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Abstract

In this paper, we analyze the asymmetric pure strategy equilibria in a dynamic game
of pure information externality. Each player receives a private signal and chooses whether
and when to invest. In some of the periods, only a subgroup of the players make decisions,
which we call bunching, while the rest of the players do not invest regardless of their signals.
Bunching is different from herding; it occurs in the first period and recursively until herd-
ing takes place or the game runs out of undecided players. We find that any asymmetric
pure strategy equilibrium is more efficient than the symmetric mixed strategy equilibrium.
When players become patient enough, herding of investment disappears in the most efficient
asymmetric pure strategy equilibrium, while the least efficient asymmetric pure strategy
equilibrium resembles those in a fixed timing model, producing an exact match when the
discount factor is equal to 1. Bunch sizes are shown to be independent of the total num-
ber of players; adding more players to the game need not change early players’ behavior.
All these are unique properties of the asymmetric pure strategy equilibria. We also show
that the asymmetric pure strategy equilibria can accommodate small heterogeneities of the
players in costs of acquiring signals, discount factors, or degree of risk aversion. In any of
these environments, there exists a unique welfare maximizing equilibrium which provides a
natural way for the players to coordinate.
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1 Introduction

Frequently in life, firms or individuals need to make Yes or No decisions under uncertainty.
For example, one needs to decide on whether or not to purchase a newly-released cell phone,
whether or not to go to the cinema to watch a new movie, or whether or not to make an
investment. These decisions involve risk, since the outcomes are uncertain.

In this kind of environment, an agent could benefit from the observations of other agents’
actions, as those actions could reveal information which is useful to the agent. The existing
literature has focused on herd behavior; when later investors observe many investments (or
no-investments) made by earlier investors, they ignore their own private information and
follow suit. An important setup in a typical herding model is that players make their choices
according to a fixed order; they must act in their exogenously determined time slot, no
sooner and no later. We categorize this type of models as the fixed timing models.

Chamley and Gale (1994) are the first to employ an endogenous timing model to in-
vestigate the optimal investment issue. They examine a model where an unknown number
of investment options are held by a certain number of players, and the expected payoft of
each individual depends on the total number of options. They focus on a symmetric mixed
strategy equilibrium of that model.

In a fixed timing model, agents make decisions one by one. In a symmetric pure or mixed
strategy equilibrium of an endogenous timing model, all agents use the same strategy and
act simultaneously. The intermediate case, where only a subgroup of agents optimally make
decisions at one time, has not been studied.

We investigate this phenomenon in this paper. In our endogenous timing model of pure
informational externality, players choose whether and when to invest. A player possesses
private information (good signal or bad signal) which could be revealed to other players
through his action. Therefore, a player must balance the effect of discounting and the
incentive to wait for more information to be revealed. We find that in the asymmetric pure
strategy equilibria of our model, players make decisions in subgroups, until herding occurs.

More specifically, in these asymmetric equilibria, starting from the first period, only a
subgroup of players make decisions. The rest of the players (who have not yet invested) just
wait and observe the actions of these players. We term this behavior “bunching”, and the
subgroup of players making decisions in a given period a “bunch”. When players bunch, they
make their decisions at the same time (but their decisions may not be the same). When
players herd, they make the same decision regardless of their private information.

If enough of the players in a given bunch invest, revealing that they have received good

ISee Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992) for the pioneer work on the fixed
timing models.



signals, then herding of investment occurs, meaning that the rest of the players will invest in
the next period. If enough players in the bunch do not invest, then herding of no-investment
occurs, meaning that the rest of the players will never invest in any future periods. Lastly
and importantly, if only an intermediate number of players invest, then another bunch will
form in the next period. This pattern will continue recursively until there are no undecided
players left in the game.

These asymmetric pure strategy equilibria have many unique properties. First, bunching
occurs in all of these asymmetric equilibria. It occurs at least in the first period. Bunch sizes
are uniquely and endogenously determined. A larger bunch reveals too much information
and even a bunch member would like to wait. A smaller bunch reveals too little information
and a player outside the bunch does not want to wait. These incentives uniquely pin down
the equilibrium bunch size in any given period.

Second, each of these asymmetric equilibria is more efficient than the symmetric mixed
strategy equilibrium.? Players using mixed strategies can only achieve the payoffs of investing
in the period they randomize. This means that the benefits of investing later (from more
revealed information) are completely canceled by the discounting. This is not the case in the
asymmetric equilibria. Players outside a bunch can benefit from the information revealed in
the bunch and earn higher payoffs in the equilibrium.

Third, when players are patient enough, the least efficient asymmetric equilibria produces
outcomes resembling those in a fixed timing model. In the equilibrium, only one player makes
a decision in each period (i.e., the bunch size is one in every period) until herding occurs. This
one-per-period decision making is an equilibrium result in our model, while it is assumed in a
fixed timing model. A symmetric mixed strategy equilibrium cannot produce such outcomes
because of the randomness in the outcomes.?

Fourth, in the most efficient equilibrium, bunching occurs most often and herding occurs
least often. In this equilibrium, as long as herding on no-investment does not occur, players
make their investment decisions one by one according to their private signal, and herding
on investment completely disappears. The information revelation is maximized in this way,
and the equilibrium outcome is more efficient than the one obtained from the fixed-timing
model, where herding occurs most often. These results are specific to the asymmetric pure
strategy equilibria. A symmetric mixed strategy equilibrium cannot be easily linked to the
outcomes of a fixed-timing model.

Finally, the asymmetric pure strategies in the equilibrium for all players (except the
last bunch if undersized) are upward independent of the number of players. Consider the
asymmetric equilibrium strategies of the players when there are n players in the game. Then

2We need to forbid investment from the players with bad signals to make our model comparable to
Chamley and Gale (1994) in this comparison.

3The symmetric mixed strategy equilibrium we refer to in this paper is the one characterized in Chamley
and Gale (1994), unless otherwise specified.



the strategies of these (old) players (except the last bunch if undersized) can be used to
construct a new asymmetric pure strategy equilibrium in a game with more than n players
(when additional players are added in), with the old players’ strategies and information
updating exactly the same as before. This property allows us to apply the asymmetric
pure strategies to situations where new players may arrive in later periods in the game.
Characterizing a symmetric mixed strategy equilibrium would be an immense task in such
situations.

It is interesting to note how information is revealed in a bunch. Knowing the bunch size,
one can deduce from the actions of the players in the bunch how many of them received
good signals and how many did not, since players with different signals will act differently in
a bunch. Seeing someone invest in a bunch is the same as seeing a good signal, while seeing
someone not invest in a bunch is the same as seeing a bad signal. Players not in a particular
bunch do not invest in the given period regardless of their signals. Therefore, seeing just
a few players invest in a period does not necessarily mean that there are many bad signals
among the players. For example, suppose there are 1000 players in total and the size of the
first bunch is 5. Then if 5 out of the 1000 players invest in the first period, it is very good
news to other players. Note that the players do not need to know the identities of the players
in each bunch. As long as they know the size of the bunch, they can infer the numbers of
good signals and bad signals in a given bunch by just knowing the number of investments in
that given period.

We compare the social welfare in our equilibria to the socially optimal level. Analysis of
the general model is unmanageably complicated, but in a two-period version of our model,
we show that the bunching sizes are smaller in the asymmetric equilibria compared to the
socially optimal level.

In this paper, we characterize both asymmetric and symmetric pure strategy equilibria,
even though we focus on the former. We are able to provide closed form solutions for the
equilibrium strategies. When the number of players is small enough or when players are
impatient enough, a unique symmetric pure strategy equilibrium exists. In this equilibrium,
every player with a good signal invests right away. In all other cases, asymmetric pure
strategy equilibria exist.

Our analysis is robust to small perturbations in signal acquisition costs. The equilibria
characterized in the paper are still valid if private signals are costly and players have the
choice of not acquiring their signals. The equilibrium strategies in our model are also robust
to small perturbations in players’ discounting factors, as well as to introducing some degree
of player risk aversion. We can rank the asymmetric equilibria according to the social welfare
they generate in these cases, and there is a unique asymmetric equilibrium that maximizes
the social welfare. This equilibrium serves as a natural coordination for the players.

The results in our paper have a wide range of applications. Consider a new product
of unknown quality. Some consumers may decide early on whether or not to buy it (i.e.,



bunching), while other consumers wait and see. When the sales figures are very good (relative
to the equilibrium bunch size), a huge wave of consumers may subsequently buy it. On the
contrary, if the sales figures are really bad (again, relative to the equilibrium bunch size),
no one would buy it anymore. If the sales figures are just moderate, then another group of
consumers may decide whether or not to buy the new product (i.e., bunching again), and
so on and so forth. Another application is in investment decisions. When the economy is
uncertain, investors need to see many signals to be reasonably sure about the state of the
economy. In this case, we often observe some early decision makers, big investment banks,
who decide on whether or not to invest early, depending on the information they receive
at the time. Other investors just stay on the sideline. Then herding may occur, if many
investors from this first bunch invest (or not invest). When neither of the sides in the bunch
dominates (in a sense to be made clear in the analysis), another bunch of investors forms,
etc.

The literature on herding in economics was started by Banerjee (1992) and Bikhchan-
dani, Hirshleifer and Welch (1992), with the latter referring to herd behavior as information
cascade, as people no longer reveal their own private information. In a herding equilibrium,
the equilibrium outcome depends crucially on the private information of the first few in-
dividuals, and only these first few players’ private signals are revealed in the equilibrium,
leading to socially inefficient outcomes.? Note that these are fixed timing models.

Rosenberg, Solan and Vieille (2007) and Zhang (2009) have different models of endoge-
nous timing. In Rosenberg, Solan and Vieille (2007), players play a one-armed bandit and
continuously receive private signals. Zhang (2009) generalizes Chamley and Gale (1994) to
both continuous signals and multiple discrete signals.” Zhang (1997) presents another en-
dogenous timing model where players with different precision of signals choose their optimal
timing to act in continuous time. His paper shows that the player with the highest precision
invests first and then there is an investment surge leading to an information cascade. Similar
results are also found in Aoyagi (1998) in a model with a different setup. All of these papers
focus on symmetric equilibria. In this paper, we focus on asymmetric pure strategy equilibria
and highlight their different properties.

This paper is organized as follows. In Section 2, we describe the model and its assump-
tions. In Section 3, we perform some preliminary analysis, including defining the myopic

4Herding and information cascades have been investigated by many researchers. Cao, Han and Hirshleifer
(2011) show that even if players can communicate with each other regarding their payoffs from past choices,
herding can still occur, but cannot last forever. Khanna and Mathews (2011) study a model in which
players’ actions may affect each other’s payoffs. They find that a leader may spend more to get more precise
information to avoid the adverse effect of actions being copied, and this information gain can dominate the
information loss from herding.

Herd behavior in models of endogenous timing has been confirmed in experiments. (See Sgroi (2003) for
a review.) In an empirical study, Moretti (2011) examines the behavior of movie goers and finds that peer
effect (in the form of information externality) plays an important role in their movie watching decisions.



best response function, defining the patterns of equilibrium behavior, and determining the
bunch sizes. In Section 4, we characterize the symmetric pure strategy perfect Bayesian
equilibria (PBE) and the asymmetric pure strategy PBE. In Section 5, we perform compar-
ative static analysis regarding the discount factor, the probability of a good state and the
number of players. In Section 6, we perform a welfare analysis. We compare our asymmetric
pure strategy equilibria to the symmetric mixed strategy equilibrium in Chamley and Gale
(1994). We analyze the socially optimal strategies in a two-period version of our model.
We also analyze the socially optimal strategies when there are heterogeneous players. In
Section 7, we discuss some of the applications of our model. In Section 8, we conclude. In
the appendix, we analyze the equilibria when signals are costly. We also characterize the
equilibria when the assumptions in the paper are violated. Finally, the appendix contains
lengthy proofs.

2 The Model

Consider a model with n players. Each player decides whether to make an investment. The
action space for each player is given by A = {0, 1}, where 0 stands for no investment, and 1
stands for investment. The outcome of the investment depends on the state of the economy.
The state space is denoted as S € {G, B}. The payoff from investment is ¢ when the state
is G and is mg when the state is B, where 7 > 0 > mg. Anyone who never invests earns 0.
With prior probability ¢ the state is G, and with prior probability 1 — ¢ the state is B.

There are T periods starting from period 1 in this game. Assume that "> n + 1 as the
game will end in at most n + 1 periods.’ Each player can invest only once. If a player invests
in a period, he gets his payoff in that period, and has no further decisions to make. So in
any period ¢, only those players who have not invested in an earlier period make investment
decisions. These players can observe other players’ actions (but not the payoffs) in previous
periods (from period 1 to ¢t — 1). Players are impatient and their payoffs are discounted by
a common discount factor § € [0, 1].

The state of the economy remains the same throughout the game. Before period 1,
each player receives a private signal s € {g,b}, which is correlated with the state of the
economy. A player’s action may reveal his private signal, which is useful to other players
in predicting the state. However, one player’s action does not affect another player’s payoff
directly. Therefore, this is a game of pure information externality.

A player’s signal is distributed independently and identically across all the players, with
the following probabilities conditional on the underlying state:

6As we will see in the analysis, in each period at least one player will reveal his signal. So we need at
most n periods for the signal revelation, plus one more period for any player who has not yet invested to
make a final investment decision.



Pr(s = glS = G) = PriglG) =p > 5,
Pr(s = b|S = G) = Pr(b|G) = 1 — p,
Pr(s = b|S = B) = Pr(b| B) = p,
Pr(s = g|S = B) =Pr(g|B) =1 -p.

Here, we assume that the signal precision (i.e., p) is the same in state G or B for simplicity.
Because of the symmetry in signal precision, we have

Pr(g, b|S) Pr(5) _ p(1 —p) Pr(S)
Pr(g,b|S) Pr(S) + Pr(g,b|S") Pr(S")  p(1—p)Pr(S)+ p(1 —p)Pr(5)

— Px(S),

Pr(S|g,b) =

where S = G, B and S’ = B, G} that is, a good signal and a bad signal cancel out each
other’s effect. Similarly, it is straight-forward to show that the probability of a good state
conditional on m; good signals and ms bad signals can be simplified as

Pr(S|(my —ms)g), if my > mao,
Pr(S|myg, meb) = ¢ Pr(S5), if my; = ma, (1)
Pr(S|(mga —mq)b), if my < ma.

The above expressions state that the probability of a state S given m; good signals and ms
bad signals is equivalent to m; — ms net good signals if m; > ms, etc. Each good signal
cancels out with a bad signal, because a good signal has the same precision as a bad signal.”

We focus on pure strategy equilibria in the analysis. Obviously, the actions of the players
may reveal their signals. For example, if a player’s strategy in a certain period is to invest
when his signal is g and not to invest when his signal is b, then other players can completely
infer his signal from whether or not he has invested in that period. Of course, if his strategy
is to invest in that period regardless of his signal, then other players gain no information from
his action. Therefore, a player’s action either reveals his signal completely or reveals nothing
at all. Note that this kind of updating is appropriate only for pure strategy equilibria.

In the analysis, the total number of good signals and the total number of bad signals
known by a player at the beginning of period ¢, denoted by (N, ¢, Ni:), play an important role
in deciding that player’s action. This pair of numbers includes both the public information
at the beginning of period t (i.e., the total number of good and bad signals inferred from the
actions of other players in periods 1 to ¢ — 1) and the player’s private signal. Note also that
this pair of numbers is different from player to player, since each player may have different
private signal. We shall omit the index for the player since it will not cause any confusion

"When the precisions are different, the Bayesian updating is more complicated, but the analysis is similar.



in later analysis. In what follows, we use both Pr(S|N,, N,;) and Pr(S|N,+g, Ny:b) in-
terchangeably (depending on which one is clearer in the particular context) to refer to the
probability of state S conditional on the player’s information at the beginning of period t.
The expected payoff for a player playing action a € A in period ¢ given (N, N, ;) is written
as T (a| Ny, Noy).

In this paper, we will focus on the following assumptions:
7 (1]g) = Pr(Glg)mg + Pr(B|g)mp > 0, (A1)
and
7 (1) = Pr(G|b)m¢ + Pr(B|b)mp < 0. (A2)

With these assumptions, without learning any other information, it is profitable for a player
to invest if his private signal is g and not to invest if his private signal is b.

We further assume that
(1) = Pr(G)ng + Pr(B)rp < 0; (A3)

that is, unconditional on any signal, it is not profitable to invest. If 7 (1) > 0, the results
are comparable and will be stated in a separate theorem in the appendix. Note that (A3)
implies (A2).

We will discuss the cases when these assumptions do not hold in the appendix. It is
shown that the equilibrium strategies are either parallel or trivial.

3 Preliminary Analysis

3.1 Myopic Best Response

Define BR (N, +, Ny1) € A = {0, 1} as the myopic best response function for player i in period
t. Assuming that player ¢ has not yet invested in previous periods, given his information
(Ng.ts Not), then restricting attention to the current period ¢, the best action for him is

17 if Ng,t_Nb,tZ 17
0, otherwise.

BR (Ng,t7 Nb,t) - { (2)
Of course, a player may or may not always follow this myopic best response function, as not
investing in period ¢ (and thus getting payoff 0 in period ¢) does not mean that he will not
invest in a later period. However, we will show in the proof of Theorem 2 in the appendix,

this myopic best response is in fact optimal for a deviating player.



Given player 4’s information (N, N;+) at the beginning of period ¢, if there are k; of new
signals to be revealed in period ¢, then the total number of revealed signals is k; + N, ; + Ny ¢
at the beginning of period ¢ + 1. Then player i’s expected payoff from using the myopic best
response function in period ¢ 4 1 is

kt
R(kt|Ngs, Not) = Y 7 ((BR(Ngy+ 71, Ny + ke — ) [Ny + 7, Ny + by — 1)

r=0

. Pr (Ng,t + r, Nb,t + kt — T|Ng,t7 Nb7t> y

where 7 is the number of good signals among the k; new signals. This R function captures
player i’s expected payoff when he waits one period (expecting k; additional signals to be
revealed) and then uses his myopic best response. We have the following lemma.

Lemma 1 Given (Nyy, Nyt), R(ki|Ngt, Nyy) is strictly increasing in k; and converges to
R(OO|Ng7t, Nb,t) = PI'(G|Ng7t, Nth)'ﬂ'G.

Proof See appendix. m

This lemma illustrates that more signals are better for a player. This is because more
signals will help a player to make a more precise decision. When there are infinitely many
signals, by the Law of Large Numbers, the proportions of good signals and bad signals
will be, respectively, exactly the same as the probabilities of receiving a good signal and a
bad signal conditional on the true state. Therefore, by examining the proportions of good
signals and bad signals, a player can tell exactly which state is the true underlying state. If
the underlining state is revealed to be G, the player invests, and if the underlining state is
revealed to be B, the player does not invest.

3.2 Patterns of Equilibrium Behavior

As will become clear later, only the following four patterns of behavior will occur in a given
period in a pure strategy PBE. Specifically, in a given period, if only a subgroup of players
make decisions on whether or not to invest, while all other players do not invest regardless
of their signals, then we call it bunching, and the subgroup a bunch. When bunching, every
player in the bunch makes a decision in the same period. In equilibrium, players could also
herd. When herding, every player who herds makes the same decision regardless of his
signal.®

8Different from the herd behavior that leads to information cascades in our model, Scharfstein and Stein
(1990) examine reputational herding, where smart types receive perfectly correlated signals and dumb types
receive random signals. Players herd so as to build a reputation for being a smart type. Gul and Lundholm



Definition 1 In a given period, Herding of Investment occurs when every player (re-
gardless of his signal) who has not invested invests now.

Definition 2 In a given period, Herding of No-Investment occurs when every player
(regardless of his signal) who has not invested does not invest. No further investment will
occur after this period.

Definition 3 In a given period, Bunching of Size k occurs when a pre-specified group
(i.e., bunch) of k players selected from those who did not belong to a previous bunch make
decisions simultaneously according to their own signals — invest if the signal is g and not
invest if it is b.

Definition 4 In a given period, the Last Bunching occurs when there are not enough
players left to form a bunch of the desired size. All players who did not belong to previous
bunches make decisions in this period.

In the definition for the last bunching above, the decisions made by the bunch members
could be different from those made by a player in a regular bunch. More specifically, a player
with a bad signal does not invest in a regular bunch. But he may invest in the last bunch
if it is profitable to do so. (In this case, it is both herding and bunching.) Meanwhile, a
player with signal g always invests in a bunch, last period or not. (Refer to Lemma 7 for
their behavior.)

In the asymmetric equilibria we will characterize, either Herding of Investment, Herding
of No-Investment, or Bunching may occur in a particular period, and Last Bunching may
occur only at the end of the game. Bunching will definitely occur in period 1, and may occur
again in later periods if bunching occurred in all previous periods.

3.3 Bunch Size Determination

In any period, given any history of the game, a player who has not yet invested needs to make
an investment decision. He trades off the benefit of investing right away with the benefit of
waiting. Bunching occurs frequently in our equilibria and the size of bunching is the focus
of this subsection. Recall that in a given period, bunching of size k occurs when k players

(1995) define the concept of clustering, a behavior that appears similar to an information cascade, but is in
fact different. When clustering, players make similar decisions at almost (but not exactly) the same time,
but players’ private information is completely revealed. The definition for herding is slightly different in
financial markets literature as it involves price movements. It is used by Park and Sabourian (forth.) to
investigate informational herding and contrarianism in financial markets.



selected from those who did not belong to a previous bunch make decisions simultaneously
according to their own signals — invest if the signal is ¢ and not invest if it is b.

At the beginning of a given period, let d denote the difference between the number of
good signals and the number of bad signals a player learned from other players’ actions
in previous periods. This d is common to every player, and is public information at the
beginning of a given period. When d is negative, bad signals outnumber good signals, and
no player will invest. In this case, further bunching can never occur. Therefore, we will focus
on non-negative d in the following analysis, and we interpret a non-negative d as the degree
of public optimism.

Suppose that a bunch of size k) is to be formed in a given period. Then £ must satisfy
two conditions. The first condition is that a player inside the bunch (with either signal) does
not want to be a non-bunch person. This means that if the player has signal g, he prefers
to invest now instead of waiting one period; if the player has signal b, he prefers to wait one
period instead of investing now. Equivalently, we have

7(1]d+1,0) > 6R (k% — 1)d + 1,0), (IC1)
7(1]d, 1) < R (k% — 1]d,1). (1C2)

The second condition is that a player outside the bunch (who has not previously invested,
with either signal) does not want to deviate. This implies that regardless of his signal the
player prefers to wait one period instead of investing now. Equivalently, we have

7(1|d+1,0) < 6R (ki|d+1,0), (IC3)

7(1)d, 1) < 6R (k3|d, 1) . (IC4)

The following lemmas will help us to establish the existence and the properties of k.
Lemma 2 For any given k, w(1|d,0) — R (k|d,0) is increasing in d.

Proof See appendix. =

This lemma implies that the marginal benefit of additional £k signals is decreasing in the
number of net good signals already obtained. When there are more net good signals, the
additional k signals become less valuable. Therefore, if a player with more net good signals
finds it optimal to wait for k additional signals, it must be optimal for a player with fewer
net good signals to wait as well.

The following two lemmas consolidate the incentive compatibility constraints.
Lemma 3 (1C3) implies (IC4).

10



From Lemma 2, this lemma is immediate.
Lemma 4 (IC1) and (IC3) imply (1C2).

Proof By Lemma 2 and (IC3), we have
0>n(1lld+1,0) —6R (kj|d+ 1,0) > m(1]|d,0) — dR (k}|d,0).

Also,
7(1]d,0) = n(1]d, 1) Pr(b]d, 0) + m(1|d + 1,0) Pr(g]d, 0),
and
R (k}|d,0) = R (kj — 1|d,1) Pr(b|d,0) + R (k}; — 1|d + 1,0) Pr(g|d, 0).
From (IC1) and w(1]d,0) < 6R (k}|d,0), it must be that 7(1|d,1) < R (k} —1|d,1). This
completes the proof. m

This lemma means that if it is optimal for a player with signal g to wait for £} signals
but not k) — 1 signals, then it is optimal for a player with signal b to wait for £} — 1 signals.

From the above two lemmas, (IC1), (IC2), (IC3) and (IC4) reduce to (IC1) and (IC3).

Suppose that 7(1|d + 1,0) > 0R (co|d 4+ 1,0) = 0 Pr(G|d + 1,0) 7. Then even if there
are infinitely many signals to be revealed in this period, a player with signal g does not find
it optimal to wait for these signals. In this case, any player with signal ¢ will invest right
away. We define £} = oo in this case. It happens when players discount future payoffs a lot
(i.e., 0 is very small) or when signals are already very precise (i.e., p is very close to 1).

Now suppose that 7(1|d + 1,0) < dR (oo|d + 1,0). In this case, as we shall show in the
following lemma, there exists a unique and finite £} satisfying (IC1) and (IC3). Note that
(IC1) and (IC3) cannot be binding at the same time.

Lemma 5 Suppose that w(1|d + 1,0) < §Pr(G|d+ 1,0)7rg. Then for each d > 0, there
exists a unique k) satisfying (IC1) and (IC3); that is,

SR (k5 — 1|d+1,0) < w(1|d + 1,0) < 6R (k:|d + 1,0). (3)

Suppose that mw(1|d +1,0) > 0 Pr(G|d + 1,0) me. Then there exists no k}; satisfying (IC1)
and (IC3). In this case, kj; = 0o.

Proof From Lemma 1, R (k|d 4 1,0) is increasing in k. Since w(1|d+1,0) < R (oco|d + 1,0),
the curve of 0 R (k|d + 1, 0) intersects the line 7(1]|d+1,0) only once and at k > 1. (c.f. Figure

1)
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0 1 ... kg1 kg

Figure 1: The determination of £k}

If m(1|d 4+ 1,0) > R (co|d + 1,0) = § Pr(G|d + 1,0) 7, then it is obvious that no k can
satisfy (IC1) and (IC3). In this case, a player with signal g would not wait for any finite
number of signals to be revealed. In this case, k) =co. =

The k}; uniquely determined in the above lemma is increasing in d, the number of net
good signals at the time. The following proposition shows that when there are more net
good signals, the bunch size has to be larger. We have

Lemma 6 kj < ki <kj <k; <---.

Proof Since 7(1|d,0)—dR (k|d,0) is decreasing in k, and by Lemma 2, an increase in d shifts
the curve m(1|d,0) — dR (k|d,0) upwards, resulting in a bigger k. Note here the inequalities
are not strict because of the discreteness of k. ®

One way to interpret this lemma is that the situation is more optimistic when there are
more net good signals. Therefore, players have more incentive to invest now. In order for
the players outside the bunch to wait, the bunch size (and thus the number of signals to be
revealed) must be larger than when the number of net good signals is small. From the proof,
we can see that when d is larger, (IC1) is not affected; however, (IC3) becomes more difficult
to satisfy. When (IC3) is violated, one must increase k to meet the requirement of (IC3).

The above £ is the number of additional signals such that a player inside the bunch
does not wait while a player outside the bunch prefers to wait. However, near the end of the
game, the number of players left may be greater or smaller than this k). Let n; denote at
the beginning of period ¢ the number of players who did not belong to any previous bunches
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in the game. Let d; be the difference between the numbers of good signals and bad signals
inferred from other players’ actions at the beginning of period ¢ (i.e., from period 1 to period
t —1). The determination of the bunch size above assumes implicitly that 7, > £ . When
ny < kj,, that is, when the number of players not belonging to any previous bunch is not
large enough to form a new bunch of the desired size £}, these remaining players still form
a (last) bunch. But the players in this last bunch may behave differently from a regular
bunch. We have the following lemma.

Lemma 7 Suppose that in period t, ny < kj . Then these n; players will form the last bunch
of the game.

(a) A player with signal g in the last bunch will invest in period t.

(b) A player with signal b in the last bunch will invest in period t if and only if w(1|dy, 1) >
OR (N — 1|dy, 1).

(c) A player with signal b in a previous bunch will invest in period t if and only if
W(l’dt,O) > oR (ﬁt’dt,O)

The game will end in period t if both groups of players in (b) and (c) invest in period t.
Otherwise, those players in (b) and/or (c) will make a final investment decision in period
t+1 and the game ends.

Note that in the above lemma, if the group in (b) invests, then the group in (c) will def-
initely invest, since 7(1|d;, 1) > 0 R (7y — 1|d;, 1) implies 7(1|d;, 0) > 0 R (72¢|d;, 0). Note also
that if d; = 0 or 1, the condition in (b) never holds, since 7(1|d;,0) < 0 and R (74|d;, 0) > 0.
Therefore, the players in the last bunch still act according to their signals; i.e., a player with
signal g invests and a player with signal b does not invest. If d; > 2, then it is possible that
a player with signal b in the last bunch will invest right away. This is because investing right
away brings in positive expected payoff, while waiting one period for just a few extra signals
does not bring enough gain to offset the discounting. This happens when n; is relatively
small.

In equilibrium, Herding of Investment occurs when the actions in previous periods in-
dicate that good signals outnumber bad signals by a sufficiently large number. Herding of
No-Investment occurs when the opposite happens, i.e., the actions in previous periods in-
dicate that bad signals sufficiently outnumber good signals. In short, herding occurs when
the probability of either state (G or B) becomes sufficiently large. Bunching occurs when
the situation is not as certain. It is clear that the actions of the players in a bunch (except
maybe the last one) will reveal their signals completely. Meanwhile, herding will reveal none
of the players’ signals.
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4 Equilibrium Analysis

4.1 Symmetric Pure Strategy PBE

In this subsection, we shall characterize the conditions under which a unique symmetric pure
strategy PBE exists. This equilibrium exists whenever the number of players (n) in the game
does not exceed the size of bunching in period 1 (i.e., k). If the size of bunching is infinite
in period 1, i.e., kj = oo, then the game (with any finite number of players) always has a
unique symmetric pure strategy PBE. We have the following theorem.

Theorem 1 Suppose that (A1) and (A3) hold. Then there exists a unique equilibrium if
and only if n < ki, or equivalently,

m(1lg) = 0R(n—1|g). (4)

Furthermore, this equilibrium is in symmetric pure strategies. Bunching of size n occurs in
period 1. If investments strictly outnumber no-investments in the bunch, then in period 2,
any player who did not previously invest will invest; otherwise, none of those players will
invest. No further investment will occur after period 2.

Proof The right hand side of the inequality (4) is the discounted expected payoff for a
player with a good signal if he deviates by waiting and using the myopic best response in
period 2. The benefit by doing so is that he can then observes n — 1 other players’ actions
in period 1.

The inequality (4) implies that a player with a good signal finds it more profitable to
invest in period 1 than waiting until period 2. A player with a bad signal will only invest if
the good signals outnumber the bad signals by at least 1, as implied by inequality (Al). m

Note that inequality (4) will not be satisfied for n > kj. This is because the expected
gain from seeing all other n — 1 players’ actions (and thus signals) is increasing in the total
number of players. Therefore, when n becomes large enough, a player with signal g has
enough incentive to deviate from the symmetric strategy of investing in period 1 so that he
can best respond to other players’ signals in period 2.

We have the following two corollaries; their proofs are straight-forward given (4). The
first corollary is about the number of players. When there are more players in the game, a
player may have enough incentive to wait when all the other players make decisions in period
1.

Corollary 1 Suppose that (A1) and (A3) hold. Given §, there exists an n*, such that the
symmetric pure strateqy equilibrium exists if and only if n < n*.
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Fixing the total number of players, when players become more patient, the incentive for
waiting one period is stronger, and thus it is more difficult for a symmetric pure strategy
equilibrium to exist.

Corollary 2 Suppose that (A1) and (A3) hold. Given the total number of players n, the
symmetric pure strateqy equilibrium exists if and only if § < é(n) = n(1|g)/R(n — 1|g) < 1.

4.2 Asymmetric Pure Strategy PBE

In this section, we characterize the equilibrium when n > £f, or equivalently,
m(llg) <R (n—1lg). (5)

From the last section, we know that in this case a symmetric pure strategy PBE does not
exist, so we are looking for the asymmetric pure strategy PBE. In an asymmetric equilibrium,
players with the same signal may act differently.

We characterize the asymmetric equilibrium in the following theorem.

Theorem 2 Suppose (A1), (A3) and (5) hold. There exists an asymmetric pure strategy
PBE, which has the following recursive properties. Let d; = 0. In periodt, t = 1,2, ...

(a) if d; > 1, Herding of Investment occurs, and the game ends;
(b) if dy <0, Herding of No-Investment occurs, and the game ends;
(c) if dy = 0 and 1y > kf, then Bunching of size ki occurs;

(d) if dy =1 and ny > ki, then Bunching of size ki occurs;

(e) if de = 0 and 7y < k§, orif dp = 1 and iy < ki, then the Last Bunching of size
occurs.

Proof See appendix. =

In (c), (d), and (e) of the above theorem where bunching occurs, players with signal b
do not invest. In (e), the final bunch is formed, and it is undersized. From this theorem, we
know that in the first period, Bunching of size kj forms since d; = 0. In the second period,
if dy > 1, that is, do > 2, then even a player with signal b will find it profitable to invest
since his belief is given by at least one net good signal. Therefore, by assumption (A1), the
expected payoff from investing with (at least) one good signal is positive. If dy < 0, that is,
ds < —1, then even a player with a good signal does not invest since his belief is given by
at most zero net good signals. From assumption (A3), a player’s payoff is negative with a
belief of zero net good signals.
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This equilibrium has the following property. In any period, players outside the bunch do
not need to know the identities of the players in previous bunches in order to infer the total
numbers of good signals and bad signals in those bunches. The total number of players who
have previously invested gives them the total number of good signals among the previous
bunches; by subtracting this number from the total size of all previous bunches, they can
then infer the total number of bad signals. For example, suppose that the size of the first
bunch £j = 5 and 3 players invested in the first period. Then a player need not know who
these 3 players are; he can infer right away that there are 3 good signals and the rest of the
bunch (i.e., 2 players) have bad signals. We have the following corollary.

Corollary 3 In any period of the game, a player need not know the identities of other
players; he need not know who has invested and who has not, as long as he knows how many
players have invested and whether or not he belongs to a particular bunch.

Depending on k; being even or odd, either ds = 0 or dy = 1 can happen, but not both.
There are three different bunching patterns which are described in the following corollaries.

Corollary 4 Suppose that kj is even. Then the bunching size in any period is kj.

Since d; = 0, the bunching size in period 1 is k. If k§ is even, case (d) cannot occur.
When cases (a) and (b) occur, the game ends as no further investments will take place in
future periods. When case (c) occurs, the bunch size is k§ again. Therefore, the same pattern
repeats recursively and the bunching size in each period is £j.

Corollary 5 Suppose that kj is odd and ki is even. Then the bunching size is kj in the first
period, and ki in all subsequent periods.

If k& is odd, then in the second period, case (c) cannot happen. When case (d) happens,
dy = 1 and bunching of size k] forms. If k] is even, the difference between the number of
investments and non-investments in the second period must be even. Therefore, in the third
period, only cases (a), (b) and (d) can occur. This second-period pattern repeats recursively
and the bunching pattern is kg, k7, k7....

Corollary 6 Suppose that both kj and ki are odd. The bunching size is kj in any odd period,
and becomes ki in any even period.

If k§ is odd, then again in the second period, case (c) cannot happen and the bunch
size becomes kj. Given that the difference between the number of investments and non-
investments in the second period must be odd, the cumulative difference between the number

16



of investments and non-investments becomes even again by the end of the second period.
Therefore, in the third period, only cases (a), (b), and (c) can happen. This alternating
pattern between kg and k] repeats recursively. The bunching pattern becomes kg, k7, kg, 7 ...

Theorem 2 and its corollaries imply that the information being revealed in any one period
cannot be too large: either herding of all players (and thus no information is revealed) or
bunching of fixed sizes (and thus only the players in the bunch reveal their signals) occurs.
If too many players reveal their signals in one period, then any one of them will have a
strong incentive to wait for the signal revelation before deciding whether or not to invest in
the next period. At the same time, the information revelation cannot be too small either;
otherwise no player would wait for the revelation. To summarize, the information revealed
in any period should be just the right amount to sustain the described equilibrium. Note
that the equilibrium bunching sizes kj and k] are independent of the total number of players
n.

4.3 Other Asymmetric Pure Strategy PBE

The equilibria characterized in Theorem 2 are not the only asymmetric pure strategy equilib-
ria in the game. There are other equilibria, which take similar forms but with more bunching.
It turns out that when the difference between the numbers of good signals and bad signals
revealed before period t is at least 2, i.e., d; > 2, herding is not the unique equilibrium be-
havior; bunching may also occur in this situation. The equilibrium characterized in Theorem
2 has the least bunching; all other equilibria we will characterize in this subsection will have
more bunching. We first have the following lemma.

Lemma 8 For any fized 0 E_[O, 1), there exists a d > 0, such that k}; is finite when d; < d,
and k}; is infinite when d; > d.

Proof Given 9, k) is finite only if
m(1|d; +1,0) < IR (oo|d; + 1,0),
that is, when
Pr(Gld; +1,0) ¢ + Pr(Bld; + 1,0) 5 < 0 Pr (G|d, + 1,0) 7.

Rearranging, we have

Pr (B|d; + 1,0)
Pr (G|d, + 1,0)

TG T < 0TG.

Pr(B|d¢+1,0) . - . . .
Pr(Gldit10) 1S Increasing in d; and converging to 0, there exists an upper bound for d;

for the above inequality to hold. Define this upper bound as d.

Since
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When the above inequality does not hold, k) = co. (c.f. Lemma 5.) This concludes the
proof of this lemma. m

We can now characterize the alternative asymmetric equilibria in the following theorem.

Theorem 3 Suppose (A1), (A3) and (5) hold. Then all asymmetric pure strategy PBE have
the following recursive properties. Let dy = 0. In period t, t =1,2, ...,

(a) if dy < 0, Herding of No-Investment occurs, and the game ends;
(b) if d, = 0,1, and 7y > K, then Bunching of size kjj, occurs;

(c)ifd, =2,...d, and i, > kj,, then Bunching of size kj, is one equilibrium behavior,
and Herding of Investment is another equilibrium behavior;

(d) if dy = 0,1, and 7y < K}, then the Last Bunching of size f, occurs;

(e) if dy > 2, and 1, < kj,, then the Last Bunching of size 1y is one equilibrium, and
Herding of Investment is another equilibrium.

When d; < 2, the strategies in this equilibrium are the same as those in Theorem 2.
When d; > 2, there are multiple equilibria in this “subgame”. Bunching is one equilibrium,
while herding is another equilibrium. When bunching occurs, it reveals the private signals
of the players in the bunch. Meanwhile, herding reveals no private information. Therefore,
the outcomes of the equilibria in Theorem 3 are more informative than those in Theorem 2.

5 Comparative Static Analysis

In this section, we will perform a comparative static analysis on the discount factor, the
probability of having an underlying state G, and the number of players.

5.1 The Discount Factor

In this subsection, we investigate the effect of  on the asymmetric equilibrium strategies. We
compare our asymmetric equilibria with the equilibrium in the following fixed timing model.
In this fixed timing model, only one pre-specified player makes a decision on investment in
any one period. If a player does not invest in his specified period, he will have no other
chance to invest.

We show that when players become infinitely patient (i.e., 6 = 1), the outcome in one of
our equilibria resembles that in the fixed timing model. In the equilibrium, only one player
makes a decision in each period (i.e., the bunch size is one); herding of investment occurs
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when there are two or more net good signals, and herding of no-investment occurs when
there are zero or negative number of net good signals. We also find that this is the least
efficient equilibrium among all asymmetric pure strategy equilibria in this case (i.e., § = 1).
In the most efficient equilibrium, players no longer herd on investment. Finally, we show
that most of the above results can be obtained when ¢ is close to 1.

We first have the following lemma.

Lemma 9 Suppose (A1), (A3) and (5) hold. For a given d, if § increases, the bunching size
k) decreases.

Proof From Figure 1, the curve of R (k|d + 1,0) shifts upward as J increases, intersecting
m(1]d +1,0) at a smaller k. m

An increase in 0 means that the players become more patient and waiting is less costly.
So in order for a more patient player in the bunch to invest right away (instead of waiting
one period for more signals to be revealed), the number of signals to be revealed needs to be
smaller. This can be seen from (IC1). Furthermore, (IC3) becomes easier to satisfy when ¢
increases.

Now we discuss the special case of no discounting, i.e., 6 = 1.

Lemma 10 Suppose (A1), and (A8) hold. If § = 1, then k) = 1, for every d > 0. In this
case, bunching occurs for every d > 0 is an equilibrium.

The proof for this lemma is straight-forward: the only value satisfying the bunch size
determination inequalities (IC1) and (IC3) is k; = 1. When § = 1, there is no cost in
waiting one period for more revealed signals. In any given period, it is not an equilibrium
that every player waits (i.e., not invest). It is also not an equilibrium that more than one
player are in the bunch (to make the invest/not invest decision), since one of the bunch
members would wait. The only equilibrium behavior is for the players to reveal their signals
one per period until herding occurs. Nevertheless, there are still multiple asymmetric pure
strategy equilibria. This is because when d > 2 in a given period, bunching with a bunch
size of 1 is one equilibrium behavior, and herding is another equilibrium behavior. Theorem
2 and Theorem 3 characterize all of the asymmetric pure strategy equilibria.

In the equilibrium with the least bunching, its outcome nests the equilibrium outcome
in the fixed timing model. Since d; = 0, bunching of size kj = 1 occurs in period 1. If the
bunch member does not invest and reveals that his signal is b, then dy = —1 and herding
of no-investment occurs and the game ends. If he invests and reveals that his signal is g,
then dy = 1. In this case, ki = 1 and bunching of size 1 occurs in period 2. In period 2,
if the revealed signal is b, then d3 = 0 and bunching of size 1 occurs again in period 3. If
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the revealed signal is g, then d3 = 2 and herding occurs in this equilibrium. Since § = 1,
players do not discount their future payoffs, players in herding can invest one player per
period. This outcome corresponds exactly to the fixed timing model as in Banerjee (1992)
or BHW (1992). In a fixed timing model, players make decisions sequentially according to
a fixed order, and only one player can invest in each period. Therefore, our asymmetric
pure strategy equilibria naturally include the equilibrium from the fixed timing model. A
similar link from the symmetric mixed strategy equilibrium to the fixed timing model is not
possible.

The above equilibrium has the least bunching (and thus the most herding) among all
co-existing asymmetric pure strategy equilibria. Because the information revealed is the
least, this equilibrium is the least efficient. We now consider the equilibrium with the most
bunching. When d; < 1, players’ behavior is exactly the same as in the above equilibrium.
However, when d; > 2, bunching of size 1 occurs (instead of herding) and private signals are
still being revealed. Herding of investment never occurs. The total amount of information
revealed by this equilibrium is the most. Theorem 3 above characterizes this most efficient
equilibrium as well as other less efficient equilibria.

The above results are summarized in the following proposition.

Proposition 1 Suppose (A1), (A3) and (5) hold. If § = 1, we have the following results.

(1) The asymmetric pure strategy equilibria described in Theorem 2 coincide with the
equilibrium in the fived timing model. In these equilibria, one player makes a decision in
each period.

(2) The asymmetric equilibria described in Theorem 3 have less herding and are more
efficient than the equilibrium described in Theorem 2. Therefore, all pure strateqy asymmetric
equilibria are at least as efficient as the equilibrium in the fixed timing model.

(8) The most efficient equilibrium has bunching (of size 1) in every period whenever
d > 0. In this case, herding of investment never occurs.

The above properties are not specific to the case of § = 1. In fact, most properties go

through as long as ¢ is close enough to 1. Define 5= % < 1. As long as § > 5, the

bunch size for any d > 0 is always 1. This is because § > 5 guarantees k;_, = 1, and £} is
increasing in d. We have the following proposition.

Proposition 2 Suppose (A1), (A3) and (5) hold. Suppose also that § € [5,1). Then k=1
for any d > 0. In this case, (2) and (3) in Proposition 1 remain valid. In (1), the players’
tnvestment decisions and the resulting equilibrium outcome are still the same as in the fixed
timing model. But in the asymmetric pure strateqy equilibria in our model, the investment
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decisions are made earlier than in the fized timing model where players have to wait for their
pre-specified periods to make their decisions.

When 6 < 1, an equilibrium corresponding exactly to the fixed timing model cannot
be generated, since players are no longer indifferent to investing in later periods. Herding
of investment must now take place in the same period. Nevertheless, the least efficient
equilibrium reveals exactly the same amount of information as the fixed timing model. Since
players are not forced to wait for their turn to invest in our model, our asymmetric equilibria
are more efficient than the equilibrium in the fixed timing model.

In the next subsection, we investigate the effect of ¢, the prior belief on the underlying
state being GG, on players’ equilibrium behavior.

5.2 The Probability of a Good State

We first show that the bunch size is increasing in the probability of a good state, q.
Lemma 11 If q increases, the bunching size k}; increases.

Proof See appendix. m

An increase in ¢ implies that the underlying state is more likely to be good. So in order
to induce players outside the bunch but with good signals to wait until the next period as
required by the equilibrium condition, the number of signals to be revealed in that period
must be larger.

Similarly to the last subsection, when ¢ is close to zero, the bunching size for any d =
0,...,n — 2 shrinks to one. In this case, the equilibria in Proposition 2 continue to be valid.
Therefore, the implications for efficiency and the comparison with the fixed timing model
continue to hold. If ¢ is relatively small or 4 relatively large such that k; = k] = 1, and
k3 > n — 2, then the equilibrium outcome in an asymmetric equilibrium coincides with the
fixed timing model. This is because when d = 2, all remaining (at most n — 2) players with
signal g would invest in either model. We have the following proposition.

Proposition 3 Suppose (A1), (A3) and (5) hold. Suppose also that k}; = 1 for every d =
0,...,n—2. Then (2) and (3) in Proposition 1 remain valid. If k§ =k} =1 and k5 > n — 2,
then the equilibrium outcome resembles the fixed timing equilibrium in the sense that any
given player with signal g makes the same investment decision in the two models.

Note that in the above proposition, players with signal b may make different decisions.
In the fixed timing model, the first player does not invest in the first period if his signal is b,
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and cannot invest later as he is not allowed to. In our model, however, he will invest (later)
if it is revealed that the good signals outnumber the bad signals in the game.

5.3 Upward Independence of n

The strategies in an asymmetric pure strategy equilibrium for the players may be invariant
to the arrival of new players. Suppose that there are at first n players. We claim that these
players’ asymmetric equilibrium strategies can be part of the new asymmetric equilibrium
when the number of players increases to n’. In the new game with n’ players, the old players
continue to use their old strategies until the period when the old last bunch was formed.
The new players are arranged to fill up the last bunch in the old game if it was originally
undersized, and to form new bunches afterwards. This constitutes a new asymmetric equi-
librium. In this new equilibrium, players from the old game make decisions first. We have
the following proposition.

Proposition 4 Suppose that there are n players and that (A1), (A3) and (5) hold. Suppose
also that these players use the equilibrium strategies described in Theorem 2 (or Theorem
3). Suppose now new players are added and it becomes a game of n' > n players. In this
new game, there exists an asymmetric pure strateqy PBE as is described by Theorem 2 (or
Theorem 3) in which the players from the old game continue to use their old equilibrium
strategies until the period the last bunch in the old game was formed.

First note that if (5) holds for a smaller n, it will hold for a larger n. Second, in the
new equilibrium, unless herding occurs (in which case the new players will herd with the old
players), the new players do not make investment decisions until the period the last bunch
in the old game is formed. Last, the strategies for the old players during the period when
the last bunch in the old game was formed vary from case to case. In all cases, the strategies
of the old players with signal ¢ remain the same in the new game during the period when
the last bunch in the old game is formed. In that period, a player with signal g in the last
bunch would invest in the old game; he still finds it optimal to invest in the new game, even
though the bunch size may have grown from an undersized one to a full size one. He does
not want to wait (i.e., not invest) in that period, as the size of the bunch provides the right
incentive for him to invest. The strategies for the old players with signal b in the last bunch,
however, may change from investing to not investing if they follow the strategies in Theorem
3. Again, the full bunch size now provides incentive for them not to invest. (They will invest
in the old game because the bunch was undersized and could not provide enough incentive
for these players to wait.)

This property of the asymmetric pure strategy equilibria provides an easy way to handle
situations where players may arrive later in the game. Earlier players are not affected by
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these players until the old players are used up in the bunch forming process, since in the
new equilibrium the new players do not make decisions until they become part of a bunch.
(They do act if herding occurs, but the game is over then.) This property is valid for the
asymmetric pure strategy equilibria only. It is obviously not valid for a symmetric mixed
strategy equilibrium, since the probability of investment in the randomization would depend
on the total number of players in the game.

Note that there are other equilibria in the new game. The new players could make
decisions first, followed by the old players. Mixing the players in any order would also be an
equilibrium.

We have also investigated the effect of signal precision p on the bunching sizes and found
that the relationship is ambiguous. An increase in p makes additional signals more valuable
and thus increases the incentive for a player to wait. At the same time, it makes existing
signals more precise, and thus decreases the incentive to wait. The trade-off of these two
effects is ambiguous.

6 Welfare Analysis

6.1 Comparison with Chamley and Gale (1994)

In this subsection, we will compare the welfare in a symmetric mixed strategy equilibrium
in Chamley and Gale (1994) with an asymmetric pure strategy equilibrium in this paper. In
Chamley and Gale (1994), a player cannot invest if he does not have an investment option.
To facilitate a proper comparison, in this subsection only, we modify our model and do not
allow any player with signal b to invest.

The welfare is defined as the sum of the total expected payoffs of all the players. Since
a player with signal b cannot invest, his expected payoftf is zero. Therefore, we only need to
compare the total expected payoffs for players with signal g.

In a symmetric mixed strategy equilibrium, players with signal ¢ are to mix between
investing in period 1 and waiting. Therefore, their expected payoffs must be exactly equal
to the payoff from investing in period 1, which is equal to m(1]|g). Therefore, the total ex
ante expected payoffs, defined by W*™, can be simply expressed as

W™ = nPr(g)r(1]g). (6)

Now consider the asymmetric pure strategy equilibria in our paper. The equilibria in
Theorem 2 and Theorem 3 still apply when players with signal b are not allowed to invest.
This is because these players never invest before all players with signal g have invested and
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not allowing them to invest would not affect the information updating process for those
players with signal g.

In this modified game, there are multiple equilibria, but they all start with bunching of
size k§ in period 1. In this period, players outside the first bunch strictly prefer waiting
to investing, implying that they have higher expected payoffs waiting for the kj signals to
be revealed. Investing in period 1 yields 7 (1|g) for each player with signal ¢ in the bunch.
Waiting (i.e., not investing) for each player with signal g outside the bunch yields at least
dR (k3|g), which can be obtained by using the myopic best response function. This myopic
best response function is used by the bunch members in period 2 if bunching occurs. Again,
a player with signal ¢ outside the second period bunch would have strictly higher payoff.
Following this logic, we can see that a player with signal g receives higher payoff if he is
in a later bunch. The sum of the total expected payoffs in an asymmetric pure strategy
equilibrium, denoted by W, satisfies the following:

* *

k —k
W > nPr(g) |-r(Llg) + -

O5R (K
n R( 0’9) )
or,

W > Pr(g) [kgm(1lg) + (n — ko) 0R (kglg)] - (7)

We have the following proposition.

Proposition 5 Any asymmetric pure strateqy equilibrium Pareto dominates the symmetric
mixed strategy equilibrium.

Proof As implied by (IC3), when d = 0, we have 7(1]g) < 0R (k§|g). Comparing (6) with
(7), it is immediate that W > W*™. Players in the first bunch have the same payoff as
in the symmetric mixed strategy equilibrium. Players outside the first bunch have strictly
higher payoff as in the symmetric mixed strategy equilibrium. This completes the proof. m

Note that the right hand side of (7) is the sum of payoffs when the players outside the first
bunch use the myopic best response function in the second period. As we mentioned earlier,
if bunching occurs in period 2, some players would receive higher payoffs than R (kj|g),
the payoff from the myopic best response. Whenever bunching occurs, players outside that
bunch would get higher payoffs than players inside the bunch. The equilibrium characterized
in Theorem 2 is the worst asymmetric pure strategy equilibrium in terms of efficiency and
discounted payoffs, since it has the least bunching. Nevertheless, it is still more efficient than
the symmetric pure strategy equilibrium.

6.2 Welfare Analysis for T'= 2

In the analysis until now, we assume that the time horizon is long enough, i.e., " > n + 1.
In Theorem 1, players adopt the symmetric pure strategies, and the game ends in at most 2
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periods. In Theorem 2 and Theorem 3, players adopt asymmetric pure strategies, and the
game ends in at most n + 1 periods.

In this subsection, we will perform the welfare analysis in a game with 7" = 2. The
analysis for the general game is much more complicated, but the results should remain
qualitatively the same.

For the symmetric pure strategy equilibrium in Theorem 1, restricting attention to two
periods is not binding, as the game will end in two periods anyway. For the asymmetric pure
strategy equilibrium of Theorem 2, the restriction changes the equilibrium strategies of the
players not belonging to the first bunch. Now only one bunch can be formed (in period 1),
and all players who have not yet invested in period 1 must decide whether or not to invest
in period 2. The equilibrium bunching size (in period 1) is again determined by (3), and is
also independent of the total number of players n.

Define the social welfare as the sum of total payoffs for all players, written as W (k,n),
where k is the bunch size (i.e., the number of players making decisions) in period 1. The
social welfare function is then given by

W(k,n) = Pr(g)[kr(1lg) + (n — k)R (k|g)] (8)
+Pr(b) 5 [kR (k — 1[b) + (n — k) R (k|b)] .

This social welfare function is based on the fact that there are k players in the bunch in
period 1 and the rest of n — k players will not invest in that period. A player in the bunch
will invest in period 1 if his signal is g, and will not invest if his signal is b. In the latter
case, he will make his investment decision in period 2 after observing the actions (and thus
inferring the signals) of the rest (kK — 1) bunch members. A player outside the bunch will
make his investment decision in period 2 after observing the actions (and thus inferring the
signals) of all the players in the bunch.

Bunching in period 1 has three effects. The first effect is that a player in the bunch
has only his own private signal to make his investment decision, and thus the decision is
less informed. The larger the bunch size is, the more aggregate efficiency (on these bunch
members) the society loses. The second effect is that a bunch member provides information
to the players outside the bunch through his action. In period 2, players who have not
invested can observe the actions of these bunch members and infer their signals. The larger
the bunch size, the more informed these players become, and thus the society gains more
aggregate efficiency (on non-bunch-members). The third effect is discounting. Investing
early avoids the effect of discounting in payoffs. Trading off these three effects, there exists a
socially optimal bunching size, which is denoted by £*° (n). In what follows, we will compare
this bunching size with the equilibrium bunching size. Note that the equilibrium bunching
size in this two-period model is exactly the same as the equilibrium bunching size £ in the
many period model. This is because the trade-off for a player inside and outside the bunch
is exactly the same.
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In the following analysis, we will first consider the case of finitely many players, and then
consider the limiting case when the number of players goes to infinity.

6.2.1 Finite Number of Players

Our first result is that the socially optimal bunching size is weakly greater than the equilib-
rium bunching size.

Proposition 6 ki < k* (n).

Proof See appendix. m

This proposition is intuitive. In an equilibrium, players in the bunch consider their own
payoffs only; they do not consider the (positive) externality effect of their actions. Starting
with the equilibrium bunch size, a social planner would like to add weakly more players into
the bunch. This is because one more player in the bunch now provides extra information to
other players (and thus improves the payoffs of those players). But this positive externality
was not considered in the equilibrium bunch size determination.

Note that the equilibrium bunch size kj is independent of the total number of players n,
while the socially optimal bunch size £*° (n) depends on n. In the following proposition, we
show that when the number of players increases, social welfare maximization would require
the bunching size to be larger.

Proposition 7 k% (n) is an increasing function of n.

Proof See appendix. m

The intuition for this proposition is as follows. First fix the bunch size in the first period.
When the number of players becomes larger, more players depend on the information revealed
in the first period. Therefore, it is socially desirable to reveal more information by increasing
the bunch size.

6.2.2 Infinite Number of Players

In this subsubsection, we will examine the socially optimal bunching size when the number
of players goes to infinity.

Proposition 8 lim,,_,. k% (n) = cc.
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Proof See appendix. m

The above proposition shows that the bunching size must go to infinity when the number
of players goes to infinity. The intuition is that when there are a large number of players
making decisions in period 2, relying on the signals from the bunch in period 1, the socially
optimal bunch size must also be large so that the information provided by the bunch is
sufficiently precise. A small increase in the precision will benefit a large number of players
in period 2.

Even though the bunch size goes to infinity when n goes to infinity, the following propo-
sition shows that the percentage of players in the socially optimal bunch goes to zero as n
goes to infinity.

ksu(n) _
n

Proposition 9 Suppose that w(1|g) < 0R (co|g). Then lim,,_,

Proof See appendix. m

This proposition states that the social planner needs only a small percentage of the players
to be in the bunch in period 1 when the total number of players is large. The logic behind
this is as follows. Even though the percentage of players in the bunch is small, the total
number is still large and going to infinity as n goes to infinity. The players in the bunch can
provide very precise information for the players outside the bunch as the bunch size is large.
Meanwhile, the players in the bunch take up only a small proportion of the total population
of players, and their payoffs have little effect when doing the averaging. The socially optimal
welfare is thus achieved.

6.3 Welfare Analysis for Heterogeneous Players

In this subsection, we consider three variations of the original model by introducing three
types of heterogeneities for the players — heterogeneous discount factors, heterogeneous costs
of acquiring signals, and heterogeneous risk preferences. In what follows, we discuss these
three cases one by one. We argue that when the heterogeneities are small, the asymmetric
pure strategy equilibria characterized in Theorem 2 and Theorem 3 are still valid. When
players are heterogeneous, there is one unique welfare maximizing asymmetric pure strategy
equilibrium. Even though other asymmetric equilibria remain valid, this welfare maximizing
equilibrium could become a natural way for the players to coordinate on their strategies.

6.3.1 Heterogeneous Discount Factors

Suppose that the discount factors are slightly different across the players, and can be ranked
as 07 < 0y < ... < d,. Suppose that the differentiations are small, such that for each d, there
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is a unique k£ satisfying (3) for all i = 1, ..., n:
iR (k;—1ld+1,0) < m(1|d+ 1,0) < 0;R (kj|d+ 1,0).
Then Theorem 2 and Theorem 3 are still valid.

To maximize the social welfare, a social planner would coordinate the players in such
a way that the least patient players make decisions first. For example, the social planner
would choose the most impatient kg players, i.e., players with d; to dxs, to form the bunch
in the first period. If bunching occurs again in period 2, then the remaining most impatient
players will be chosen, etc. If every player’s discount factor is different, this coordination is
unique and maximizes the welfare.

6.3.2 Heterogeneous Costs of Acquiring Signals

In the appendix, we examine a variation of the original model by introducing a cost of
acquiring the private signals by the players. We show that our pure strategy equilibria are
robust to such a cost when it is small.

Suppose that the costs of acquiring signals are heterogeneous across the players, and can
be ranked as ¢; < ¢; < ... < ¢,. Suppose that all these costs are small so that the asymmetric
equilibria still hold, that is, the strategies in Theorem 2 and Theorem 3 are still valid. In
this case, the social planner would choose the players with the lowest costs to form the first
bunch, the players with the next lowest costs to form the second bunch, and so on. Again,
if the costs are all different, then the welfare maximizing equilibrium is unique. This is also
a natural way to coordinate the players in the asymmetric equilibria.

6.3.3 Heterogeneous Risk Preferences

In the original model, the players are assumed to be risk neutral. If they are slightly risk
averse, Theorem 2 and Theorem 3 are still valid. The bunch size £ is still determined by
(3):

where m; and R; now represent the expected payoffs of player i.

Suppose that the players’ degree of risk aversion can be ranked. The players who make
decisions early have less information, and thus incur higher risk. This is because the un-
derlying states are more uncertain when there is less information. This can be seen from
Var (Y) > E,Var (Y|z).” This implies that the expected risk (as measured by the vari-

9This is because Var (Y) = E(Y2) — (EY)?, E,Var (Y|z) = E, [E (Y2|z) — (B (Y|2)?| = E(Y?) -

E, (E(Y|z))®>. By Jensen’s inequality, we know (EY)* = (E, (E (Y|x)))* < E, (E(Y|z))*. Therefore,
Var (Y) > E,Var (Yl|x).
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ance) is lower when more signals are revealed. When there are more signals, the players can
predict the states more precisely, and the optimal decisions by the players involve less risk.
Therefore, when players are slightly risk averse, the social planner would choose those who
are less risk averse to bunch earlier to maximize welfare. This would also be a natural way
for the players to coordinate in the asymmetric equilibrium.

7 Applications

Our model can be applied to the adoption of new products. New products, such as new
iPhones, new albums, or new movies, are of unknown quality. Each consumer may obtain
some private information from various kinds of sources, such as advertisements, word of
mouth, or personal investigation. Some of these consumers may decide early on whether or
not to purchase these new products. (These consumers can be regarded as the first bunch.)
Meanwhile, other consumers may decide to wait regardless of their private information; they
wait for the sales figures, etc., and some of them make their decisions then. When the sales
figures are very good relative to people’s expectation — for example, the new iPhones were
out of stock everywhere on the first day of sale, Michael Jackson’s album "thriller" reached
100 million copies, or the box office of "Avatar" was record high during the opening weekend
— then a huge wave of consumers may follow suit (i.e., herding). On the contrary, if the
sales figures are really bad, then few may buy the new product, which may then disappear
from the market soon (herding of no-investment). If the sales figures are just moderate,
then another group of consumers may decide whether or not to buy the new product (i.e.,
bunching again), and so on and so forth.

In the above application, the sales record reveals how many consumers have purchased
the new product. Each consumer has some prior anticipation about how many people should
be in the first bunch (who make decisions first). The actual number of units sold (or, in the
case of supply shortage, the number of people who want to buy) then represents the number
of players with good signals in the bunch. If this number is relatively large, e.g., if we see
many people queuing outside the Apple Store at 3:00am in the morning, then we can infer
that the number of good signals outweighs the number of bad signals by a significant margin
in the bunch. In this case, the consumers may herd and buy. However, if the consumers
see relatively few people buying the new product, they infer that there are many more bad
signals than good signals in the bunch. In this case, they herd and will not buy the product.
Meanwhile, if the sales figure is mediocre, then it is likely that another subgroup of consumers
will make their purchase decisions.

In another application, we consider the investment decisions when the economy is highly
uncertain, such as when we are near the end of a recession. In that situation, investors
are highly unsure about the state of the economy, and a signal (either good or bad) is
very valuable. We usually observe that a group of investors, such as big investment banks,
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decide early; they either invest or do not invest, depending on the information they receive.
Other investors just stay on the sideline. Then herding may occur, if many investors from
this first bunch invest (or not invest). When neither of the sides in the bunch dominates,
another bunch of investors forms, etc. An important implication from our analysis is that it
is not the amount of investments relative to the total amount of possible investments that
matters. It is the amount of investments relative to the equilibrium bunch size that matters.
Financial analysts have long incorporated the supposed trading volumes versus the actual
trading volumes (in addition to the market prices) in their analysis. In IPO offerings, the
expected subscription rate versus the actual subscription rate plays an important role in the
analysis. In a sense, this practice reflects some of the intuitions we obtain in this paper.

The recent popularity of group discount websites, especially Groupon.com, provides a
possible venue to test the equilibrium behavior of the buyers. On these websites, the number
of units sold is posted and instantly updated. Buyers are sometimes unsure about how good
a deal a coupon offers. They may have some private information. But from the sales figure,
they can see the actions of other buyers and infer useful information. Here, the total number
of potential buyers could be difficult to obtain, but the bunch sizes could be calculated if we
know other parameters of the model. Asymmetric equilibria are useful when we do not have
precise information on the total number of players.

8 Conclusion

In this paper, we characterize the pure strategy equilibria when players with private informa-
tion decide not only whether or not to make an investment in a risky environment, but also
when to make the investment. We show that a unique symmetric pure strategy equilibrium
exists when players are impatient, or when the number of players is small. Whenever these
conditions are not satisfied, asymmetric pure strategy equilibria exist. In these equilibria,
players either herd or bunch in any given period. Bunching can occur only when there was
bunching in all previous periods. When herding occurs, the game ends. In these equilibria,
some players make decisions early and some later, regardless of their signals. Later players
learn information from the early decision makers and can make more informed decisions, but
their payofts are discounted.

We focus on the asymmetric pure strategy equilibria in this paper. These asymmetric
equilibria exhibit the property of bunching. In bunching, a bunch of players make decisions
while the rest of the players do nothing regardless of their signals. When players are very
patient, the asymmetric equilibria enclose those in a comparable fixed timing model from
the literature. When the discount factor is equal to 1, the least efficient equilibrium is the
one resembling the fixed timing model, while in the most efficient equilibrium, the bunch
size is always equal to 1 and herding of investment disappears. Bunch sizes are shown to be
independent of the total number of players. The equilibrium asymmetric pure strategies are
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invariant to adding more players to the game. All these properties are unique to asymmetric
pure strategy equilibria. These equilibria are shown to be more efficient than symmetric
mixed strategy equilibria.

The analysis in this paper has many applications. It applies to the adoption of new
products, the issuing of IPOs, investments in the financial markets, etc. When people make
decisions in a dynamic setting, the asymmetric equilibria in our model predict that they
are likely to make decisions in groups. This is also true when players do not initially have
private information and must pay a small fee if they want to acquire a private signal. Thus,
the equilibria characterized in this paper are robust to small fees for information acquisition.

In this paper, the players interact with each other through the revelation of their private
signals; the actions they take do not affect each other’s payoff directly. When a player’s
payoff is affected directly by other players’ actions, the analysis would depend on whether
their actions are complements or substitutes. This will be explored in our next project.

9 Appendix

9.1 Costly Signal Acquisition

In this subsection, we investigate whether the equilibrium strategies analyzed in the main
text are robust to a small cost of acquiring information. Instead of giving each player a signal
at the beginning of the game for free, now suppose that each player has to pay a small signal
acquisition fee ¢ > 0 to get his signal. Players can choose whether and when to acquire this
signal, and then decide whether and when to invest. Since future payoffs are discounted, it is
obvious that players will not acquire their signals until the period in which they are about to
make their investment decisions. That means only those players in the bunch of the current
period acquire their signals in that period.

In what follows, we shall argue that the equilibrium described in Theorem 2 continues to
be an equilibrium when c¢ is small enough. The bunch sizes remain the same as in Theorem
2. Apart from the fact that the players now pay an information acquisition fee (in the period
that their bunch is about to act), the equilibrium strategies for the players are exactly the
same as in Theorem 2.

Consider a player in the first bunch of ky players. If he acquires the signal in period 1,
his expected payoff is
Pr(g) w(1]g) + Pr (b) 6R (ko — 1|b) — ¢, (9)

that is, with probability Pr(g), he gets signal g and invests, and his expected payoff is
7(1|g); with probability Pr (b), he gets signal b and does not invest, and his expected payoff
is 0R (ko — 1|b), since in the next period he uses the one-period best response to the signals
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of the other ky — 1 players in his bunch.

Now suppose that he deviates by not acquiring the signal in period 1. Then in period 1,
he does not invest. In period 2, if the difference between the numbers of good signals and bad
signals in the first bunch dy > 1, herding of investment occurs. The player will invest with
all remaining players regardless of the signal he may receive by paying the fee. Therefore, he
will not acquire his signal in this case. Similarly, if do < 0, herding of no-investment occurs,
and he will not pay the fee to acquire his signal. If dy = 0 or dy = 1, herding does not occur.
In these cases, he will pay the cost to acquire his signal as his optimal action depends on it.
He will invest if his signal is ¢, and not invest if his signal is b.

To summarize, if in the first period this player does not acquire his signal, then in the
second period he will best respond to the kg — 1 signals from the first bunch. (Note that
when herding occurs, his best response remains the same regardless of his signal.) Therefore,
we can express this player’s expected payoff as

Pr(g)dR (ko — 1|g) + Pr(b) 0R (ko — 1|b) — cPr(dy = 0 or dy = 1). (10)

It is clear that when c is sufficiently small, the requirement that the player’s payoff in
(9) is greater than the payoff in (10) is equivalent to (IC1), because those terms with ¢ go
to zero as ¢ goes to zero. When this condition holds, it is optimal for the player (who is in
the first bunch) to acquire the signal in period 1.

Similarly, for a player not in the first bunch, it is optimal not to invest and not to acquire
the signal in period 1. This is because his expected payoff from not acquiring the signal in
period 1 is

Pr(g) 0R (kolg) + Pr(b) 6R (ko — 1|b) — ¢Pr(de =0 or dy = 1), (11)
and his expected payoff if he deviates (and thus acquires his signal in period 1) is
Pr(g)m(1|g) + Pr(b) 0R (ko|b) — c. (12)

When ¢ is sufficiently small, the condition that the player’s payoff in (11) be greater than
the payoff in (12) is equivalent to (IC3). When this condition holds, it is optimal for the
player (who is not in the first bunch) not to acquire the signal in period 1.

We thus have the following theorem when c is sufficiently small, which is parallel to
Theorem 2. It shows that the equilibria in our model are robust to introducing a small cost
of acquiring signals.

Theorem 4 Suppose (A1), (A3) and (5) hold and c is sufficiently small. There exists an
asymmetric pure strateqgy PBE, which has the following recursive properties. Let dy = 0. In
period t, t =1,2, ...
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(1) if d; > 1, Herding of Investment occurs, and the game ends;
(2) if d; < 0, Herding of No-Investment occurs, and the game ends;
(3) if dy =0, and 1y > k§, then Bunching of size ki occurs;

(4) if dy =1, and 1y > ki, then Bunching of size ki occurs;

(5) if dy =0, and ny < ki, or if dy = 1, and ny < k¥, then the Last Bunching of size f;
occurs.

9.2 Equilibrium Analysis when (A1) and (A3) Fail
In this subsection, we shall consider the situations where the assumptions in Theorem 2 do
not hold. We first consider the case when (A3) does not hold. Let

7 (1) = Pr(G)ng + Pr(B)mp > 0. (A3’)

This implies that unconditional on any signal, it is profitable to invest. Observe that (A3’)
implies (Al). The results when (A2) and (A3’) hold are similar to Theorem 2 and are
summarized in the following theorem.

Theorem 5 Suppose (A2), (A3’) and (5) hold. There exists an asymmetric pure strategy
PBE, which has the following recursive properties. Let d; = 0. In period t, t = 1,2, ...

(a) if d; > 0, Herding of Investment occurs, and the game ends;

(b) if dy < —1, Herding of No-Investment occurs, and the game ends;

(c)if dy = —1, and ny > k* |, then Bunching of size k*, occurs;

(d) if dy =0, and 1y > k§, then Bunching of size ki occurs;

(e) if di = —1, and 7y < k*, orif dy = 0, and 1y < k, then the Last Bunching of size

Ny OCCUTS.

In the above theorem, we have similar bunching patterns as in Theorem 2, except that
now unconditional on any signal, players have non-negative investment payoffs. Basically, in
this case, we need one fewer good signal than in Theorem 2. Other aspects of the equilibrium
strategies are the same.

We now consider the case where (A2) holds, i.e., w(1|b) is negative, but (A1) does not
hold, i.e., m(1]|g) is non-positive. The implication is trivial: no one will ever invest, and
Herding of No-Investment is the only outcome.

Finally, we consider the case where (A1) holds, i.e., 7(1|g) is positive, but (A2) does not
hold, i.e., w(1|b) is non-negative. In this case, Herding of Investment occurs in ¢ = 1.
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9.3 Proofs

Proof for Lemma 1.

In this proof, we abuse the notations by using (N, 41, Ni+1) to replace (Ny; +r, Npy + ki — 1),
in order to make the equations short.

R(kt|Ng,t, Not)

ke
= ZW ((BR(Ngt+1, No 1) [Ng 1, No 1) Pr(Ng 1, Nosga|Ngt, Not)
r=0
kit
= Z ZW ((BR(Ng41, Not1) [ Ng 1, Npit1,8) Pr(Ngss1, Nogr1, S| Ngs, Noy)
s=g,b r=0
k¢
< Z ZW (BR (Ng,tJrl; Ny, 5) |Ng,t+17 Nyiy1,5) Pr (Ng,t+17 Ny 41, 3|Ng,ta Ny y)
s=g,b r=0

— R(k}t —|— 1|Ng,t> Nb7t)

This completes the proof for the first part of the lemma.

When k; goes to infinity, there will be infinite number of signals to be revealed in period
t. Given the underlying state, the signals are i.i.d. According to the Law of Large Numbers,
the proportion of good signals converges to its expected value with probability one, that is,
it converges to p in state GG, and 1 — p in state B. Note that p > % Therefore, in period
t + 1, when the state is GG, the total number of good signals will exceed the total number of
bad signals by any given finite number with probability one. Seeing this, the best response
will always be a = 1, that is, to invest. Likewise, in period ¢ 4+ 1, when the state is B, the
total number of bad signals will exceed the total number of good signals by any given finite
number with probability one. Seeing this, the best response will always be a = 0, that is,
not to invest.

Therefore, the expected payoff is Pr(G|Ny ¢, Noit)7e + Pr(B| Ny, Npt)0. This completes
the proof for the second part of the lemma.

Proof for Lemma 2.
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We have

7(1]d,0) — R (k|d,0)

— (Z— Z >7r(1|d—1—7",k—T)Pr(d+r,k:—r|d,0)

r=0 r+d>k—r
= Y a(lld+rk—r)Pr(d+rk—rld0).
r+d<k—r

Since 7(1|d+r, k—r) is increasing in d and each w(1|d+r, k—r) is negative when r+d < k—r.
Also,

Pr(d+r,k —r|d,0)
= Pr(r,k —r|G)Pr(G|d,0) + Pr(r,k — r|B) Pr(B|d,0)
= P A-p) =P (1—-p)* ] Pr(B|d.0) +p"(1 - p)" .

When r+d < k—randp > 3, p" (1 —p)" —p"(1 —p)* " > 0. And recall that Pr(B|d,0)
is decreasing in d. Thus, Pr(d + r, k — r|d,0) is decreasing in d and it is positive.

Thus, each term after the summation sign is negative and decreasing in d in absolute
value. Also, the range for r such that r + d < k — r is shrinking as d increases. Therefore,
7(1|d,0) — R (k|d,0) is increasing in d.

Since
7(1|d,0) — 0R (k|d,0) = (1 — §)w(1]d,0) + d[x(1|d,0) — R (k|d,0)],

and 7(1|d,0) is increasing in d, we conclude that 7(1|d,0) — é R (k|d, 0) is increasing in d.
Proof for Theorem 2.

Denote the players in the bunch in period ¢t as Hy, t = 1,..,T. We call a player with
signal s = ¢, b a type s player in the proof.

In period 1, a type b player ¢+ € H; does not have incentive to deviate by investing in
period 1, according to assumption (A2). For the same reason, a type b player i € H; does
not have incentive to deviate by investing in the period 1. By (IC3), A type g player i € H,
does not have incentive to deviate by investing in period 1.

Now we will prove that a type g player ¢ € H; does not want to deviate by waiting. By
(IC1), it is not optimal for this player to wait until period 2 and use his myopic best response
then. In the following, we prove that the myopic best response in period 2 is overall optimal
for him, that is, he does not want to wait further. The myopic best response function defined
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in (2) means that if it gives positive expected payoff, the player should invest right away,
instead of waiting further. To show that it is overall optimal for him to use his myopic best
response in period 2, we need to consider what happens in period 2. There are 3 cases in
period 2, corresponding to the three cases described in the Corollaries 4, 5 and 6.

We consider the bunching pattern in Corollary 4 first. Recall that only cases (a), (b) and
(c) in Theorem 2 can occur.

If a type g player « € H; deviates, other players will believe he has a bad signal instead of
a good one. That makes his own update different from the public. To be precise, he knows
that there are two additional good signals than what the other players believe (inferred from
the actions of the first bunch).

If d; > 1 happens, it is actually dy > 3 for the deviated player. Since all the other players
will herd by investing, no further information is to be revealed. Thus, he has no incentive to
wait further. It is overall optimal for him to invest right away, which is also his myopic best
response.

If d; < 0 happens, it is actually d; < 2 for the deviated player. Since all the other players
will herd by not investing, no further information is to be revealed as well. Thus, he has no
incentive to wait further. It is overall optimal for him to use his myopic best response.

If d; = 0 happens, it is actually d; = 2 for the deviated player. If
m(1129) = 0R (kg|29) (13)

holds, then instead of waiting until the third period (the RHS above) after seeing another kf
signals from Hs in this case, he will invest right away (the LHS above), which is his myopic
best response.

We now show that (13) holds. The LHS of (13) is
m(1|29) = m(1]3g) Pr(g|29) + m(1|2g,b) Pr(b|2g)
= (1]3g) Pr(g|29) + m(1]g) Pr(b|29).
And the RHS of (13) is
R (kg|29)
= R(ky —1[3g) Pr(g|29) + R (kg — 1|29, b) Pr (b|2g)
= R(k; — 1[39) Pr(g|2g) + R (kg — 1|g) Pr (b]2g) .

By (IC1), we have 7(1|g) > dR (k — 1]g). Together with Lemma 2, we have m(1|3g) >
OR (k§ — 1]3g). Thus, it is clear that (13) holds. Therefore, to use his myopic best response
in period 2 rather than wait further is optimal for this type ¢ player i € H;. And in all later
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periods, the incentive is the same as the players in the second bunch. This completes the
proof for the case in Corollary 4.

Now consider the bunching pattern in Corollary 5. Recall that only cases (a), (b) and
(d) in Theorem 2 can occur. The argument is the same as in the above when herding, i.e.,
cases (a) and (b) occur. In case (d), a second bunch Hs of size k] should occur in the second
period.

If d; = 1 happens, it is actually d; = 3 for the deviated player. If
m(1|3g) > o R (k7]3g) (14)

holds, then instead of waiting until the third period (the RHS of the above), he will invest
right away (the LHS of the above), which is his myopic best response. Similar to the proof
for (13), the LHS of (14) is

7(113g) = m(1]4g) Pr(g|3g) + 7(1]2g) Pr(b[3g),
and the RHS of (13) is
R (k{|3g) = R (k] — 1|4g9) Pr (g|3g) + R (kg — 1|29) Pr (b|3g) .

By (IC1), we have 7(1]2g9) > 6R (ki — 1|2g). Together with Lemma 2, we have m(1|4g) >
R (kT —1|49) .

Thus, it is clear that (14) holds. Therefore, to use the myopic best response function in
period 2 rather than to wait further is overall optimal for this type g player ¢« € H;. And in
all later periods, the incentive is the same as the players in the second bunch. This completes
the proof for the case in Corollary 5.

Last consider the bunching pattern in Corollary 6. The proof for this part is similar to
the proof for the case in Corollary 5, except for a type g player i’ € Hs. Since then, dy = 2
and a fourth bunch of size kj is followed. The condition for this player " not to deviate by
waiting further is again 7(1]2g) > dR (k§|2g), the same as (13).

This completes the proof for Theorem 2.
Proof for Lemma 11.
We have
7(1|d,0) — R (k|d,0)
= Pr(Gld,0) > <k)pr (1—p)" " 7o +Pr(Bld,0) > (k> (1—p) p*"7p
r r

r+d<k—r r+d<k—r

.S (jf) [0 (1= )" Pr (@I, 0) 7 + (1 — ) 9 Pr(BId.0) s (15)

r4+d<k—r
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dq pd

By Bayes’ Rule, we have Pr (G|d,0) = e e Rl vy ety o
function of ¢, and so is the first group of terms inside the brackets of (15). In addition,
Pr(B|d,0) = 1 — Pr(G|d,0), which is a decreasing function of ¢. Since 7z < 0, the second
group of terms inside the brackets of (15) is then increasing in g.

which is an increasing

Similarly, we know 7(1|d,0) is an increasing function of q.

Since
7(1|d,0) — 0R (k|d,0) = (1 — 0) w(1|d,0) + ¢ (w(1|d,0) — R (k|d,0)),

7m(1]d,0) — 0 R (k|d,0) is increasing in ¢ as well.

Since 7(1|d + 1,0) — 0R (k|d + 1,0) is decreasing in k, and the bunching size &} is the
biggest integer satisfying m(1|d + 1,0) — R (k|d + 1,0) > 0. Therefore, an increase in ¢ will
increase k.

Proof for Proposition 6.

Suppose not. Then k§ > k*° (n). We shall ignore the argument n in £*° (n) in the proof
when it does not cause confusion.

Recall that
OR (kg —1|g) < m(1]g) < 6R (kglg)

and that R (k|g) is a strictly increasing function of k. Since k§ > k°°, it must be that
k* <k — 1. From the above inequality, we know that 0R (k*°|g) < m(1|g). Thus,

kom(1lg) + (n — kg) 0 R (kolg)
= k*n(llg) + (K" = k) m(llg) + (n — k") OR (k*|g)
> kE*n(1]g) + (K* — k*°) OR (k*°|g) + (n — k™) 6 R (k*]g)
= km(llg) + (n = k) R (K]g) ,
and
ko R (kg — 1[b) + (n — kg) R (kg[b)
> kR (k% —1]b) + (ky — k*°) R (E*°|b) + (n — k§) R (k*°|b)
E*R (k% — 1|b) + (n — k*°) R (k*°|b) .
Combining the above two inequalities, we have

W(kg,n) > W(k*, n).

38



Thus, k% (n) is not the socially optimal bunching size. This is a contradiction. Therefore,
we conclude that k§ < k% (n).

Proof for Proposition 7.

Suppose not. Then for some n; < ny, we have k% (ny) > k* (ng). For simplicity, we
write k% (n;) as k$°, i = 1,2. Since

Pr(g) (k7w (1lg) + (n1 — k1%) R (k1°|g)] + Pr (0) [k R (k7" — 1[b) + (n1 — £7%) R (K7°[D)]

> Pr(g) [ks°m(1]g) + (nm — k3°) R (k3°[g)] + Pr (b) [R3"R (k35° — 1]b) + (n1 — k3%) R (K3°[D)]

then
Pr(g) [n1 (R (k{°lg) — R (k3°|g)) + (ki° — k3°) w(1]g) + k3"R (k3°]g) — ki°R (k{°|9)]
+Pr (0) 6[ny (R (k1°[b) — R (k3°[b)) + k1° (R (ki — 1]b) — R (k{°[b))
—k3? (R (k3" — 1|b) — R (k3°[b))]
> 0.

Since k{° > ki°, we have R (kj°|-) — R (k5°]-) > 0. Thus, the above expression is strictly
greater than zero if we replace n; by a larger number n,. Rearranging, we obtain

|14 (k?igo, ng) >W (l{igo, ng) .

Therefore, k5° is not the social optimal bunching size for ny. This is a contradiction. So
k*° (n) must be an increasing function for every n.

Proof for Proposition 8.

We first consider the case where 7(1|g) > dR (c0|g) = I Pr(G|g) m¢. In this case, all
players should be in the bunch in period 1 in equilibrium. Since the socially optimal bunching
size is at least the equilibrium bunching size, the socially optimal bunching size is also n.
Therefore, lim,, ., k% (n) = occ.

We now consider the case where m(1|g) < R (co|g) = dPr(G|g) mg. We shall prove
the proposition by contradiction. Suppose that lim, .., k**(n) # oo. Then there exist a

77777

a given k, we have

W(k,n)

pF
n

= 2utg) | Exlg) + (1- ) om(h) (16)
+Pr(b)6 [ZR(k; 1)+ (1 _ %) R(k!b)] |
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Then —
lim (k*2(n;) ,m4)

1—00 n;

=Pr(g)6R (k|g) + Pr (b) 6R (K|b) .
Meanwhile, for any given fixed k, we have

lim Wik, n)

n—oo n

= Pr(g)0R (k|g) + Pr (b) 0R (k|b) .
Since R (k|-) is strictly increasing in k, for any k > &, we can conclude that lim,, ., W >

lim,, o w That is, the subsequence {k$° (n)};=1.. - does not maximize the social
welfare. This is a contradiction. Thus, we have lim,,_,, k% (n) = oo in this case as well.

.....

Proof for Proposition 9.
For a given converging sequence {@}nzl 77777 00y With lim,, . k (n) = oo and lim,, @ =
a, we have
Wk
A IORD

n—00 n

= lim {Pr (9) [@W(Hg) + (1 — @) OR (k(n) Ig)} +

n—oo

Pr (b) 6 [@R(k (n) — 1[b) + <1 . @) R (k (n) |b)”

— Pr(g)[am(1lg) + (1 - a) R (sclg)] + Pr (5) R (colb)

The per player social welfare

W is maximized in the limit if o = 0. Tf lim,, o, =) +0,

then we can find a sequence of k (n), with lim, .. k(n) = co and lim,,_, kszl) =0, (e.g.,

k (n) = y/n) such that the per player welfare from k (n) is larger than from £*° (n), when n
kSO(n) _ 0.

is large enough. Therefore, we conclude that lim,, .
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