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Abstract

We consider the problem of estimating quantile regression coe�cients in errors�

in�variables models� When the error variables for both the response and the manifest

variables have a joint distribution that is spherically symmetric but otherwise unknown�

the regression quantile estimates based on orthogonal residuals are shown to be con�

sistent and asymptotically normal� We also extend the work to partially linear models

when the response is related to some additional covariate�
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� INTRODUCTION

Regression analysis is routinely carried out in all areas of statistical applications� It helps

explain how a dependent variable Y relates to independent variables X� Most authors

consider the estimation or inference problems based on data observed on both X and Y

variables� However� the covariates are not always observable without error� If X is observed

subject to random error� the regression model is usually called errors�in�variables �EV� model�

A careful study of such models is often needed� as the standard results on regression models

do not carry over� The best�known is the e�ect of attenuation for the likelihood based

estimators without any correction for the measurement error in X� A detailed coverage

on linear errors�in�variables models can be found in Fuller ���	
�� More recent work on

nonlinear models with measurement errors can be found in Carroll� Ruppert� and Stefanski

������� The literature on EV models are mainly con�ned to estimating the conditional

mean function of Y given X� assuming Gaussian errors� In the present paper� we attempt

to consider conditional median and other quantile functions as pioneered by Koenker and

Bassett ���
	� for a class of unspeci�ed error distributions� For the usefulness of conditional

quantiles� see examples and discussions found in Efron ������ and He ����
�� among many

others�

Let
s start with the EV model Yi � XT
i � � �i and Wi � Xi � Ui �i � �� �� � � � � n�� where

Xi � Rp are unobservable explanatory variables� Wi � Rp are manifest variables� Yi � R are

the responses� and ��i� Ui� � Rp�� are independent with a common error distribution that is

spherically symmetric� Spherical symmetry implies that �i and each component of Ui have

the same distribution� which ensures model identi�ability� A special case of such EV models

with Gaussian errors and known variance ratio is frequently considered in the literature�

Multivariate t�distributions are additional examples for the error structure�

We restrict ourselves to structural models where Xi are independently and identically

distributed random variables� If Xi are non�stochastic designs� the model is said to have a

functional relationship� see Fuller ���	
� for details�

The least squares estimator of � based on
P

i�Yi�W T
i ��� is known to be biased towards

zero� It is instructive to consider the quantile regression under the same spirit� but we

work with the population version with p � � for clarity� We ask which b � R minimizes
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E�� �Y � bW �� where �� is the � �th quantile objective function de�ned as

�� �r� � � maxfr� �g� �� � � � maxf�r� �g� �����

Note that the solution to minimizing E���Y � c� over c � R is the � �th quantile of Y � If

the conditional quantile of Y given W is linear in W � then it is the solution to minimizing

E�� �Y �a� bW � over a� b � R� Consider the special case where X�U� � are independent and

normally distributed with mean zero and variances ��x� �
� and �� respectively� Then� �Y�W �

is bivariate normal� and the conditional distribution of Y given W is normal with mean

���xW	��� � ��x� and variance v�� � f���
x � ��������x � ���� ����xg	���x � ���� Thus� for the

� �th quantile problem� we obtain a � ����� �v�� and b � ���x	��
� � ��x�� This produces the

well�known attenuation for the slope parameter� However� we further note that in general�

the conditional quantile of Y given W is not linear in W � so the slope parameter from

regressing Y directly on W would result in bias in a more complicated manner�

In the case of least squares estimation for the conditional mean� a number of authors have

proposed methods for correction of the measurement error e�ects� Likelihood arguments of

Lindley ����
� and Madansky ������ lead to a minimization of

X
i

�
Yi �W T

i bq
� � jbj�

��
�����

for Gaussian errors� A common interpretation of this weighted least squares method is

that �Yi � W T
i b�	

q
� � jbj� is the orthogonal residual rather than the vertical distance in

the regression space� In Section �� we consider regression quantile estimation for linear

EV model by applying the loss function ����� to orthogonal residuals� Under some mild

conditions� the resulting quantile estimate is consistent and asymptotically normal� We also

note that without knowing a parametric form for the error distribution of ��� U�� the spherical

symmetry is essential for the consistency� The median regression estimates are also compared

with the L� estimates from ����� through a small scale simulation study� These ideas are

extended to partly linear models in Section �� where we adjust for the nonparametric part

of the model using an idea of orthogonal projection� It is shown that the quantile estimate

for the parametric component attains the same asymptotic e�ciency as if the nonparametric

component of the model were known� Proofs of the main results in the paper are provided

in Section ��

In the present paper� the identi�ability of the EV model is resolved through a classical

means by imposing some assumption on the joint error structure� Depending on the nature
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of the problem in practice� other means of identi�cation might be more appropriate� In

some cases� the distribution of the measurement error U may be estimated� In some others�

instrumental variables may be available� Further research is clearly needed to identify and

analyze appropriate methods of estimating the regression quantile estimates�

� Linear EV Models

The median regression is better known in the statistical literature as the least absolute devi�

ation regression� In this case� Brown ���	�� discussed the approach of estimating covariates

Xi to obtain

� � argminb�x������xn
X
i

fjYi � xTi bj� jWi � xijg� �����

and concluded that the procedure will under� or overestimate the slope parameter� In this

section� we assume that an intercept term 
 is in the model in addition to the p dimensional

latent variable X� Yi � 
 � XT
i � � �i� We propose to compute the � �th quantile estimate

by minimizing Q�a� b� � n��
P

i �� �Yi � a �W T
i b�	

q
� � jbj� over a � R� b � Rp� where jbj

denotes the L� norm of the vector b�

Note that the loss function �� is di�erentiable everywhere except at the point of zero� The

directional derivatives of Q�a� b� at the solution ��
� ��� are all non�negative� which implies

that X
i

��

�
Yi � a�W T

i bq
� � jbj�

�
� O��fhg��

and X
i

�
Wi �

Yi � a�W T
i b

� � jbj� b
�
��

�
Yi � a�W T

i bq
� � jbj�

�
� O�

X
i�h

Wi� �����

at �a� b� � ��
� ���� where fi � hg is the index set for zero residuals� Even though the solution

��
� ��� does not satisfy a usual estimating equation exactly� it does so approximately as the

number of zero residuals for any linear �t is less than or equal to p� � with probability one�

provided that the distribution of �W�Y � is continuous�

The quantile regression can be viewed as a special class of M�estimators� In this direction�

several authors have studied their properties mainly from robustness point of view� Zamar

���	�� considered orthogonal regression M�estimators based on the idea of minimizing a

robust scale� Cheng and Van Ness ������ derived bounded in�uence M� and GM�estimators

for Gaussian EV models� Such estimators provide some degree of protection against deviation
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from the Gaussian assumptions� The quantile estimation problem we consider in the present

paper di�ers from the robust M�estimation literature in several ways� For instance� we do

not have a central error model �such as Gaussian�� The quantiles are of special interest for

non�Gaussian models� They are not just alternative methods for the least squares estimation

of the conditional mean� but are designed to estimate quantiles directly for their own sake�

Besides� the M�estimators with more general loss functions such as those considered in Cheng

and Van Ness ������ are not scale equivariant unless a preliminary scale estimate is available�

To illustrate the method of quantiles� we consider a simple example as follows� We have

measurements of the brain weight �in grams� and the body weight �in kilograms� of �	

animals� The data were given in Rousseeuw and Leroy ���	
� p� �
�� This sample was

taken from larger data sets in Jerison ���
��� We assume that the conditional quantiles

of the log brain weight are linear in the log body weight� We also take the view that the

body weights are measured with some error� By assuming that the regression error and the

measurement error have a symmetric joint distribution� we computed the ���th� ���th and


��th quantiles� see Figure ��a�� The slopes for the three quartile lines are ���	� ��
� and ��
�

respectively� By contrast� if we assume Gaussian homoscedastic errors� the quartiles can be

obtained as in Figure ��b� using parallel lines of slope ������ It is clear that a few outliers

that do not seem to follow the Gaussian distribution in the regression equation have in�ated

the spread between quartiles� The regression quantile approach allows for heavier�tailed

errors without having to specify it more exactly� Rousseeuw and Leroy ���	
� computed a

robust estimator of the regression with a slope parameter of ��
� and an approximate ���

con�dence interval of ����	�	� ��	�
��� The robust estimate corrected the bias due to the

outliers but an exact error distribution �say Gaussian� for the �good� data must be speci�ed

to compute quantiles� Besides� the quantiles obtained this way would not be consistent for

the population with outliers included�

The rest of the section is devoted to the asymptotic properties of the quantile estimates�

From the technical point of view� the quantile estimate involves a non�di�erentiable score

function� and some of the Taylor�type expansions typically used for studying smoothing M�

estimators are not directly applicable� However� the asymptotic expansions derived by He

and Shao ������ can be used� But �rst� we state the consistency result for the quantile

estimates�
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Theorem ���� Consider a random sample �Wi� Yi� from the linear EV model

Yi � 
 � XT
i � � �i� Wi � Xi � Ui �����

where the distribution of ��i� Ui� is spherically symmetric with �nite �rst moment� Assume

that q� is the unique solution to E�� ��i � q� � �� and let 
� � 
 � q�
q

� � j�j�� Then the

quantile estimate � �
� � ���� that minimizes

Q�a� b� � n��
X
i

��

�
Yi � a�W T

i bq
� � jbj�

�
�����

over �a� b� converges strongly to �
� � ���

Note that q� is the � �th quantile of �i� The key requirement for consistency is that

D�a� b� � E����� UT b� �a� 
��XT �b� ���	
q

� � jbj� has a unique minimum at �a� b� �

�
 � q�
q

� � j�j�� ��� This is true if ��� UT b�	
q

� � jbj� has the same distribution for all b�

which is implied by our assumption that ��� U� is spherically symmetric�

On the other hand� if D��b� � E�� �� � UT b�	
q

� � jbj� is not constant� but achieves

its minimum at some b � b� di�erent from �� then the minimum of D�a� b� cannot be

attained at the true parameters for all distributions of X� Let d � D���� � D��b�� � ��

When the dispersion of X is su�ciently small relative to that of � � UTb�� we would have

D�
� �� � D���� � D��b��� d � D�
� b���

Under the consistency framework� the quantile estimate has a Gaussian limiting distri�

bution� Let f be the density of ��

Theorem ���� Under the conditions of Theorem ���� we further assume that E�X� � ��

�x � E�XXT � is positive de�nite� f�e � q� � � f�q� � � O�e���� as e � �� and E�� 
 ��

Then� p
n��
� � 
�� � N��� � �� � � �f���q����

p
n� ��� � �� � N������

in distribution� where �� � f���q� ��� � j�j�����
x Q���

x with � � ��� UT��	
q

� � j�j� � q� �

and

Q � � ��� � ��x � Covf������U � ��	
q

� � j�j��g� �����

If there were no measurement errors� the second term of ����� would be absent� We

can view the second part of Q as the additional uncertainty on the slope estimate due to
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measurement errors� If ��� U� is multivariate normal� the expression of Q simpli�es to

Q � � ��� � ��x � EfUUT��
����g �

Ef����
����g

� � j�j� ��T �

A consistent estimate of the intercept 
 can be obtained by �
�
��
� � �
��� �� The quantity

q� can be estimated using �q� � ���������

�
p

��j��� j�
� At � � ��� we have 
� � 
 and q� � ��

To gain some understanding of how well the proposed estimator works� we run a small

Monte Carlo experiment� We draw samples of size n���� from the following model Yi �


� �Xi � �i and Wi � Xi �Ui� where Xi is uniformly distributed in ���
p

���� and ��i� Ui� is

either standard bivariate normal or has a bivariate t�distribution with � degrees of freedom�

The mean squares errors for the median estimates of both 
 and � are estimated from ���

runs� The estimates are compared with the maximum likelihood estimates under Gaussian

errors� Some results are given in Table �� Note that the conditional mean and the median

for the model are the same� so the comparison can be made on the same scale�

Table �� MSE for the L� and L� Estimates

� L� Estimates �a� L� Estimates �a� L� Estimates �b� L� Estimates �b�
� ������� ������ ������ ����	� ����

� ��
��� ���
���������
� ������� ������ ���	��� �����
 ������� ��
��� ��
���� ����
�
�� ���		
� ���
�	 ������� ����		 ���
��� ������ 	�	���� ������

�a� refers to bivariate normal error� and �b� for bivariate t�� The two numbers

in each entry are the MSE�s for the intercept and slope estimates respectively�

When the error distribution is normal� the median regression estimate has a relative

e�ciency of above ��� for all three � values considered� In the case of t��� as errors� the

relative e�ciency moves above �� The de�ciency for the least squares based estimate is

higher for smaller �� When � � �� the median estimate is about � times more e�cient� This

type of comparative results are typical� The median estimate has the desirable property

of robustness� We also wish to add that the objective functions for both approaches are

nonlinear and non�convex� so the computational complexity for �nding the estimates are

similar�






� Partially Linear EV Models

Partially linear models drew a lot of attention in the 	�
s due to their �exibility in incorpo�

rating nonparametric relationship for some covariates while keeping the simplicity of linear

regression on other variables� Engle� Granger� Rice and Weiss ���	�� provided a good exam�

ple for such semiparametric models in studying the relation between weather and electricity

sales� Heckman ���	��� Speckman ���		�� Chen ���		�� and He and Shi ������ considered

the asymptotics of partially linear models� They show that the parameters in the linear

component can be estimated as e�ciently as if the nonparametric component were known�

Cuzick �����a�b� considered adaptive estimation to achieve e�ciency when the error dis�

tribution is unknown� Liang and Cheng ������ provided some results on the second�order

e�ciency�

In this section� we consider the quantile estimate of the slope parameter � in the partially

linear EV model

Yi � XT
i � � g�Ti� � �i� Wi � Xi � Ui �����

under the same structure as in Section � except that a nonparametric relation g�T � enters the

model additively� The intercept term is absorbed in g� We assume that T is an observable

variable de�ned on ��� � � and

Assumption ���� E�XjT � t� � � for all t � ��� � �

A su�cient condition for the assumption ��� is independence of T and X� The Gaussian

likelihood based estimator for partially linear models has been recently studied by Liang�

H!ardle and Carroll ����
�� The following projection operation is useful and de�ned �rst�

Let �ni�t� � �ni�t"T�� � � � � Tn� be probability weight functions depending only on the

design points T�� � � � � Tn� For any sequence of variables or functions �S�� � � � � Sn�� we de�ne

ST � �S�� � � � � Sn�� eSi � Si �Pn
j�� �nj�Ti�Sj� and eST � � eS�� � � � � eSn�� The conversion from S

to eS will be applied to Wi and Yi�

Choices of the weight function �ni�t� will be made clear later� The estimator e�n we

consider minimizes X
i

��

� eYi � fW T
i b

� � jbj�
�

�����

over b � Rp� We suppress the dependence of e�n on � in this section�

The weights are assumed to satisfy the following Assumption ���� They are essentially

the same as Assumption ��� of Liang et al� ����
��

	



Assumption ���� Weight functions �ni��� satisfy�

�i�
nX

j��

�ni�Tj� � �� for any i�

�ii� max
��i�j�n

�ni�Tj� � O�bn��

�iii� max
��i�n

nX
j��

�nj�Ti�I�jTj � Tij � cn� � O�cn��

for some bn � o��� and cn � log n	�nbn��

Note that Assumption ����iii� follows from �ii� if Ti are uniformly spaced on ��� � � We

now state the main result for partly linear models� Recall that spherical symmetry of the

error distributions ��� U� is always assumed as in Section ��

Theorem ���� Suppose that g is Lipschitz� and for some � � � � �� E���� 
 � and

EjXj��� 
 �� Under Assumption ��� and Assumption ��� with bn � n������	�
 and �� �

�	�� � ��� e�n is a consistent estimate of �� and

p
n� e�n � �� � N������

where the matrix �� is the same as in Theorem ����

Assumption ��� can be weakened slightly for the consistency part of the theorem� but we

choose not to elaborate� Finite second moments of � and X may be su�cient for asymptotic

normality� but our proof requires existence of the �� � ���th moments where � � � can be

arbitrarily small�

To construct the weigh functions �ni�t�� we may use a probability kernel K� Let hn be a

sequence of bandwidth parameters that tends to zero as n��� We propose to use

�nj�t� � K
�t� Tj

hn

��n nX
i��

K
�Ti � Tj

hn

�o
� � j � n� �����

This choice can be justi�ed by the following

Proposition ���� Suppose that K�t� is a bounded and symmetric probability density func�

tion on ����� � hn � c	�nbn� for some constant c� and the design points Ti are nearly uniform

in the sense that C�	n � minfjTi � Ti��jg � maxfjTi � Ti��jg � C�	n for some constants

C�� C� � �� Then� the choice ����� satis�es assumption ����

The proof of Proposition ��� is immediate� A particular example in the above construction

is the Nadaraya�Watson kernelK�t� � ���	������t���I�jtj � ��� Theorem ��� suggests using

�



hn � cn������	�
 for some small number �� � �� Since the objective is to estimate �� our

limited experience indicates that the choice of the bandwidth hn here is not as critical as in

direct nonparametric function estimation�

� Proofs of Main Results

Proof of Theorem ���� Note that Q�a� b� converges to E����� � a���XT �b��	p
��jbj�

�� By the

assumptions� this expectation has a unique minimum at a � 
� and b � �� Now consider

any subsequence of ��
� � ����� It is then easy to show by contradiction that �i� it is bounded�

and �ii� any further subsequence that converges has the same limit �
� � ���

To see �i�� note that if a	
q

� � jbj� is unbounded along the sequence� then� so is Q�a� b��

If a is bounded� but b is unbounded along the sequence� then b	
q

� � jbj� will converge for a

further subsequence to� say� b� of unit length� This means that along the new subsequence

Q�a� b� will converge to E����� � XT b�� � E�� ��� � q��� which leads to a contradiction�

Similar arguments show �ii�� and the proof is complete�

Proof of Theorem ���� Since the quantile estimate satis�es ������ we evoke Corollary

��� of He and Shao ������ for M�estimators� One can verify the assumptions needed for the

Corollary by setting r � �� An � �max�Q�n� and Dn � nf�q��diag��� ��� j�j�������x�� where

�max�Q� denotes the maximum eigenvalue of Q� Furthermore� let �i � ��i�UT
i ��	

q
� � j�j��

q� � It then follows that

�
� � 
� � fnf�q��g��
X
i

����i� � o�n������

and

��� � � � fnf�q� ��� � j�j�������xg��
X
i

�Xi � Ui � �i�	
q

� � j�j���� ��i� � o�n������

The routine application of the central limit theorem completes the proof of Theorem ���

with

Q � Ef�Xi � Ui � �i�	
q

� � j�j���Xi � Ui � �i�	
q

� � j�j��T��
���i�g

� E��
���i��x � Covf�U � ��	

q
� � j�j����

���i�g�

��



The following lemmas are useful for the proof of Theorems ���� Lemma ��� can be proven

using Beinstein
s inequality� see Liang et al� ����
� Lemma A�� for a similar proof� Lemma

��� can be veri�ed using induction� We skip the details�

Lemma ���� For any sequence of independent variables fVk� k � �� � � � � ng with mean

zero and �nite �� � ���th moment� and for a set of positive numbers faki� k� i � �� � � � � ng
such that sup��i�k�n jakij � n�p� for some � 
 p� 
 � and

Pn
j�� aji � O�np�� for some

p� � maxf�� �	�� � ��� p�g� it holds that

max
��i�n

j
nX

k��

akiVkj � O�n��p��p�	�� log n��

Lemma ���� Let Sk �
Pk

i��Ai and Bi � �� Then

min
��k�n

Sk max
��k�n

Bk �
nX
i��

AiBi � max
��k�n

Sk max
��k�n

Bk�

Proof of Theorem ���� Assume without loss of generality that � is small so that �� 
 �	��

Assumption ����ii� and Lemma ��� �using p� � ��� ���	� and p� � �� �� � p�� imply that

max��i�n j�nk�Ti�Vkj � O�n������	�
 log n� when Vk � �k or Xk or Uk� Assumption ����iii�

implies that max��i�n jeg�Ti�j � O�cn� � O�n������	�
 log n��

For simplicity in notation� let eai � fWi�
eYi� eWT

i
�

��j�j�
��� ebi � ��

�eYi� eWT

i
�p

��j�j�

�
� ai � Wi�

�i�U
T

i
�

��j�j�
���

and bi � ��

�
�i�U

T

i
�p

��j�j�

�
� Then it is straightforward to verify that

max
��i�n

jeai � aij � O�n������	�
 log n��

max
��i�n

jebi � bij � Op�n
������	�
 log n�� �����

Note that both ai and bi are sequences of i�i�d� variables with mean zero and �nite variances�

By Lemma ���� we have for any ��

X
i

eaiebi�X
i

aibi �
X
i

�ebi� bi��eai � ai� �
X
i

�ebi� bi�ai�
X

�eai� ai�bi � op�n
�������
�� �����

This means that the parameter estimate e�n satis�es

X
i

�Wi �
�i � UT

i
e�n

� � j e�nj� � e�n���

��i � UT
i
e�n

� � j e�nj�
�

� op�n
�������
��

��



Then the consistency of e�n follows from similar arguments used for Theorem ���� Moreover�

the same arguments for Theorem ��� lead to

e�n � � � ��� � j�j������nf�q� ��x�
��
X
i

aibi � op�n
�����

and the desired result follows�

REFERENCES

Brown� M�L����	��� Estimating line estimation with error in both variables� Journal of the
American Statistical Association� ��� 
��
��

Carroll� R�J�� Ruppert� D� and Stefanski� L�A� ������� Nonlinear Measurement Error Models�
Chapman and Hall� New York�

Chen� H� ���		��Convergence rates for parametric components in a partly linear model�
Annals of Statistics� �	� ��������

Cheng�C�L� and Ness J�W�V� ������� Generalized M�estimators for errors�in�variables re�
gression� Annals of Statistics� �
� �	����
�

Cuzick� J� �����a�� Semiparametric additive regression� Journal of the Royal Statistical
Society� Series B� ��� 	���	���

Cuzick� J� �����b�� E�cient estimates in semiparametric additive regression models with
unknown error distribution� Annals of Statistics� �
� ����������

Engle� R� F�� Granger� C�W�J�� Rice�J� and Weiss� A� ���	��� Semiparametric estimates of
the relation between weather and electricity sales� Journal of the American Statistical
Association� ��� ��������

Efron� ������� Regression percentiles using asymmetric squared error loss� Statistica Sinica�
�� �������

Fuller� W� A� ���	
�� Measurement Error Models� Wiley� New York�

He� X� ����
�� Quantile curves without crossing� American Statistician� ��� �	������

He� X� and Shi� P�D� ������� Bivariate tensor�product B�splines in a partly linear model� J�
Multivariate Analysis� ��� ��� ��	��

He� X� and Shao� Q� ������� A general Bahadur representation of M�estimators and its
application to linear regression with nonstochastic designs� Annals of Statistics� ���
���	������

Heckman� N�E� ���	��� Spline smoothing in partly linear models� Journal of the Royal
Statistical Society� Series B� ��� ������	�

Jerison� H�J� ���
��� Evolution of the Brain and Intelligence� Academic Press� New York�

Koenker� R� and Bassett� G� ���
	�� Regression quantiles� Econometrica� �	� ������

��



Liang� H� and Cheng� P� ������� Second order asymptotic e�ciency in a partially linear
model� Statistics # Probability Letters� ��� 
��	��

Liang� H�� H!ardle� W� and Carroll� R�J� ����
�� Large sample theory in a semiparametric
partially linear errors�in�variables model� submitted for publication�

Lindley�D�B�����
�� Regression lines and the functional relationship� Journal of the Royal
Statistical Society� Series B� 
� ��������

Madansky�A�������� The �tting of straight lines when both variables are subject to error�
Journal of the American Statistical Association� ��� �
������

Rousseeuw� P�J�� and Leroy� A�M� ���	
� Robust Regression and Outlier Detection� Wiley�
New York�

Severini� T�A� and Wang� W� H� ������� Generalized pro�le likelihood and conditionally
parametric models� Annals of Statistics� �
� �
�	��	�� �

Speckman� P� ���		�� Kernel smoothing in partial linear models� Journal of the Royal
Statistical Society� Series B� �
� ��������

Zamar� R�H����	��� Robust estimation in the errors�in�variables model� Biometrika� �	�
�������

��


