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Nonparametric Lag Selection for Time Series

Rolf Tschernig and Lijian Yang�

July ����

Abstract

A nonparametric version of the Final Prediction Error �FPE� is proposed for lag
selection in nonlinear autoregressive time series� We derive its consistency for both lo�
cal constant and local linear estimators using a derived optimal bandwidth� Further
asymptotic analysis suggests a greater probability of over�tting �too many lags� than
under�tting �missing important lags�� Thus a correction factor is proposed to increase
correct �tting by reducing over�tting� Our Monte�Carlo study also corroborates that the
correction factor generally improves the probability of correct lag selection for both linear
and nonlinear processes� The proposed methods are successfully applied to the Canadian
lynx data and daily returns of DM�US�Dollar exchange rates�

KEY WORDS� Consistency	 Final Prediction Error	 Foreign Exchange Rates	 Lag Selec�
tion	 Nonlinear Autoregression	 Nonparametric Method�

�� INTRODUCTION

The past decade has witnessed the tremendous development of nonparametric modeling�
in both theory and practice� with the �exibility of �letting the data speak for themselves��
One area of recent interest is time series model identi�cation� or more speci�cally� lag se�
lection� Using linear lag selection methods based on classical criteria such as the Akaike
Information Criterion 	AIC
� the Final Prediction Error 	FPE
 or the Schwarz Criterion for
nonlinear stochastic processes is theoretically unjusti�able and as our simulation results in�
dicate� also often impractical� Following the successful adaption of nonparametric regression
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techniques to time series analysis 	Gy�or�� H�ardle� Sarda and Vieu ��� Tj�stheim ��
�
alternative lag selection criteria have been studied for nonlinear autoregressive processes by
Cheng and Tong 	��
� Vieu 	��
� Yao and Tong 	��
 using cross�validation� and by
Auestad and Tj�stheim 	��
� Tj�stheim and Auestad 	��
 using FPE� Both the cross�
validation and the FPE are substitutes of the naive mean squared error estimate which is
known to be unsuitable for model selection� Other nonparametric lag selection methods were
suggested by Chen and Tsay 	��
 for additive nonlinear autoregressive models� a subclass
of the nonlinear autoregressive models considered in this paper�

However� for the nonparametric FPE� neither the estimation properties are well inves�
tigated� nor a satisfactory bandwidth selection method has been derived� Both will be the
topics of this paper� We derive consistency for the nonparametric FPE and give partial re�
sults of misspeci�cation probabilities� As our calculation suggests that over�tting 	too many
lags
 is more likely than under�tting 	missing correct lags
� a correction factor is used to
reduce the probability of over�tting and hence increase correct �tting�

We also propose an optimal bandwidth for the FPE criterion by solving a type of bias�
variance trade�o� problem� Previously� the proposed bandwidths had an open range of orders
and were selected by minimizing the speci�c criteria� Whatever bandwidth one decided to
use did not necessarily approximate some optimal bandwidth� Our analysis takes Vieu 	��

as a starting point which gave some theoretical justi�cation in the cross�validation case and
pointed out problems of other methods�

Another innovation is the use of the local linear estimator in place of the Nadaraya�
Watson estimator� The main reason for this is that the Nadaraya�Watson estimator has a
poor bias rate when the density of the lagged variable is not su�ciently smooth� especially
with nonlinear processes� while the local linear estimator needs only continuity of the density
to have the optimal convergence rate� see� for example� Fan and Gijbels 	��
� Ruppert and
Wand 	��
� Wand and Jones 	��
� and H�ardle� Tsybakov and Yang 	��
�

We also analyze the performance of the suggested methods in an extensive Monte�Carlo
study and discuss implementation issues� Finally we apply these procedures to the lynx data
and the daily returns of DM�US�� exchange rates� For the latter we also suggest a way to
select lags of the conditional volatility function�

The paper is organized as follows� Section � gives the asymptotic formula for the non�
parametric FPE as a function of the bandwidth� and the formula of the optimal bandwidth
which minimizes the FPE� Section � investigates the consistency of the criterion� Section �
calculates the probabilities of over� and under�tting� The practical implementation of the
nonparametric FPE estimators is discussed in Section �� Section � consists of a compre�
hensive report of our Monte�Carlo study� The analysis of two real data sets is contained in
Section �� Section � concludes while all technical proofs are in the Appendix�

An examination of our proofs shows that the procedures developed here can be easily
adapted to various regression settings� including those with exogenous variables�

�� THE NONPARAMETRIC FPE

Our idea of using a nonparametric FPE came from Auestad and Tj�stheim 	��
 and
Tj�stheim and Auestad 	��
� Suppose one has a conditional heteroscedastic autoregressive
time series fYtgt��

Yt � f	Xt
 � ����	Xt
�t 	���


�



where Xt � 	Yt�i� � Yt�i� � ���� Yt�im
T is the vector of all correct lagged values� i� � � � � � im�
and �t are i�i�d� random variables with E	�t
 � �� E	��t 
 � �� t � im� im � �� ���� Here we
assume that all lags i�� ���� im are needed for modelling f	�
 but not necessarily for �	�
� The
case in which �	�
 depends on lags not contained in f	�
 is beyond this paper�

To de�ne the Final Prediction Error 	FPE
� let
neYto be another series with exactly the

same distribution as fYtg but independent of fYtg� The FPE of an estimate bf of f is de�ned
as the following functional

FPE	 bf
 � lim
t��E

neYt � bf 	 eXt

o�

	���


where the expectation is taken over all the variables� Y�� Y�� ���� Yn� eY�� eY�� ���� eYt� ���� This FPE
measures the discrepancy between bf and the true functional relation of eYt to eXt� which
is more easily understood conceptually than the cross�validation as it depends only on the
estimator bf and the limiting distribution of the process� If the process fYtg is a stationary
linear AR process� bf a linear regressor� the FPE de�ned in 	���
 becomes the usual linear
FPE introduced by Akaike 	��� ���
� If the process fYtg is an ergodic nonlinear AR
process and bf some nonparametric estimator� we have the nonparametric FPE�

To de�ne the nonparametric FPE� we assume the following
	A�
 There exists an integer M � im such that the Markov chain XM�t � 	YM�t��� ����

YM�t�M 
T de�ned by equation 	���
 is geometrically ergodic� i�e�� it is ergodic� with
stationary probability measure �M 	�
 such that� for almost every x � IRM � as k ��

jjP k	�jx
� �	�
jjTV � O	�k
�

for some � 	 � � �	x
 � �� Here

P k	Bjx
 � PfXM�k � BjXM�M � xg�

for a Borel subset B 
 IRM � and jj � jjTV is the total variation distance�

	A�
 The stationary distribution of XM�t has a density function 	M 	x
� which is compactly
supported and bounded below from zero on its support� All the XM�t�s take values
within the support of 	M 	x
�

Our assumptions here are similar to those of Yao and Tong 	��
 and Vieu 	��
� See
Tweedie 	���
� Nummelin and Tuominen 	���
� Ango Nze 	��
� Diebolt and Gu�egan
	��
 for conditions that yield geometric ergodicity� For other assumptions that had been
used� see Tj�stheim 	��
� Tj�stheim and Auestad 	��
� Note that we do not assume
an identical distribution for the XM�t�s� as Yao and Tong 	��
 did� because geometric
ergodicity su�ces for our purpose here� Also� we have better mixing properties here as
geometric ergodicity implies geometrical mixing under mild conditions�

Lemma ��� 	Davydov	���

�
A geometrically ergodic Markov chain whose initial variable is distributed with its stationary
distribution is geometrically strongly mixing with the mixing coe�cients satisfying 
	n
 	
c� �

n
� for some � � �� � �� c� � ��

�



From now on� without loss of generality� we assume that the process fXM�tg has a station�
ary initial distribution and use 		�
 to denote both 	M 	�
 and all of its marginal densities�
and integration operations are carried out over the compact support of the appropriate 		�
�s�
although we will drop all such references� We assume further

	A�
 The function f	�
 is componentwise twice continuously di�erentiable at every point on
the support of 		�
 while �	�
 is continuous�

	A�
 The density 		�
 of the stationary distribution �	�
 exists and is continuously di�eren�
tiable on the support of 		�
�

Assumption 	A�
 is a smoothness condition for the functions f	�
 and �	�
� Assumption
	A�
 is necessary to compute the asymptotic bias and variance� However� as mentioned in
the introduction� for the local linear estimator assumption 	A�
 can be relaxed to continuity
of 		�
�

Under assumptions 	A�
 to 	A�
� it is unnecessary to generate the process
neYto to com�

pute the FPE� Denote Y � 	Yim � Yim��� ���� Yn

T � For any x � IRm� write

bf�	x
 �
�
ZT
�WZ�

���
ZT
�WY� bf�	x
 � eT

�
ZT
�WZ�

���
ZT
�WY

in which

Z� � 	 � � � � � 
T���n�im���� Z� �

�
� � � � �

Xim � x � � � Xn � x

�T

�

e � 	�� ���m
T � W � diag fKh	Xi � x
�	n� im � �
gni�im
where

	A�
 K � IR� �� IR� is a symmetric positive kernel with
R
K	u
du � � and

Kh	u
 � ��hm
mY
j��

K	uj�h


for u � IRm h � hn is a positive number 	bandwidth
� h� �� nhm �� as n���

The bf�	x
 and bf�	x
 are the Nadaraya�Watson and local linear estimates of f	x
� which
are solutions to locally constant or locally linear least squares problems with kernel weights
respectively� see Wand and Jones 	��
� The kernel function K matters little here� so bf�	x

and bf�	x
 depend primarily on h� and so do the FPEs� We therefore write for a � �� �

FPEa	h
 � FPE	 bfa
�
As in most kernel methods� these functions of h have simple approximations� Denoting

kKk�� �
R
K�	u
du and ��K �

R
K	u
u�du we obtain

Theorem ��� Under assumptions �A����A	�� for a � �� �� as n��

FPEa	h
 � AFPEa	h
 � o
n
h� � 	n� im � �
��h�m

o
�

�



in which the Asymptotic FPE
s are

AFPEa	h
 � A� b	h
B � c	h
Ca 	���


where

A �
Z
�	x
		x
dx� B �

Z
�	x
dx� 	���


C� �

Z h
Tr
n
r�f	x


o
� �rT		x
rf	x
�		x


i�
		x
dx� 	���


C� �
Z h

Tr
n
r�f	x


oi�
		x
dx 	���


and where
b	h
 � kKk�m� 	n� im � �
��h�m� c	h
 � ��Kh

����

A closer analysis of the FPE is now made possible by using instead the asymptotically
equivalent AFPE� The term A represents the expected variance function of the data gener�
ating process with respect to its stationary distribution� The second and third term b	h
B
and c	h
Ca come from estimation uncertainty and denote the expected variance and squared
bias of the estimator� As n � �� both the FPE and AFPE tend to A as both b	h
B and
c	h
Ca tend to zero� Solving a variance�bias trade�o� between b	h
B and c	h
Ca one obtains

Corollary ��� Under assumptions �A����A	� and the additional assumption that Ca � ��
a � �� �� the AFPE
s are minimized by

ha�opt �
n
m kKk�m� B	n � im � �
��C��a ���K

o���m���
	���


and the minimum AFPE is

AFPEa�opt � A �

�
m�m��m��� �

�

�
m���m���

�n
kKk	m� B�	n� im � �
��Cm

a �
�m
K

o���m���
�

	���


From this point on� we refer to the bandwidths in 	���
 as the optimal bandwidths�
although their optimality is only asymptotic�

Note ��� If Ca � �� the trade�o� fails� In that case� one would prefer a large bandwidth�
or heuristically� one has h � ��� This happens mostly when one uses the local linear
estimator for linear processes� in which case r�f	x
 � � implies C� � � where the
local linear estimator does not have a bias of order h�� One may call this the �curse of
linearity��

Note ��� If Ca � ��� the trade�o� also fails� This occurs� for example� if one uses the
Nadaraya�Watson estimator for a nonlinear process which violates the smoothness con�
dition for 		x
 in assumption 	A�
 	i�e�r		x
 does not exist at some points
� in which
case C� � �� 	See the simulation example NLAR�
�

Based on these discussions� we need a sixth assumption

	A�
 For a � �� �� the Ca de�ned in 	���
 and 	���
 are positive�

�



Note that all the results of this section are based on the assumption that Xt is the vector
of correct lagged values� Furthermore� 	���
 contains the unknown quantities A� B� Ca� In
the next section we present a data�driven version of AFPE by introducing estimators of these
quantities� We then study the behavior of the data�driven AFPE when one uses a set of lags
di�erent from those in Xt� The main focus will be the consistency of the AFPE based lag
selection rules�

�� THE CONSISTENCY

Formula 	���
 contains the unknown quantities A� B� and C� 	C�
� We de�ne the following
estimates bAa � 	n� im � �
��

nX
i�im

n
Yi � bfa	Xi


o�
� 	���


bBa � 	n� im � �
��
nX

i�im

n
Yi � bfa	Xi


o�
�b		Xi
 	���


in which the estimators bfa use bandwidths of the same order 	n � im � �
����m��� as the
optimal ha�opt� and b		Xi
 is a kernel estimator of the density� As A is the dominant term in
the AFPE expression� we look at the asymptotics of bAa� which estimates the mean squared
error�
Theorem ��� Under assumptions �A����A��� for a � �� �� as n��

bAa � A�
n
kKk�m� � �K	�
m

o
	n� im � �
��h�mB � Ca�

�
Kh

���

�o
n
h� � 	n� im � �
��h�m

o
� Op

n
	n� im � �
����

o
� 	���


Note here that the nonparametric estimate bAa converges to A at the parametric
p
n rate

if m 	 �� in which case the second and third term will be O
n

	n� im � �
����
o

�

Inserting 	���
 into 	���
� we obtain the following estimated FPE 	for a � �� �


AFPEa � bAa � �K	�
m	n� im � �
��h�ma�opt bBa 	���


in which bAa is evaluated using the optimal bandwidth ha�opt � while bBa using any bandwidth
of order 	n� im � �
����m���� Note that the FPE estimator 	���
 resembles in its structure
traditional model selection criteria like the AIC or Schwarz criterion� The �rst term corre�
sponds to the estimated MSE� while the second term serves as a penalty term to avoid noise
�tting which would result by simply using bAa alone�

Now one computes for every subset fi��� ���� i�m�g of f�� ����Mg the AFPE�
� and AFPE �

� as
discussed above� We propose the following

Lag Selection Rule I� Select the subset
nbi�� ����bibmo with the smallest AFPE�

�

	or AFPE �
�
�

Theorem ��� Under assumptions �A����A��� Lag Selection Rule I consistently selects the
correct set of lags� I�e�� if bi�� ����bibm are the selected lags� then as n� �

P
h bm � m�bis � is� s � �� �� ����m

i
�� ��

�



The theorem guarantees that the probability of Selection Rule I failing to completely
identify the correct model diminishes with larger sample size� Our result bears similarity to
Vieu 	��
 and Yao and Tong 	��
� except the use of AFPE instead of cross�validation�
This theorem is obtained by investigating what happens to the AFPE if the model one uses
in formula 	���
 is incorrect�

In the following� we denote by AFPE�
�� AFPE

�
� the statistics that one gets when using

X �� an arbitrary vector of lags� to calculate the AFPE�s� We distinguish two cases where X �

is di�erent from X �

De�nition � A lag vector under�ts if it does not include all correct lags� A lag vector over�ts
if it contains all correct lags plus some extra ones�

Note that by this de�nition� a lag vector may under�t even when it contains more lags
than the correct lag vector�

For an over�tting model� we have the following result similar to Theorem ����

Theorem ��� Let X �
t � 	Yt�i� � Yt�i� � ���� Yt�im� Yt�im��

� ���� Yt�im�l

T where im�� � � � � �

im�l �l � �� are di�erent from but not necessarily larger than the correct lags� i�e� fi�� � � � � img�
fim��� � � � � im�lg � � Dene i�m�l � max	im� im�l
� Then under assumptions �A����A���
for a � �� ��

AFPE�
a � A� b	h�a�opt
B � c	h�a�opt
C

�
a 	���


where

C�� �
Z h

Tr
n
r�f	x


o
� �rT		x�
rf	x
�		x�


i�
		x�
dx�� 	���


C �� �

Z h
Tr
n
r�f	x


oi�
		x
dx � C� 	���


in which

b	h�a�opt
 � kKk��m�l�
� 	n� i�m�l � �
��

�
h�a�opt

���m�l�
� c	h�a�opt
 � ��Kh

��
a�opt���

x� denotes the vector values at lags i�� ���� im�l� and

h�a�opt �
n

	m� l
 kKk��m�l�
� B	n � i�m�l � �
��C�

��

a ���K

o���m�l���

is the optimal bandwidth�

Corollary ��� In the setting of Theorem ����

AFPE�
a�opt � A�

�
	m� l
��m�l���m�l��� �

�

�
	m� l
���m�l���

	
n
kKk	�m�l�

� B�	n � i�m�l � �
��C��m�l�
a �

��m�l�
K

o���m�l���
	���


and as n��
	AFPE �

a � A
�	AFPEa �A

P� ���

�



Thus� the over�tting AFPE�
a is larger than the AFPEa because its in�nitesimal part dies

out more slowly than that of the AFPEa� n����m�l��� versus n����m����
For under�tting� we consider only the case of a proper subvector of the true lag vector

for notational simplicity�

Theorem ��� Let X �
t � 	Yt�i�

�
� ���� Yt�i�

m�


T be any subvector of Xt �� � m� � m�� Under

assumptions �A����A��� there exists a constant C� � � �depending on i��� ���� i�m�� such that

AFPE�
a � AFPEa � C� � Op	h

��
a�opt
�

Now in probability� AFPE�
a is greater than AFPEa by a positive constant C� which is

the squared error of projecting the process unto the submodel de�ned by X ��
The consistency result Theorem ��� is a corollary of Theorems ��� and ��� as any mis�

speci�ed model is proved to have a larger AFPE�
a than the true model� so asymptotically

Lag Selection Rule I takes the true model�

�� OVER� VERSUS UNDERFITTING

While the consistency result justi�es the use of Lag Selection Rule I� it does not quantify
the probabilities of selecting wrong lags� Our analysis here of the over�tting and under�tting
probabilities gives insights into the quantitative aspects of the selction procedures� Such
analysis should also be possible using cross�validation�

We �rst obtain a partial result on the asymptotic probability of over�tting
Theorem ��� Let X �

t be dened as in Theorem ���� Under assumptions �A����A��� there

exist a constant c�a � � and �a
D� N	�� �
 such that�

P


AFPE�

a � AFPEa

�
� P

h
�a � 	n� im � �
�m�l����m��l�	�c�a f� � o	�
g

i
�

The asymptotic probability of under�tting is given in

Theorem ��� Let X �
t be as in Theorem ���� Under assumptions �A����A��� there exists a

� D� N	�� �
 such that� for c� � C��!���� � �� where C� and !� are dened in ����� and ������
as n��

P


AFPE�

a � AFPEa
�

� P
h
� � 	n� im� � �
���c� f� � o	�
g

i
�

Note ��� If heuristically� one assumes that the �a� a � �� � were exactly instead of asymp�
totically N	�� �
� then the over�tting probability in Theorem ��� would be "		n� im �
�
�m�l����m��l�	�c�a f� � o	�
g
 where we denote by "	x
 � ��

p
��
R x
�� e�t���dt the cu�

mulative distribution function of the standard normal distribution� Similarly� if � were
exactly N	�� �
� the under�tting probability in Theorem ��� would be "		n � im� �
�
���c� f� � o	�
g
� One may expect that these to be asymptotically true when certain
regularity conditions are met�

Note ��� All the probabilistic tools for handling large deviations that we are aware of�
e�g�� those contained in Saulis and Statulevi#cius 	��
� require the interested value
to be of order no more than n��
� which is never ful�lled in our results except for

�



P
h
�a � 	n� im � �
�m�l����m��l�	�c�a f� � o	�
g

i
with m � l � �� This is why we

had succeeded only in obtaining the partial results of Theorems ��� and ���� not the
heuristics in Note ����

Note ��� Since � � "	x
 goes to zero faster if x goes to �� faster� Note ��� suggests that
the probabilities of over�tting go to zero slower than those of under�tting as

��� � 	m� l
�	�m� �l � �
�

Hence to increase correct �tting one can be more e�ective by reducing over�tting than
under�tting� This heuristic consideration is supported by the fact that the AFPEa of
an over�tting model is asymptotically smaller than that of an under�tting model� see
Theorems ��� and ���� It is also validated by our simulation� see Section ��

So to increase correct �tting� one needs to penalize over�tting more� We de�ne a corrected
AFPE as

CAFPEa �
n bAa � �K	�
m	n� im � �
��h�ma�opt bBa

on
� �m	n� im � �
����m���

o
� 	���


which gets larger for larger models at a faster rate than AFPEa� Correspondingly� one has
a new lag selection rule

Lag Selection Rule II� Select the subset
nbi�� ����bibmo with the smallest CAFPE�

� 	or

CAFPE�
�
�

Notice that the extra term m	n � im � �
����m��� in the correction has the same order
as 	n� im � �
��h�ma�opt and h�a�opt� Thus the asymptotics of CAFPEa and AFPEa have the

same order� only di�erent ratios� This entails

Theorem ��� Under assumptions �A����A��� let bi�� ����bibm be the lags selected according to
the Lag Selection Rule II� then as n��

P
h bm � m�bis � is� s � �� �� ����m

i
�� ��

Another interesting issue is what happens when one selects lags out of f�� �� ����M �g where
M � � im� This becomes relevant when one deals� for example� with �nite moving average
processes which invert into in�nite autoregressive processes� In this case one always under�ts�
and ideally one should select the model that under�ts the least� in other words� all the ij �s
	j � �� ���� m
 that are in f�� �� ����M �g and no more� This is the case�

Theorem ��� Let i��� ���� i�m� be all the ij
s �j � �� ���� m� that are in f�� �� ����M �g� Under
assumptions �A����A��� let bi�� ����bibm be the lags selected according to the Lag Selection Rule
I or II from among �� �� ����M �� then as n��

P
h bm � m��bis � i�s� s � �� �� ����m�i �� ��





�� IMPLEMENTING THE FPE ESTIMATORS

Computing the FPE estimators 	���
 and 	���
 based on 	���
 and 	���
 requires suitable
kernel and bandwidth choices� With respect to the former we decide to use the Gaussian
kernel� To estimate the optimal bandwidth ha�opt given by 	���
 we estimate B by 	���
�
while for C� 	���
 we use a consistent local quadratic estimator given in Yang and Tschernig
	��
� For computing bfa	�
 and b		�
 in bBa 	���
 the bandwidth

hS	k
 �
qdvar	Yt
 f��kg���k��� n����k��� 	���


with k � m� � and additionally� the leave�one�out method is applied� For estimating C� we
use the bandwidth �hS	m� ��
 plus the leave�one�out method�

Note that the above plug�in estimation of the �bias term� is harder for the local con�
stant estimator C� 	���
 than for the local linear estimator C� since it also involves the �rst
derivatives of the density� Therefore� we use a grid search procedure for the estimation of the
optimal bandwidth h��opt 	���
 which� of course� can also be applied to calculate h��opt� It is
theoretically justi�ed by Corollary ��� on the existence of an optimal bandwidth� The grid
search is conducted by covering the interval $���hS � �hS% in �� steps where hS is given in 	���
�
If the minimum occurs at the upper bound of the grid� the grid is extended by �� additional
steps of the previous step size� This follows Tj�stheim and Auestad�s 	��
 speci�cation of
estimating AFPE��

We also implement two additional features of Tj�stheim and Auestad 	��
 for robusti�
�cation� First� all possible observations for estimating the density 		x
 are used by

e		x
 � 	n� im � i� � �
��
n�i�X
i�im

Kh	Xi � x
 	���


where the vectors Xi� i � n � �� � � � � n � i� are all available from the observations Yt� t �
�� �� � � � � n� For example� Xn�i� is given by 	Yn� � � � � Yn�i��im
T � This density estimate is used
not only in the denominator of bB 	���
 but also in the denominator of the Nadaraya�Watson
estimator� Second� for estimation �& of the observations are screened o�� i�e� those with the
lowest density e		x
�

We are now in the position to compute all 	C
AFPEa� a � �� � criteria� As a full
search through all possible lag combinations will in general be computationally too costly�
a directed search procedure is used instead as suggested by Tj�stheim and Auestad 	��
�
add lags as long as they reduce the selection criterion� and choose the lags with respect to
their contribution to this reduction�

�� MONTE�CARLO STUDY

We investigate the �nite sample properties of the AFPEa and CAFPEa criteria by means
of Monte�Carlo analysis�

��� Setup

We analyse three linear and four nonlinear data generating processes 	DGP
 with ��� obser�
vations each� The number of observations was chosen to be small so that the conditions are
unfavorable to nonparametric analysis�

��



Linear AR processes are studied mainly for two reasons� First of all� one has to check
the practical relevance of Note ��� which states that the local linear estimators 	C
AFPE�

do not obey Theorems ��� and ��� if the true DGP is linear in the conditional mean� As
a consequence one may expect the local constant estimators AFPE� and CAFPE� to be
superior in this situation� Second� we want to evaluate the costs of extending the function
class beyond linear functions if the true DGP is indeed linear�

All linear AR processes

Yt � �i�Yt�i� � �i�Yt�i� � ����t� �t � i�i�d�N	�� �


are of order � and parameterized as follows

AR� �� � ��� �� � ����

AR� �� � ���� �� � ����

AR� �
 � ���� ��� � ����

These linear processes di�er with respect to their behavior in the frequency domain� their
proximity to nonstationarity and their lag vector� With respect to the latter properties� only
the third AR process AR� is close to the border of nonstationarity and includes lag six and
ten� We also chose the AR� process since Tj�stheim and Auestad 	��
 used it to illustrate
their AFPE� criterion�

The nonlinear processes were chosen as follows�

NLAR� Additive nonlinear AR	�
 model

Yt � ����	�� Y �
t��
�	� � Y �

t��


� ���
n

�� 	Yt�� � ���
�
o
�
n

� � 	Yt�� � ���
�
o

� ����t� �t � i�i�d�N	�� �
�

NLAR� Additive nonlinear AR process 	exponential autoregression


Yt �
n

���� � exp	���Y �
t�



o
Yt�
 �

n
���� ��� exp	���Y �

t���

o
Yt��� � ����t�

�t � i�i�d�N	�� �
�

NLAR� Additive nonlinear AR process 	exponential autoregression with sine and cosine
terms


Yt � 	���� � cos	��Yt�

 exp	���Y �
t�


Yt�


� 	����� ���� sin	��Yt���
 exp	���Y �
t���

Yt��� � ����t� �t � i�i�d�N	�� �
�

NLAR� Fully nonlinear AR	�
 model

Yt � ���	� � Y �
t�� � Y �

t��
� ��� � ����t� �t � i�i�d� triangular errors�

��



These processes di�er in the shape of the conditional mean function� the error distribution
and the lag vector� The processes NLAR� to NLAR� have all additive nonlinear mean
functions which are shown in Figure �� Each plot also exhibits the domain of one realization
of the time series� Their inspection shows that the nonlinearities are in action� The functional
shape of the fully nonlinear conditional mean of the NLAR� process is shown in Figure
�� This process is also driven by a triangular error density that violates the smoothness
assumption 	A�
 in order to investigate the practical relevance of Note ��� for the local
constant 	C
AFPE� estimation� The triangular density is given by

p	x
 �

�
�p
�
� jxj

�

�
�fjxj�p
g�

It has variance � and is not di�erentiable at ��
We consider four linear model selection criteria and four versions of the nonparamet�

ric FPE lag selection criteria� The linear criteria are the FPE� AIC� Schwarz criterion
and Hannan�Quinn criterion� abbreviated by ARFPE� ARAIC� ARSC and ARHQ� See
e�g� L�utkepohl 	��
 for details� The nonparametric FPE criteria include� AFPE� 	���
�
CAFPE�� CAFPE� and CAFPE�a 	���
� They di�er with respect to the use of the correc�
tion factor and the bandwidth selection method� We use the grid search procedure except
for CAFPE�a where we use the plug�in bandwidth 	���
� Note that the AFPE� 	���
 was
already suggested by Auestad and Tj�stheim 	��
 and Tj�stheim and Auestad 	��
� All
nonparametric criteria were computed as described in section ��

In all cases the number of lags m is always smaller than � and the largest lag M to be
considered is ��� For every experiment ��� replications are conducted with the same random
numbers for each experiment� All procedures were programmed in UNIX GAUSS ����� and
run on Sun workstations�

��� Results

The results of the Monte�Carlo experiments are shown in Figures � and � for the linear
and nonlinear processes� respectively� Following De�nition � they show for each investigated
process the empirical frequencies of the eight selection criteria to under�t� correctly �t and
over�t the true model�

Linear AR��	 Processes

Figure � shows that nonparametric criteria do not in general perform worse than linear
ones for the linear DGPs� The best linear criterion ARSC and the best nonlinear criterion
CAFPE� always cover rank one or two in terms of the correct selections� Except for the
AFPE�� all nonlinear criteria perform better than the linear FPE or AIC� As the results
for AR� show it can even happen that a nonlinear criterion performs best� The Nadaraya�
Watson based CAFPE� has ��& more correct selections than the linear Schwarz criterion
ranked second� On the other hand� for the processes AR� and AR� the nonlinear CAFPE�

exhibits up to ��& fewer correct selections than the Schwarz criterion� Thus� extending the
model class to nonlinear functions and using nonparametric lag selection criteria is not too
costly even for linear DGPs� They may� however� have a higher under�tting probability than
the linear criteria while the latter have a strong tendency for over�tting�

��



The implication of Note ��� that the CAFPE��a� criteria may fail for linear DGPs is
practically relevant� The best nonparametric criterion CAFPE� is indeed based on the local
constant estimator� It also has a much smaller over�tting probability than the CAFPE��a�

criteria which is a direct consequence of the non�existing �nite optimal bandwidth for the
latter criteria in the present case�

Note also the important �nding that the correction factor suggested in section � has
substantially increased the probability of correct selection by comparing CAFPE� to the
AFPE� of Tj�stheim and Auestad 	��
� Furthermore� it reduces the probability of over�
�tting although under�tting becomes more likely�

Nonlinear AR��	 Processes

In the presence of nonlinear DGPs some of these results may change drastically� Figure �
shows that it may happen that all linear criteria fail as the results for the processes NLAR�
and NLAR� indicate� On the other hand� it also may happen that the linear criteria perform
comparatively or even superior to the nonlinear ones like for the NLAR� process� In any
case� comparing again the best linear and best nonlinear criterion in terms of correct �tting�
they do no longer always rank one or two�

In contrast to the case of linear DGPs the CAFPE��a� criteria now perform in general at
least as good or better than those based on the local constant estimator� The only exception
is the NLAR� process� A possible explanation for this is that the strong nonlinearity of
its functional shape 	Figure �e
 and f

 cannot be distinguished from noise due to the small
number of ��� observations� Therefore� the procedure tries to �t linear models for which
Note ��� applies�

Recall from Note ��� that in a situation of a nonsmooth density C� � �� and therefore
	C
AFPE� do not obey Theorem ��� and Theorem ���� In such a case one might prefer to
use CAFPE��a� as corroborated by the results for the NLAR� process� There CAFPE��a�

do better than CAFPE��
For nonlinear DGPs the correction factor either changes little or improves the probability

of correct selection� This can be seen by comparing the AFPE� and the CAFPE� in Figure
�� Finally� one observes that overall the correct selection frequencies are higher than what
one might have expected for nonlinear processes based on only ��� observations�

All Processes

Using the plug�in bandwidth 	���
 leads to at least as many correct selections than using
the grid search procedure� This can be seen by always comparing the performance of the
CAFPE� and CAFPE�a criteria in Figures � and �� This result allows to save an enormous
amout of computer time�

Evaluating the results for all processes� it seems that the Nadaraya�Watson based CAFPE�

criterion has slight advantages over the local linear CAFPE�a criterion in terms of correct
�tting since the former is less sensitive to linearity in the DGP� However� the CAFPE� has
the drawback of having a higher under�tting probability� On the other hand� the risk of
using the CAFPE�a criterion consists mainly in over�tting the true model� Furthermore�
the correction factor should always be used and the optimal bandwidth estimated if possible�

From these results we suggest the following procedure for empirical work� Using the
CAFPE�a criterion is ideal for reducing the initial set of potential lags to a smaller set which

��



Table �� Nonparametric lag selection for lynx data

Est� method max� 
 lags Selected lags crit� value hn� ha�opt

ARSC � �� ������
CAFPE� � �� ������ �����
CAFPE�a � ���� ������ �����

� ��� ������ �����
� �� ������ �����

Notes� The highest lag considered is ��� The second column displays the maximal number of lags

to be allowed in the specic model� The last three rows contain the vector of selected lags� the

corresponding selection criterion value and the underlying bandwidth�

is likely to include the correct lags� Eliminating possible irrelevant lags has then to be done
by investigating the properties of the proposed model and included submodels as well as of
the corresponding residuals� One should also employ the Nadaraya�Watson based CAFPE��
which� due to its tendency to under�t� might give a di�erent set of lags� Two examples of
this procedure are presented in the next section�

	� EMPIRICAL EXAMPLES

We now apply our proposed methods to the lynx data and daily returns of the DM�US��
exchange rate from January �� ��� to October ��� ��� These data sets di�er in their
number of observations and structure�

The lynx data set consists of ��� observations which roughly corresponds to the number
of observations in the Monte�Carlo study� We use the same estimation setup as in the Monte�
Carlo study and logs were taken of the original data� We follow the suggested procedure of
the last section and use only the CAFPE� and the CAFPE�a criteria and for reasons of
comparison� the linear Schwarz criterion ARSC�

Table � summarizes the results for the lynx data� Except for the CAFPE� criterion all
criteria include lag � and � in their selection� However� there is no agreement on additional
lags� Only the CAFPE�a additionally suggests lags � and �� Recalling the results of the
previous section� these lags for the CAFPE�a may be due to over�tting� To decide whether
the more parsimonious model is su�cient� we investigated the residuals of all suggested
models using the bandwidths of Table � and conclude that lags � and � are su�cient� A plot
of the estimated regression function on a relevant grid is shown in Figure �� We dismissed
the model with lag � and � since its residuals exhibit more remaining autocorrelation than
the competing model� Tj�stheim and Auestad 	��
 found lags � and � using AFPE� and
Yao and Tong 	��
 found lags �� � and � using cross�validation�

Applying our methods to daily exchange rate data poses a di�erent challenge� While there
are plenty of data 	���� observations
� this bene�t of the large sample size is compromised
as the data is known to be highly dependent and therefore asymptotics are expected to kick
in very slowly�

��



By applying the CAFPE� criterion we �nd lags � and � with h��opt � ������� The auto�
correlation function of the estimated residuals in Figure �a
 does not indicate any remaining
autocorrelation� This Figure also contains the corresponding autocorrelations of the original
data and a �& con�dence interval for white noise� Figure �b
 contains a plot of the esti�
mated conditional mean function on an appropriate grid of the data� It is consistent with
the general belief that f	x
 � �� Note that the steep increase in one corner is likely to be
caused by boundary e�ects� We therefore assume in the following that f	x
 is zero� This is
also the result of the lag selection using the Schwarz criterion�

To conduct an explicit lag selection for the conditional volatility function �	x
 we square
the model 	���
 with f	x
 � �� This gives

Y �
t � �	Xt
 � �	Xt
	�

�
t � �
 	���


which can be estimated with the tools developed in this paper by simply replacing the de�
pendent variable Yt by its squares� Using the CAFPE� criterion we obtain again lag � and
� with a bandwidth estimate of ������� Investigating autocorrelations of the residuals of
	���
 and of the squared observations in Figure �c
 indicates that most of the conditional
heteroskedasticity has been removed�

Figure �d
 shows the standard deviation function on the relevant grid using the bandwidth
������� Its plot appears to be asymmetric and highly nonlinear� It also suggests that the
conditional volatility increases sharply if the previous observations are large in absolute value
and of opposite sign� Further investigation of this feature can be modelled within the context
of parametric ARCH models as in Engle 	���
� or the nonparametric additive�multiplicative
CHARN models as in Yang and H�ardle 	��
 where lags recommended by our analysis were
used�


� CONCLUSIONS

In this paper we looked closely at the nonparametric FPE using either the Tj�stheim and
Auestad 	��
 local constant estimates or local linear estimates� We derived consistency and
asymptotic probabilities for under�tting and over�tting� Based on these results we proposed a
correction factor to increase correct �tting� The new criteria were compared to some existing
ones in a large Monte�Carlo study including linear and nonlinear DGPs� It was found that
including the correction factor leads to considerable improvement in the number of correct
selections especially for linear DGPs�

The nonparametric FPE criteria can select the correct lags for nonlinear processes while
linear criteria may fail completely� Also for linear processes� the corrected nonparametric
FPE based on the Nadaraya�Watson estimator always ranked at least second� The criteria
based on the local linear estimator perform somewhat worse for linear processes due to the
lack of an estimation bias of a proper order� For nonlinear processes� however� the local linear
criteria seem to be the best� Our plug�in estimation of the optimal bandwidth performs as
well as the grid search method and saves substantial computation time�

We applied our procedure to two real data sets of di�erent size and properties� For the
lynx data we obtain a good �t with a parsimonious model� For the daily DM�US�� exchange
rate returns we �nd a highly nonlinear and asymmetric volatility function of lag � and �� which
presents interesting new challenges for the parametric modelling of this highly investigated
series�

��



If nonlinearity is considered in empirical research� our corrected nonparametric FPE cri�
teria provide some helpful tools for both detecting the correct lags and modelling�

APPENDIX

Proof of Theorem ���� We note that the second term of the FPE in formula 	�
 of
Tj�stheim and Auestad 	��
 was decomposed as the following 	here we adopted the original
notation to ours


lim
t��E

n bf	 eXt
� f	 eXt

o�

� lim
t��E

n bf	 eXt
�E bf	 eXt
 � E bf	 eXt
� f	 eXt

o�

� lim
t��E	I � � II �
��

As one sees from that paper� II � is the bias term of bf	 eXt
� H�ardle� Tsybakov and Yang
	��
 gave an explicit formula of the bias for the local linear estimator bf�	x
� which is

��Kh
��� Tr

n
r�f	x


o
�

Thus

lim
t��E	II �
� � ��Kh

���

Z h
Tr
n
r�f	x


oi�
		x
dx� O

n
h�	n� im � �
����

o
� c	h
C� �O

n
h�	n� im � �
����

o
by applying the mixing property and an array type central limit theorem� Similarly� one
derives that if the NW estimator bf�	x
 is used instead� then

lim
t��E	II �
� � c	h
C� � O

n
h�	n� im � �
����

o
�

For the NW estimator� the term limt��E	I �II �
 was shown by Tj�stheim et�al� 	��
 to be
negligible by a standard U�statistic argument� which remains equally true for a local linear
estimator�

Now we derive the term limt��E	I ��
� Using the result of the same paper by H�ardle
et�al� 	��


lim
t��E	I ��
 � E

Z �		x
��	n� im � �
�� f� � op	�
g
nX

i�im

Kh	Xi � x
����	Xi
�i

��� 		x
dx

which becomes

E

Z
		x
��	n� im � �
�� f� � op	�
g

nX
i�im

h
Kh	Xi � x
����	Xi


i�
		x
dx�

where the cross terms are left out by a U �statistic argument as in Tj�stheim et�al� 	��

The above expression can be written asZ

		x
��	n� im � �
�� f� � op	�
g
h
Kh	y � x
����	y


i�
		x
		y
dxdy

��



�

Z
		x
��	n� im � �
��h�m f� � op	�
g

h
K	u
����	x� hu


i�
		x
		x� hu
dxdu

� kKk�m� 	n� im � �
��h�m
Z
�	x
dx f� � op	�
g � b	h
B f� � op	�
g �

which has completed the proof of the formulas 	���
�
We denote the fourth moment of the errors f�tg�t�� by m�� which is �nite as the �t�s have

compact support by 	A�
� The following theorem extends Theorem ����
Theorem 
�� Let Z � 	n�im��
��

Pn
i�im �	Xi
�

�
i �A� then under assumptions �A����A���

for a � �� �� as n��
bAa � A�

n
kKk�m� � �K	�
m

o
	n� im � �
��h�mB � Ca�

�
Kh

���

�Z � o
n
h� � 	n� im � �
��h�m

o
� o

n
	n� im � �
����

o
	���


with p
n � im � �Z

D� N	��!
� ! � m�

Z
��	x
		x
dx�A�� 	���


A similar result exists for the over�tting case

Theorem 
�� Under assumptions �A����A��� for a � �� �� as n��
bA�a � A�

n
kKk��m�l�

� � �K	�
�m�l�
o

	n� i�m�l � �
��h���m�l�B � C�a�
�
Kh

�����

Z� � o
n
h�� � 	n� i�m�l � �
��h���m�l� � 	n� i�m�l � �
����

o
	���


where

Z � � 	n� i�m�l � �
��
nX

i�i�
m�l

�	Xi
�
�
i �A�

q
n � i�m�l � �Z� D� N	��!
� 	���


Proof of Theorem ��� and Theorem 
��� To prove 	���
� note that by the Central Limit
Theorem p

n� im � �Z
D� N	��!
� ! � m�

Z
��	x
		x
dx�A��

We then note that by 	���
� bAa is

	n� im � �
��
nX

i�im

n
f	Xi
� bfa	Xi
 � ����	Xi
�i

o�

� 	n� im � �
��
nX

i�im

�	Xi
�
�
i � 	n� im � �
��

nX
i�im

n
f	Xi
� bfa	Xi


o�

�	n� im � �
��
nX

i�im

�
n
f	Xi
� bfa	Xi


o
����	Xi
�i 	���


in which the second term contributes to the kKk�m� 	n�im��
��h�mB�Ca�
�
Kh

��� just as in
the proof of Theorem ���� while the last term contributes the ��K	�
m	n� im � �
��h�mB�
see Tj�stheim et�al� 	��
 for proof�
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Proof of Theorem ��� and Theorem 
��� To illustrate the kind of argument we use�
note that if one writes x� � 	x� x��
� where x represents the m�dimensional vector of correct
lagged values and x�� the extra l lags� thenZ

�	x
		x�
dx� �
Z
�	x
		x� x��
dxdx��

�

Z
�	x
dx

�Z
		x� x��
dx��

�
�

Z
�	x
		x
dx � A�

Similar arguments give the expression for B and C�a and therefore 	���
� 	���
 and 	���
�
The following is a re�ned version of Theorem ����

Theorem 
�� Let X �
t � 	Yt�i�

�
� ���� Yt�i�

m�


T be as in Theorem ���� Dene the discrepancy

between f	x
 and its conditional expectation on x� as

f		x
 � f	x
� 		x�
��
Z
f	x�� u��
		x�� u��
du�� � f	x
� E

�
f	x
 j x�� 	���


and the squared projection error

C� �
Z
f		x
�		x
dx �

Z
f	x
�		x
dx�

Z
E� �f	x
 j x���		x�
dx�� 	���


Then under assumptions �A����A��� for

Z�a � 	n� im� � �
��
nX

i�i
m�

n
f	Xi
� bfa	X �

i

o� � C� 	���


one has p
n� im� � �Z�a

D� N	��!�


where

!� �

Z
f		x
�		x
dx�

�Z
f		x
�		x
dx

��

� �

Z
f		x
��	x
		x
dx 	��


and also
AFPE�

a �AFPEa � Z�a � C� � O	h��a�opt
�

Proof of Theorem 
�� and Theorem ���� Like in the proof of Theorem ���� write
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It is straightforward to check that
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The variance of T� is calculated as
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Because x� is a proper subvector of x� the true model� we know that f		x
 �� �� Now

	n � im� � �
��
nX

i�i
m�

n
f	Xi
� bfa	X �

i

o�

has asymptotic mean

E
n
f	Xi
� bfa	X �

i

o�

and asymptotic variance

	n� im� � �
��E
n
f	Xi
� bfa	X �

i

o� � 	n� im� � �
��

�
E
n
f	Xi
� bfa	X �

i

o�	�

which� by using 	����
� areZ
f		x
�		x
dx� O	h��
 � C� �O	h��


and

	n� im� � �
��
�Z

f		x
�		x
dx�
�Z

f		x
�		x
dx

��
�

respectively� Similarly

	n� im� � �
��
nX

i�i
m�

�
n
f	Xi
� bfa	X �

i

o
����	Xi
�i

has mean � and asymptotic variance

	n� im� � �
���E
n
f	Xi
� bfa	X �

i

o�

�	Xi


which� by using 	����
� is

	n� im� � �
���
Z
f		x
��	x
		x
dx�

Thus
AFPE�

a �AFPEa � Z�a � C� � O	h��a�opt


with p
n� im� � �Z�a

D� N	��!�


where !� and C� are as in 	��
 and 	���
 � Then we have

P


AFPE�

a � AFPEa
�

� P
h
Z �a � C� �O	h��a�opt
 � �

i
� P

h
� � 	n� im� � �
���c� f� � o	�
g

i
�

where
 � � �pn � im� � �Z�a�!

�����

To prove Theorem ���� one needs to have an auxilliary result
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which has �nished the proof of the proposition�
Proof of Theorem ���� One similarly de�nes
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Proof of Theorem ���� Using arguments like before� one needs only to show that if x�� is
a proper subvector of x� � 	xi� � ���� xim�
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Figure �� Additive nonlinear functions used in the Monte�Carlo experiments�
The stars indicate one realization of the empirical distribution of ��� obser�
vations� �a� Lag � in the NLAR� process	 �b� Lag 
 in the NLAR� process	 �c�
Lag � in the NLAR
 process	 �d� Lag �� in the NLAR
 process	 �e� Lag � in the
NLAR� process	 �f� Lag �� in the NLAR� process



Figure �� Regression Function of the NLAR Process
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Figure �� Empirical frequencies of underfitting� correct fitting and overfit�
ting of linear AR models
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Figure �� Empirical frequencies of underfitting� correct fitting and overfit�
ting of nonlinear AR models



Figure �� Regression Function for logged lynx data obtained with the local
linear estimator and bandwidth �����
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Figure �� Local linear estimates for daily DM�US�Dollar series� �a� ACF of es�
timated residuals �solid line� and of observations �dashed line�	 �b� Regression
Function	 �c� ACF of squared estimated residuals �solid line� and of squared
observations �dashed line�	 �d� Conditional Standard Deviation


