
Kasahara, Hiroyuki; Shimotsu, Katsumi

Working Paper

Sequential estimation of structural models with a fixed
point constraint

Queen's Economics Department Working Paper, No. 1192

Provided in Cooperation with:
Queen’s University, Department of Economics (QED)

Suggested Citation: Kasahara, Hiroyuki; Shimotsu, Katsumi (2008) : Sequential estimation of
structural models with a fixed point constraint, Queen's Economics Department Working Paper, No.
1192, Queen's University, Department of Economics, Kingston (Ontario)

This Version is available at:
https://hdl.handle.net/10419/67850

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/67850
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


QED
Queen’s Economics Department Working Paper No. 1192

Sequential Estimation of Structural Models with a Fixed
Point Constraint

Hiroyuki Kasahara
University of Western Ontario

Katsumi Shimotsu
Queen’s University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

12-2008



Sequential Estimation of Structural Models with a

Fixed Point Constraint∗

Hiroyuki Kasahara

Department of Economics

University of Western Ontario

hkasahar@uwo.ca

Katsumi Shimotsu

Department of Economics

Queen’s University

shimotsu@econ.queensu.ca

December 2, 2008

Abstract

This paper considers the estimation problem of structural models for which empirical
restrictions are characterized by a fixed point constraint, such as structural dynamic discrete
choice models or models of dynamic games. We analyze the conditions under which the
nested pseudo-likelihood (NPL) algorithm achieves convergence and derive its convergence
rate. We find that the NPL algorithm may not necessarily converge when the fixed point
mapping does not have a local contraction property. To address the issue of non-convergence,
we propose alternative sequential estimation procedures that can achieve convergence even
when the NPL algorithm does not. Upon convergence, some of our proposed estimation
algorithms produce more efficient estimators than the NPL estimator.

Keywords: contraction, dynamic games, nested pseudo likelihood, recursive projection method.
JEL Classification Numbers: C13, C14, C63.

1 Introduction

Empirical implications of economic theory are often characterized by fixed point problems. Upon
estimating such models, researchers typically consider a class of extremum estimators with a fixed
point constraint P = Ψ(θ, P ) in the space of probability distributions:

max
θ∈Θ

Qn(P ) s.t. P = Ψ(θ, P ). (1)

∗We are grateful to Victor Aguirregabiria, David Byrne, Kenneth Judd, Vadim Marmer, Lealand Morin, Whit-
ney Newey, and seminar participants at Far Eastern Summer Meeting of the Econometric Society, New York Camp
Econometrics, North American Summer Meeting of the Econometric Society, Vienna Macroeconomic Workshop,
University of British Columbia, University of Michigan, Hitotsubashi University, Johns Hopkins University, Uni-
versity of Tokyo, University of Western Ontario, Yale University, and Yokohama National University for helpful
comments. The authors thank the SSHRC for financial support.
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For example, if P = {P (a|x)} is the conditional choice probabilities, and the sample data are
{ai, xi}ni=1, then setting Qn(P ) = n−1

∑n
i=1 lnP (ai|xi) gives the maximum likelihood estimator,

whereas setting Qn(P ) = −
[
n−1

∑n
i=1 g(ai, xi;P )

]′
W
[
n−1

∑n
i=1 g(ai, xi;P )

]
gives the general-

ized method of moments estimator under the moment condition E[g(ai, xi;P 0)] = 0, where W
is a weighting matrix and P 0 is the true conditional choice probabilities.

The fixed point constraint P = Ψ(θ, P ) in (1) summarizes the set of structural restrictions
of the model that is parametrized by a finite vector θ ∈ Θ.1 The sample data are generated
from a fixed point of the operator Ψ(θ, ·) evaluated at the true parameter θ0. Examples of
the operator Ψ(θ, ·) include, among others, the policy iteration operator for a single agent
dynamic programming model (e.g., Rust, 1987; Hotz and Miller, 1993; Aguirregabiria and Mira,
2002; Kasahara and Shimotsu, 2008a), the operator defined by the best response function of
a game (e.g., Aguirregabiria and Mira, 2007; Pakes, Ostrovsky and Berry, 2007; Pesendorfer
and Schmidt-Dengler, 2008), and the operator to define the fixed point problem for a recursive
competitive equilibrium in dynamic macroeconomic models (e.g., Aiyagari, 1994; Krusell and
Smith, 1998).

In principle, we may estimate the parameter θ in (1) by the nested fixed point algorithm
(Rust, 1987), which repeatedly solves the fixed point Pθ of P = Ψ(θ, P ) at each parameter value
to maximize the objective function Qn(Pθ) with respect to θ. The major practical obstacle of
applying such an estimation procedure lies in the computational burden of solving the fixed
point problem for a given parameter.

To reduce the computational burden, Hotz and Miller (1993) developed a simpler two-step
estimator that does not require solving the fixed point problem for each trial value of the
parameter. A number of recent papers in empirical industrial organization build on the idea
of Hotz and Miller (1993) to develop two-step estimators for models with multiple agents (e.g.,
Bajari, Benkard, and Levin, 2007; Pakes, Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-
Dengler, 2008; Bajari and Hong, 2006). These two-step estimators may suffer from substantial
finite sample bias, however, when the choice probabilities are poorly estimated in the first step.

To address the limitations of two-step estimators, Aguirregabiria and Mira (2002)(2007,
henceforth AM07) developed a recursive extension of the two-step method of Hotz and Miller
(1993), called the nested pseudo likelihood (NPL) algorithm. Starting from an initial estimate
P̃0, the NPL algorithm iterates the following steps until j = k:

Step 1: Given P̃j−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 ln[Ψ(θ, P̃j−1)](ai|xi).

Step 2: Update P̃j−1 using the obtained estimate θ̃j : P̃j = Ψ(θ̃j , P̃j−1).

1In applications, many fixed point problems can be reformulated in terms of the space of probability distri-
butions. For example, the restrictions of a dynamic programming model are often formulated as a fixed point
problem in the value function space (i.e., Bellman equation), but we may reformulate it as a fixed point problem
in the space of probability distributions using the policy iteration operator.
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The estimator θ̃1 is a version of Hotz and Miller’s two-step estimator, called the pseudo maximum
likelihood (PML) estimator. AM07 showed that their recursive method can be applied to models
with unobserved heterogeneity in the context of dynamic games, and the limit of a sequence
of estimators generated by the NPL algorithm is more efficient than the two-step estimators if
convergence is achieved.2

While the NPL algorithm provides an attractive apparatus for empirical researchers, little
is known about its convergence properties. AM07 have obtained convergence in their simu-
lations and illustrate that the limiting estimator performs very well relative to the two-step
PML estimator. However, they neither provide the conditions under which the NPL algorithm
converges nor analyze how fast the convergence occurs. On the other hand, Pesendorfer and
Schmidt-Dengler (2008) provided simulation evidence that the NPL algorithm may not neces-
sarily converge. Collard-Wexler (2006) used the NPL algorithm to estimate a model of entry and
exit for the ready-mix concrete industry and found that P̃j ’s “cycle around several values with-
out converging.” In view of this mixed evidence and its practical importance, it is imperative
that we understand the convergence properties of the NPL algorithm.

In the first of our two main contributions, this paper derives the condition under which the
NPL algorithm converges. We show that a key determinant of the convergence of the NPL
algorithm is the contraction property of the mapping Ψ. Intuitively, the faster the operator
achieves contraction, the closer the value obtained after one iteration is to the fixed point, and,
therefore, we expect that the NPL algorithm works well if the operator has a good contraction
property. We show that the NPL algorithm has a good contraction property if the modulus of
the dominant eigenvalue of the Jacobian matrix ∂Ψ(θ, P )/∂P evaluated at the fixed point Pθ is
sufficiently smaller than 1.

As AM07 (p. 19) recognized, the possibility of non-convergence of the NPL algorithm is a
concern. Using the dynamic game model of AM07, we find in our simulations that, when the
degree of strategic substitutability is high, the smallest eigenvalue of the Jacobian matrix of the
policy iteration mapping is less than −1, and the NPL algorithm fails to converge. In such cases,
various two-step estimators can be used, but they may suffer from a large finite sample bias.

As our second contribution, we propose alternative sequential algorithms that are imple-
mentable even when the original NPL algorithm does not converge. The first estimator replaces
the fixed point mapping Ψ(θ, P ) in the NPL algorithm with Λ(θ, P ) = [Ψ(θ, P )]αP 1−α, which
shares the same fixed point as Ψ. With an appropriate choice of α and under some conditions
on Ψ, the mapping Λ has a better contraction property than Ψ.

The second algorithm requires more computation than the first algorithm but converges
under general conditions. It builds upon the idea of the Recursive Projection Method (henceforth

2Two-step estimators can also be applied to models with unobserved heterogeneity when an initial consistent
estimator of the type-specific conditional choice probabilities are available. Kasahara and Shimotsu (2006, 2008b)
derived sufficient conditions for nonparametric identification of a finite mixture model of dynamic discrete choices
and developed a series logit estimator which can be used as a consistent initial estimator for two-step estimators.
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RPM) of Shroff and Keller (1993). The divergence of the fixed point mapping Ψ is often caused by
a small number of eigenvalues of ∂Ψ(θ, Pθ)/∂P lying outside the unit circle. The key idea behind
the RPM is to find the eigenvectors corresponding to the unstable modes and to decompose the
space into the unstable subspace and its orthogonal complement. Then, it modifies the fixed
point mapping Ψ by taking a Newton step on the unstable subspace while using the original
fixed point iteration on the stable subspace. The modified mapping is contractive.

The third estimator uses a pseudo-likelihood objective function that is defined in terms
of multiple iterations of the mapping as opposed to one iteration. Since such a modification
increases computational cost substantially, we introduce an approximation method that requires
evaluating the mapping and its Jacobian with respect to the parameter θ only once outside of
the optimization routine. This algorithm converges faster than the original NPL algorithm and,
upon convergence, the proposed estimator is more efficient than the estimator generated by the
NPL algorithm.

The fourth algorithm we propose directly approximates a fixed point of the mapping but
with additional computational cost. This sequential algorithm has an advantage over others in
that it generates a sequence of estimators that approaches the maximum likelihood estimator
(henceforth MLE) and, upon convergence, we obtain the MLE which is more efficient than the
other proposed estimators.

Recently, Su and Judd (2008) advocate numerically solving a constrained optimization prob-
lem for estimating a structural model using a large-scale, state-of-the-art computing facility
available via the internet. We do not know, however, how their method performs when it is
applied to models with a very large state space, such as the models of dynamic games of AM07.

The rest of the paper is organized as follows. Section 2 introduces a class of models with
fixed point constraints. Section 3 establishes the convergence properties of the NPL algorithm.
In Section 4, we develop alternative sequential algorithms. Section 5 reports some simulation
results. Section 6 concludes the paper.

2 Maximum likelihood estimation of models with a fixed point

constraint

We consider a class of parametric discrete choice models in which restrictions are characterized
by fixed point problems. Let ai ∈ A and xi ∈ X denote the choice variable and the conditioning
variable, respectively. Upon estimating such models, researchers may consider the (conditional)
MLE with a fixed point constraint:

θ̂MLE = arg max
θ∈Θ

{
max
P∈Mθ

n−1
n∑
i=1

lnP (ai|xi)

}
, (2)
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where P (ai|xi) denotes the conditional choice probability of the ith observation, P = {P (a|x) :
(a, x) ∈ A×X}, and

Mθ ≡ {P ∈ BP : P = Ψ(θ, P )} (3)

is the set of fixed points of Ψ(θ, ·) given the value of θ ∈ Θ ⊂ RK . Here, BP represents the space
of conditional choice probabilities while Θ is the set of possible parameter values. The model
space—the set of conditional choice probabilities that are consistent with the parametric fixed
point restrictions—is then defined as a union of Mθ over Θ: M≡ ∪θ∈ΘMθ = {P ∈ BP : P =
Ψ(θ, P ), θ ∈ Θ}. The data is generated from the population conditional probability, denoted
by P 0, which belongs to the model space M, i.e., P 0 ∈M.

The fixed point constraint P = Ψ(θ, P ) in (3) summarizes the restrictions of the model that
is parametrized with a K-dimensional vector θ. For each θ, the operator Ψ(·, θ) maps the space
of conditional choice probabilities into itself. The true conditional choice probability P 0 is a
fixed point of the operator Ψ(·, θ) evaluated at the true parameter value θ0.

The computation of the MLE in (2) requires repeatedly solving all the fixed points of
P = Ψ(θ, P ) at each parameter value to maximize the objective function with respect to θ.
If evaluating the mapping Ψ is costly, the MLE could be extremely computationally intensive.
Further, when there are multiple fixed points, finding all of the fixed points of P = Ψ(θ, P )
may be infeasible. One of the major econometric issues in estimating models with a fixed point
constraint is to develop an estimator that is computationally simple and has good finite sample
properties as an alternative to the MLE.

3 The nested pseudo likelihood (NPL) algorithm

3.1 Asymptotic properties of the NPL estimator

This section briefly reviews the properties of the two-step pseudo maximum likelihood (PML)
estimator and the estimator generated by the nested pseudo likelihood (NPL) algorithm as
discussed in Aguirregabiria and Mira (2002, 2007). They are feasible alternatives to the MLE.

We assume that the support of (ai, xi) is finite, A×X = {a1, a2, . . . , a|A|}×{x1, x2, . . . , x|X|}.
Accordingly, P is represented by an L × 1 vector, where L = |A||X|. Given θ, the Jacobian
∇P ′Ψ(θ, P ) is an L × L matrix, where ∇P ′ ≡ (∂/∂P ′). Define ΨP ≡ ∇P ′Ψ(θ0, P 0) and Ψθ ≡
∇θ′Ψ(θ0, P 0). Let ∇(s)f denote the sth order derivative of a function f with respect to all of
its parameters. Let N denote a closed neighborhood of (θ0, P 0), and let Nθ0 denote a closed
neighborhood of θ0.

We collect the assumptions employed in AM07. As in AM07, defineQ0(θ, P ) ≡ E ln Ψ(θ, P )(ai|xi),
θ̃0(P ) ≡ arg maxθ∈ΘQ0(θ, P ), and φ0(P ) ≡ Ψ(θ̃0(P ), P ). Define the set of population NPL fixed
points as Y0 ≡ {(θ, P ) ∈ Θ×BP : θ = θ̃0(P ) and P = φ0(P )}. See AM07 for details.
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Assumption 1 (a) The observations {ai, xi : i = 1, . . . , n} are independent and identically
distributed, and dF (x) > 0 for any x ∈ X, where F (x) is the distribution function of xi. (b)
Ψ(θ, P )(a|x) > 0 for any (a, x) ∈ A × X and any (θ, P ) ∈ Θ × BP . (c) Ψ(θ, P ) is twice
continuously differentiable. (d) Θ and BP are compact. (e) There is a unique θ0 ∈int(Θ) such
that P 0 = Ψ(θ0, P 0). (f) For any θ 6= θ0 and P that solves P = Ψ(θ, P ), it is the case that
P 6= P 0. (g) (θ0, P 0) is an isolated population NPL fixed point. (h) θ̃0(P ) is a single-valued and
continuous function of P in a neighborhood of P 0. (i) the operator φ0(P )−P has a nonsingular
Jacobian matrix at P 0.

Assumption 1(b)(c) implies that max(a,x)∈A×X sup(θ,P )∈Θ×BP ||∇
(2) ln Ψ(θ, P )(a|x)|| < ∞

and hence E sup(θ,P )∈Θ×BP ||∇
(2) ln Ψ(θ, P )(ai|xi)||r < ∞ for any positive integer r. Assump-

tion 1(h) corresponds to assumption (iv) in Proposition 2 of AM07. A sufficient condition for
Assumption 1(h), which holds in a class of models that AM07 estimated, is that Q0 is globally
concave in θ in a neighborhood of P 0 and ∇θθ′Q0(θ, P 0) is a nonsingular matrix.

Define Ωθθ ≡ E[∇θ ln Ψ(θ0, P 0)(ai|xi)∇θ′ ln Ψ(θ0, P 0)(ai|xi)], and ΩθP ≡ E[∇θ ln Ψ(θ0, P 0)(ai|xi)
×∇P ′ ln Ψ(θ0, P 0)(ai|xi)]. The two-step PML estimator is θ̂PML = arg maxθ∈Θ n−1

∑n
i=1 ln Ψ(θ, P̂0)(ai|xi),

where P̂0 is an initial consistent estimator of P 0. Proposition 1 of AM07 showed that the two-
step PML estimator is consistent under Assumption 1, and, when P̂0 satisfies

√
n(P̂0 − P 0)→d

N(0,Σ), the estimator is asymptotically normal with asymptotic variance VPML = (Ωθθ)−1 +
(Ωθθ)−1ΩθPΣ(ΩθP )

′
(Ωθθ)−1. The second term of the variance expression, (Ωθθ)−1ΩθPΣ(ΩθP )

′
(Ωθθ)−1,

captures the effect of the first step estimator P̂0 on θ̂PML, and the two-step PML estimator may
perform poorly when P̂0 is imprecisely estimated.

As discussed in the introduction, Aguirregabiria and Mira (2002, 2007) developed a recursive
extension of the two-step PML estimator, called the NPL algorithm. Starting from an initial
estimator of P 0, their algorithm generates a sequence of estimators {θ̃j , P̃j}kj=1. If this sequence
converges, its limit satisfies the following conditions:

θ̌ = arg max
θ∈Θ

n−1
n∑
i=1

ln Ψ(θ, P̌ )(ai|xi) and P̌ = Ψ(θ̌, P̌ ). (4)

Any pair (θ̌, P̌ ) that satisfies these two conditions in (4) is called an NPL fixed point. The NPL
estimator, denoted by (θ̂NPL, P̂NPL), is defined as the NPL fixed point with the highest value
of the pseudo likelihood among all the NPL fixed points.

Proposition 2 of Aguirregabiria and Mira (2007) established the consistency of θ̂NPL under
Assumption 1 and derived its asymptotic distribution:

√
n(θ̂NPL − θ0) →d N(0, VNPL), where

VNPL = [Ωθθ + ΩθP (I − ΨP )−1Ψθ]−1Ωθθ{[Ωθθ + ΩθP (I − ΨP )−1Ψθ]−1}′. The NPL estimator
does not depend on the initial estimator of P 0 and reduces the finite small sample relative to
the PML estimator especially when the initial estimator of P 0 is imprecise.

While AM07 have obtained convergence in their simulations and show that the NPL esti-
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mator substantially outperforms the PML estimator, they neither provide the conditions under
which the NPL algorithm converges nor analyze how fast the convergence occurs. On the other
hand, some other studies find potential problems with the convergence of the NPL algorithm
(see Pesendorfer and Schmidt-Dengler, 2008; Collard-Wexler, 2006). To date, little is known
about the convergence properties of the NPL algorithm.

3.2 Convergence properties of the NPL algorithm

We now analyze the conditions under which the NPL algorithm achieves convergence and derive
its convergence rate when the algorithm is started from an initial consistent estimate of P 0.
First, we state the regularity conditions. For matrix and nonnegative scalar sequences of random
variables {Xn, n ≥ 1} and {Yn, n ≥ 1}, respectively, we write Xn = Op(Yn)(op(Yn)) if ||Xn|| ≤
CYn for some (all) C > 0 with probability arbitrarily close to one for sufficiently large n.

Assumption 2 Assumption 1 holds. Further, P̃0 − P 0 = op(1), Ψ(θ, P ) is three times contin-
uously differentiable, and Ωθθ is nonsingular.

Define fx(xs) ≡ Pr(x = xs) for s = 1, . . . , |X|, and let fx be an L × 1 vector of Pr(x = xs)
whose elements are arranged conformably with Pθ0(aj |xs). Let ∆P ≡ diag(P 0)−1diag(fx). With
this notation, we may write Ωθθ = Ψ

′
θ∆PΨθ and ΩθP = Ψ

′
θ∆PΨP . The following lemma states

the local convergence rate of the NPL algorithm and is one of the main results of this paper.

Lemma 1 Suppose Assumption 2 holds. Then, for j = 1, . . . , k,

θ̃j − θ̂NPL = Op(||P̃j−1 − P̂NPL||),

P̃j − P̂NPL = MΨθΨP (P̃j−1 − P̂NPL) +Op(n−1/2||P̃j−1 − P̂NPL||+ ||P̃j−1 − P̂NPL||2),

where MΨθ ≡ I −Ψθ(Ψ′θ∆PΨθ)−1Ψ′θ∆P .

Write the updating equation of P̃j as P̃j−P̂NPL = [MΨθΨP+Op(n−1/2+||P̃j−1−P̂NPL||)](P̃j−1−
P̂NPL), then recursive substitution gives P̃k − P̂NPL = (MΨθΨP + op(1))k(P̃0 − P̂NPL). If all
the eigenvalues of MΨθΨP are inside the unit circle, then (MΨθΨP )k → 0 as k → ∞, and iter-
ations move P̃j toward P̂NPL. Consequently, by choosing k sufficiently large, (θ̃k, P̃k) becomes
arbitrary close to (θ̂NPL, P̂NPL). In contrast, if some eigenvalues of MΨθΨP are outside the unit
circle, then iterations move some elements of P̃j further away from P̂NPL, and iterations may
not converge even when the initial estimate P̃0 is in a neighborhood of P̂NPL. As we discuss
in the next section, the convergence of (MΨθΨP )k is primarily determined by the dominant
eigenvalues of ΨP . If all the eigenvalues of ΨP are sufficiently smaller than 1 in absolute value,
then (MΨθΨP )k → 0 as k →∞.

Remark 1 When ΨP = 0, the convergence rate is faster than linear: P̃j−P̂NPL = Op(n−1/2||P̃j−1−
P̂NPL||+ ||P̃j−1 − P̂NPL||2) (cf. Kasahara and Shimotsu, 2008a).
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3.3 Convergence of (MΨθΨP )k

Define the spectral radius of A as ρ(A) ≡ max{|λ| : λ is an eigenvalue of A}. Then Ak → 0 as
k → ∞ if and only if ρ(A) < 1 (Horn and Johnson, 1985, Theorem 5.6.12). Hence, the NPL
algorithm converges if and only if ρ(MΨθΨP ) < 1. Because ΨP is often closely related to the
property of the economic model, we want to find a bound of ρ(MΨθΨP ) in terms of ρ(ΨP ).3 In
the following, we give two discussions on the relation between ρ(MΨθΨP ) and ρ(ΨP ).4

3.3.1 Projection by MΨθ and eigenvalues of MΨθΨP

Define PΨθ ≡ Ψθ(Ψ′θ∆PΨθ)−1Ψ′θ∆P . PΨθ is a GLS projection matrix, whereas MΨθ = I − PΨθ

is the projection matrix that generates the “residuals”. Since PΨθ is a projection matrix, we
may decompose any L−vector x into two: x = x1 + x2, where x1 = PΨθx ∈ S(Ψθ) (the column
space of Ψθ) and x2 = (I−PΨθ)x = MΨθx ∈ S⊥(∆PΨθ) (the orthogonal complement of ∆PΨθ).

Suppose y is an eigenvector of ΨP with non-zero eigenvalue ν so that ΨP y = νy and ν 6= 0.
Consider two extreme cases. First, suppose the GLS regression of y on Ψθ gives no fit. In
this case, MΨθΨP y = νy, and MΨθΨP and ΨP share the same eigenvector y with eigenvalue ν.
Second, suppose the GLS regression of y on Ψθ gives a perfect fit. In this case, MΨθΨP y = 0,
and y is an eigenvector of MΨθΨP with eigenvalue 0.

Now we place the above discussion in the context of our model. Recall that y is an L × 1
vector and Ψθ is a K × L matrix, and typically L � K because the dimension of the state
variable is much larger than the number of parameters. Then, for many y, regressing y on K

regressors gives a poor fit, and the eigenvalues of ΨP and MΨθΨP are likely to be close. For
some y, we may have a good fit, so the eigenvalue of MΨθΨP associated with such a y is close
to zero and is not likely to be the dominant eigenvalue. Hence, we expect that the dominant
eigenvalues of ΨP and MΨθΨP are close to each other. In our simulation based on a model of a
dynamic game with L = 72 and K = 2, we find either one of the above two cases hold for most
of the eigenvectors, and the spectral radius of MΨθΨP is very similar to the spectral radius of
ΨP (see Table 1).

3.3.2 The case when ΨP is diagonalizable

We can obtain a bound of ρ(MΨθΨP ) if we assume ΨP is diagonalizable, i.e., ΨP = SDS−1 for a
diagonal matrix D. A matrix A is diagonalizable if all the eigenvectors are linearly independent
(Horn and Johnson, 1985, Theorem 1.3.7). A sufficient condition for the diagonalizability of A
is that the eigenvalues of A are distinct (Horn and Johnson, 1985, Theorem 1.3.9). Although

3The contraction property of Ψ may or may not be related to the stability of equilibria in the economic model.
Given a model, there are often multiple ways of formulating a fixed point mapping (e.g., Hotz and Miller, 1993;
Arcidiacono and Miller, 2008) and its contraction property depends on which mapping a researcher chooses.

4The spectral radius is not submultiplicative; i.e., ρ(AB) > ρ(A)ρ(B) is possible.

8



economic models do not give implications for the diagonalizability of ΨP , we expect that A is
diagonalizable in some, and possibly many, cases.

For a matrixA, let ||A||s denote its spectral norm: ||A||s ≡ max{
√
λ : λ is an eigenvalue of A′A},

which satisfies ||AB||s ≤ ||A||s||B||s. ρ(·) and || · ||s satisfies ρ(S−1AS) = ρ(A), ρ(A) ≤ ||A||s,
and ||D||s = ρ(D) if D is diagonal. It follows that, if ΨP is diagonalizable, ρ(MΨθΨP ) =
ρ(MΨθSDS

−1) = ρ(S−1MΨθSD) ≤ ||S−1MΨθS||s||D||s = ||S−1MΨθS||sρ(ΨP ). Consequently,
(MΨθΨP )k converges to 0 if ΨP is diagonalizable and ρ(ΨP ) is sufficiently smaller than 1.

4 Alternative sequential likelihood-based estimators

When Ψ(θ, P ) is not a contraction in a neighborhood of (θ0, P 0), the NPL algorithm has a
convergence problem and may not be implemented. This section discusses alternative estimation
algorithms that are implementable even when the NPL algorithm encounters a convergence
problem. Some of our proposed algorithms produce more efficient estimators than the NPL
estimator.

4.1 Locally contractive mapping with the relaxation method

Consider a class of mappings that are obtained as a log-linear combination of Ψ(θ, P ) and P :

[Λ(θ, P )](a|x) ≡ {[Ψ(θ, P )](a|x)}αP (a|x)1−α, (5)

for all (a, x) ∈ A × X, where α ∈ [0, 1]. This is called the relaxation method in numerical
analysis.5 Since P is a fixed point of Ψ(θ, P ) if and only if it is a fixed point of Λ(θ, P ), the
fixed points of Ψ(θ, P ) is obtained by solving the fixed points of Λ(θ, P ).

Denote the largest and the smallest eigenvalues of ΨP by λmax and λmin, respectively. As
discussed in Judd (1998, pp. 78-80), when λmax < 1, we may choose the value of α so that
Λ(θ, P ) becomes locally contractive even when Ψ(θ, P ) is not locally contractive. Define ΛP ≡
∇P ′Λ(θ0, P 0), and let α∗ denote the value of α that minimizes the spectral radius of ΛP .

Proposition 1 If λmax ≥ 1 ≥ λmin, then there is no value of α such that ρ(ΛP ) is less than 1.
If λmax < 1, then α∗ = 2/(2− λmax − λmin) and ρ(ΛP ) = (λmax − λmin)/(2− λmax − λmin) < 1.

Consider the NPL algorithm that uses Λ(θ, P ) in place of Ψ(θ, P ). When the condition that
λmax < 1 is satisfied, the NPL algorithm with Λ(θ, P ) may converge even if the NPL algorithm
with Ψ(θ, P ) does not converge. Since ln Λ(θ, P ) = α ln Ψ(θ, P ) + (1 − α) lnP , the objective
function of the NPL estimator with Ψ and that of the NPL estimator with Λ are maximized at

5Başar (1987) and Krawczyk and Uryasev (2000) apply the relaxation method to find a Nash equilibrium of a
game. Ljungqvist and Sargent (2004, p. 574) also suggest using the relaxation method to solve the fixed point
problem for the model of Aiyagari (1994).
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the same value of θ for a given P . The NPL estimator with Ψ and the NPL estimator with Λ
are, therefore, numerically equivalent. The advantage of this method is its simplicity. Once an
appropriate value of α is determined, it achieves convergence under weaker conditions than the
original NPL algorithm without adding computational burden.6

4.2 Recursive Projection Method

In this subsection, we construct a mapping that has a better local contraction property than Ψ
building upon the Recursive Projection Method (RPM) of Shroff and Keller (1993) (henceforth
SK).

First, fix θ. If some eigenvalues of ∇P ′Ψ(θ, Pθ) are outside the unit circle, the iteration
Pj = Ψ(Pj−1, θ) does not converge to Pθ. Suppose that a small number, m, of the eigenvalues
of ∇P ′Ψ(θ, Pθ) are larger than δ ∈ (0, 1) in absolute value:

|λ1| ≥ · · · ≥ |λm| > δ ≥ |λm+1| ≥ · · · ≥ |λL|. (6)

Define P ⊆ RL as the space spanned by the eigenvectors of ∇P ′Ψ(θ, Pθ) associated with {λk}mk=1,
and let Q ≡ RL−P be the orthogonal complement of P. Let Πθ denote the orthogonal projector
from RL on P. We may write Πθ = ZθZ

′
θ, where Zθ ∈ RL×m is an orthonormal basis of P.

Then, for each P ∈ RL, we have the unique decomposition P = u+ v, where u ≡ ΠθP ∈ P and
v ≡ (I −Πθ)P ∈ Q.

Now apply Πθ and I −Πθ to P = Ψ(θ, P ), and decompose the system as follows:

u = f(u, v, θ) ≡ ΠθΨ(θ, P ),

v = g(u, v, θ) ≡ (I −Πθ)Ψ(θ, P ).

For a given Pj−1, decompose it into uj−1 = ΠθPj−1 and vj−1 = (I −Πθ)Pj−1. Since g(u, v, θ) is
contractive in v (see Lemma 2.10 of SK), we can update vj−1 by the recursion vj = g(u, vj−1, θ).
On the other hand, when the dominant eigenvalue of ΨP is outside the unit circle, the recursion
uj = f(uj−1, v, θ) cannot be used to update uj−1 because f(u, v, θ) is not a contraction in u.
Instead, the RPM performs a single Newton step on the system u = f(u, v, θ), leading to the
following updating procedure:

uj = uj−1 + (I −Πθ∇P ′Ψ(θ, Pj−1)Πθ)−1(f(uj−1, vj−1, θ)− uj−1) ≡ h(uj−1, vj−1, θ),

vj = g(uj−1, vj−1, θ). (7)

6We may estimate α∗ = 2/(2− λmax − λmin), by first applying the PML estimator and then evaluating the
eigenvalues of ∇P ′Ψ(θ̂PML, P̂0), where P̂0 is an initial consistent estimator. Alternatively, we may simulate a
sequence {P j}kj=0 by iterating P j = Ψ(θ̂PML, P

j−1) and compute the mean of ||P j+1 − P k||/||P j − P k|| across
j = 1, . . . , k−1, which gives an estimate of the dominant eigenvalue. Repeating this procedure for different values
of α, we may estimate α∗ by the value of α that leads to the smallest value of the mean of ||P j+1−P k||/||P j−P k||’s.
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Lemma 3.11 of SK shows that the spectral radius of the Jacobian of the stabilized iteration (7)
is no larger than δ, and thus the iteration Pj = h(ΠθPj−1, (I − Πθ)Pj−1, θ) + g(ΠθPj−1, (I −
Πθ)Pj−1, θ) is locally converging. In the following, we develop a sequential algorithm building
upon the updating procedure (7) by replacing Πθ with its consistent estimator.

Let Π(θ, P ) be the orthogonal projector from RL on the subspace of RL spanned by the
eigenvectors of ∇P ′Ψ(θ, P ) associated with its m largest (in absolute value) eigenvalues. Define
h∗(u, v, θ) and g∗(u, v, θ) by replacing Πθ in h(u, v, θ) and g(u, v, θ) with Π(θ, P ), and define

Γ(θ, P ) ≡ h∗(u, v, θ) + g∗(u, v, θ)

= Π(θ, P )P + (I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ))−1(Π(θ, P )Ψ(θ, P )−Π(θ, P )P )

+(I −Π(θ, P ))Ψ(θ, P )

= Ψ(θ, P ) + [(I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ))−1 − I]Π(θ, P )(Ψ(θ, P )− P ). (8)

P 0 is a fixed point of Γ(θ0, ·), i.e., P 0 = Γ(θ0, P 0), because all the fixed points of Ψ(θ, ·) are
also fixed points of Γ(θ, ·). The following proposition shows two important properties of Γ(θ, P ):
local contraction and equivalence of fixed points of Γ(θ, P ) and Ψ(θ, P ).

Proposition 2 (a) Suppose I −Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular and hence Γ(θ, P ) is
well-defined. Then Γ(θ, P ) and Ψ(θ, P ) have the same fixed points; i.e., Γ(θ, P ) = P if and only
if Ψ(θ, P ) = P . (b) ρ(∇P ′Γ(θ0, P 0)) ≤ δ0, where δ0 is defined by (6) in terms of the eigenvalues
of ∇P ′Ψ(θ0, P 0). Hence, Γ(θ, P ) is locally contractive.

The matrix I−Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ) is nonsingular if any of the eigenvalues of Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P )
is not unity.

Define an RPM fixed point as any pair (θ̌, P̌ ) that satisfies θ̌ = arg maxθ∈Θ n
−1
∑n

i=1 ln Γ(θ, P̌ )(ai|xi)
and P̌ = Γ(θ̌, P̌ ). The RPM estimator, denoted by (θ̂RPM , P̂RPM ), is defined as the RPM fixed
point with the highest value of the pseudo likelihood among all the RPM fixed points. The RPM
estimator is consistent and asymptotically normally distributed under assumptions analogous to
Assumption 1, where Ψ(θ, P ) is replaced with Γ(θ, P ). Define the RPM algorithm by the same
sequential algorithm as the NPL algorithm except that it uses Γ(θ, P ) in place of Ψ(θ, P ). Since
the mapping Γ(θ, ·) is locally contractive, the RPM algorithm will converge.

Assumption 3 (a) Assumption 1 holds, and conditions (b)–(i) of Assumption 1 hold when
Ψ(θ, P ) is replaced with Γ(θ, P ). (b) Γ(θ, P ) is three times continuously differentiable in N . (c)
ΩΓ
θθ ≡

E∇θ ln Γ(θ0, P 0)(ai|xi)∇θ′ ln Γ(θ0, P 0)(ai|xi) is nonsingular. (d) P̃0−P 0 = op(1), and θ̃0−θ0 =
op(1).

Proposition 3 Suppose Assumption 3 holds. Suppose we obtain {θ̃j , P̃j}kj=1 by the RPM algo-
rithm. Then, for j = 1, . . . , k, θ̃j−θ̂RPM = Op(||P̃j−1−P̂RPM ||) and P̃j−P̂RPM = MΓθΓP (P̃j−1−
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P̂RPM ) +Op(n−1/2||P̃j−1− P̂RPM ||+ ||P̃j−1− P̂RPM ||2), where MΓθ ≡ I −Γθ(Γ′θ∆PΓθ)−1Γ′θ∆P ,
ΓP ≡ ∇P ′Γ(θ0, P 0), and Γθ ≡ ∇θ′Γ(θ0, P 0).

We omit the proof of Proposition 3 because it is essentially the same as the proof of Lemma 1.
Note that, from Assumption 3(a), the RPM estimator satisfies P̂−P 0 = Op(n−1/2) and n−1/2(θ̂−
θ0)→d VRPM , where VRPM = [ΩΓ

θθ + ΩΓ
θP (I − ΓP )−1Γθ]−1ΩΓ

θθ{[ΩΓ
θθ + ΩΓ

θP (I − ΓP )−1Γθ]−1}′.
Implementing the RPM algorithm is very costly because it requires evaluating Π(θ, P ) and

∇P ′Ψ(θ, P ) for all the trial values of θ. We reduce the computational burden by evaluating
Π(θ, P ) and ∇P ′Ψ(θ, P ) outside the optimization routine by using a preliminary estimate of θ.
This modification has only a second-order effect on the convergence of the algorithm because
the derivatives of Γ(θ, P ) with respect to Π(θ, P ) and ∇P ′Ψ(θ, P ) are zero when evaluated at
P = Ψ(θ, P ); see the second term in (8). Let η be a preliminary estimate of θ. Replacing θ in
Π(θ, P ) and ∇P ′Ψ(θ, P ) with η, we define the following mapping

Γ(θ, P, η) ≡ Ψ(θ, P ) + [(I −Π(η, P )∇P ′Ψ(η, P )Π(η, P ))−1 − I]Π(η, P )(Ψ(θ, P )− P ).

Once Π(η, P ) and ∇P ′Ψ(η, P ) are computed, a large part of computational cost of evaluating
Γ(θ, P, η) comes from evaluating Ψ(θ, P ), and the computational cost of evaluating Γ(θ, P, η)
across different values of θ would be of a magnitude similar to that of evaluating Ψ(θ, P ).

Let (θ̃0, P̃0) be an initial consistent estimator of (θ0, P 0). For instance, θ̃0 can be the PML
estimator. The modified RPM algorithm iterates the following steps until j = k:

Step 1: Given (θ̃j−1, P̃j−1), update θ by θ̃j = arg maxθ∈Θ̄j
n−1

∑n
i=1 ln Γ(θ, P̃j−1, θ̃j−1)(ai|xi),

where Θ̄j ≡ {θ ∈ Θ : Γ(θ, P̃j−1, θ̃j−1)(a|x) ∈ [ε, 1−ε] for all (a, x) ∈ A×X} for an arbitrary
small ε > 0. We impose this restriction in order to avoid computing ln(0).7

Step 2: Update P using the obtained estimate θ̃j by P̃j = Γ(θ̃j , P̃j−1, θ̃j−1).

The following proposition shows that the modified RPM algorithm achieves the same con-
vergence rate as the original RPM algorithm in the first order.

Proposition 4 Suppose Assumption 3 holds. Suppose we obtain {θ̃j , P̃j}kj=1 by the modified
RPM algorithm. Then, for j = 1, . . . , k,

θ̃j − θ̂RPM = Op(||P̃j−1 − P̂RPM ||+ n−1/2||θ̃j−1 − θ̂RPM ||+ ||θ̃j−1 − θ̂RPM ||2),

P̃j − P̂RPM = MΓθΓP (P̃j−1 − P̂RPM ) +Op(n−1/2||θ̃j−1 − θ̂RPM ||

+||θ̃j−1 − θ̂RPM ||2 + n−1/2||P̃j−1 − P̂RPM ||+ ||P̃j−1 − P̂RPM ||2).

7In practice, we may consider a penalized objective function by truncating Γ(θ, P̃j−1, θ̃j−1) so that its value
takes between ε and 1− ε, and adding a penalty term that penalizes θ such that Γ(θ, P̃j−1, θ̃j−1) /∈ [ε, 1− ε].
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By choosing m sufficiently large, the dominant eigenvalue of ΓP lies inside the unit circle,
and the modified RPM algorithm can converge even when the NPL algorithm does not.

If an alternate preliminary consistent estimator, (θ∗, P ∗), is used in forming Π(θ, P ) and
∇P ′Ψ(θ, P ), it only affects the reminder terms in Proposition 4 as the following corollary shows.
Therefore, if we use a root-n consistent (θ∗, P ∗) to evaluate Π(θ, P ) and ∇P ′Ψ(θ, P ) and keep
these estimates unchanged throughout iterations, the resulting sequence of estimators is only
Op(n−1) away from the corresponding estimators generated by the modified RPM algorithm.

Corollary 1 Suppose Assumption 3 holds. Let (θ∗, P ∗) be a consistent estimator of (θ0, P 0),
and suppose we obtain {θ̃j , P̃j}kj=1 by the modified RPM algorithm with Π(θ∗, P ∗) and ∇P ′Ψ(θ∗, P ∗)
in place of Π(θ̃j−1, P̃j−1) and ∇P ′Ψ(θ̃j−1, P̃j−1). Then, θ̃j − θ̂RPM = Op(||P̃j−1 − P̂RPM || +
n−1/2||θ̃j−1 − θ̂RPM || + ||θ̃j−1 − θ̂RPM ||2 + r∗nj) and P̃j − P̂RPM = MΓθΓP (P̃j−1 − P̂RPM ) +
Op(n−1/2||θ̃j−1 − θ̂RPM ||+ ||θ̃j−1 − θ̂RPM ||2 + n−1/2||P̃j−1 − P̂RPM ||+ ||P̃j−1 − P̂RPM ||2 + r∗nj),
where r∗nj = n−1/2||θ∗ − θ̂RPM ||+ ||θ∗ − θ̂RPM ||2 + n−1/2||P ∗ − P̂RPM ||+ ||P ∗ − P̂RPM ||2.

The supplementary appendix discusses how to implement the sequential RPM algorithm in
details, including how to reduce the computational burden further by applying Corollary 1.

4.3 The q-NPL algorithm

When the spectral radius of ΛP or ΨP is smaller than but close to 1, the convergence of the
NPL algorithm could be very slow, and a sequence generated by the algorithm could behave
erratically.8 Furthermore, in such a case, the efficiency loss of the NPL estimator relative to
that of the MLE can be substantial.

To improve the convergence of the NPL algorithm and to obtain a more efficient estimator,
consider a q-fold operator of Λ as

Λq(θ, P ) ≡ Λ(θ, (Λ(θ, . . .Λ(θ,Λ︸ ︷︷ ︸
q times

(θ, P )) . . .).

We may define Γq(θ, P ) and Ψq(θ, P ) analogously. Define the q-NPL (q-RPM) algorithm by
using a q-fold operator Λq, Γq, and Ψq in place of Λ, Γ, or Ψ in the original NPL (RPM)
algorithm. In the following, we focus on Λq but the same argument applies to Γq and Ψq.

If q-NPL iterations converge, its limit satisfies θ̌ = arg maxθ∈Θ n
−1
∑n

i=1 ln Λq(θ, P̌ )(ai|xi)
and θ̌ = Λq(θ̌, P̌ ). Among the pairs (θ̂, P̂ ) that satisfy these two conditions, the one that
maximizes the value of the pseudo likelihood is called the q-NPL estimator and denoted by
(θ̂qNPL, P̂qNPL).

8As AM07 (pp. 20-21) discussed, if some eigenvalues of ΛP or ΨP are equal to 1, then there could exist a
continuum of NPL fixed points at (θ0, P 0).
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Since the result of Lemma 1 also applies here by replacing Ψ with Λq, the conditions under
which the q-NPL algorithm converges is primarily determined by the spectral radius of ΛqP ≡
∇P ′Λq(θ0, P 0). When ρ(ΛP ) is less than 1, the q-NPL algorithm converges faster than the NPL
algorithm because ρ(ΛqP ) = (ρ(ΛP ))q. Moreover, the variance of the q-NPL estimator approaches
that of the MLE at the exponential rate of (ρ(ΛP ))q as q →∞.

Applying the q-NPL algorithm is computationally intensive because its Step 1 requires eval-
uating Λq at many different values of θ, where each evaluation of Λq is very costly. We reduce the
computational burden by introducing a linear approximation of Λq(θ, P ) around (η, P ), where
η is a preliminary estimate of θ: Λ̃q(θ, P, η) ≡ Λq(η, P ) +∇θ′Λq(η, P )(θ − η).

Given a consistent estimator (θ̃0, P̃0), the approximate q-NPL algorithm iterates the following
steps until j = k:

Step 1: Given (θ̃j−1, P̃j−1), update θ by θ̃j = arg maxθ∈Θqj
n−1

∑n
i=1 ln Λ̃q(θ, P̃j−1, θ̃j−1)(ai|xi),

where Θq
j ≡ {θ ∈ Θ : Λ̃q(θ, P̃j−1, θ̃j−1)(a|x) ∈ [ε, 1 − ε] for all (a, x) ∈ A × X} for an

arbitrary small ε > 0.

Step 2: Given (θ̃j , P̃j−1), update P using the obtained estimate θ̃j by P̃j = Λq(θ̃j , P̃j−1).

Implementing Step 1 requires evaluating Λq(θ̃j−1, P̃j−1) and ∇θ′Λq(θ̃j−1, P̃j−1) only once outside
of the optimization routine for θ and, thus, it involves much fewer evaluations of Λ(θ, P ) across
different values of P and θ than the original q-NPL algorithm.9

To establish the consistency of a sequence of estimators generated by the approximate q-NPL
algorithm, we need the following assumptions.

Assumption 4 (a) Assumption 1 holds, and conditions (b)–(i) of Assumption 1 hold when
Ψ(θ, P ) is replaced with Λq(θ, P ). (b) Λq(θ, P ) is three times continuously differentiable in N .
(c) Ωq

θθ ≡
E∇θ ln Λq(θ0, P 0)(ai|xi)∇θ′ ln Λq(θ0, P 0)(ai|xi) is nonsingular. (d) For any ν ∈ RK such that
ν 6= 0, ∇θ′Λq(θ0, P 0)(ai|xi)ν 6= 0 with positive probability. (e) P̃0 − P 0 = op(1), and θ̃0 − θ0 =
op(1).

Assumption 4(d) is an identification condition for the probability limit of our objective function.
It is required because we use an approximation of Λq(θ, P )(a|x) in the objective function.

Under these assumptions, we establish consistency:

Proposition 5 Suppose that Assumption 4 holds. Suppose we obtain θ̃k by the approximate
q-NPL algorithm. Then θ̃j − θ0 = op(1) for j = 1, . . . , k.

The following proposition establishes that the approximate q-NPL algorithm has the same con-
vergence property as the original q-NPL algorithm.

9Using one-sided numerical derivatives, evaluating ∇θ′Λq(θ̃j , P̃j) requires (K + 1)q function evaluations of
Ψ(θ, P ).
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Assumption 5 Λ̃q(θ, P, η) is three times continuously differentiable in Nθ0 ×N .

Proposition 6 Suppose Assumptions 4-5 hold. Suppose we obtain {θ̃j , P̃j}kj=1 by the approxi-
mate q-NPL algorithm. Then, for j = 1, . . . , k, θ̃j− θ̂qNPL = Op(||P̃j−1−P̂qNPL||+n−1/2||θ̃j−1−
θ̂qNPL|| + ||θ̃j−1 − θ̂qNPL||2) and P̃j − P̂qNPL = MΛqθ

ΛqP (P̃j−1 − P̂qNPL) + Op(n−1/2||θ̃j−1 −
θ̂qNPL|| + ||θ̃j−1 − θ̂qNPL||2 + n−1/2||P̃j−1 − P̂qNPL|| + ||P̃j−1 − P̂qNPL||2), where MΛqθ

≡ I −
Λqθ((Λ

q
θ)
′∆PΛqθ)

−1(Λqθ)
′∆P with Λqθ ≡ ∇θ′Λ

q(θ0, P 0).

Upon convergence, this approximate algorithm generates the q-NPL estimator, θ̂qNPL, which is
more efficient than the NPL estimator.

4.4 Approximate fixed point algorithm

It is possible to apply the idea of the approximate q-NPL algorithm to the fixed point, Pθ =
Ψ(θ, Pθ), to approximate the MLE. From the Taylor expansion and the relation ∇θ′Pθ = (I −
∇P ′Ψ(θ, Pθ))−1∇θ′Ψ(θ, Pθ), we can approximate Pθ as Pθ = Pθ0+(I−∇P ′Ψ(θ0, Pθ0))−1∇θ′Ψ(θ0, Pθ0)(θ−
θ0) + O(||θ − θ0||2), where ∇θ′Pθ0 denotes the derivative of Pθ evaluated at θ = θ0. Therefore,
if we have a consistent estimate of θ0 and P 0, we may approximate Pθ by a linear function of θ
with the mappings ∇P ′Ψ(θ, P ) and ∇θ′Ψ(θ, P ).

We consider an estimation algorithm, called the Approximate Fixed Point (AFXP) algorithm,
based on the following objective function: Qn(θ, P, η) ≡ n−1

∑n
i=1 ln Φ(θ, P, η)(ai|xi), where

Φ(θ, P, η) ≡ P + (I −∇P ′Ψ(η, P ))−1∇θ′Ψ(η, P )(θ − η).

Let θ̃0 be an initial estimator of θ0, such as the PML estimator. The AFXP algorithm iterates
the following steps until j = k:

Step 1: Given θ̃j−1, update P by solving the fixed point: P̃j = Pθ̃j−1
. If there are multiple

fixed points, choose the one that maximizes the likelihood function:
P̃j = arg maxP∈Mθ̃j−1

n−1
∑n

i=1 lnP (ai|xi), where Mθ is defined in (3).

Step 2: Given (P̃j , θ̃j−1), update θ by θ̃j = arg maxθ∈Θj Qn(θ, P̃j , θ̃j−1), where Θj ≡ {θ ∈ Θ :
Φ(θ, P̃j , θ̃j−1)(a|x) ∈ [ε, 1− ε] for all (a, x) ∈ A×X} for an arbitrary small ε > 0.

To establish the consistency of the sequential estimators generated by the AFXP algorithm, we
impose the following assumptions. Assumption 6 is the standard regularity conditions for the
consistency of the MLE. Assumption 7 is required for the consistency of the AFXP estimator.

Assumption 6 (a) Θ is compact and, for any θ ∈ Θ, Mθ is compact. (b) (ai, xi) for i =
1, . . . ,M , are independently and identically distributed, and Pr(xi = x) > 0 for any x ∈ X.
(c) There is a unique θ0 ∈int(Θ) and a unique Pθ0 ∈ Mθ0 such that, for any (a, x) ∈ A ×
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X, Pθ0(a|x) = P 0(a|x). (d) For any Pθ ∈ Mθ given any θ 6= θ0, PrP 0({(a, x) : Pθ(a|x) 6=
P 0(a|x)}) > 0. (e) lnPθ is continuous in θ. (f) E supθ∈Θ | lnPθ(ai|xi)| <∞.

Assumption 7 (a) For any ν ∈ RK such that ν 6= 0, ∇θ′Pθ0(ai|xi)ν 6= 0 with positive probabil-
ity. (b) Φ(θ, P, η) is continuous in (θ, P, η) ∈ Θ×N . (c) E supθ∈Θ,(P,η)∈N | ln Φ(θ, P, η)(ai|xi)| <
∞.

Assumption 7(a) is similar to Assumption 4 and is an identification condition for the probability
limit of our objective function. Assumption 7(b)(c) are regularity conditions required for the
uniform convergence of the objective function.

Under these assumptions, the estimators generated by the AFXP algorithm are consistent:

Proposition 7 Suppose that Assumptions 6-7 hold and θ̃0 is consistent. Suppose we obtain θ̃k

by the AFXP algorithm. Then θ̃j − θ0 = op(1) for j = 1, . . . , k.

If a sequence of estimators generated by the AFXP algorithm converges, it converges to the
MLE. To analyze the convergence properties of the AFXP algorithm, we introduce the following
additional regularity conditions. Assumption 8(a)-(d) are required for the asymptotic normality
of the MLE; see Theorem 3.3 of Newey and McFadden (1994).

Assumption 8 (a) For θ ∈ Nθ0, lnPθ is twice continuously differentiable and Pθ > 0. (b)
E supθ∈Nθ0 ||∇θ′Pθ(ai|xi)|| <∞, and E supθ∈Nθ0 ||∇θθ′Pθ(ai|xi)|| <∞. (c) I0 ≡ E[∇θ lnPθ0(ai|xi)
×∇θ′ lnPθ0(ai|xi)] exists and is nonsingular. (d) E supθ∈Nθ0 ||∇θθ′ lnPθ(ai|xi)|| < ∞. (e)
Ψ(θ, P ) is twice continuously differentiable in (θ, P ) ∈ N . (f) Φ(θ, P, η) is three times con-
tinuously differentiable in Nθ0 ×N .

The following proposition establishes the convergence rate of the AFXP algorithm.

Proposition 8 Suppose that Assumptions 6-8 hold and θ̃0 is consistent. Suppose we obtain
{θ̃j , P̃j}kj=1 by the AFXP algorithm. Then, for j = 1, . . . , k, P̃j − P̂MLE = Op(||θ̃j−1 − θ̂MLE ||)
and θ̃j − θ̂MLE = Op(n−1/2||θ̃j−1 − θ̂MLE ||) +Op(||θ̃j−1 − θ̂MLE ||2).

Thus, the estimator generated by the AFXP algorithm is first-order equivalent to the MLE
for all k ≥ 1. This algorithm can be used to obtain the MLE because, upon convergence, its
limit is identical to the MLE.

Implementing Step 1 of the AFXP algorithm may be impractical when finding all the fixed
points is computationally infeasible. In such cases, we may replace the solution to the fixed
point in Step 1 with its consistent estimator. Define the q-AFXP algorithm by the same sequen-
tial algorithm as the AFXP algorithm except that, starting from an initial consistent estimate
(θ̃0, P̃0), Step 1 updates P by P̃j = Λq(θ̃j−1, P̃j−1) or P̃j = Γq(θ̃j−1, P̃j−1). In the following, we
focus on the case in which P is updated using Λq but a similar argument applies to Γq.
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The following propositions establish the consistency and the convergence properties of the
estimators generated by the q-AFXP algorithm. Define a K × L matrix J as
J ≡ E[∇θ lnPθ0(ai|xi)I(ai|xi)/P 0(ai|xi)], where I(ai|xi) is the row of an L×L identity matrix
that corresponds to (ai|xi).

Proposition 9 Suppose that Assumptions 6-7 hold and (θ̃0, P̃0) is consistent. Suppose we obtain
θ̃k by the q-AFXP algorithm. Then θ̃j − θ0 = op(1) for j = 1, . . . , k.

Proposition 10 Suppose that Assumptions 6-8 hold and (θ̃0, P̃0) is consistent. Suppose we
obtain θ̃k by the q-AFXP algorithm. Then, for j = 1, . . . , k,

P̃j − P̂MLE = ΛqP (P̃j−1 − P̂MLE) + Λqθ(θ̃j−1 − θ̂MLE) + rnj ,

θ̃j − θ̂MLE = (θ̃j−1 − θ̂MLE)− (I0)−1J (P̃j − P̂MLE) + rnj ,

where rnj denotes a reminder term satisfying rnj = Op(n−1/2||θ̃j−1− θ̂MLE ||+ ||θ̃j−1− θ̂MLE ||2 +
n−1/2||P̃j−1 − P̂MLE ||+ ||P̃j−1 − P̂MLE ||2).

Ignoring rnj , arranging the two updating relations into a system of equations, solving for P̃j −
P̂MLE and θ̃j− θ̂MLE , and using ΛqP = (ΛP )q, Λqθ = (I+ΛP + · · ·+(ΛP )q−1)Λθ = (I−(ΛP )q)(I−
ΛP )−1Λθ = (I − (ΛP )q)∇θ′Pθ0 , and J∇θ′Pθ0 = I0, we obtain(
P̃j − P̂MLE

θ̃j − θ̂MLE

)
= Q

(
P̃j−1 − P̂MLE

θ̃j−1 − θ̂MLE

)
, whereQ =

(
(ΛP )q Λqθ

−(I0)−1J (ΛP )q (I0)−1J (ΛP )q∇θ′Pθ0

)
.

Suppose ρ(ΛP ) < 1. Then, as q increases, (ΛP )q approaches zero, and all the eigenvalues of Q
approach zero. Therefore, all of the eigenvalues of Q are inside the unit circle for sufficiently
large q, and iterating the q-AFXP algorithm converges to the MLE.

5 Monte Carlo experiments

We consider a dynamic game of market entry and exit. The model’s setup is identical to that of
Section 4 in AM07, and the reader is referred to AM07. The profit of firm i operating in market
m in period t is equal to

θRS lnSmt − θRN ln(1 +
∑
j 6=i

ajmt)− θFC,i − θEC(1− aim,t−1) + εimt(1),

whereas its profit is εimt(0) if the firm is not operating. We assume that {εimt(0), εimt(1)} follow
i.i.d. type I extreme value distribution with zero mean and unit variance, and Smt follows an
exogenous first-order Markov process fS(Sm,t+1|Smt). We set the number of firms N = 3. The
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state space for the market size Smt is {2, 6, 10}.10 The discount factor is set to β = 0.96. We
normalize θRS to 1 and fix θEC to 1. Fixed operating costs are θFC,1 = 1.0, θFC,2 = 0.9, and
θFC,3 = 0.8.

The value of parameter θRN determines the degree of strategic substitutabilities among firms
and is the main determinant of the dominant eigenvalue of ΨP . We therefore vary the value
of θRN to 2 and 4 across experiments and examine the performance of different estimators. As
reported in Table 1, all of the eigenvalues of ΨP are inside the unit circle for θRN = 1 and 2
while the smallest eigenvalues are less than -1 for θRN = 4 and 6. We estimate θRS and θRN

while the other parameters are not estimated but fixed at the true values.
To generate an observation, we first randomly draw xm = {Sm1, a1m0, a2m0, a3m0} from

the steady-state distribution implied by the model, and then draw the choices at t = 1,
{a1m1, a2m1, a3m1}, given xm randomly from the equilibrium choice probabilities. For θRN = 1
and 2, the fixed point of Ψ(θ, P ) is obtained by iterating the mapping Ψ(θ, P ) starting from an
initial vector of choice probabilities that are uniformly equal to 0.5. For θRN = 4 and 6, the fixed
point is obtained by iterating the mapping [Λ(θ, P )](a = 1|x) ≡ {[Ψ(θ, P )](a = 1|x)}α∗{P (a =
1|x)}1−α∗ . We replicate 500 simulated samples, each of which contains n = 500, 2000, and 8000
observations.

As shown in Table 1, the absolute value of the dominant eigenvalue of MΨθΨP and MΛθΛP
is similar to the corresponding eigenvalue of ΨP and ΛP . Thus, in view of Lemma 1, the
convergence rate of the NPL algorithm is primarily determined by the dominant eigenvalue of
ΨP and ΛP .

Table 2 compares the bias and the root mean squared error (RMSE) across different esti-
mators for θRN = 2 or 4. The maximum number of iterations for sequential estimators is set to
k = 50. For θRN = 2, the NPL estimator with Ψ (henceforth Ψ–NPL estimator) substantially
improves the performance of the two-step PML estimator across different sample sizes, and the
Ψ– and Λ–NPL estimator converge to the same estimate.

For θRN = 4, however, reflecting its non-convergence, the estimator generated by 50 itera-
tions of the NPL algorithm with Ψ (henceforth Ψ–NPL algorithm) performs substantially worse
than the Λ–NPL estimator. With the sample size n = 500, the RMSE of the estimates of P̂
generated by the Ψ–NPL algorithm is more than thirty times larger than those of the Λ–NPL
estimator. Further, as the sample size increases from n = 500 to n = 2000, then to n = 8000,
the RMSE of the Λ–NPL estimator decreases approximately at the rate of n1/2, but the RMSE
of the Ψ–NPL estimator decreases at a much slower rate. For θRN = 4 and n = 2000 or 8000,

10The transition probability matrix of Smt is given by24 0.8 0.2 0.0
0.2 0.6 0.2
0.0 0.2 0.8

35 .
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the performance of the Ψ–NPL estimator is worse than that of the PML estimator.
The fourth and the fifth rows of each panel of Table 2 report the performance of the esti-

mator generated by the modified RPM algorithm with δ = 0.5 and 0.8, respectively. See the
supplementary appendix for our implementation of the modified RPM algorithm. Both estima-
tors perform better than the Ψ–NPL estimator, especially when θRN = 4, and their performance
is comparable to that of the Λ–NPL estimator. Note also that the modified RPM algorithm
performs better with δ = 0.5 than with δ = 0.8 as the former achieves faster contraction.

The sixth and the seventh rows of each panel of Table 2 report the performance of the q-NPL
estimator with Λq and the q-AFXP estimator that uses Λq to update P , respectively, where q
is set to 4. For both θRN = 2 and θRN = 4, they perform better than the Ψ– and Λ–NPL
estimator, suggesting their efficiency gain over the NPL estimator.

Table 3 compares the RMSE across the estimators generated by different sequential algo-
rithms after j = 5, 10, . . . , 25 iterations with the sample size n = 8000. For θRN = 2, the RMSE
does not change after j = 5 iterations for any of the algorithms. Thus, they either converge or
are close to convergence after 5 iterations. For θRN = 4, the RMSE of the estimators generated
by the NPL algorithm with Ψ increases with the number of iterations, suggesting its divergence.
On the other hand, our proposed alternative algorithms are convergent.

6 Concluding remarks and extension

This paper analyzes the convergence properties of the NPL algorithm to estimate a class of
structural models characterized by a fixed point constraint. We show that, when the fixed
point mapping has a local contraction property, the NPL algorithm achieves convergence in a
neighborhood of the true value.

In practice, the convergence condition may be violated. In such a case, the NPL algorithm
will not converge even when an initial estimate is in a small neighborhood of the true parameter
value. We develop alternative sequential estimators that can be used even when the original
fixed point mapping is not locally contractive. As our Monte Carlo experiments illustrate, these
alternative estimators work well even when the NPL algorithm has a convergence problem, and
their performance can be substantially better than that of the two-step estimator.

In the presence of (a finite number of) multiple equilibria, the limit of a sequence of es-
timators generated by the NPL algorithm is still consistent if the NPL algorithm is locally
converging and the initial estimator is asymptotically in a neighborhood of the true equilibrium
choice probabilities. We emphasize, however, that our convergence result is local. When there
are multiple NPL fixed points and the initial point is far away from the NPL estimator, there
is no guarantee that the NPL algorithm converges to the NPL estimator. This is analogous to
the situation often encountered by a researcher when using Newton’s method to solve the opti-
mization problem with multiple local maxima. When a reliable initial estimate is not available,
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it is recommended to repeatedly apply the NPL algorithm with different initial values.
In the supplementary appendix, we also show that convergence properties similar to that of

the NPL algorithm hold for models with permanent unobserved heterogeneity. Furthermore, we
develop a recursive extension of two-step generalized method of moment estimators and derive
its convergence properties.

7 Appendix

7.1 Proof of Lemma 1

We suppress the subscript NPL from P̂NPL and θ̂NPL. Define ψ(θ, P ) ≡ n−1
∑n

i=1 ln Ψ(θ, P )(ai|xi).
First, Proposition 1 of AM07 implies that θ̃j is consistent if P̃j−1 is consistent, and the conti-
nuity of Ψ(θ, P ) implies P̃j →p P

0 if (θ̃j , P̃j−1) →p (θ0, P 0). Then, since P̃0 is consistent, the
consistency of (θ̃j , P̃j) for j = 1, . . . , k follows from induction.

We proceed to derive the stated representation of θ̃j − θ̂ and P̃j − P̂ . First, θ̃j satisfies the
first order condition ∇θψ(θ̃j , P̃j−1) = 0. Expanding this around (θ̂, P̂ ) and using ∇θψ(θ̂, P̂ ) = 0
gives

0 = ∇θθ′ψ(θ̄, P̄ )(θ̃j − θ̂) +∇θP ′ψ(θ̄, P̄ )(P̃j−1 − P̂ ), (9)

where (θ̄, P̄ ) lie between (θ̃j , P̃j−1) and (θ̂, P̂ ). Since∇θθ′ψ(θ̄, P̄ ) = −Ωθθ+op(1) and∇θP ′ψ(θ̄, P̄ ) =
−ΩθP +op(1) follow from the consistency of (θ̄, P̄ ), positive definiteness of Ωθθ allows us to obtain
θ̃j − θ̂ = Op(||P̃j−1 − P̂ ||), giving the first result.

For the second result, note that the second derivatives of Ψ(θ, P ) are uniformly bounded in
(θ, P ) ∈ Θ×BP from Assumption 1(c). Hence, expanding the right hand side of P̃j = Ψ(θ̃j , P̃j−1)
twice around (θ̂, P̂ ) and using Ψ(θ̂, P̂ ) = P̂ , root-n consistency of (θ̂, P̂ ), and θ̃j−θ̂ = Op(||P̃j−1−
P̂ ||), we obtain

P̃j − P̂ = Ψθ(θ̃j − θ̂) + ΨP (P̃j−1 − P̂ ) +Op(n−1/2||P̃j−1 − P̂ ||+ ||P̃j−1 − P̂ ||2). (10)

Refine (9) as θ̃j − θ̂ = −Ω−1
θθ ΩθP (P̃j−1 − P̂ ) + Op(n−1/2||P̃j−1 − P̂ || + ||P̃j−1 − P̂ ||2) by using

∇θP ′ψ(θ̄, P̄ ) = −ΩθP +Op(||P̃j−1−P̂ ||)+Op(n−1/2) and ∇θθ′ψ(θ̄, P̄ ) = −Ωθθ+Op(||P̃j−1−P̂ ||)+
Op(n−1/2). Substituting this into (10) in conjunction with Ω−1

θθ ΩθP = (Ψ′θ∆PΨθ)−1Ψ′θ∆PΨP

gives the stated result. �

7.2 Proof of Proposition 1

For any eigenvalue λ of ΨP , the corresponding eigenvalue of ΛP is αλ+ (1− α) = α(λ− 1) + 1.
Suppose λmax ≥ 1 ≥ λmin. If α ≥ 0, then α(λmax−1)+1 ≥ 1. If α < 0, then α(λmin−1)+1 ≥ 1.
Therefore, there is no value of α such that α(λ− 1) + 1 < 1 for both λ = λmax and λmin, giving
the first result. Now, assume that λmax < 1. We derive the value of α that minimizes the
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spectral radius of ΛP . First, such α needs to be positive because α(λ − 1) + 1 ≥ 1 if α ≤ 0.
When α > 0, we have 1 > α(λmax − 1) + 1 ≥ α(λmin − 1) + 1. Therefore, the optimal α satisfies
α∗(λmax − 1) + 1 = −α∗(λmin − 1)− 1, giving α∗ = 2/(2− λmax − λmin). �

7.3 Proof of Proposition 2

For part (a), write Γ(θ, P ) − P as Γ(θ, P ) − P = A(θ, P )(Ψ(θ, P ) − P ), where A(θ, P ) ≡
(I − Π(θ, P )∇P ′Ψ(θ, P )Π(θ, P ))−1Π(θ, P ) + (I − Π(θ, P )). Let Z(θ, P ) denote an orthonormal
basis of the column space of Π(θ, P ), so that Z(θ, P )Z(θ, P )′ = Π(θ, P ) and Z(θ, P )′Z(θ, P ) =
Im. Suppress (θ, P ) from Π(θ, P ), Z(θ, P ), and ∇P ′Ψ(θ, P ). A direct calculation gives (I −
Π∇P ′ΨΠ)−1Π = Z(I−Z ′∇P ′ΨZ)−1Z ′, so we can writeA(θ, P ) asA(θ, P ) = Z(I−Z ′∇P ′ΨZ)−1Z ′+
(I−Π). The stated result follows sinceA(θ, P ) is nonsingular because rank[Z(I−Z ′∇P ′ΨZ)−1Z ′] =
m, rank(I −Π) = N −m, and Z(I − Z ′∇P ′ΨZ)−1Z ′ and I −Π are orthogonal to each other.

For part (b), define ΓP ≡ ∇P ′Γ(θ0, P 0) and Π0 ≡ Π(θ0, P 0). Define P with respect to
ΨP ≡ ∇P ′Ψ(θ0, P 0). Computing ∇P ′Γ(θ, P ) and noting that Ψ(θ0, P 0) = P 0, we find ΓP =
Π0 + (I − Π0ΨPΠ0)−1Π0(ΨP − I) + (I − Π0)ΨP . Observe that ΓPΠ0 = (I − Π0)ΨPΠ0 =
0, where the last equality follows because ΨPΠ0P ∈ P for any P ∈ RL by the definition of
Π0. Hence, ΓP = ΓP (I − Π0). We also have (I − Π0)ΓP = (I − Π0)ΨP because a direct
calculation gives (I − Π0ΨPΠ0)−1Π0 = Z0(I − (Z0)′ΨPZ

0)−1(Z0)′ where Z0 = Z(θ0, P 0), and
hence (I −Π0)(I −Π0ΨPΠ0)−1Π0 = 0. Then, in conjunction with ΓP = ΓP (I −Π0), we obtain
(I−Π0)ΓP = (I−Π0)ΨP (I−Π0). Since ΓP (I−Π0) has the same eigenvalues as (I−Π0)ΓP (see
Theorem 1.3.20 of Horn and Johnson, 1985), we have ρ(ΓP ) = ρ(ΓP (I−Π0)) = ρ((I−Π0)ΓP ) =
ρ[(I − Π0)ΨP (I − Π0)] ≤ δ0, where the last inequality follows from Lemma 2.10 of SK: P , Q,
and F ∗u in SK correspond to our Π0, I −Π0, and ΨP . �

7.4 Proof of Proposition 4

Write the objective function as γ̄(θ, P, η) ≡ n−1
∑n

i=1 ln Γ(θ, P, η)(ai|xi), and define
γ(θ, P, η) ≡ E ln Γ(θ, P, η)(ai|xi). Define ΩΓ

θP ≡ E∇θ ln Γ(θ0, P 0)(ai|xi)∇P ′ ln Γ(θ0, P 0)(ai|xi).
We use induction. First, we prove the consistency, i.e., (θ̃j , P̃j)→p (θ0, P 0) if (θ̃j−1, P̃j−1)→p

(θ0, P 0). To show the consistency of θ̃j , we show that Θ̄j is compact and

sup
(θ,P,η)∈Θ̄j×N

|γ̄(θ, P, η)− γ(θ, P, η)| = op(1), (11)

γ(θ, P 0, θ0) is continuous in θ, and γ(θ, P 0, θ0) is uniquely maximized at θ0. (12)

Then the consistency of θ̃j follows from Theorem 2.1 of Newey and McFadden (1994) because
(11) in conjunction with the consistency of (θ̃j−1, P̃j−1) and the triangle inequality implies
supθ∈Θ̄j

|γ̄(θ, P̃j−1, θ̃j−1)− γ(θ, P 0, θ0)| = op(1).
Θ̄j is compact because Θ̄j is an intersection of the compact set Θ and |A||X| closed sets.
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Take N sufficiently small, then it follows from the consistency of (θ̃j−1, P̃j−1) and the continuity
of Γ(θ, P, η) that Γ(θ, P, η)(a|x) ∈ [ε/2, 1 − ε/2] for all (a, x) ∈ A × X and (θ, P, η) ∈ Θ̄j × N
with probability approaching one (henceforth wpa1). Observe that (i) Θ̄j ×N is compact, (ii)
ln Γ(θ, P, η) is continuous in (θ, P, η) ∈ Θ̄j×N , and (iii) E sup(θ,P,η)∈Θ̄j×N | ln Γ(θ, P, η)(ai|xi)| ≤
(| ln(ε/2)| + | ln(1 − ε/2)|) < ∞ because of the way we choose N . Therefore, (11) follows from
Lemma 2.4 of Newey and McFadden (1994). Lemma 2.4 of Newey and McFadden (1994) also
implies that γ(θ, P, η) is continuous, giving the first part of (12). Finally, the second part of (12)
holds because θ0 is the only parameter such that P 0 = Γ(θ, P 0, θ0), and we prove the consistency
of θ̃j . The consistency of P̃j then follows from the continuity of Γ(θ, P, η) and the consistency
of (θ̃j , P̃j−1), and we establish the consistency of (θ̃j , P̃j).

We proceed to derive the stated representation of θ̃j − θ̂RPM and P̃j − P̂RPM . Henceforth,
we suppress the subscript RPM from θ̂RPM and P̂RPM . θ̃j satisfies the first order condition
∇θγ̄(θ̃j , P̃j−1, θ̃j−1) = 0. Expanding it twice around (θ̂, P̃j−1, θ̃j−1) gives

0 = ∇θγ̄(θ̂, P̃j−1, θ̃j−1) +∇θθ′ γ̄(θ̂, P̃j−1, θ̃j−1)(θ̃j − θ̂) +Op(||θ̃j − θ̂||2). (13)

We analyze ∇θγ̄(θ̂, P̃j−1, θ̃j−1) on the right of (13) first. Expanding ∇θγ̄(θ̂, P̃j−1, θ̃j−1) twice
around (θ̂, P̂ , θ̂) gives∇θγ̄(θ̂, P̃j−1, θ̃j−1) = ∇θγ̄(θ̂, P̂ , θ̂)+∇θP ′ γ̄(θ̂, P̂ , θ̂)(P̃j−1−P̂ )+∇θη′ γ̄(θ̂, P̂ , θ̂)(θ̃j−1−
θ̂) + Op(||θ̃j−1 − θ̂||2 + ||P̃j−1 − P̂ ||2). First, the RPM estimator satisfies ∇θγ̄(θ̂, P̂ , θ̂) = 0
wpa1 because ∇θ′ γ̄(θ̂, P̂ ) = 0 from the first order condition, and Proposition 2(a) implies
Ψ(θ̂, P̂ ) = P̂ wpa1 and hence ∇θ′Γ(θ̂, P̂ , θ̂) = ∇θ′Γ(θ̂, P̂ ) wpa1. Second, the information ma-
trices such as ΩΓ

θθ are defined equivalently in terms of either by Γ(θ, P, η) or Γ(θ, P ) because
Γ(θ0, P 0, θ0) = Γ(θ0, P 0), ∇θ′Γ(θ0, P 0, θ0) = ∇θ′Γ(θ0, P 0), and ∇P ′Γ(θ0, P 0, θ0) = ∇P ′Γ(θ0, P 0)
from P 0 = Ψ(θ0, P 0). Third, the information matrix equality and ∇η′Γ(θ0, P 0, θ0) = 0 imply
E∇θη′ ln Γ(θ0, P 0, θ0)(ai|xi) = 0. Therefore, in conjunction with the root-n consistency of (θ̂, P̂ ),
we have

∇θγ̄(θ̂, P̃j−1, θ̃j−1) = −ΩΓ
θP (P̃j−1 − P̂ ) + rnj , (14)

where rnj denotes a generic reminder term of Op(n−1/2||θ̃j−1− θ̂||+ ||θ̃j−1− θ̂||2 +n−1/2||P̃j−1−
P̂ || + ||P̃j−1 − P̂ ||2). The stated bound, θ̃j − θ̂ = Op(||P̃j−1 − P̂ ||) + rnj , follows from writing
the second and third terms on the right of (13) together as (−ΩΓ

θθ + op(1))(θ̃j − θ̂) and using the
positive definiteness of ΩΓ

θθ.
For the representation of P̃j − P̂ , first we have

P̃j = P̂ + Γθ(θ̃j − θ̂) + ΓP (P̃j−1 − P̂ ) + rnj , (15)

by expanding P̃j = Γ(θ̃j , P̃j−1, θ̃j) around (θ̂, P̂ , θ̂) and using Γ(θ̂, P̂ , θ̂) = P̂ . Next, refine (13)
as 0 = ∇θγ̄(θ̂, P̃j−1, θ̃j−1)− ΩΓ

θθ(θ̃j − θ̂) + rnj by expanding ∇θθ′ γ̄(θ̂, P̃j−1, θ̃j−1) in (13) around
(θ̂, P̂ , θ̂) to write it as∇θθ′ γ̄(θ̂, P̃j−1, θ̃j−1) = −ΩΓ

θθ+Op(n
−1/2)+Op(||θ̃j−1−θ̂||)+Op(||P̃j−1−P̂ ||)
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and using the bound of θ̃j − θ̂ obtained above. Substituting this into (14) gives θ̃j − θ̂ =
−(ΩΓ

θθ)
−1ΩΓ

θP (P̃j−1 − P̂ ) + rnj . The stated result follows from substituting this into (15) in
conjunction with (ΩΓ

θθ)
−1ΩΓ

θP = (Γ′θ∆PΓθ)−1Γ′θ∆PΓP . �

7.5 Proof of Corollary 1

The proof of the consistency of (θ̃j , P̃j) is the same as the proof of Proposition 4. For the
bound of θ̃j and P̃j , define Γ(θ, P, η,Q) ≡ Ψ(θ, P ) + [(I − Π(η,Q)∇P ′Ψ(η,Q)Π(η,Q))−1 −
I]Π(η,Q)(Ψ(θ, P ) − P ), and write the objective function in Step 1 as γ̄(θ, P̃j−1, θ

∗, P ∗). Since
∇Q′Γ(θ0, P 0, θ0, P 0) = 0, the stated result follows from starting from the first order condition
∇θ′ γ̄(θ̃j , P̃j−1, θ

∗, P ∗) = 0, and following the proof of Proposition 4. �

7.6 Proof of Proposition 5

We use induction. Assume (θ̃j−1, P̃j−1)→p (θ0, P 0). DefineQqn(θ, P, η) ≡ n−1
∑n

i=1 ln Λ̃q(θ, P, η)(ai|xi)
and Qq(θ, P, η) ≡ E ln Λ̃q(θ, P, η)(ai|xi). In order to show θ̃j →p θ

0, it suffices to show that (11)–
(12) in the proof of Proposition 4 hold if we replace γ̄(θ, P, η) and γ(θ, P, η) with Qqn(θ, P, η) and
Qq(θ, P, η). Take N sufficiently small, then (i) Θq

j×N is compact, (ii) ln Λ̃q(θ, P, η) is continuous
in (θ, P, η) ∈ Θq

j×N , and (iii) E sup(θ,P,η)∈Θqj×N | ln Λ̃q(θ, P, η)(ai|xi)| <∞. Therefore, (11) and
the first result of (12) hold for Qqn(θ, P, η) and Qq(θ, P, η).

We proceed to show that θ0 uniquely maximizes Qq(θ, P 0, θ0). Note that

Qq(θ, P 0, θ0)−Qq(θ0, P 0, θ0) = E ln(∇θ′Λq(θ0, P 0)(θ − θ0) + P 0)(ai|xi)− E lnP 0(ai|xi)

= E ln
(
∇θ′Λq(θ0, P 0)(ai|xi)(θ − θ0)

P 0(ai|xi)
+ 1
)
. (16)

Recall that ln(y + 1) ≤ y for all y > −1 where the inequality is strict if y 6= 0, and that
Assumption 4(d) implies ∇θ′Λq(θ0, P 0)(ai|xi)(θ − θ0)/P 0(ai|xi) 6= 0 with positive probability
for all θ 6= θ0. Therefore, the right hand side of (16) is strictly smaller than

E

[
∇θ′Λq(θ0, P 0)(ai|xi)(θ − θ0)

P 0(ai|xi)

]
for all θ 6= θ0. (17)

Because E[∇θ′Λq(θ0, P 0)(ai|xi)/P 0(ai|xi)] = 0, we have Qq(θ, P 0, θ0) − Qq(θ0, P 0, θ0) < 0 for
all θ 6= θ0, and θ0 uniquely maximizes Q(θ, P 0, θ0). Therefore, θ̃j →p θ

0. Finally, P̃j →p P
0

follows from Λq(θ̃j , P̃j−1)→p Λq(θ0, P 0) = P 0. �

7.7 Proof of Proposition 6

The proof is similar to the proof of the updating formula of Proposition 4. We suppress
the subscript qNPL from θ̂qNPL and P̂qNPL. (θ̂, P̂ ) is root-n consistent from applying the
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proof of Proposition 2 of Aguirregabiria and Mira (2007) with replacing Ψ(θ, P ) by Λq(θ, P ).
Define Qqn(θ, P, η) ≡ n−1

∑n
i=1 ln Λ̃q(θ, P, η)(ai|xi). First, expanding the first order condi-

tion 0 = ∇θQqn(θ̃j , P̃j−1, θ̃j−1) twice around (θ̂, P̃j−1, θ̃j−1) gives 0 = ∇θQqn(θ̂, P̃j−1, θ̃j−1) +
∇θθ′Qqn(θ̂, P̃j−1, θ̃j−1)(θ̃j− θ̂)+Op(||θ̃j− θ̂||2), which corresponds to (13) in the proof of Proposi-
tion 4. Second, note that the q-NPL estimator satisfies∇θQqn(θ̂, P̂ , θ̂) = 0, and that Λ̃q(θ0, P 0, θ0) =
Λq(θ0, P 0),∇θ′Λ̃q(θ0, P 0, θ0) = ∇θ′Λq(θ0, P 0),∇P ′Λ̃q(θ0, P 0, θ0) = ∇P ′Λq(θ0, P 0), and∇η′Λ̃q(θ0, P 0, θ0) =
0. Therefore, expanding ∇θQqn(θ̂, P̃j−1, θ̃j−1) twice around (θ̂, P̂ , θ̂) and using the root-n consis-
tency of (θ̂, P̂ ) and the information matrix equality, we obtain∇θQqn(θ̂, P̃j−1, θ̃j−1) = −Ωq

θP (P̃j−1−
P̂ )+rnj , where rnj denotes a reminder term of Op(n−1/2||θ̃j−1− θ̂||+ ||θ̃j−1− θ̂||2 +n−1/2||P̃j−1−
P̂ ||+ ||P̃j−1− P̂ ||2). This corresponds to (14) in the proof of Proposition 4. The stated bound of
θ̃j− θ̂ follows from noting that ∇θθ′Qqn(θ̂, P̃j−1, θ̃j−1) = −Ωq

θθ+op(1) and repeating the argument
of the proof of Proposition 4.

The proof of the representation of P̃j − P̂ follows from the proof of Proposition 4, because
(i) P̃j = P̂ + Λqθ(θ̃j − θ̂) + ΛqP (P̃j−1 − P̂ ) + rnj , which corresponds to (15) in the proof of
Proposition 4, from expanding Λq(θ̃j , P̃j−1) twice around (θ̂, P̂ ) and using P̂ = Λq(θ̂, P̂ ), (ii)
∇θθ′Qqn(θ̂, P̃j−1, θ̃j−1)(θ̃j− θ̂) = −Ωq

θθ(θ̃j− θ̂)+rnj from expanding ∇θθ′Qqn(θ̂, P̃j−1, θ̃j−1) around
(θ̂, P̂ , θ̂) and using the bound of θ̃j−θ̂ obtained above, and (iii) (Ωq

θθ)
−1Ωq

θP = ((Λqθ)
′∆PΛqθ)

−1(Λqθ)
′∆PΛqP .

�

7.8 Proof of Proposition 7

The proof is essentially the same as the proof of Proposition 5. The argument of the proof of
Proposition 5 carries through if we replace Λ̃q(θ, P, η) and Λq(θ0, P 0) with Φ(θ, P, η) and Pθ0 . �

7.9 Proof of Proposition 8

We suppress the subscript MLE from θ̂MLE and P̂MLE . First, P̃j − P̂ = Op(||θj−1 − θ̂||) follows
easily from Taylor expansion. To show the bound of θ̃j − θ̂, define Φ(θ, η) ≡ Φ(θ, Pη, η) =
Pη + ∇θ′Pη(θ − η) and Qn(θ, η) ≡ Qn(θ, Pη, η) = n−1

∑n
i=1 ln Φ(θ, η)(ai|xi), so that θ̃j =

arg maxΘj Qn(θ, θ̃j−1). We expand the first order condition ∇θQn(θ̃j , θ̃j−1) = 0 twice around
(θ̂, θ̃j−1) as

0 = ∇θQn(θ̂, θ̃j−1) +∇θθ′Qn(θ̂, θ̃j−1)(θ̃j − θ̂) +Op(||θ̃j − θ̂||2)

= ∇θQn(θ̂, θ̃j−1) + (−I0 + op(1))(θ̃j − θ̂), (18)

where the second equality follows from E[∇θθ′Qn(θ0, θ0)] = −I0 and the consistency of (θ̂, θ̃j−1).
Since the MLE satisfies∇θQn(θ̂, θ̂) = 0, expanding∇θQn(θ̂, θ̃j−1) around (θ̂, θ̂) gives∇θQn(θ̂, θ̃j−1) =
∇θη′Qn(θ̂, θ̂)(θ̃j−1−θ̂)+Op(||θ̃j−1−θ̂||2). Now,∇θη′Qn(θ̂, θ̂) = n−1

∑n
i=1∇θθ′Pθ̂(ai|xi)/Pθ̂(ai|xi) =

Op(n−1/2), where the last equality follows from the root-n consistency of θ̂ because the infor-
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mation matrix equality implies E[∇θθ′Pθ0(ai|xi)/Pθ0(ai|xi)] = 0. Therefore, ∇θQn(θ̂, θ̃j−1) =
Op(n−1/2||θ̃j−1 − θ̂||+ ||θ̃j−1 − θ̂||2), and the stated bound of θ̃j − θ̂ follows from (18). �

7.10 Proof of Proposition 9

The proof is the same as that of Proposition 7 and is omitted. �

7.11 Proof of Proposition 10

We suppress the subscript MLE from θ̂MLE and P̂MLE . The updating formula of P̃j follows
from expanding P̃j = Λq(θ̃j−1, P̃j−1) around (θ̂, P̂ ) and using the root-n consistency of (θ̂, P̂ ).

For the bound of θ̃j − θ̂, expanding the first order condition ∇θQn(θ̃j , P̃j , θ̃j−1) = 0 twice
around (θ̂, P̃j , θ̃j−1), we have

0 = ∇θQn(θ̂, P̃j , θ̃j−1) +
[
−I0 +Op

(
n−1/2 + ||P̃j − P̂ ||+ ||θ̃j−1 − θ̂||

)]
(θ̃j − θ̂) +Op(||θ̃j − θ̂||2),

(19)
where the second term on the right follows from expanding ∇θθ′Qn(θ̂, P̃j , θ̃j−1) around (θ̂, P̂ , θ̂)
and using the root-n consistency of (θ̂, P̂ ) and the information matrix equality.

Since∇θQn(θ̂, P̂ , θ̂) = 0 and E
[
∇(j)Φ(θ, P, η)(ai|xi)/Φ(θ, P, η)(ai|xi)

]
evaluated at (θ, P, η) =

(θ0, P 0, θ0) is equal to 0 for j ≥ 1, expanding ∇θQn(θ̂, P̃j , θ̃j−1) on the right of (19) twice around
(θ̂, P̂ , θ̂) in conjunction with the root-n consistency of (θ̂, P̂ ) and the information matrix equality
gives

∇θQn(θ̂, P̃j , θ̃j−1) = −E[∇θ lnPθ0(ai|xi)I(ai|xi)/P 0(ai|xi)](P̃j − P̂ ) + I0(θ̃j−1 − θ̂) + rnj , (20)

where I(ai|xi) is the row of an L × L identity matrix corresponding to (ai|xi), and rnj is a
reminder term of Op(n−1/2||θ̃j−1 − θ̂||+ ||θ̃j−1 − θ̂||2 + n−1/2||P̃j − P̂ ||+ ||P̃j − P̂ ||2). Hence, we
have θ̃j − θ̂ = Op(||θ̃j−1 − θ̂||+ ||P̃j − P̂ ||) from (19) and (20). Substituting this bound of θ̃j − θ̂
into the Op(||θ̃j − θ̂||2) term in (19) and using P̃j − P̂ = Op(||P̃j−1 − P̂ ||+ ||θ̃j−1 − θ̂||) from the
updating formula of P̃j , we obtain the stated updating formula of θ̃j from (19) and (20). �
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Table 1: The Largest and Smallest Eigenvalues of ΨP and ΛP

Eig(ΨP ) Eig(ΛP )
θRN λmax λmin λmax λmin ρ(MΨθΨP ) ρ(MΛθΛP )

1 0.2104 -0.3365 0.2572 -0.2572 0.2922 0.2555
2 0.4275 -0.6925 0.4945 -0.4945 0.5996 0.4937
4 0.7596 -1.1839 0.8017 -0.8017 1.1788 0.8056
6 0.8914 -1.4788 0.9161 -0.9161 1.4775 0.9150

A pair (λmax, λmin) represents the largest and the smallest eigenvalues of ΨP or ΛP . The last two columns report the

absolute value of the dominant eigenvalue of MΨθΨP and MΛθΛP .

Table 2: Bias and RMSE

θRN = 2 θRN = 4
Estimator n = 500 n = 2000 n = 8000 n = 500 n = 2000 n = 8000

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
PML with Ψ -0.2277 0.2703 -0.0752 0.1125 -0.0258 0.0502 -0.1162 0.1438 -0.0323 0.0508 -0.0065 0.0196
NPL with Ψ -0.0147 0.1415 -0.0038 0.0646 -0.0037 0.0335 -0.0098 0.0685 -0.0056 0.0472 -0.0019 0.0403

θ̂RS NPL with Λ -0.0147 0.1415 -0.0038 0.0646 -0.0037 0.0335 0.0036 0.0593 -0.0015 0.0296 0.0011 0.0144
RPM (δ = 0.5) -0.0162 0.1399 -0.0063 0.0636 -0.0041 0.0325 0.0033 0.0586 -0.0019 0.0280 0.0008 0.0140
RPM (δ = 0.8) -0.0150 0.1410 -0.0038 0.0645 -0.0038 0.0334 0.0016 0.0617 -0.0027 0.0299 0.0010 0.0143
q-NPL with Λq -0.0135 0.1296 -0.0046 0.0595 -0.0023 0.0301 0.0024 0.0569 -0.0016 0.0278 0.0009 0.0139
q-AFXP with Λq -0.0131 0.1299 -0.0045 0.0596 -0.0023 0.0302 0.0021 0.0561 -0.0018 0.0276 0.0007 0.0137
PML with Ψ -0.8116 0.9555 -0.2681 0.3988 -0.0935 0.1789 -0.7167 0.8270 -0.1798 0.2447 -0.0403 0.0871
NPL with Ψ -0.0450 0.4840 -0.0131 0.2285 -0.0144 0.1180 -0.1569 0.2753 -0.1168 0.1956 -0.0982 0.1624

θ̂RN NPL with Λ -0.0450 0.4840 -0.0131 0.2285 -0.0144 0.1180 0.0187 0.1346 0.0055 0.0678 0.0043 0.0350
RPM (δ = 0.5) -0.0502 0.4798 -0.0223 0.2242 -0.0161 0.1144 0.0196 0.1462 0.0042 0.0688 0.0038 0.0350
RPM (δ = 0.8) -0.0451 0.4843 -0.0132 0.2285 -0.0144 0.1181 -0.0099 0.1657 -0.0008 0.0727 0.0043 0.0357
q-NPL with Λq -0.0413 0.4411 -0.0165 0.2090 -0.0094 0.1052 0.0196 0.1267 0.0049 0.0651 0.0038 0.0330
q-AFXP with Λq -0.0403 0.4418 -0.0164 0.2094 -0.0092 0.1052 0.0184 0.1221 0.0046 0.0643 0.0034 0.0326
PML with Ψ -0.0654 2.1491 -0.0103 0.5553 0.0237 0.1877 -0.0967 5.7026 -0.0831 1.9414 -0.0183 0.4722
NPL with Ψ 0.0211 0.1625 0.0175 0.0392 0.0157 0.0363 -0.5544 3.4606 -0.1975 3.0148 -0.0150 2.8906

P̂ NPL with Λ 0.0211 0.1625 0.0175 0.0392 0.0157 0.0363 0.0009 0.1113 -0.0453 0.0531 0.0048 0.0392
(×100) RPM (δ = 0.5) 0.0209 0.1649 0.0200 0.0542 0.0169 0.0408 -0.0017 0.1774 -0.0464 0.0630 0.0011 0.0313

RPM (δ = 0.8) 0.0165 0.1637 0.0167 0.0390 0.0135 0.0357 -0.2429 1.0161 -0.0938 0.3194 0.0028 0.0363
q-NPL with Λq 0.0150 0.1397 0.0194 0.0424 0.0130 0.0245 -0.0211 0.1045 -0.0451 0.0523 0.0028 0.0324
q-AFXP with Λq 0.0157 0.1390 0.0192 0.0421 0.0130 0.0240 -0.0232 0.0978 -0.0479 0.0556 0.0012 0.0285

The result is based on 500 simulated samples. The maximum number of iterations is set to 50. For the q-NPL and q-AFXP,

we set q = 4.

Table 3: RMSE for j = 5, 10, . . . , 25 with n = 8000

θRN = 2

RMSE of θ̂RS RMSE of θ̂RN
j=5 j=10 j=15 j=20 j=25 j=5 j=10 j=15 j=20 j=25

NPL with Ψ 0.0335 0.0335 0.0335 0.0335 0.0335 0.1181 0.1180 0.1180 0.1180 0.1180
NPL with Λ 0.0335 0.0335 0.0335 0.0335 0.0335 0.1181 0.1180 0.1180 0.1180 0.1180
RPM (δ = 0.5) 0.0328 0.0326 0.0326 0.0325 0.0325 0.1153 0.1150 0.1148 0.1146 0.1145
RPM (δ = 0.8) 0.0334 0.0334 0.0334 0.0334 0.0334 0.1183 0.1181 0.1181 0.1181 0.1181
q-NPL with Λq 0.0302 0.0301 0.0301 0.0301 0.0301 0.1052 0.1052 0.1052 0.1052 0.1052
q-AFXP with Λq 0.0302 0.0302 0.0302 0.0302 0.0302 0.1052 0.1052 0.1052 0.1052 0.1052

θRN = 4

RMSE of θ̂RS RMSE of θ̂RN
j=5 j=10 j=15 j=20 j=25 j=5 j=10 j=15 j=20 j=25

NPL with Ψ 0.0173 0.0223 0.0265 0.0324 0.0350 0.0682 0.0777 0.1195 0.1271 0.1534
NPL with Λ 0.0144 0.0145 0.0144 0.0144 0.0144 0.0364 0.0351 0.0350 0.0350 0.0350
RPM (δ = 0.5) 0.0142 0.0140 0.0139 0.0140 0.0139 0.0379 0.0350 0.0350 0.0350 0.0351
RPM (δ = 0.8) 0.0148 0.0154 0.0144 0.0148 0.0143 0.0392 0.0394 0.0365 0.0409 0.0360
q-NPL with Λq 0.0139 0.0139 0.0139 0.0139 0.0139 0.0330 0.0330 0.0330 0.0330 0.0330
q-AFXP with Λq 0.0137 0.0137 0.0137 0.0137 0.0137 0.0325 0.0326 0.0326 0.0326 0.0326

The result is based on 500 simulated samples. The maximum number of iterations is set to 50. For the q-NPL and q-AFXP,

we set q = 4.
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