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1 Introduction

This paper is motivated by the need for modeling risky choices under alternatives to ex-

pected utility theory. So far, most tests have been based on experiments in which test

subjects had to express preferences with respect to simple lotteries. Such lotteries are,

however, extremely rare outside the laboratory. In real life, decision makers typically

choose between complex lotteries, i.e. payoffs tied to events that are non-degenerate sets

of states and are defined in terms of random variables that correlate with other state

variables.1

∗Corresponding author. Address: Department of Economics, Dunning Hall Room 316, 94 University

Avenue, Queen’s University, Kingston, Ontario K7L 3N6, Canada. Email: viero@econ.queensu.ca
1In analyses of laboratory experiments, it is commonly assumed that lotteries are based on random

variables that are independent of anything of “real life” relevance to the decision makers. It is in this sense

that the experiments are based on simple lotteries.
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In expected utility theory, complex lotteries can be modeled as compound lotteries

based on a decomposition of unconditional expected utility into marginal probabilities and

conditional expected utilities. Our paper specifies conditions for a similar decomposition

in the framework of prospect theory. These conditions matter for empirical analyses of

decision makers’ behavior outside the laboratory, where weighted marginal probabilities

are used as explanatory variables.

To fix ideas, we consider a specific example. Suppose a decision maker (DM) wishes

to insure himself against an event A and faces a choice between two different insurance

policies Q and R. For insurance h ∈ {Q,R}, the DM pays a premium ch and receives

a gross payment of th from the insurance company if event A occurs. In the absence of

insurance, the DM’s income is given by the random variable z.

In real world situations, the insured event A as well as its complement will consist

of a number of states of the world. For example, the DM could be a farmer who buys

insurance against the event that it rains more than a specific amount. More of his crops

will be ruined if the actual rainfall is well above this amount than if it is only just above

it; likewise his crops will be affected by different amounts of rain below the amount that

triggers the insurance payment. In such contexts, the probability of the insured event A

must be interpreted as a marginal probability since the event is a set of states. We denote

this probability as pA.

Under expected utility, we can analyze the DM’s behavior based on the standard de-

composition of unconditional expected utility into marginal probabilities and conditional

expected utility. That is, insurance Q is weakly preferred to insurance R if

pAE[u(z − cQ + tQ)|A] + (1− pA)E[u(z − cQ)|A{] ≥
pAE[u(z − cR + tR)|A] + (1− pA)E[u(z − cR)|A{].

(1)

This decomposition enables us to describe the DM’s choice with an econometric model in

which the probability pA is used as an explanatory variable. The decomposition is valid

since, under the implicit assumption of dynamic consistency, Bayesian updating is a corol-

lary of the subjective expected utility theorem. That is, with a state space S = {1, . . . , n}
and prior probabilities π(s), the posterior probabilities after arrival of information that the

true state is in A 6= ∅ are given by

πA(s) = π(s|A) =

{
π(s)
π(A) if s ∈ A
0 if s /∈ A.
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The present paper is concerned with conditions under which a decomposition similar

to (1) holds under Tversky and Kahneman’s (1992) Cumulative Prospect Theory (CPT).2

These conditions are important for empirical analyses based on models in which marginal

probabilities like pA are used as explanatory variables that determine DMs’ choices via

“decision weights” w(pA). The use of such models is a practical necessity since we will

rarely be able to specify the joint distribution of all state variables that matter to DMs

and correlate with the random variable that defines whether event A occurs.3

We model a DM whose updating of probability weights is with respect to a benchmark

prospect, which can be interpreted as “what does the DM think would have happened

if event A had not occurred.” For expected utility, this benchmark can be any possible

act, i.e. the updating rule does not depend on the benchmark. For probability weights,

however, the prospect used as a benchmark does matter for the updating rule, just like the

benchmark act matters for the updating of capacities, see Gilboa and Schmeidler (1993). In

order to obtain a decomposition of unconditional CPT utility into marginal decision weights

and conditional CPT utility, we need to place restrictions on the benchmark prospect.

Gilboa and Schmeidler’s (1993) pessimistic updating rule for ambiguous beliefs has

the benchmark act being the best possible outcome in all states. This can be interpreted

as “the DM thinks that if A had not occurred, he would have gotten the best possible

outcome.” On the other hand, their optimistic updating rule has the benchmark act being

the worst possible outcome in all states, which can be interpreted as “the DM thinks

that if A had not occurred, he would have gotten the worst possible outcome.” The

present paper derives conditional probability weighting functions, rather than updating

rules for ambiguous beliefs. We will show that certain updating rules for CPT based on

the best and worst possible outcomes yield a decomposition of unconditional CPT utility

into weighted marginal probabilities and conditional CPT utility, which thus parallels the

standard decomposition of expected utility.

The paper is structured as follows: section 2 contains our results and section 3 gives con-

clusions and further discussion, including how our updating of probability weights relates
2Of course, since our conditions are sufficient for a decomposition like (1) to hold in the sign and rank

dependent CPT model, they also suffice for the decomposition to hold in the rank-dependent utilty models

of Quiggin (1982) and Yaari (1984).
3If we were able to specify the joint distribution of all relevant state variables, we could model DMs’

choices in terms of preferences with respect to simple lotteries.
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to that in Sarin and Wakker (1998).

2 Conditioning under Cumulative Prospect Theory

Let S = {1, . . . , n} be a finite state space and let X be a set of outcomes that describe

changes with respect to the status quo or an appropriate reference level. The states in S

occur with probabilities (p1, . . . , pn). Let F denote the set of prospects, i.e. functions from

S to X. For an outcome x ∈ X, let x̄ ∈ F denote the constant prospect (x, . . . , x). The

status quo is an element of the set of outcomes X, denoted by 0, and is assumed fixed.

Let % denote a preference relation on F , with � and ∼ denoting the asymmetric and

symmetric parts respectively. We use the same notation for preference relations on the set

of outcomes X, i.e. x % y if and only if x̄ % ȳ. An outcome x � 0 is positive and an

outcome x ≺ 0 is negative.

We are concerned with how this preference relation is updated upon arrival of the

information that the true state is in some event A ⊂ S. Our updating rules apply to

prospects whose outcomes are comonotonic. A set of prospects F are comonotonic if for

no f, g ∈ F and no s, s′ ∈ S, it holds that f(s) � f(s′) and g(s′) � g(s). We also restrict

attention to conditioning on events A or A{, for which A{ is a dominating event for A: for

all s ∈ A and for all s′ ∈ A{, f(s′) % f(s). That is, the states in the event A are (weakly)

worse than the states in the complement of the event, A{.

Let o be a permutation on {1, . . . , n} such that for the set of comonotonic prospects F

under consideration, f(o(n)) % . . . % f(o(1)) ∀f ∈ F . Hence, for non-positive prospects

0 % f(o(n)), while for the non-negative prospects f(o(1)) % 0.

We assume throughout that preferences are represented by a Cumulative Prospect

Theory (CPT) representation.4 With the notation from Prelec (1998) this means that in

general, for x1 - · · · - xk - 0 - xk+1 - · · · - xn, preferences are represented by

V (f) =
k∑
i=1

w−( i∑
j=1

pj
)
− w−

( i−1∑
i=1

pj
) v(xi)+

n∑
i=k+1

w+
( n∑
j=i

pj
)
− w+

( n∑
j=i+1

pj
) v(xi),

(2)

where w− and w+ are unique nondecreasing weighting functions satisfying w−(0) = w+(0) =

0 and w−(1) = w+(1) = 1 and v(x) is a continuous and increasing ratio scale.
4Wakker and Tversky (1993) provide an axiomatization.
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In the next two subsections, we start our analysis by considering prospects whose

outcomes are either exclusively in the loss domain, i.e. non-positive, or exclusively in the

gains domain, i.e. non-negative. Preferences will thus be represented by

V (f) =
n∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(xo(i)) (3)

when f lies in the loss domain, and

V (f) =
n∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(xo(i)) (4)

when f lies in the gains domain. For each i, the expression in brackets is the decision

weight associated with outcome xi.

Let h, g ∈ F be comonotonic prospects given by h(1, 2, . . . , n) = (y1, y2, . . . , yn) and

g(1, 2, . . . , n) = (z1, z2, . . . , zn). Let f0 = 0, i.e. the prospect that gives the status quo (or

reference point) in all states. Let x∗ ∈ X denote the worst possible outcome in X and

assume that 0 � x∗. Define f∗ by

f∗(s) =

{
x∗ if s ∈ A
0 if s /∈ A,

i.e. the prospect that gives the worst possible outcome if A occurs and the status quo

otherwise. Next, let x∗ ∈ X denote the best possible outcome in X and assume that

x∗ � 0. Define f∗ by

f∗(s) =

{
0 if s ∈ A
x∗ if s /∈ A,

i.e. the prospect that gives the status quo if A occurs and the best possible outcome

otherwise.

Define conditional acts by

hAf =

{
h(s) if s ∈ A
f(s) if s /∈ A

and define conditional preference h %A g by hAf % gAf . I.e. %A is the DM’s preferences

conditional on knowing that s is in A. The prospect f is the benchmark prospect.
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Consider an event A such that for all s ∈ A, and for all s′ ∈ A{, h(s′) % h(s), i.e.

the event A is dominated by A{. Hence, there exists k ∈ {1, . . . , n} such that A =

{o(1), . . . , o(k)} and A{ = {o(k + 1), . . . , o(n)}. We assume that both A and A{ are non-

null given the DM’s preferences, and thus these events are both assigned non-zero weights

in the CPT-representation. We consider separately the cases in which A and A{ are both

in the loss domain, both in the gains domain, or constitute a loss/gains partition.

2.1 Loss domain

Assume first that both of the comonotonic prospects h and g are in the loss domain for

all states. The events A and A{ thus both contain states associated with non-positive

outcomes, but the event A is still dominated by A{.

We will show that for the loss domain we get the desired decomposition of the uncon-

ditional CPT utility when f∗ is used as a benchmark prospect for updating. Notice how,

with this benchmark, the resolution of uncertainty affects the DM’s attitude. If the DM

receives information that the true state is in the bad event A, he becomes a pessimist and

acts as if he would have gotten the status quo 0 had A not happened. If instead he receives

information that the true state is in the good event A{, he becomes an optimist and acts

as if he would have gotten the worst conceivable outcome x∗ had A{ not happened.

We begin with two definitions.

Definition 1 The loss domain pessimistic conditional CPT utility of prospect h is

given by

EPL [h|s ∈ A] ≡
k∑
i=1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
w−
(∑k

j=1 po(j)
) v(yo(i)).

Notice that the denominator is the sum of the decision weights in the numerator and equals

the probability weight of the event A that consists of the states o(1), . . . , o(k), which in the

loss domain give the most extreme outcomes relative to the status quo. The information

that has arrived reveals that one of the worse states will occur.

Definition 2 The loss domain optimistic conditional CPT utility of prospect h is

given by

EOL [h|s ∈ A{] ≡
n∑

i=k+1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
1− w−

(∑k
j=1 po(j)

) v(yo(i)).
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Again the denominator is the sum of the decision weights in the numerator, which now

equals one minus the probability weight of the event (A{){ = A. The information that has

arrived reveals that one of the better states will occur.

Proposition 1 shows how unconditional CPT utility can be decomposed into decision

weights and conditional CPT utilities in the loss domain, similar to how unconditional

expected utility can be decomposed into marginal probabilities and conditional expected

utility.

Proposition 1 Suppose f∗ is used as a benchmark for updating in the loss domain. Then

the following holds: preferences conditional on the arrival of information that s ∈ A are

represented by EPL [h|s ∈ A], preferences conditional on the arrival of information that

s ∈ A{ are represented by EOL [h|s ∈ A{], and unconditional CPT utility is given by

V (h) = w−(pA)EPL [h|s ∈ A] + (1− w−(pA))EOL [h|s ∈ A{].

Proof: With the benchmark prospect f∗, we have

V (hAf∗) = V (yo(1), . . . , yo(k), 0, . . . , 0)

=
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i))

+
n∑

i=k+1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(0)

=
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i)) +

1− w−
( k∑
j=1

po(j)
) v(0)

and

V (gAf∗) = V (zo(1), . . . , zo(k), 0, . . . , 0)

=
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i)) +

1− w−
( k∑
j=1

po(j)
) v(0).
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Thus,

hAf∗ % gAf∗ ⇔ V (hAf∗) ≥ V (gAf∗)

⇔
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i)) +

1− w−
( k∑
j=1

po(j)
) v(0)

≥
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i)) +

1− w−
( k∑
j=1

po(j)
) v(0)

⇔
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i))

≥
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i))

⇔
k∑
i=1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
w−
(∑k

j=1 po(j)
) v(yo(i))

≥
k∑
i=1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
w−
(∑k

j=1 po(j)
) v(zo(i)),

so preferences conditional on arrival of the information that s ∈ A are represented by

EPL [h|s ∈ A].

Now consider conditioning on the complement A{ = {o(k + 1), . . . , o(n)}. We have

V (hA{f∗) = V (x∗, . . . , x∗, yo(k+1), . . . , yo(n))

= w−
( k∑
j=1

po(j)
)
v(x∗) +

n∑
i=k+1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i))

and

V (gA{f∗) = V (x∗, . . . , x∗, zo(k+1), . . . , zo(n))

= w−
( k∑
j=1

po(j)
)
v(x∗) +

n∑
i=k+1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i)).
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Thus,

hA{f∗ % gA{f∗ ⇔ V (hA{f∗) ≥ V (gA{f∗)

⇔ w−
( k∑
j=1

po(j)
)
v(x∗) +

n∑
i=k+1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i))

≥ w−
( k∑
j=1

po(j)
)
v(x∗) +

n∑
i=k+1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i))

⇔
n∑

i=k+1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i))

≥
n∑

i=k+1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i))

⇔
n∑

i=k+1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
1− w−

(∑k
j=1 po(j)

) v(yo(i))

≥
n∑

i=k+1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
1− w−

(∑k
j=1 po(j)

) v(zo(i)),

so preferences conditional on arrival of the information that s ∈ A{ are represented by

EOL [h|s ∈ A{].

Since pA =
∑k

j=1 po(j), it now follows that in the loss domain

w−(pA)EPL [h|s ∈ A] + (1− w−(pA))EOL [h|s ∈ A{]

= w−(
k∑
j=1

po(j))
k∑
i=1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
w−
(∑k

j=1 po(j)
) v(yo(i))

+(1− w−(
k∑
j=1

po(j)))
n∑

i=k+1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
1− w−

(∑k
j=1 po(j)

) v(yo(i))

=
n∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i)),

which equals the unconditional CPT utility in (3). Hence, we have the desired decomposition.�

An immediate consequence of Proposition 1 is the following corollary, which describes

updating of the probability weighting function for the loss domain.
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Corollary 1 If the DM starts with a prior probability weighting function w−(·), his con-

ditional probability weighting function w−A(·) given the information that s ∈ A is

w−A(·) =


w−(·)

w−
(Pk

j=1 po(j)

) if s ∈ A

0 if s ∈ A{,

while his conditional probability weighting function w−
A{(·) given the information that s ∈ A{

is

w−
A{(·) =

 0 if s ∈ A
w−(·)

1−w−
(Pk

j=1 po(j)

) if s ∈ A{.

2.2 Gains domain

Assume now that both of the comonotonic prospects h and g are in the gains domain for

all states, i.e. have exclusively non-negative outcomes. For the gains domain we obtain the

desired decomposition of the unconditional CPT utility when f∗ is used as a benchmark

prospect for updating. Again the benchmark determines how the resolution of uncertainty

affects the DM’s attitude. If the DM receives information that the true state is in the bad

event A, he becomes a pessimist and acts as if he would have gotten the best conceivable

outcome x∗ had A not happened. On the other hand, if he receives information that the

true state is in the good event A{, he becomes an optimist and acts as if he would have

gotten the status quo 0 had A{ not happened.

We have the following definitions of conditional CPT utility for the gains domain:

Definition 3 The gains domain optimistic conditional CPT utility of prospect h is

given by

EOG [h|s ∈ A{] ≡
n∑

i=k+1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
w+
(∑n

j=k+1 po(j)
) v(yo(i)).

Again the denominator is the sum of the decision weights in the numerator, which here

equals the probability weight of the event A{. Note that A{ consists of the states o(k +

1), . . . , o(n), which for the gains domain result in the most extreme outcomes relative to

the status quo. The information that has arrived reveals that one of the better states will

occur.
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Definition 4 The gains domain pessimistic conditional CPT utility of prospect h

is given by

EPG [h|s ∈ A] ≡
k∑
i=1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
1− w+

(∑n
j=k+1 po(j)

) v(yo(i)).

Here the denominator equals one minus the probability weight of the event A{. The

information that has arrived reveals that one of the worse states will occur.

Proposition 2 shows how unconditional CPT utility can be decomposed into marginal

decision weights and conditional CPT utilities in the gains domain. The proof is similar

to that of Proposition 1 and is therefore relegated to the appendix.

Proposition 2 Suppose f∗ is used as a benchmark for updating in the gains domain.

Then the following holds: preferences conditional on the arrival of information that s ∈ A
are represented by EPG [h|s ∈ A], preferences conditional on the arrival of information that

s ∈ A{ are represented by EOG [h|s ∈ A{], and unconditional CPT utility is given by

V (h) = (1− w+(p(A{))EPG [h|s ∈ A] + w+(p(A{))EOG [h|s ∈ A{].

Proof: See the appendix.

In parallel to Proposition 1, an immediate consequence of Proposition 2 is the following

corollary, which describes updating of the probability weighting function for the gains

domain.

Corollary 2 If the DM starts with a prior probability weighting function w+(·), his con-

ditional probability weighting function w+
A(·) given the information that s ∈ A is

w+
A(·) =


w+(·)

1−w+
(Pn

j=k+1 po(j)

) if s ∈ A

0 if s ∈ A{,

while his conditional probability weighting function w+
A{(·) given the information that s ∈ A{

is

w+
A{(·) =

 0 if s ∈ A
w+(·)

w+
(Pn

j=k+1 po(j)

) if s ∈ A{.
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2.3 Loss and Gains Partition

Now, we consider the case of comonotonic prospects h and g that have outcomes in the loss

domain for all states in an event A, and have outcomes in the gains domain for all states

in the event A{. Then, updating under the benchmarks f∗ and f∗ in the loss and gains

domains, respectively, still yields the desired decomposition of the unconditional CPT,

even though the DM does not use the same benchmark throughout. The result is obtained

because the DM always takes the status quo outcome as the counterfactual, irrespective of

whether she learns that the true state is in the bad event A or that it is in the good event

A{. That is, since f∗ and f∗ are of the form

f̂∗(s) =

{
xi if s ∈ A
0 if s /∈ A,

and f̂∗(s) =

{
0 if s ∈ A
xj if s /∈ A,

for some xi, xj ∈ S, we obtain that

hAf∗ =

{
h(s) if s ∈ A
0 if s /∈ A

and hA{f
∗ =

{
0 if s ∈ A
h(s) if s /∈ A.

Of course, the decomposition in Proposition 3 could also have been obtained by simply

using f0 (i.e. the prospect that gives the status quo in all states) as a benchmark.

Proposition 3 Suppose f∗ is used as a benchmark for updating in the loss domain and f∗

is used as a benchmark for updating in the gains domain. Then the following holds for a

partition {A,A{} of the state space S, where A and A{ consist exclusively of states in the

loss and gains domains, respectively:

Preferences conditional on the arrival of information that s ∈ A are represented by

EPL [h|s ∈ A], preferences conditional on the arrival of information that s ∈ A{ are repre-

sented by EOG [h|s ∈ A{], and unconditional CPT utility is given by

V (h) = w−(p(A))EPL [h|s ∈ A] + w+(p(A{))EOG [h|s ∈ A{].

Proof: The proof is similar to that of Proposition 1 and is given in the appendix.

The following corollary describes the updating of the probability weighting functions

for a partition {A,A{} of the state space S into the sets of states associated with the loss

and gains domains when f∗ and f∗ are used as benchmarks in the loss- and the gains

domain, respectively.
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Corollary 3 If the DM starts with prior probability weighting functions w−(·) and w+(·),
his conditional probability weighting function w−A(·) given the information that s ∈ A is

w−A(·) =


w−(·)

w−
(Pk

j=1 po(j)

) if s ∈ A

0 if s ∈ A{,

while his conditional probability weighting function w+
A{(·) given the information that s ∈ A{

is

w+
A{(·) =

 0 if s ∈ A
w+(·)

w+
(Pn

j=k+1 po(j)

) if s ∈ A{.

2.4 Repeated Conditioning

Propositions 1 through 3 all concern updating following the arrival of a single piece of

information. If information arrives in several consecutive pieces, the propositions can be

applied repeatedly.

To illustrate, let D and D′ be disjoint sets such that D ∪D′ = A and D is dominated

by D′, and let C and C ′ be disjoint sets such that C ∪ C ′ = A{ and C is dominated by

C ′. Suppose that information arrives in two pieces: first it is revealed whether the state

is in A or A{ and subsequently whether the state is in D (C) or D′ (C ′). If the reference

point is such that A and A{ are both in the loss domain and the DM is updating according

to Proposition 1, he uses f∗ as his benchmark act after the arrival of the first piece of

information. Conditional on the first piece of information, the universe is either D ∪D′ or

C ∪ C ′, both of which are still entirely in the loss domain. The benchmark for updating

after arrival of the second piece of information is therefore f∗ as well. A similar argument

shows that f∗ will be used as the benchmark throughout if A and A{ are both in the gains

domain.

Repeated conditioning also further motivates the result in Proposition 3, i.e. that the

DM can use f∗ as the benchmark act for updating in the loss domain and f∗ for updating

in the gains domain if A/A{ is a loss/gain partition. Had the DM instead used f0 for

updating conditional on the first piece of information, then the results in Corollaries 1 and

2 could not be used for updating conditional on the second piece of information unless the

benchmark act is changed after the first round of updating. The updating rules specified

in Proposition 3 can instead be used consistently – no change of benchmark is required.
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There does exist an act that can be used as a benchmark for updating throughout and

still results in conditional preferences being represented as in Propositions 1 through 3.

This act is defined by

f∗∗(s) =

{
x∗ if s ∈ A
x∗ if s /∈ A,

that is, the very worst outcome in A and the very best outcome in A{. Updating with f∗∗

as the benchmark results in the following proposition:

Proposition 4 Suppose f∗∗ is used as a benchmark for updating. Then unconditional

CPT utility and the representation of conditional preferences are as given in Proposition

1 when A and A{ are both in the loss domain, as given in Proposition 2 when A and A{

are both in the gains domain, and as given in Proposition 3 when A and A{ constitute a

loss/gain partition.

Proof: The proof follows the lines of the proofs of Propositions 1 through 3 by noting

that the terms concerning the non-occuring event still cancel out when the benchmark act

is replaced by f∗∗. �

3 Discussion and Conclusion

Sarin and Wakker (1998) introduce a notion of revealed likelihood for rank-dependent

expected utility models. They define revealed likelihood for comonotonic acts through

decision weights and dominating events. For updating of revealed likelihood, they suggest

the following definition of revealed conditional likelihood:

π(Q|R) = π(Q,D|R,D′) =
π(Q ∩R,D)
π(R,D′)

=
ν((Q ∩R) ∪D)− ν(D)
ν(R ∪D′)− ν(D′)

,

where D is a dominating event for Q∩R, D′ is a dominating event for R, π is the revealed

likelihood, and ν is a capacity.

Our updating rules for the gains domain are consistent with Sarin and Wakker’s def-

inition. For the loss domain, however, Sarin and Wakker’s definition only coincides with

our updating rule if w−(1− p) = 1−w−(p) for all p ∈ [0, 1]. This, of course, does not hold

for probability weighting functions that exhibit subcertainty, and e.g. does not hold for

the parameterizations proposed in Tversky and Kahneman (1992) and Prelec (1998). If,
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however, we replace the dominating events in Sarin and Wakker’s definition with the more

extreme events relative to the status quo, we have consistency in the loss domain as well.

To illustrate the relevance of our results for empirical work, consider again the insurance

example from the introduction, i.e. a comparison of two insurance policies Q and R that

represent insurance against the same event A, but to different extents and at different costs.

Suppose that the two insurance options rank the states such that A is clearly dominated

by A{, and that the labels Q and R are assigned such that tQ − cQ > tR − cR. Suppose

further that the DM uses bankruptcy as his reference point, and thus regards all outcomes

as being in the gains domain. We can then use the result in Proposition 2 to evaluate the

insurance options:

Q � R ⇔ (1− w+(pA{))EPG [Q|s ∈ A] + w+(pA{)EOG [Q|s ∈ A{]

≥ (1− w+(pA{))EPG [R|s ∈ A] + w+(pA{)EOG [R|s ∈ A{]

⇔
w+(pA{)

1− w+(pA{)

(
−
EOG [Q|s ∈ A{]− EOG [R|s ∈ A{]
EPG [Q|s ∈ A]− EPG [R|s ∈ A]

)
≤ 1

The last equation suggest an econometric specification in which the probability pA{ is

used as an explanatory variable, based on a parametric specification for the “odds ratio”

w+(pA{)/(1− w+(pA{)). Similar specifications could be obtained based on Propositions 1

and 3 for different sets of assumptions.
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4 Appendix

Proof of proposition 2: With the benchmark prospect f∗, we have

V (hAf∗) = V (yo(1), . . . , yo(k), x
∗, . . . , x∗)

=
k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i))

+
n∑

i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(x∗)

=
k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i)) + w+

( n∑
j=k+1

po(j)
)
v(x∗)

and

V (gAf∗) = V (zo(1), . . . , zo(k), x
∗, . . . , x∗)

=
k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i)) + w+

( n∑
j=k+1

po(j)
)
v(x∗).
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Thus,

hAf
∗ % gAf

∗

⇔ V (hAf∗) ≥ V (gAf∗)

⇔
k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i)) + w+

( n∑
j=k+1

po(j)
)
v(x∗)

≥
k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i)) + w+

( n∑
j=k+1

po(j)
)
v(x∗)

⇔
k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i)) ≥

k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i))

⇔
k∑
i=1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
1− w+

(∑n
j=k+1 po(j)

) v(yo(i)) ≥
k∑
i=1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
1− w+

(∑n
j=k+1 po(j)

) v(zo(i)),

so preferences conditional on arrival of the information that s ∈ A are represented by

EPG [h|s ∈ A].

Now consider conditioning on the complement A{ = {o(k + 1), . . . , o(n)}. We have

V (hA{f
∗) = V (0, . . . , 0, yo(k+1), . . . , yo(n))

=
k∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(0)

+
n∑

i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i))

=

1− w+
( n∑
j=k+1

po(j)
) v(0) +

n∑
i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i))

and

V (gA{f
∗) = V (0, . . . , 0, zo(k+1), . . . , zo(n))

=

1− w+
( n∑
j=k+1

po(j)
) v(0) +

n∑
i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i)).
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Thus,

hA{f
∗ % gA{f

∗

⇔ V (hA{f
∗) ≥ V (gA{f

∗)

⇔

1− w+
( n∑
j=k+1

po(j)
) v(0) +

n∑
i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i))

≥

1− w+
( n∑
j=k+1

po(j)
) v(0) +

n∑
i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i))

⇔
n∑

i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i))

≥
n∑

i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i))

⇔
n∑

i=k+1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
w+
(∑n

j=k+1 po(j)
) v(yo(i))

≥
n∑

i=k+1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
w+
(∑n

j=k+1 po(j)
) v(zo(i)),

so preferences conditional on arrival of the information that s ∈ A{ are represented by

EOG [h|s ∈ A{].

Since p(A{) =
∑n

j=k+1 po(j), it now follows that in the gains domain(
1− w+(pA{)

)
EPG [h|s ∈ A] + w+(pA{)EOG [h|s ∈ A{]

=
(
1− w+(

n∑
j=k+1

po(j))
) k∑
i=1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
1− w+

(∑n
j=k+1 po(j)

) v(yo(i))

+w+(
n∑

j=k+1

po(j))
n∑

i=k+1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
w+
(∑n

j=k+1 po(j)
) v(yo(i))

=
n∑
i=1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i)),

which equals the unconditional CPT utility in (4). Hence, we have the desired decomposition.�
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Proof of proposition 3: With the benchmark prospect f∗, we have

V (hAf∗) = V (yo(1), . . . , yo(k), 0, . . . , 0)

=
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i)) + w+

( n∑
i=k+1

po(i)
)
v(0)

and

V (gAf∗) = V (zo(1), . . . , zo(k), 0, . . . , 0)

=
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i)) + w+

( n∑
i=k+1

po(i)
)
v(0).

Thus,

hAf∗ % gAf∗ ⇔ V (hAf∗) ≥ V (gAf∗)

⇔
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(yo(i))

≥
k∑
i=1

w−( i∑
j=1

po(j)
)
− w−

( i−1∑
j=1

po(j)
) v(zo(i))

⇔
k∑
i=1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
w−
(∑k

j=1 po(j)
) v(yo(i))

≥
k∑
i=1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
w−
(∑k

j=1 po(j)
) v(zo(i)),

so preferences conditional on arrival of the information that s ∈ A are represented by

EPL [h|s ∈ A].

Now consider conditioning on the complement A{ = {o(k + 1), . . . , o(n)}. We have

V (hA{f
∗) = V (0, . . . , 0, yo(k+1), . . . , yo(n))

= w−
( k∑
i=1

po(i)
)
v(0) +

n∑
i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i))
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and

V (gA{f
∗) = V (0, . . . , 0, zo(k+1), . . . , zo(n))

= w−
( k∑
i=1

po(i)
)
v(0) +

n∑
i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i)).

Thus,

hA{f
∗ % gA{f

∗ ⇔ V (hA{f
∗) ≥ V (gA{f

∗)

⇔
n∑

i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(yo(i))

≥
n∑

i=k+1

w+
( n∑
j=i

po(j)
)
− w+

( n∑
j=i+1

po(j)
) v(zo(i))

⇔
n∑

i=k+1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
w+
(∑n

j=k+1 po(j)
) v(yo(i))

≥
n∑

i=k+1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
w+
(∑n

j=k+1 po(j)
) v(zo(i)),

so preferences conditional on arrival of the information that s ∈ A{ are represented by

EOG [h|s ∈ A{].

Since pA =
∑k

j=1 po(j) and p(A{) =
∑n

j=k+1 po(j), it now follows that

w−(pA)EPL [h|s ∈ A] + w+(pA{)EOG [h|s ∈ A{]

= w−(
k∑
j=1

po(j))
k∑
i=1

w−
(∑i

j=1 po(j)
)
− w−

(∑i−1
j=1 po(j)

)
w−
(∑k

j=1 po(j)
) v(yo(i))

+w+(
n∑

j=k+1

po(j))
n∑

i=k+1

w+
(∑n

j=i po(j)
)
− w+

(∑n
j=i+1 po(j)

)
w+
(∑n

j=k+1 po(j)
) v(yo(i))

=
k∑
i=1

w−( i∑
j=1

pj
)
− w−

( i−1∑
i=1

pj
) v(yo(i)) +

n∑
i=k+1

w+
[ n∑
j=i

pj
)
− w+

( n∑
j=i+1

pj
) v(yo(i)),

which equals the unconditional CPT utility in (2). Hence, we have the desired decomposition.�
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