account all facets of the problem�

especially and including measurement error� A brief overview of this is given in the appendix�
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Figure �
 This illustrates the actual prediction line that one would use if there were no
measurement error in the environmental lead exposure� It is meant to illustrate a �tted line
from a complex model �e�g�� IEUBK� �t using reliable measures of environmental exposure�
For these data ��

x � ��

u � �� ���� �x� � ��� �� and ��

� � ����

 

 

Figure 	
 This illustrates the e�ect of measurement error on prediction� The solid line is the
prediction line that one would use if there were no measurement error in the environmental
lead exposure� The dashed line is the predictions one would actually make if lead exposure
were measured with error� Note that while the prediction at the mean observed lead exposure
is approximately correct� the predictions are wrong at the high levels of exposure that are
typically of interest� In this particular plot� the mechanistic model �solid line�� e�g�� IEUBK�
will greatly overestimate exceedance probabilities� For these data ��

x � ��

u � �� ���� �x� �
��� �� and ��

� � ����
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� DISCUSSION

We have shown that measurement error of the type one might expect in lead exposure data

will bias parameter estimates� Models �t with error�prone exposures will not be accurate

indicators of the model that relates true exposure to blood lead levels� Biases of this type

are well�known and have been discussed extensively in the statistics literature�

Less well�known is the eect of measurement errors on prediction� A model relating

blood levels to true lead exposure which is applied to error�prone exposures can be expected

to yield a biased estimate of quantities such as the percentage of the population whose blood

lead exceeds a given threshold� interestingly� the mean blood lead is typically not so badly

aected by errors in exposures� In the appendix� we construct a �ctitious situation where

� of the population actually exceeds a threshold� but by ignoring measurement error we

would estimate that �� of the population exceeds the threshold�

What this means is that complex models such as the IEUBK model cannot be validated

by applying them to data with error�prone lead exposures� Even if this model is correct in

all respects� we have shown that we expect that it will not perform very well in estimating

probabilities of high blood levels� While there are statistical approaches to doing the valida�

tion properly �see the appendix for one such approach at a theoretical level�� it remains far

easier to validate the complex model on data where exposure has been relatively carefully

ascertained�
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� APPENDIX

��� Estimation of Exceedances

We give here some idea of what might happen when one uses a complex model �t using

reliable data and then applies it to error�prone data� We assume that one is interested in

estimating the percentage of the population that has a response Y exceeding a threshold t�

We distinguish between the reliable data set� and the error prone�data set� We have used

the �reliable� data set to construct a model relating true lead exposure level to �X� to blood

lead level �Y �� In linear regression� this gives good estimates of the intercept ����� the slope

���� and the variance about the line �����

In the error�prone data set� suppose that the true exposures are normally distributed

with mean zero and variance ��

x� Generally� we will be interested in thresholds of blood lead

that exceed the intercept of the line� so that the threshold t � ��� Then� the percentage of

the error�prone population which has blood lead exceeding t can be shown to be

pr�Y � t� � E fpr �Y � tjX�g �

�
� � !

�
t� �� � �xX

��

��

� �� !

�
t� ��

���

� � ��

x�
�

x�
���

�
� ���

Equation ��� is the actual percentage of of the error�prone population whose blood lead

levels exceed the threshold t�

If we ignore the measurement error in the lead exposure levels� the complex mechanistic

model leads us to predict that the following percentage of the population have blood lead

levels exceeding t


pr�Y � tjerror�prone� � � � !

�
t� ��

f��

� � ��

x��
�

x � ��

u�g
���

�
� ���

Since t � ��� what we see is that the complex mechanistic model applied to error�prone

exposures results in an overestimate of the percentage of the population with high blood

lead levels� For instance� if t � ���� �� � �� �x � �� ��

x � ��

u � �� and ��

� � ����� then

the actual percentage of the population with blood lead levels exceeding the threshold is

��



� � while the complex model �t using reliable exposure data would predict that �� of the

population exceeds the threshold�

Of course� such overestimation need not always be the case� The IEUBK model is of

course much more complex than the simple linear model that we have considered� with more

than one type of lead exposure and important demographic characteristics such as gender�

age and race that must be accounted for� What we can predict in general is that in ignoring

measurement error� correct and carefully �t complex models �t to error�prone exposure

data will typically do a poor job of estimating the percentage of the population exceeding

the threshold�

��� The Predictive Distribution

Suppose that one has carefully �t a model for Y as a function of X� and write the density

function of this model as fY jX�yjx�� In our context� this model was �t using reliable lead

exposure data� and it is assumed to be transportable from this careful study to a second

one which has error�prone exposures� In this second data set� the error model is fW jX�wjx��

The actual predictive density requires a model for X itself in this second data set� which we

write as fX�x�� We assume that the errors in lead exposure measurements are independent

of blood lead�

With these assumptions� the density function of blood lead in the second data set is

fY �y� �
Z
fY jX�yjx�fW jX�wjx�fX�x�dxdw�

The appearance of the error model fW jX�wjx� makes it clear that special and careful

attention must be paid to the error process� The appearance of the true exposure distribution

fX�x� makes it clear that the eects of measurement error dier from study to study� and

one cannot simply assume that they are the same across all studies�
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