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ABSTRACT 
 

An Alternative Explanation for the Variation in 
Reported Estimates of Risk Aversion1 

 
There is a large literature estimating Arrow-Pratt coefficients of absolute and relative risk 
aversion. A striking feature of this literature is the very wide variation in the reported 
estimates of the coefficients. While there are often legitimate reasons for these differences in 
the estimates, there is another source of variation that has not been considered to date. The 
Arrow-Pratt coefficients are properties of the utility functions, but a number of estimates are 
obtained by equating these to risk aversion measures defined in a mean-variance framework. 
This paper shows that while the legitimacy of the mean-variance approach may hold under 
general conditions the additional assumptions invoked when estimating the risk aversion 
parameter hold only in very restricted circumstances and that serious under or over 
estimation can easily arise as a result. 
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1. Introduction 
 
There exists a large literature in which researchers seek to estimate the Arrow-

Pratt coefficients of absolute and relative risk aversion. While a number of different 

approaches have been used two techniques have proved particularly popular. 

Experimental and survey methods often ask participants to price a hypothetical lottery 

and infer risk-aversion from the answers (for example Barsky et al 1997, Hartog et al 

2002, Guiso and Paiella 2008). This approach has been evaluated recently by Donkers et 

al (2001) and Ding et al (2010). A second popular approach uses a mean variance 

framework and obtains measures of risk aversion by equating the Arrow Pratt measures 

to risk aversion measures defined in a mean-variance setting. Examples of this latter 

approach include Friend and Blume (1975); Frankel (1985), Engel and Rodrigues (1989), 

Giovanni and Jorion (1989), Thomas and Wickens (1993); Clare, O’Brien, Thomas and 

Wickens (1998), and Flavin (2006).   

A striking feature of this literature is the large variation in the reported estimates 

of the risk-aversion coefficients.2 Meyer and Meyer (2005) put forward one possible 

explanation for this variation, noting how the magnitudes of relative risk aversion can 

depend greatly on the chosen argument of the utility function. In this paper we provide 

another possible explanation. Focusing on the studies that employ the mean-variance 

approach to estimate risk-aversion we show how failure of a key requirement in these 

models can easily lead to serious under or over estimation of the risk-aversion 

parameters. The key insight focuses on the relationship between measures of risk-

aversion based on the curvature of the Bernoulli utility function and measures of risk 

defined in mean-variance space. As is well known the Arrow-Pratt coefficients are based 

on the curvature properties of the utility function and are typically functions of income.  

Meyer (1987) describes a correspondence between the rates of change of risk aversion 

measures based on the utility function and alternatives defined in mean-variance space. 

However, he did not examine the validity of the key relationship required for the 

methodologies used in the above studies. In this paper we show that the legitimacy of this 

key equation holds only in very restricted circumstances and that different specifications 

of preferences or of the distributions governing uncertainty can easily generate significant 
                                                 
2 The estimated coefficient of relative risk aversion ranges from -142 to +11 in the studies cited above.  
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variation in the estimated measures of risk-aversion. We show that the implications of our 

analysis are consistent with previous Monte Carlo evidence provided by Kocherlakota 

(1990) and discuss how our analysis may help understand these simulation results. 

 

2. Arrow-Pratt Measures of Risk aversion and the mean-variance framework 
 

Decision making involving a random variable y is frequently based on maximizing 

expected utility 

 

{ }( ) ( )θE U y V= , 

 

where ( )U y  is some concave utility function and θ is the vector of parameters of the 

distribution of the random variable y, e.g. final period wealth.  Sometimes  θ  has only 

two components and can be re-expressed in terms of yµ  and yσ , the mean and standard 

deviation of y.  Then  

 

{ }( ) ( , )y yE U y V σ µ= . 

 

The natural measure of risk aversion when considering ( , )y yV σ µ  is the slope of the 

indifference curve; in mean-variance space these indifference curves consist of ( , )y yσ µ

combinations that are equally preferred.3 This slope y

y y y

d V VS /
d
µ
σ σ µ

   ∂ ∂   = = −   ∂ ∂      
 gives 

the increase in expected return required to compensate for a marginal increase in risk as 

measured by yσ .  For optimal solutions the derivatives of ( , )y yV σ µ  with respect to yµ

and yσ  must be positive and negative respectively and the indifference curves associated 

with ( , )y yV σ µ  must be convex.   

                                                 
3 See for example Hawawini (1978). 
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However, risk aversion is usually introduced and discussed in terms of properties 

of (.)U . The Arrow-Pratt coefficients of absolute and relative risk aversion are functions 

over y defined as  

 

''( )( )
'( )A

U yR y
U y

= −        and      ( ) ( )R AR y yR y= , 

 

with RR having the virtue of being dimensionless.  Estimates of the Arrow-Pratt measure 

are typically reported at particular values of y such as yy µ= .  

 There is a large literature estimating the coefficients of absolute and relative risk 

aversion, often relying on the assumed equality 

 

1 ( )A y
y

S R µ
σ

=     (1) 

 and consequently 

( )y
R y

y

S R
µ

µ
σ

=  

 

Examples of studies that use this equality include Friend and Blume (1975), Frankel 

(1985), Engel and Rodrigues (1989), Giovanni and Jorion (1989), Thomas and Wickens 

(1993), Clare, O’Brien, Thomas and Wickens (1998) and Flavin (2006). Of course most 

of these authors had other objectives besides estimating risk aversion measures and the 

argument y  in the utility function U(y) differed from study to study. Meyer and Meyer 

(2005) have illustrated how the chosen argument can significantly affect estimates of risk 

aversion. However, we show that this is not the only factor that could potentially be 

responsible for the divergence in reported estimates. In this paper we argue that the use of 

(1) is another and perhaps more important source of varying estimates.  

Deriving a numerical estimate of RR requires observation of allocation under risk. 

In the much used simple case of an investor allocating between a risky asset with a single 

time period return x, distributed with mean µ  and variance 2σ  per unit and a riskless 
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asset with (for convenience) return unity, optimal choice of the proportion p of available 

wealth allocated to the risky asset follows from maximization with respect to p of  

 

{ } [ ]0 (1 ) ( )E U W p px E U y− + =    = ( , )y yV σ µ , 

  

where ( )0 1y W p pµ µ= − +  and 0y W pσ σ= . In this simple model, with a single risky 

and riskless asset, final wealth depends linearly on the random variable x. It follows 

therefore that all final wealth random variables follow a location-scale distribution, no 

matter how x is distributed. Thus the expected utility maximizing problem can be 

characterized in a mean-variance framework no matter what utility function is specified.  

Although written here in terms of final period wealth, in practice y can refer either to the 

uncertain level of final wealth or to uncertain level of returns (x) on the assets generating 

this wealth and one can easily translate between mean-variance preferences over assets to 

mean-variance preferences over returns. 

 Maximising expected return with respect to p gives 

 

( ) 0 01 0y
y y

V VW Wµ σ
µ σ
∂ ∂

− + =
∂ ∂

 

or 

1 ( , )y y ySµ σ µ σ− = . 

 

If (1) holds then ( , ) ( )y y A y yS Rσ µ µ σ=  giving the familiar 

 
21 ,R ypRµ σ− =        (2) 

 

from which RR  can be deduced from observed returns and their variance and the 

portfolio weights p.  

Since the Arrow-Pratt measure typically varies over y the approximation in (2) is 

at a particular point, yy µ= , in expected-utility space. Correspondingly the value of yσ
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that appears in (2) must be the value of yσ  that corresponds to yµ  at the optimally 

selected portfolio. In most empirical estimation these returns and variances are estimated 

using elaborate analyses such as multivariate GARCH regression of returns on variances 

over multiple time periods (with ,µ  σ and p varying over time). 

The equality implied in (1) is exactly true in two well-known situations.  The first 

involves a negative exponential utility function, where ( ) 1 yU y e λ−= − , combined with a 

normal distributions for returns.  In this case  

 

{ } ( )2 2

,
/2( ) ( ) 1 y y

y y eE U y V λµ λ σ
σ µ

− +
−= = ,                         (3) 

 

from which it easily follows λσ =/S  and, of course, ( )AR y λ= .  The second situation 

specifies an exact quadratic utility function, where 2( )U y ay by= − , / 2y a b< . In this 

case 2 2( , )V a b bσ µ µ µ σ= − − and the equality in (1) is easily verified.   

While most accept that the increasing risk aversion implied by quadratic utility is 

counterintuitive it is true that any concave function can be adequately approximated over 

a short range by a quadratic.  If points µ  and α are sufficiently close, the power series  

 
2 32 3U( y ) U( ) ( y )U '( ) ( y ) U ''( ) / ( y ) U '''( ) / ! .α α α α α α α≈ + − + − + − +  

  

can perhaps be adequately approximated by its first few terms.  However, if we take x  to 

be a realisation of a random variable from a distribution with mean µ and variance 2σ  

the possible ‘distance’ of ( ){ }E U y from the first few terms of  

 
2 32 3yU( ) ( )U '( ) E( y ) U ''( ) / E( y ) U '''( ) / ! .α µ α α α α α α+ − + − + − +  

 

depends on the characteristics of the distribution, including yµ , 2σ  and higher moments. 

Samuelson (1970) was the first to specify rigorously what is required to reproduce (2) by 

quadratic approximation.  
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  ( ){ } 2 2 21 ) ( ) ( ( 1)) '( ) [( 1) ] ''( ) / 2 . .E U W p px U W E Wp x U W W p E x U w − + = + − + − +   

 

                             ..2/)(''])1([()(')1()( 2222 +−++−+= wUpWWUWpWU µσµ  

 

Then setting the derivative with respect to p to zero 

 
2 2 20 ( 1) '( ) [( ( 1) ] ''( ) . .W U W W p U wµ σ µ= − + + − +  

 

gives (2) provided terms in powers of 2σ  higher than 2, 2)1( −µ and its higher powers are 

negligible.  This requires not only that σ  be small, but that ).(1 2σµ O+=  Then 2)1( −µ

is )( 4σO and negligible.  Samuelson called this situation of very limited riskiness and 

expected returns a ‘compact’ distribution and the restrictions on its applicability are 

obvious. 

 

3. Correspondence, but not equality, of Risk-Aversion Measures. 

 

Samuelson (1970) was motivated by a wish to defend mean-variance analysis and 

the optimality of diversification against the criticism by Feldstein (1969). His conclusion 

that mean-variance analysis could stand, at least for his ‘compact’ distribution as well as 

for normality, was actually pessimistic.  Meyer (1987) and Sinn (1989) showed that 

equivalence of expected utility maximisation and mean-variance analysis could be 

extended from the normal distribution to the location-scale family of distributions, which 

are classes of distributions defined by having distribution functions of the form                                                 

                                                    yP(Y y ) F β
α
− ≤ =  

 
, 

where β  is the location and α  the scale parameter. For the normal distribution these are 

the mean and standard deviation, but that need not be true of other members of the 

family.  Meyer (1987) also described a correspondence between the rates of change of 
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AR  and S  showing that if AR '( y ) is positive for all y, S increases with µ , if it is zero S  

is constant in µ  and if it is negative S decreases withµ . However he did not assert that 

(1) holds. Boyle and Conniffe (2008) extended the compatibility of expected utility 

maximisation and mean-variance analysis to distributions transformable to location-scale 

form by a concave transformation, at least for utility functions that remain concave under 

the same transformation. They found an analogous, although not as clear cut, 

correspondence between the rates of change of AR  and S  but again there was no 

implication that (1) would hold. 

So while mean-variance analysis and its implications for diversification are 

actually more widely applicable than was initially appreciated, there is no guarantee that 

equality (1) carries over beyond normality or the ‘compact’ distribution case.  That does 

not seem to have permeated to the literature estimating Arrow-Pratt risk aversion 

measures, leading to perhaps seriously inaccurate estimates.  

 

4. Retaining negative exponential utility, but varying the distribution from 

normality 

 

In this section we consider two alternative non-normal specifications for uncertainty in 

returns. Both of these alternatives is a two parameter distribution but they depart from 

normality in rather different ways. 

 

Location-scale with heavier tails    

The logistic distribution is very similar to the normal over most of its range, being of 

location scale form and symmetric about its mean, but with somewhat fatter tails.  The 

occurrence of fat tailed distributions is frequently reported for financial data on returns 

and indeed distributions such as the ‘t’ distribution with few degrees of freedom have 

been advocated as appropriate.  These have much fatter tails than a logistic so the latter is 

perhaps a rather conservative choice.  

The logistic distribution function is 

1

1 ( y )/e
F( y ) α β− −+

=     y−∞ < < ∞  
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with density  

( )

( )21

1 y /
e

( y )/e
f ( y )

α β

α ββ

−−

− −+

= . 

 

The mean and standard deviation are α  and 3/πβ   respectively.  So πσβ /3= . 

 

{ } { }( ) ( , ) 1 exp( )E U y V E yσ µ λ= = − − , 

1 exp( ) ( )y f y dyλ
∞

−∞
= − −∫  

 

Recognizing the second term in this expression as the moment generating function of the 

logistic distribution evaluated at –λ we can rewrite this as  

 

                                        ( , ) 1 (1 ) (1 )V e αλσ µ βλ βλ−= − Γ + Γ − ,     ,1<βλ  

 

Using the properties of the Gamma function this can be rewritten as  

 

( , ) 1 ( ) (1 )V e αλσ µ βλ βλ βλ−= − Γ Γ − , 

 

)(
1

βλπ
πβλαλ

Sin
e−−= . 

 

Expressing α  and β  in terms of µ and σ  gives  

 

( , )V σ µ = 11 3
3

e
Sin( )

λµ σλ
σλ

−= − . 

 

Note that )3()( λσβλπ SinSin = is positive.  Taking derivatives 
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=
∂
∂
µ
V

( )
13
3

e
Sin

λµλ σλ
σλ

−  

And 

 

=
∂
∂
σ
V ( ){ }13 1 3 3

3
e Cotan

Sin( )
λµλ σλ σλ

σλ
−− − . 

 

As expected the derivative with respect to µ is positive and the derivative with respect to 

σ is negative. 

 

( ){ }1 1 3 3d V VS / Cotan .
d
µ σλ σλ
σ σ µ σλ

 ∂ ∂ = = − = −   ∂ ∂   
                (4) 

 

S  is not a function of µ and so, for fixed σ , risk aversion in the (µ , )σ metric does not  

change with µ , which is of course consistent with the CARA and IRRA properties of 

)exp()( xAxU λ−−=  and really just a special cases of Meyer’s results for location-scale 

distributions.  By employing the accurate approximation (for example, Abramowitz and 

Stegun, 1972, p. 76) ;  2 41 333 024xCotan( x ) . x . x≈ − −   equation (4) simplifies to 

 

{ } { }
2 2 2 2

2 2
1 .216

1 .216S
σ λ σ λ

σλ σ λ
σλ

+
≈ = +                 (5) 

 

Evidently 0dS
dσ

> so that indifference curves are convex which, again was implied by 

Meyer’s results.  

However λ
σ

≠S1  and employing (1) will overestimate AR  and consequently RR

.  Another interpretation is that risk aversion as measured in a ),( σµ metric is larger than  

measures based on )(xU , which seems quite plausible given the heavier tails of the 

logistic distribution.  Regarding the magnitude of overestimation, since σλ  would be the 
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slope of an indifference curve for CARA utility with normal returns, 22λσ  cannot be 

considered negligible except for lowσ . Obviously for a slope of unity the overestimation 

would be 22%.  We can also use the fact that value of 2σ  used in (1) is that associated 

with the optimal portfolio and the value of yµ  used to evaluate the Arrow-Pratt measure 

to consider the range of likely biases. Rotthoff (2011) reports a mean return and standard 

deviation on the NASDAQ stock exchange of 2.5% and 1.6% respectively over the 

period 1986-2009. To work out the bias we need a value for λ , the coefficient of 

absolute risk-aversion. Meyer and Meyer (2005) report a range of adjusted estimates for 

the coefficient of relative risk-aversion, with typical estimates ranging from ranging from 

2 to 7. Using the relationship between relative and absolute risk-aversion and our mean 

return we can back out the corresponding range for λ  needed for our calculations. This 

measure can then be combined with our estimate for the variance in returns to gauge the 

size of the bias using equation (5). These calculations show a bias ranging from 3.3% 

when the coefficient of relative risk-aversion equals 2, rising to 41% when the coefficient 

of relative risk-aversion equals 7.4 Bearing in mind that the logistic is only mildly fat 

tailed (roughly equivalent to a ‘t’ distribution with 7 degrees of freedom), in practice  

serious  overestimation is likely. 

 

Location-scale but skew    

    The Gumbel distribution is another within the location-scale family and its density is 

 

1 y y

f ( y ) e exp e
α α
β β

β

   − −
− −   
   

 
 = −
 
 

, 

 

However, unlike the normal and logistic distributions it is positively skew.  Positively 

skew distributions are also sometimes reported in the literature on financial returns data.  

The mean and standard deviation are γβα +  and  6/πβ   respectively, where 

...5772157.=γ  is Euler’s constant. 

                                                 
4 These estimates are based on a share of risky assets, p, equal to .3 (see for example Jianakoplos (2002) for 
the United States and Gusio and Paiella (2008) for Italy).  



13 
 

  

 Expected utility is 

 

{ } { }( , ) ( ) 1 exp( ) 1 exp( ) ( )V E U y E y y f y dyσ µ λ λ
∞

−∞
= = − − = − −∫  

 

Again recognizing the second term as the moment generating function we can rewrite this 

as  

( ) ( ) ( )6 /( , ) 1 1 1 1 6 / .V e e µλ γσλ παλσ µ βλ σλ π− +−= − Γ + = − Γ +  

 

Then        

λ
µ
=

∂
∂V ( ) ( )6 1 6/e /µλ γσλ π σλ π− +

Γ +  

and 

6V λ
σ π
∂

= −
∂

( ) ( ) ( )6 1 6 1 6/e / /µλ γσλ π σλ π γ σλ π− +  Γ + +Ψ +  , 

 

where Ψ denotes the Digamma function.  The derivatives with respect to µ and σ are 

positive and negative respectively and 

 

( ){ }6 1 6d V VS / /
d
µ γ σλ π
σ σ µ π

 ∂ ∂ = = − = +Ψ +   ∂ ∂   
.                (6) 

 

 

 Again, as implied by the location-scale property of the distribution, S  is not a function 

of  µ , matching the CARA property of negative exponential utility. But again λ
σ

≠S1 . 

For 1<z  (6) can be rewritten by employing the series expansion for the 

Digamma function  ∑
∞

=

−−+−=+Ψ
2

1)()1()1(
n

nn znz ζγ  given, for example, in Abramowitz 



14 
 

  

and Stegun, (1972, p. 259), where )(nς is the Riemann-Zeta function. In particular, 

6/)2( 2πς = .  Then for σλ < 1.3 (6) becomes the more easily interpreted 

 

                        2

3

61
n

n

n
S ( n )( )σλ ζ σλ

π

∞
−

=

   = + −   
   

∑                          (7) 

 

The infinite sum within the brackets is negative and /S σ  could substantially 

underestimate λ especially for large σ .  In fact, using Abramowitz and Stegun tables, 

withσλ =.5 (6) gives .4 and with σλ =1 it gives .66.  What is occurring is risk aversion as 

measured in a ),( σµ metric is smaller than that measured from ( )U y , which is plausible 

with a positively skew distribution. 

 

5. Changing the utility function 

 

By far the most popular alternatives to the negative exponential, or CARA, utility 

function are the power and log functions, which display constant relative risk aversion 

(CRRA).  But their expected utilities for distributions with support from y−∞ < < ∞  

(such as the normal, logistic and Gumbel) do not exist.  The problem is y γγ −− is 

imaginary for negative y and non- integerγ  and complicated redefinition of the utility 

function is required, which upsets the risk aversion properties predicted for expected 

utilities from location-scale distributions. However, power and log utilities are most 

commonly associated with the lognormal distribution 0 y≤ < ∞ .  Then, as shown in 

Boyle and Conniffe (2008), for the power function we get  

 

1,
)2(

)1(
22 −>

−+
+

= γ
σγµ

µσγS  

 

where µ  and 2σ are the mean and variance of  x, not of log x.   
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2 2

2 2

2
2

S ( )S
( ( ) )

γ σ µ
µ µ µ γ σ
∂ + −

=
∂ + +

 

 

and so risk aversion decreases with µ , provided 22 )2( σγµ +> .  When untrue the 

indifference curve ceases to be convex.  We know (1 )( )AR γµ
µ
+

=  and ( )( ) 1RR µ γ= +  

But ≠σ/S µγ /)1( +  nor is σµ /S  constant.  Instead 

 

( )
( ) 2 2

1
1 2

S
/

γµ
σ γ σ µ

+
=

+ +
 

 

which can obviously substantially underestimate )1( γ+ .  The reason is again the positive 

skewness of the lognormal which reduces risk aversion in a ),( σµ  metric relative to that 

deduced from )(xU . In this context it is interesting to revisit the findings of Kocherlakota 

(1990). Using a Monte-Carlo approach in which agents have CRRA preferences he finds 

that the approach of Friend and Blume (1975) leads one to substantially underestimate of 

the coefficient of risk-aversion.5 Kocherlakota suggests that overestimation of the 

variance of returns may in part explain this result. However, given his assumption of 

CRRA and the positive skewness evident is his generated returns (see Table 1 page 291), 

the deviation of σµ /S  from ( )RR µ  which we have highlighted offers another, 

potentially more obvious, explanation for these findings. 

 

6. Concluding Remarks 

 

The ‘standard’ conversion formula for deducing )(µAR or )(µRR  from a mean-variance 

framework does not work except in a limited range of circumstances.  Arguably, a risk 

aversion measure in a ),( σµ metric is a more meaningful concept than )(µAR or )(µRR .  

An investor or other decision maker will take into account not only their own ‘risk 

                                                 
5 The average estimate across his samples using Friend and Blume’s approach was 1.8, while the true 
calibrated value was 13.7. 
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tolerance’ as deduced from their utility function for wealth, but also the distribution of 

outcomes they perceive themselves facing.  This is by no means an original idea; for 

example, it is mentioned in passing in Friend and Blume (1975).  However, the literature 

has been heavily weighted towards obtaining estimates of AR or RR and, as mentioned in 

the Introduction, the variation in reported estimates has been very large.  There may be 

legitimate reasons for differences in estimates, but this paper has shown that either under 

or over estimation could arise from illegitimate application of the ‘standard’ conversion 

formula.  It has also shown that the degree of under or over estimation can easily be very 

substantial.  
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