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1 Introduction

It has long been recognized that individuals are inßuenced by desires for feel-

ings such as esteem, popularity or acceptance (see e.g. Jones 1984, Lindbeck

1997). These desires can lead to the emergence of a norm of behaviour to

which individuals conform. Those who deviate from the norm face �being

punished� for �not Þtting in� or being seen as �extreme�. Often, however, we

see conformity existing in some choice situations but not in others; in one

instance we may Þnd very strong conformity with all individuals behaving

in some common way, while in another, seemingly very similar situation,

individuals may be found simply �doing what they want� with little, if any,

observed conformity.1 This poses the question of why conformity may or may

not arise in different contexts. It also feeds through to the general question

of why conformity may arise at all. This paper considers a simple model to

try and address these questions.

One explanation for why conformity may exist in some contexts but not

others is that the relative strength of desires for popularity and esteem may

vary in different contexts. This explanation is put forward by Bernheim

(1994). In the model of conformity introduced in Bernheim an agent�s payoff

is a weighted sum of two components - intrinsic utility, determined by his

actions, and esteem, determined by what �type� others believe him to be.

Conformity arises if agents are sufficiently motivated by esteem to sacriÞce

intrinsic utility in order to �Þt in� with the societal norm. Whether or not

conformity arises depends on the relative weight given to esteem - if esteem

has low weight then conformity does not result while the larger is the weight

given to esteem the stronger is the conformity.

An alternative explanation for why conformity may arise in some contexts

1One example is dress code. In some departments nearly all male staff wear suits, in
some nearly all wear casual wear and in others people �wear what they want�. On a larger
scale, in London male workers typically wear a dark suit while in Paris workers simply
seem to �wear what they like�.
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and not others is offered by Akerlof (1980). Akerlof envisages a multiple equi-

librium environment in which there is (i) an equilibrium in which a norm is

established and equilibrium behavior is to conform to that norm (even if this

means not maximizing intrinsic utility), or alternatively, (ii) an equilibrium

where a norm is not established (or at least the norm is to just �do what

you want�) and so individuals are not guided by fears of being seen as �ex-

treme�. Whether or not conformity arises in this multiple equilibrium setting

is largely a matter of historical chance.

In this paper we propose a model, drawing, in particular, on the research

of Bernheim (1994), that attempts to bring together these two differing ex-

planations for why conformity may or may not arise. More particularly, an

agent will have the choice between two strategies - to conform or not-conform.

If an agent chooses not to conform then he behaves so as to maximize his in-

trinsic utility. If an agent conforms then he performs some �focal action� and

in so doing sacriÞces intrinsic utility but is guaranteed to not feel �the odd

one out�. Crucially, we assume that if an agent conforms he accords others

esteem depending on their behaviour with those choosing the �focal action�

given most esteem. Conversely, if an agent does not-conform he accords the

same esteem to everyone irrespective of their behaviour. The consequence is

a coordination game - if everybody chooses to not-conform then it is optimal

to not-conform while if everybody conforms it is optimal to conform. In the

framework of Bernheim (1994) the choice of conformity or non-conformity

could be seen as a choice between giving a high or low weight to esteem in

the utility function. Preferences and the importance of esteem are thus in a

certain sense determined within the model.2

As always in coordination games its an open question what strategy an

individual should choose. In this particular setting an individual has to weigh

up whether he thinks a conformity norm will or will not exist or, in other

words, what proportion of the population will or will not conform. Evolution-

2A related issue is whether individuals can choose emotions - see Elster (1998).
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ary or learning models have shed much light on equilibrium selection issues

(see e.g. Fudenberg and Levine 1998) and so we take this approach in the

current paper. Individuals are modelled as interacting repeatedly over time

and choosing whether or not to conform using a best reply rule;- that is, an

agent conforms in this period if conforming would have maximized his payoff

in the previous period. A seemingly robust result of the existing literature

on best reply dynamics is how an equilibrium in risk dominant strategies is

the most likely long run outcome. Taking our lead from this literature we

can ask what is the risk dominant option or �safer option� here - to conform

or not-conform. To do this we envisage an initial state in which all except

proportion ε of the population are playing not-conform, where ε is small.

We ask whether conformity �can invade�. That is, whether, over time the

proportion of agents choosing to conform grows from ε to one. The converse

would be to ask whether non-conformity can invade.

We Þnd that both conformity and non-conformity can invade depending

on the distribution of types in the population and the potential strength

of the desire for esteem. Typically, however, we Þnd that conformity is

able to invade while non-conformity not. In particular, for some individuals,

conforming is a relatively �easy option� because the drop in intrinsic utility

from conforming is small and so a little esteem is enough to compensate them.

Once the proportion of agents conforming grows then esteem becomes of more

signiÞcance and others, who have more extreme types and stand to loose a

substantial intrinsic utility from conforming, will also choose to conform. In

short, conformity spreads with the last individuals to conform being those

with the most extreme types. We thus Þnd conformity, or alternatively a

high weight to esteem, can emerge in the population relatively easily; this

may be the case even if all individuals would have a much higher payoff in

the �non-conformist� equilibrium.

It is interesting to relate our results to Akerlof (1980). Akerlof questioned

whether social custom would be gradually eroded because it is costly for indi-
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viduals to persist in the custom. In fact it is shown that custom can survive.

Our analysis would strongly support this conclusion with the �conformist�

equilibrium proving vey stable and robust. Indeed, our analysis suggests

that we can, in many instances, go even further by saying that conformity or

social custom can not only survive but propagate, even if it is not in agents

interests for it to do so. Indeed, it would seem the mere possibility of a norm

existing could be enough to set off a self fulÞlling prophecy whereby a con-

formity norm does evolve. To conform essentially appears the risk dominant

strategy. This result can also be related to the literature questioning why con-

formity or norms exist; Elster (1989) surveys research attempting to justify

social norms as �optimal�, or more formally, to show that a conformist equi-

librium Pareto dominates a non-conformist equilibrium. Our analysis would

suggest that the Pareto ranking of a conformist or non-conformist equilib-

rium is not critical in an explanation of why conformity can exist (even in a

world of optimizers).

One important caveat to our results is explored further in Section 5.6.

For the most part we assume a unique conformist equilibrium in the sense

that agents can focus on some behaviour, say playing action a, and know

that behaving in this way cannot leave them the odd one out. But suppose

that individuals are uncertain what behaviour would become the norm in

any conformist equilibrium - it may be action a1 or it may be a2. The �risks�

to conforming are now higher - if a person conforms, not only do his sacriÞce

intrinsic utility, but he also still risks being the �odd one out� if he chooses the

�wrong� action. We show that it is less likely conformity can invade with this

additional level of uncertainty. This perhaps points to one important reason

that we observe conformity in some choice situations but not others. If there

is an obvious potential focal point then our analysis would suggest conformity

may arise but if such a focal point is not apparent maybe non-conformity is

a more likely outcome.

It should be emphasized that we focus throughout on �emotional� or �so-
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cial� conformity in that individuals conform to �Þt in� and receive esteem.

Much of the previous literature on conformity has focussed on �informational�

conformity whereby individuals imitate successful or popular actions in the

hope of obtaining a higher intrinsic utility (e.g. Bikhandani, Hirshleifer and

Welch 1992, Juang 2001). Clearly conformity or herding can arise if the

number of individuals choosing an action is seen as a signal of its relative

payoff.3 This leads to questions as to what extent conformity is the result of

emotional or informational factors. It does appear that much of conformity

can be explained by information factors (see Shiller 1995 and the discussion

of the Asch experiments contained therein). It is, therefore, interesting, and

perhaps surprising, to Þnd, as we do in this paper, that conformity can arise

purely based on emotional factors. If emotional and informational factors

combine it is not hard to see why conformity may prevail.

We proceed as follows: Section 2 summarizes the model of conformity

introduced in Bernheim (1994) and Section 3 completes the description of

the model to be used in this paper. In Section 4 we present some results

on the monotonicity of payoffs before providing our main results in Section

5 where we consider a dynamic model of choice. Section 6 concludes with

some technical derivations left to the Appendix

2 Model of conformity

The model of conformity that we shall use was introduced and motivated

by Bernheim (1994). This section will detail the parts of the model relevant

to our work and we refer the reader to Bernheim for a much more complete

description and discussion.

There is a continuum of agents. Each agent is assigned a type from set

T = [0, 2] and chooses an action from setX = [0, 2]. The distribution of types

3It is interesting to note that non-conformist or conformist equilibria could still prevail
- if no one is choosing the same action then maybe there is no point in imitating. A
non-conformist equilibrium would appear, however, very unstable in this context.
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is described by a c.d.f. F (·) with corresponding p.d.f. f(·). It is assumed that
supp[f ] = T or, in other words, that all taste types exist in the population.

For simplicity we shall also assume that f is symmetric f(1− v) = f(1 + v)
(or equivalently F (t) = 1− F (2− t)) and that f is atomless.
An agent�s intrinsic utility from playing action x when of type t is given

by g(x−t) where function g(z) is symmetric g(z) = g(−z), twice continuously
differentiable, strictly concave and attains a maximum at z = 0. Action t is

the intrinsic bliss point of an agent of type t.

An agent�s type is private information. After an agent i has chosen an

action other agents can form beliefs about his type. These beliefs can be

summarized by an inference function φ(b, x) detailing the probability that

an agent is perceived to be of type b if he has chosen action x. NoteR
T
φ(b, x)db = 1. An agent perceived to be of type b is accorded esteem

h(b) where h is twice continuously differentiable, strictly concave, symmetric

h(1 + z) = h(1− z) and achieves a maximum at 1. If an agent is believed to
be of type 1 he receives the highest esteem while an agent believed to be of

type 0 or 2 receives the lowest esteem.

An agents utility if he chooses x, is of type t and beliefs are φ is,

u(x, t, φ) = g(x− t) + λ
Z
T

h(b)φ(b, x)db (1)

where λ is an index of the weight attached to esteem. As can be seen an

agents utility is a weighted sum of intrinsic utility and esteem where the

higher is λ the higher is the weight accorded to esteem.

2.1 Signalling Equilibria

We make use of the standard deÞnition of a signalling equilibrium and reÞne

the set of equilibria using the D1 criterion (see Bernheim 1994 and Fudenberg

and Tirole 1998 for explanations). The D1 criterion effectively states that

on observing an action x that occurs with zero probability, in the candidate
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signalling equilibrium, it will be inferred that action x was played by the

agent who had the most incentive to play it. This D1 criterion has explicit

implications for the model considered here and we will explain these below.

Bernheim (1994) derives the set signalling equilibria satisfying the D1

criterion.4 There are two distinct types of signalling equilibrium explained

below and illustrated in Figure 1. [SpeciÞc examples will be considered in

the body of the paper].

For small λ (or, more explicitly any λ ≤ λ for some λ) one obtains fully
separating equilibria that can be characterized by a function φs(x) where

φ(b, x) = 1 if b = φs(x). An agent who plays x is believed to be of type

φs(x) and consequently an agent of type t plays φ
−1
s (t). The function φs

is �symmetric� in the sense that φs(2 − x) = 2 − φs(x). Note that agents
of different types choose different actions and hence the equilibrium is fully

separating.

For large λ (or more explicitly any λ ≥ λ) one obtains equilibria with

incomplete separation in which agents with types close to one choose the

same action. Thus, there is conformity with agents of differing types playing

a common action. More formally, given beliefs φ and an action x let tl(φ, x) =

min{b : φ(b, x) > 0} and th(φ, x) = max{b : φ(b, x) > 0}. A signalling

equilibrium with incomplete separation has the property that there exists

a unique xp ∈ [0, 2] where tl(φ, xp) 6= th(φ, xp). Further, tl(φ, xp) ≤ 1 ≤
th(φ, xp) and equilibrium beliefs satisfy,

φ(b, xp) =

(
f(b)[F (th)− F (tl)]−1 if tl(φ, xp) ≤ b ≤ th(φ, xp)
0 otherwise

As in a fully separating equilibria, an agent with type t /∈ [tl(φ, xp), th(φ, xp)]
plays action φ−1s (t) and beliefs satisfy φ(b, x) = 1 if b = φs(x). In an equi-

librium with incomplete separation the D1 criterion has bite: there exists a

4We state here the important features for our analysis - for a complete description and
explanation see Bernheim (1994).
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set of actions X that occur with zero probability according to the signalling

equilibrium (see Figure 1b) and, applying the D1 criterion, it will be inferred

that an agent who plays x ∈ X is of either type tl(φ, xp) or th(φ, xp).

When λ ≤ λ there is the unique signalling equilibrium as detailed above.
When λ > λ there will be multiple equilibria with incomplete separation each

equilibrium �centered� around a different xp; there will, however, be a unique

equilibrium with incomplete separation centered around xp = 1 (Bernheim

1994). In the following we shall give special attention to this equilibrium.

Indeed, we will think of action 1 as being a focal point in the sense that any

conformist equilibrium would be �centered around� action 1. This appears a

reasonable assumption to make given that agents do want to be perceived as

of type 1. In Section 5.6 we do consider relaxing this assumption.

3 Conform or not conform

Instead of modelling agents as choosing an action and belief function taking

λ as given we shall model agents as choosing between two strategies - to

conform or not conform. We can think of this as agents as choosing between

two different signalling equilibria corresponding to λ = 0 and λ = λ∗ > 0.5

In the λ = 0 case esteem is of no consequence and so it is a situation where

agents are �free to choose whatever they want�. If λ > 0 then agents will

seek esteem and conformity may result. In choosing between conform or

not-conform agents are essentially choosing the level of λ and therefore the

relative importance of esteem.

We characterize a signalling equilibrium by the triple (α, ξ, φ) where func-

tion α maps types to actions, ξ maps actions to esteem and φ represents

beliefs. More precisely, α(t) is the action chosen by an agent of type t, ξ(x)

is the esteem accorded to an agent who plays x and, as above, φ(b, x) is the

5One could consider a choice between λH and λL where λH > λL ≥ 0; setting λL = 0,
as we do, signiÞcantly simpliÞes the notation and analysis without altering the main
conclusions.
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probability an agent who plays x is believed to be of type b. When λ = 0

there exists the trivial and unique signalling equilibriumwe denote (α0, ξ0, φ0)

where each agent chooses his internal bliss point and the utility from esteem is

zero. When λ = λ∗ > 0 there exists (as explained above) a unique signalling

equilibrium centered around 1 that we denote by (α∗, ξ∗, φ∗).

Taking the two signalling equilibria (α0, ξ0, φ0) and (α∗, ξ∗, φ∗) consider a

game in which agents have two strategies - to conform (C) or to not conform

(N). These strategies can be explained:

To not conform (N): If the agent is type t he chooses action a = t and

accords all other agents esteem 0.

To conform (C): If the agent is type t he chooses action α∗(t) and accords

other agents esteem according to function ξ∗.

If we let c denote the proportion of the population who choose to conform

the payoff function of an agent of type t can be deÞned,

U(N, t, c) = g(0) + cλ∗ξ∗(t) (2)

U(C, t, c) = g(t− α∗(t)) + cλ∗ξ∗(α∗(t)).

This simple framework captures the choice that an agent may face in not

knowing whether conformity will or will not prevail in the population. He

has the option of choosing to not conform, play his internal bliss point and

treat other agents equally. Or, expecting that others will conform he can

conform himself and give esteem to other agents accordingly. We emphasize

how an agent receives esteem even if he chooses not to conform. This seems

reasonable - an agent who plays N may feel �left out� or the �odd one out�

if he subsequently Þnds that a large proportion of other agents conformed.

Conversely, an agent who conforms does not receive esteem from agents who

choose not to conform.
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The combinations of c and t for which U(N, t, c) = U(C, t, c) will prove im-

portant in the following. Thus, we introduce a threshold function c∗(t) map-

ping the set of types into the unit interval where U(N, t, c∗(t)) = U(C, t, c∗(t))

for all t. It can easily be veriÞed that a unique c∗(t) exists for all t 6= 0, 1, 2
and furthermore if c ≶ c∗(t) then U(N, t, c) ≷ U(C, t, c).
A strategy proÞle s will be a function mapping the set of types to the

set of strategies where s(t) denotes the strategy played by agents of type t.6

The strategy proÞle in which all types of agent conform will be denoted
−→
C

and the strategy proÞle in which all types of agent do not conform will be

denoted
−→
N . We make use of the standard deÞnition of a Nash equilibrium

and so both
−→
C and

−→
N are Nash equilibria.

Note the two different forms of equilibria we now have in the model (i)

the Nash equilibria that result from the game in which agents choose between

strategies N and C and (ii) the signalling equilibria that result given strategy

proÞles
−→
C and

−→
N and are equilibria relative to the scenario where agents

choose actions taking λ as given. This distinction should always be apparent

but we will make use of the Nash equilibrium versus signalling equilibrium

terminology to help clarify. Our analysis will focus on the agents choice

between N and C.

4 Monotonicity of Payoffs

This section will address the question of whether agents prefer the �con-

formist� Nash equilibrium
−→
C giving behavior (α∗, ξ∗, φ∗) or the �non con-

formist� Nash equilibrium
−→
N giving behavior (α0, ξ0, φ0). We can say little

on this question in absolute terms as this will depend on whether esteem is

a positive or negative addition to utility. We can, however, say something

about relative preferences. Our Þrst result shows that the closer is an agents

type to one then the higher is his payoff in the conformist equilibrium. Note

6We shall assume that all players of the same type play the same strategy.
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that in the non-conformist equilibrium every agent receives a payoff of g(0).

Thus, relatively speaking, agents with types near to one prefer the conformist

equilibrium.

Before stating our Þrst result we introduce some simplifying notation.

We introduce a function u∗ mapping the set of types into the real line where

u∗(t) := u(a∗(t), t, φ∗) for all t. Thus, u∗(t) is the payoff of an agent of type

t in the (conformist) signalling equilibrium (α∗, ξ∗, φ∗).

Proposition 1: Consider signalling equilibrium (α∗, ξ∗, φ∗) with equilib-

rium beliefs φ∗. For any t, t0 ∈ [0, 2] we have u∗(t) > u∗(t0) if and only if

|1− t| < |1− t0|. [More generally, if (α∗, ξ∗, φ∗) is a signalling equilibrium
with incomplete separation around x∗p then u

∗(t) > u∗(t0) for any t, t0 ∈ [0, x∗p]
if and only if t > t0 and, similarly, for any t, t0 ∈ [x∗p, 2] if and only if t < t0.].

Proof: Let tl := tl(φ∗, x∗p) and th := th(φ
∗, x∗p). Consider the region [tl, th].

(For a signalling equilibrium with complete separation this region does not

exist and so the step can be skipped.) Any two agents with types t, t0 ∈ [tl, th]
receive exactly the same payoff from esteem. It follows that differences in

their payoffs will reßect the differences between g(t−x∗p) and g(t0−x∗p). Given
the properties of function g we obtain the desired relationship.

Consider now the region [0, tl] and two agents i and i0 with types t and t0

where tl ≥ t > t0. Suppose that agent i0 is earning at least as high a payoff as
i; that is, u∗(t) ≤ u∗(t0). Suppose also that t ≤ α∗(t0). If agent i were to play
action x = α∗(t0) he would receive the same esteem as agent i0 and (given that

α∗(t0) ≥ t > t0) a strictly higher intrinsic utility than i0. Thus, by playing

α∗(t0) agent i would receive a payoff strictly greater than u∗(t0) contradicting

that i was maximizing his payoff by choosing α∗(t). Thus, suppose that

t > α∗(t0). If agent i was to play action x = t he would receive strictly more

esteem than i0 and the maximum possible intrinsic utility of g(0). Thus, i

would receive a payoff strictly greater than u∗(t0) but this again contradicts

that i was maximizing his payoff by choosing α∗(t). Therefore, u∗(t) > u∗(t0).
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A symmetric argument holds for interval [th, 2].

We next note that, given the symmetry assumed, u(t, a∗, φ∗) = u(2 −
t, a∗, φ∗) for all t (when x∗p = 1). It thus remains to put the three intervals

considered above together. Note, however, that a condition of signalling equi-

librium is that agents on the margin, i.e. agents with types tl and th, should

be indifferent between choosing x∗p and φ
−1
s (tl) or, respectively, φ

−1
s (th). It

can now be seen that the statement of the Proposition follows.¥

Having shown that a differential exists in u∗(t) depending on how close

is t to 1 a natural question is to ask what factors could inßuence the size of

this differential. One factor is λ∗ but we leave discussion of varying λ∗ until

Section 5.5. A second factor is the form of the distribution of agents over

types as given by F . Our second result shows that the signalling equilibrium

payoffs cannot decrease the more concentrated is the distribution of types

around t = 1. In particular, if we compare two distributions over types F ∗

and F 0 where F ∗(t) < F 0(t) for all t ∈ [0, 1] then, keeping λ∗ Þxed, we can
compare payoffs between the two respective �conformist� signalling equilibria

(α∗, ξ∗, φ∗) and (α0, ξ0, φ0). We Þnd that equilibrium payoffs must be at least

as high under equilibrium (α∗, ξ∗, φ∗) as (α0, ξ0, φ0). Further, if (α∗, ξ∗, φ∗)

is a signalling equilibrium with incomplete separation then, for those agents

playing 1, payoffs are strictly higher under (α∗, ξ∗, φ∗).

Proposition 2: Let F ∗ and F 0 represent two distinct distributions over the
set of types where F ∗(t) ≤ F 0(t) for all t ∈ [0, 1] and let (α∗, ξ∗, φ∗) and
(α0, ξ0, φ0) be the corresponding signalling equilibria. Then,

u∗(t) ≥ u0(t) (3)

for any t and, further, if (α∗, ξ∗, φ∗) is a signalling equilibriumwith incomplete

separation then (generically) the inequality in (3) is strict for any agent of

type t where α∗(t) = 1.7

7Where u0(t) = u(α0(t), t, φ0) for all t.
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Proof: We begin by noting that φs is independent of the distribution over
types (Bernheim 1994). One immediate consequence is that u∗(t) = u0(t) for

any agent of type t where α∗(t) = α
0
(t) = φ−1s (t). It remains, therefore, to

consider types t for which α∗(t) or α0(t) equal one.

Let t∗l := tl(φ
∗, 1) and t0l := tl(φ

0, 1).8 Thus,

u (1, t∗l , φ
∗) = u

¡
φ−1s (t∗l ) , t

∗
l , φ

∗¢ (4)

and

u (1, t0l, φ
0) = u

¡
φ−1s (t0l) , t

0
l, φ

0¢ . (5)

We conjecture that t∗l ≤ t0l. If not, t
∗
l > t0l implying that ξ

∗(1) > ξ0(1).

Consequently, given (5), u (1, t0l, φ
∗)> u

¡
φ−1s (t0l) , t

0
l, φ

∗¢. This leads to the de-
sired contradiction. We next conjecture that ξ∗(1) ≥ ξ0(1). Suppose not and
consider an agent of type t∗l . If ξ

∗(1) < ξ0(1) then u (1, t∗l , φ
∗) < u (1, t∗l , φ

0)

but given (4) this would imply u (1, t∗l , φ
0) > u

¡
φ−1s (t∗l ) , t

∗
l , φ

0¢ contradicting
that t∗l ≤ t0l. Given that ξ∗(1) ≥ ξ0(1) it is now simple to see that u∗(t) ≥ u0(t)
for all t.

Suppose ξ∗(1) > ξ0(1). For any agent of type t where α∗(t) = α
0
(t) = 1 it

is trivial that u∗(t) > u0(t). For an agent i of type t > t∗l where α
∗(t) 6= α0(t)

we note that i could obtain payoff u0(t) if beliefs are φ∗ by playing φ−1s (t);

that he does not do so implies u (1, t, φ∗) > u
¡
φ−1s (t) , t, φ∗

¢
= u0 (t). Thus,

the inequality in (3) is strict for any agent of type t where α∗(t) = 1.¥

Applying Proposition 2 we obtain our Þnal result of this section: the

difference in payoffs (in the conformity signalling equilibrium) between those

agents of types 1 and types 0 and 2 cannot decrease if the distribution of

types is more concentrated around 1. SpeciÞcally, using the same notation

as Proposition 2 and and letting ∆(t) ≡ u∗(t)− u0(t):

Proposition 3: For any two distributions over the set of types F ∗ and
8In the case of a fully separating signalling equilibrium set t∗l or t

0
l to equal 1.
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F 0 where F ∗(t) ≤ F 0(t) for all t ∈ [0, 1] it is the case that ∆(1) ≥ ∆(0).

Furthermore, generically, ∆(1) > ∆(0) if (α∗, ξ∗, φ∗) is an equilibrium with

incomplete separation and t∗l (φ
∗, 1) > 0.

Proof: Let C ≡ λ∗(ξ∗(1)−ξ0(1)). From Proposition 2 and its proof we know
that C ≥ 0 and:

1. If both (α∗, ξ∗, φ∗) and (α0, ξ0, φ0) are fully separating equilibria then

∆(t) = 0 for all t.

2. If both (α∗, ξ∗, φ∗) and (α0, ξ0, φ0) are equilibria with incomplete sepa-

ration where t∗l = t
0
l = 0 then ∆(t) = C for all t.

3. If (α∗, ξ∗, φ∗) is an equilibrium with incomplete separation and 0 < t∗l
then (i) ∆(t) = 0 for all t ≤ t∗l and (ii) ∆(t) = C for all t ∈ [t0l, 1].¥

In summary, we see that in relative terms agents with types near 1 prefer

the conformist equilibrium. We also see that the �more concentrated� is

the distribution of types towards t = 1 then the higher are payoffs in the

conformist equilibrium and, potentially, the larger is the payoff differential

between agents of type t = 1 and those with more extreme types. Intuitively

these results would suggest that agents with types near 1 are more likely to

conform. They would also suggest that a �conformist equilibrium� is more

likely to occur the higher the proportion of agents with types near 1. The

dynamic model of the following section allows us to question this in more

detail.

5 A dynamic model of choice

To capture the choice that agents face between conforming and non-conforming

we consider a model of learning. Agents interact over an indeÞnite number

of time periods τ = 0, 1, 2, .... A strategy proÞle sτ details the strategies
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chosen where sτ(t) is the strategy chosen by agents of type t in period τ .9

Relative to strategy proÞle sτ let cτ denote the proportion of agents play-

ing C. There exists an initial strategy proÞle s0 and in subsequent periods

each agent is assumed to choose the strategy that would have maximized his

payoff in the previous period. That is, agent i chooses C in period τ if and

only U(C, t, cτ−1) > U(N, t, cτ−1) (and where we assume some appropriate tie

breaking rule). This behavior gives rise to a deterministic dynamic process

through which the strategy proÞle evolves to s1, s2, .... The dynamic will be

recognised as a best reply dynamic as much studied in the literature (see e.g.

Fudenberg and Levine 1998)

In the spirit of the literature on contagion and the emergence of con-

vention in coordination games (see e.g. Young 1993 and Morris 2000) we

question whether conformity or non-conformity can �invade� a population. It

is trivial that both
−→
C and

−→
N are Nash equilibrium and thus absorbing states

of the dynamic. Let sε denote a strategy proÞle in which proportion ε of

the population play C and proportion 1− ε play N . We say that conformity
can invade a population if for any ε > 0 there exists strategy proÞle sε such

that the dynamic with initial state sε converges to
−→
C . Similarly we say that

non conformity can invade a population if for any ε > 0 there exists strategy

proÞle s1−ε such that the dynamic with initial state s1−ε converges to
−→
N .

Note it is not possible that both conformity and non-conformity can invade

a population.

It seems useful to begin with some examples to demonstrate that confor-

mity and non-conformity can invade a population. We do this in the next

section. Having worked through these examples we then proceed to the gen-

eral case doing so in three stages. We begin by looking at what we shall call a

complete conformity case in which signalling equilibrium (α∗, ξ∗, φ∗) has the

property that α∗(t) = 1 for all t ∈ [0, 2]; that is all agents choose action 1.
We then consider a partial conformity case where (α∗, ξ∗, φ∗) is a signalling

9For simplicity we assume that players of the same type always play the same strategy
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equilibrium with incomplete separation but tl > 0. Finally, we consider the

case where (α∗, ξ∗, φ∗) is a fully separating equilibrium.

5.1 Examples

We illustrate with a spherical case g(z) = −z2 and h(b) = −(1 − b)2. For
simplicity we set

λ∗ =
1

ξ∗(1) + 1
(6)

where ξ∗(1) =
R
[0,2]
h(b)f(b)db. Condition (6) implies that in the conformist

equilibrium (α∗, ξ∗, φ∗) an agent of type 0 or 2 is indifferent between actions 0

or 1 and respectively actions 2 or 1. Thus, signalling equilibrium (α∗, ξ∗, φ∗)

will have the property that all agents play action 1. Note that any agent not

playing 1 is perceived to be of either type 0 or 2.

Simplifying equations (2) we get U(N, t, c) = −cλ∗ and U(C, t, c) = −(1−
t)2 + cλ∗ξ∗(1) for all t implying a threshold function

c∗(t) = (1− t)2. (7)

In period τ + 1 an agent will play C if and only if cτ ≥ c∗(t). Thus,

an agent i who has type t plays C in period τ + 1 if and only if t ∈h
1− cτ 12 , 1 + cτ 12

i
.Those agents playing C will thus have types in some closed

interval around t = 1. For conformity to spread requires those players with

types just outside this interval to change to conformity. Thus, for conformity

to invade we require that
R 2−t
t

f(b)db = 1 − 2F (t) > c∗(t) for all t ∈ (0, 1).
Conversely, for non-conformity to invade requires c∗(t) > 1 − 2F (t) for all
t ∈ (0, 1). If 1− 2F (t) > c∗(t) for some t and 1− 2F (t0) < c∗(t0) for some t0
then neither conformity or non-conformity can invade. Ploting c∗(t) against

1 − 2F (t) provides, therefore, a convenient visual check on whether or not
conformity can invade and this will prove useful in the following.

Whether or not conformity can invade will clearly depend on the dis-
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tribution over types F (·). We provide some examples, illustrated in Figure
2:

Conformity invades: Let f(t) = 1
2
. Looking at Figure 2a we observe that

c∗(t) < 1 − 2F (t) and so conformity can invade. To illustrate how this

conclusion could be derived more explicitly consider initial strategy proÞle sε

where agents with types t ∈ [1− ε, 1 + ε] play strategy C and all other agents
play N . In period 1, we observe that the proportion playing c increases to ε

1
2 .

Generalizing, in period τ all those agents with types t ∈
h
1− ε 1

2τ , 1 + ε
1
2τ

i
play C implying that cτ = ε

1
2τ . Thus, cτ converges to 1.

Limit case: Let f(t) = 1− t over [0, 1].10 Here 1− 2F (t) and c∗(t) coincide
basically implying stalemate. Given any initial state the proportion of agents

playing C will be the same in period 1 onwards: U(C, t, c1) ≥ U(N, t, c1) for
all those agents who playing C in period 1 while U(N, t, c1) > U(C, t, c1) for

all those agents who play N .11 Thus, depending on the initial state, the Þnal

proportion of agents playing C could be anything between 0 and 1.

Non-conformity invades: Let f(t) = 2 for t ∈ [0, 0.1] and f(t) = 20
27
− 20

27
t

for t ∈ [0.1, 1]. From Figure 2c we observe that c∗(t) > 1 − 2F (t) and so
non-conformity can invade. This is possible because of the large proportion

of agents with �extreme� types.

Stability of conformity and non-conformity: Let the distribution over types

be bimodal with peaks at 0.5 and 1.5. SpeciÞcally, let f(t) = 0.01 for t ∈
[0, 0.49] and t ∈ [0.51, 1] while f(t) = 24.51 for t ∈ [0.49, 0.51]. It can

be easily veriÞed that neither conformity or non-conformity can invade the

10This does not formally satisfy the assumption that supp[f(·)] = T but this is clearly
not important in this example.
11We perhaps need to be a little more precise about the tie breaking rule to be conclusive

but the logic of the example should be clear.

18



population.12 In short the strategy played by those agents with types in the

range [0.49, 0.51] and [1.49, 1.51] determines the strategy that holds in the

population.

5.2 Complete conformity

In proceeding to the general case we begin by assuming signalling equilibrium

(α∗, ξ∗, φ∗) has the property that α∗(t) = 1 for all t ∈ [0, 2]; that is all agents
choose action 1. In many ways this is the most interesting case given the

clear contrast between the conformity and non-conformity Nash equilibria.

Note that the examples in the previous section fell into this case.

We saw in Sections 4 and 5.1 that whether or not conformity can in-

vade will depend on the distribution of agents over types. Our main result,

Proposition 4, provides a bound on the distribution over types sufficient for

conformity to be able to invade. This result shows that if the distribution

over types is unimodal then (recalling we assume the distribution in symmet-

ric) conformity can invade. This seems a relatively mild condition justifying

the claim that it is �relatively easy� for conformity to invade in the complete

conformity case. We also, highlight, as demonstrated in the proof of Propo-

sition 4, that conformity invades in a wave emanating from agents with types

near 1 and spreading to those with �more extreme� types.

Proposition 4: If F (t) ≤ 1
2
t for all t ∈ [0, 1] and signalling equilibrium

(α∗, ξ∗, φ∗) has the property that α∗(t) = 1 for all t ∈ [0, 2] then conformity
can invade.

The proof highlights a number of interesting aspects and proceeds in three

stages. First, we obtain an analogue of Proposition 1. In signalling equilib-

rium (α∗, ξ∗, φ∗) the payoff of an agent of type t is g(1− t)+λ∗ R
T
h(b)f(b)db

12It may, however, be that strategies C and N �survive� in the population in the sense
that we obtain an equilibrium where a positive proportion of the population are playing
each strategy.
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for all t. Noting that all players receive the same esteem and recalling the

properties of g(·) it is immediate that the threshold function c∗(t) is mono-
tonic over t ∈ [0, 1]; that is c∗(t) < c∗(t0) for any t, t0 ∈ [0, 1] where t > t0.
Thus, conformity can only invade �in a wave spreading from those agents

with types near 1�.

Second, we provide an analogue of Proposition 2. If conformity can invade

when the distribution over types is F 0 then, ceteris paribus, it can invade

when the distribution over types is F ∗ and F ∗(t) ≤ F 0(t) for all t ∈ [0, 1].
Let (α∗, ξ∗, φ∗) and (α0, ξ0) be the respective signalling equilibria (given λ∗)

and c∗(t) and c0(t) the threshold functions. We note that ξ∗(1) ≥ ξ0(1) while
ξ∗(t) = ξ0(t) for any t 6= 1. From equations (2) we can therefore observe that
c∗(t) ≤ c0(t) for all t.
Third, we show that conformity can invade if f(t) = 1

2
for all t. Note that

in signalling equilibrium (α∗, ξ∗, φ∗) agents of type 0 and 2 must be at least

as well off playing action 1 as 0 or 2. Thus,

λ∗ ≥ g(0)− g(1)
ξ∗(1)− h(0) .

Therefore, from (2),

U(C, t, c) ≥ U(N, t, c) if c ≥ g(0)− g(1− t)
g(0)− g(1) . (8)

This implies that conformity can invade if,Z 2−t

t

f(t) ≥ g(0)− g(1− t)
g(0)− g(1)

or Using the symmetry of f if,

F (t) ≤ 1

2
− 1
2

·
g(0)− g(1− t)
g(0)− g(1)

¸
(9)
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for all t ∈ [0, 1). If f(t) = 1
2
then F (t) = 1

2
t. But, given that g(·) is concave,

g(1− t) ≥ g(1) + t[g(0)− g(1)] for all t ∈ [0, 1]. This implies,

1

2
t ≤ 1

2

g(1− t)− g(1)
g(0)− g(1) =

1

2
− 1
2

g(0)− g(1− t)
g(0)− g(1)

for all t ∈ [0, 1]. Thus, conformity can invade. It can be seen that without
being more speciÞc about g(·) the bound provided by f(t) = 1

2
is tight.

5.3 Partial Conformity

We turn now to the case where 0 < t∗l (φ
∗, 1) < 1 and so agents with types

t ∈ [t∗l , 2− t∗l ] play action α∗(t) = 1 and an agent of type t /∈ [t∗l , 2− t∗l ] plays
α∗(t) = φ−1s (t). Thus, there is conformity in the sense that (when λ = λ

∗)

agents who do not have type 1 play action 1. There is, however, not complete

conformity in that some agents choose not to play 1.

One interesting aspect of the partial conformity case is how, if conformity

can invade, it does not invade �in a wave� emanating from those agents with

types near to 1 and spreading �smoothly� to those agents with more �extreme�

types. More formally, the threshold function c∗(t) will not be monotonic

over t ∈ [0, 1]. This can be seen by directly comparing an agent of type
t+ := t∗l + δ to an agent of type t

− := t∗l − δ where δ > 0 is small. Given

that δ is small ξ∗(t+) ' ξ∗(t−) and so U(N, t+, c) ' U(N, t−, c) for any

c. For δ small enough u(φ−1s (t
−), t−, φ∗) ' u(1, t+, φ∗) and so U(C, t+, c) '

U(C, t−, c) when c = 1. Note that U(C, t+, c) = g(1 − t+) + cλ∗ξ∗(1) and
U(C, t−, c) = g(φ−1s (t

−)− t−) + cλ∗h(t−). Immediately we can see that ξ∗(1)
> h(t−) ' h(t∗l ). Thus, given that λ∗ = g(φ−1s (t∗l )−t∗l )−g(1−t∗l )

ξ∗(1)−h(t∗l ) > 0 we see that

g(φ−1s (t
−)− t−) ' g(φ−1s (t∗l )− t∗l ) > g(1− t∗l ) ' g(1− t+). We Þnd therefore

that U(C, t+, c) < U(C, t−, c) for any c < 1. It follows that c∗(t−) < c∗(t+).

An agent of type t+ may, therefore, choose to conform when an agent of type

t− does not even though |1− t−| < |1 + t−|. This will be illustrated in the
following examples.
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We give three examples that demonstrate that conformity can invade in

the case of partial conformity but �not as easily� as when there is strong

conformity. In all examples (using the spherical case) we set f(t) = 1
2
for

t ∈ [0, 2] and so we know conformity would invade if λ∗ was sufficiently high
for complete conformity. As in Section 5.1, we compare c∗(t) and 1− 2F (t)
to obtain a visual picture of whether or not conformity can invade.It should

be noted, however, that the non-monotonicity of c∗(t) means that more care

has to be taken in interpreting the Þgures (than in Section 5.1) as we shall

see.

Conformity can invade: Set λ∗ = 1.25. As detailed in the Appendix one can

solve for φs(x), t
∗
l and consequently the threshold function c

∗(t). Figure 3

plots c∗(t) and 1− 2F (t). The non-monotonicty of c∗(t) is clearly apparent.
We can see, however, that conformity can invade.

Conformity cannot invade: Set λ∗ = 1
2
. Figure 4 plots the threshold function

c∗(t) and also 1 − 2F (t). We can see that conformity cannot invade in this
case. Neither, it should be noted, can non-conformity and so both

−→
C and

−→
N

are stable.

Conformity can invade (just): Set λ∗ = 1. Figure 5 plots c∗(t). Also plotted

is 1 − 2F (t) for 1 ≥ t ≥ 0.2973. The non-monotonicity of the threshold

function really comes into play in this example. Conformity can invade. It

will spread until those agents with types t ∈ [0.2973, 1] are playing C. It
will then continue to spread but in two waves rather than one. In particular,

tl = 0.1932 and we can see that agents with type tl = tl + δ will be some

of the last agents to switch to conformity while agents with types tl − δ will
switch to conformity relatively early
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5.4 Fully Separating

For completeness we consider the Þnal possibility that signalling equilibrium

(α∗, ξ∗, φ∗) is a fully separating equilibrium. For our purposes this is the

least interesting case as there is no observed conformity (when λ = λ∗) with

agents of different types choosing different actions.

We demonstrate, through an example, that conformity (and non-conformity)

cannot invade �as easily� in this no conformity setting as in the strong or par-

tial conformity settings considered above. The example considered is the

spherical example with λ = 0.25.13 Figure 6 plots the threshold function

c∗(t) and 1 − 2F (t) for the case where f(t) = 1
2
. It is immediately appar-

ent that conformity cannot invade. Indeed for conformity to invade would

require a distribution of types highly concentrated around 1. Note also that

non-conformity cannot invade either and could only do so if the distribution

of types was highly concentrated at the extreme types. In short both
−→
C and−→

N are stable.14

Perhaps the most interesting thing we can learn from the fully separating

case is the inability of non-conformity to invade. Recall than in a fully sepa-

rating equilibrium (α∗, ξ∗, φ∗) beliefs are such that ξ∗(t) = h(t) for all t; that

is, despite an agent playing a different action to his bliss point others will

correctly perceive his type. The conformist equilibrium appears particularly

�pointless or difficult to explain� if this is the case. Consequently we might

have expected conformity to erode and non-conformity to be able to invade

(Akerlof 1980). This is not the case. In the more general context our analy-

sis points to two broad possibilities: either conformity can invade or neither

conformity or non-conformity can invade. In either case the conformist equi-

librium
−→
C is stable. In other words it appears very difficult for conformity

13This is the largest λ consistent with a fully separating signalling equilibrium.
14It can be observed that the threshold function is monotonic over t ∈ [0, 1] in this

example. That would appear to be a general property of the spherical example. Intuitively,
however, there seems little reason to believe that this is a general property for any g and
h functions.
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to erode if established. This complements the results of Akerlof (1980).

5.5 Increasing the weight attached to conformity

>From the discussion so far we might conjecture that conformity is �more

likely� to invade (i) the more concentrated is the distribution of types around

t = 1 and (ii) the higher is λ∗. In fact, things are not quite this simple.

For example, the non-monotonicity of the threshold function c∗(t) means

that a, ceteris paribus, increase in the concentration of the distribution of

types around 1 may actually imply conformity cannot invade where it could

before.15 The effect of increasing λ∗ is also ambiguous as we now discuss.

In treating the complete conformity case we can obtain the following

simple result,

Proposition 5: Let signalling equilibrium (α∗, ξ∗, φ∗) have the property

that α∗(t) = 1 for all t ∈ [0, 2] when λ∗ ≡ λ0. If conformity can invade then
conformity can also invade, ceteris paribus, for any λ∗ > λ0.

The proof is trivial once we note that the threshold value is c∗(t) = g(0)−g(1−t)
λ∗(ξ∗(1)−h(t)) .

Thus, increasing λ∗ decreases c∗(t) for all t. Note that increasing λ∗ can im-

ply going from a case where conformity cannot invade to one where it can

invade. For example, in Section 5.1 when λ∗ was as given in (6) we saw that

conformity could not invade if f(t) = 1− t; a marginal increase in λ∗ would
mean that conformity could invade.

Once we move beyond the complete conformity case the effects of increas-

15Consider, for instance, Figure 5 illustrating the case where λ∗ = 1, f(t) = 0.5 and
tl = 0.1932. Suppose that we marginally change the distribution over types by lowering
f(t) for t ∈ [tl − δ, tl] and increasing f(t) for t ∈ [tl, tl + δ] for some δ > 0. Informally, we
can see that this means conformity may no longer be able to invade. Formally, we have to
recognize that tl would change and recalculate the signalling equilibrium. The conclusion,
however, that conformity may no longer be able to invade is robust.
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ing λ∗ are more ambiguous. Recall the general expression

U(C, t, c) ≥ U(N, t, c) if and only if c ≥ g(0)− g(α∗(t)− t)
λ∗(ξ∗(α∗(t))− ξ∗(t)) . (10)

A preliminary question is to ask whether increasing λ∗ decreases the threshold

value c∗(t). In general, increasing λ∗ may increase c∗(t), as can be seen

from comparing Figures 3 to 6. For example, looking at Figures 3 and 4

we see that c∗(0.15) is greater when λ∗ = 1.25 than when λ∗ = 0.5. This

observation conÞrms that there is no simple relationship between λ∗ and

whether conformity can invade.

We may hope to be able to say more by focussing on the partial conformity

case and those agents with types near 1. It is clear that if conformity invades

then it does so initially in a wave emanating from t = 1. So, if increasing

λ∗ lowers c∗(t) for those agents with types near 1 this gives at least some

evidence that increasing λ∗ allows conformity to invade. Consider a signalling

equilibrium (α∗, ξ∗, φ∗) with incomplete separation. For a non-empty set of

types T ≡ [t, 2− t] (1 6= T ) we have that,

c∗(t) =
g(0)− g(1− t)
λ∗(ξ∗(1)− h(t∗l ))

. (11)

That is, ξ∗(t) = h(tl) for an agent with type t ∈ T implying that if he chooses
his bliss point he will be perceived as being of type tl. Note that ξ

∗(t) < h(t∗l )

for agents with types t ∈ [tl, t) (see Figure 1b). To question the sign of the
derivative of c∗(t) with respect to λ∗ (for t ∈ T ) we proceed in two stages:
(i) the effect that changing λ∗ has on t∗l and then (ii) the effect that a change

in t∗l has on ξ
∗(1) and h(t∗l ).

If an agent of type t∗l is indifferent between playing action 1 and action

φ−1s (t) this implies that,

g(t∗l − φ−1s (t)) + λ∗h(1− t∗l ) = g(1− t∗l ) + λ∗ξ∗(1).
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Let λ0 > λ∗ and let φs denote the corresponding beliefs function. It can be

shown (see the Proof of Theorem 2 in Bernheim (1994)) that g(t∗l −φ
−1
s (t)) ≤

g(t∗l − φ−1s (t)). This, and that ξ∗(1) > h(1− t∗l ) implies that

g(t∗l − φ
−1
s (t)) + λ

0h(1− t∗l ) < g(1− t∗l ) + λ0ξ∗(1).

Consequently, we see that as λ∗ increases t∗l must decrease; that is, a higher

proportion of agents conform in choosing action 1.

If t∗l falls then clearly so do both ξ
∗(1) and h(t∗l ). From (11) we can see

that if d
dt∗l
ξ∗(1) < d

dt∗l
h(tl) then an increase in λ

∗ does feed through into a

decrease in c∗(t) for all t ∈ T . Recalling that,

ξ∗(1) =
1

F (2− t∗l )− F (t∗l )
Z 2−t∗l

t∗l

h(b)f(b)db.

we see that,
d

dtl
ξ∗(1) =

2f(t∗l )
1− 2F (t∗l )

(ξ∗(1)− h(t∗l )) .

In general d
dt∗l
ξ∗(1) may, therefore, be less than or equal to d

dt∗l
h(t∗l ) and so,

once again, deÞnitive results are not apparent. We can, however, say more

for speciÞc examples. For instance, we can provide some evidence for the

property apparent in Sections 5.2-4 that increasing λ∗ increases the likelihood

that conformity can invade in the spherical case when f(t) = 1
2
for all t. For

this example,

d

dt∗l
ξ∗(1) =

1

1− t∗l

µ
(1− t∗l )2 −

1

3
(1− t∗l )2

¶
=
2

3
(1− t∗l ).

If we note that d
dtl
h(t∗l ) = 2(1− t∗l ) then we see that increasing λ∗ decreases

c∗(t) for all t ∈ T .
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5.6 Multiple Conformity equilibria

In the introduction we brießy talked of two possible levels of uncertainty

for agents: (1) whether an action will become a norm and, (2) if so, which

action. So far, we have concentrated on the Þrst of these by assuming that

the conformity equilibrium is centered around action 1. We brießy here make

some comments on the second possibility.

Suppose that when λ = λ∗ there are two �focal� signalling equilibria -

(α∗, ξ∗, φ∗) centered on x∗p and (α
∗∗, ξ∗∗) centered on x∗∗p . For example, it

may be that α∗(t) = 0.9 for all t while α∗∗(t) = 1.1 for all t. We can now

think of there as being three strategies:

To not conform (N): If the agent is type t he chooses action a = t and

accords all other agents esteem 0.

To conform to x∗p (C
∗): If the agent is type t he chooses action α∗(t) and

accords other agents esteem according to function ξ∗.

To conform to x∗∗p (C
∗∗): If the agent is type t he chooses action α∗∗(t) and

accords other agents esteem according to function ξ∗∗.

As before, we can ask whether conformity or non-conformity can invade.

Whether or not conformity can invade will depend on how conformity begins

to become established in the population. If we consider a population where

proportion 1− ε are playing strategy N and ε are playing strategy C∗ then

the analysis would essentially be identical to that considered in the rest of

the paper. An alternative approach is to suppose that proportion ε of the

population is conforming but there may be uncertainty over whether agents

are choosing C∗ or C∗∗.

To make things more concrete suppose that proportion 1 − 2c of agents
are playing N , proportion c are playing C∗ and proportion c are playing C∗∗.

Further suppose that ξ∗(t) = h(0) for all t 6= x∗p and ξ
∗∗(t) = h(0) for all
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t 6= x∗∗p . Finally, let ξ∗(x∗p) = ξ∗∗(x∗∗p ) ≡ A. The payoff of an agent of type
t 6= x∗p, x∗∗p will be given by,

U(N, t, c) = g(0) + 2cλ∗h(0) (12)

U(C∗, t, c) = g(t− α∗(t)) + cλ∗ (h(0) +A)
U(C∗∗, t, c) = g(t− α∗∗(t)) + cλ∗ (h(0) +A) . (13)

An agent of type t will have a clear preference between C∗ and C∗∗ so let c∗(t)

denote the threshold value c for which an agent of type t is indifferent between

conforming and not-conforming. Given that h(0) < A we can see that the

threshold value just described will be less than the threshold value used in the

rest of the paper when there was a unique conformity equilibrium. In other

words, it is �more difficult� for conformity to invade when there are multiple

conformity equilibrium than when there is a unique conformity equilibrium.

The intuition for the above result is that an agent who conforms may still

be perceived as �extreme� by others because he has conformed on a different

action to them. To provide a simple example consider a person not knowing

what to wear to a party. His intrinsic preference is to wear jeans and a tee-

shirt. He considers it possible, however, that a �suit norm� or �smart casual�

norm may exist. Suppose the party invite made allusion to smart casual.

The individual then faces a straight choice - to where jeans and feel �physi-

cally comfortable� but risk feeling �social uncomfortable� or to where smart

casual and feel �physically uncomfortable� but to be guaranteed feeling �social

comfortable�; in this case he may well choose to conform and where smart

casual. By contrast, suppose there is no indication what people will wear.

The costs and beneÞts of wearing jeans are the same. The costs and beneÞts

of smart casual have changed - he will still feel �physically uncomfortable�

but now also runs the risk of feeling �social uncomfortable� if everyone else

wears a suit; he may well take �the safe option� and wear jeans.
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6 Conclusions

We have considered a model of conformity permitting both a conformist

and non-conformist equilibrium. It has been demonstrated that the non-

conformist equilibrium is often unstable. In particular, if a small proportion

of the population conforms or acts in accordance with some norm then confor-

mity can spread through the population to the point where everyone is con-

forming. This spread of conformity happens independently of whether or not

the resulting conformist equilibrium Pareto dominates the non-conformist

equilibrium. Our analysis thus serves as a partial explanation for why con-

formity can arise.

As highlighted in Section 5.6 the spread of conformity, as modelled, is

reliant on there being some focal action that serves as a point around which

conformity can arise. If there are multiple potential norms then the spread

of conformity may be held up. Essentially, conforming becomes a more risky

option if you cannot be sure to conform on the same actions as others. This

suggests that an important determinant of whether or not conformity exists

in a particular setting will be the existence or otherwise of a clear focal

action to act as a norm. This is a question that could be pursued further.

For example, understanding the process by which conformity can arise if

there are multiple potential norms may also shed light on how norms can

come to change or evolve over time.

As already remarked this paper has focussed exclusively on a social or

emotional reason for conformity. This can be contrasted with much of the

literature dealing with herding and cascades or informational reasons for con-

formity. An interesting avenue for future research would seem to be to try

and see how these two different reasons for conformity integrate together.

For example do social and information conformity positively or negatively

reinforce each other in bringing about conformity. Social conformity (based

on some action a) may, for instance, act as a barrier to achieving efficiency

through informational conformity (at some point b). The seeming ease with
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which social conformity arises in our analysis would suggest that this is pos-

sible.

7 Appendix

For the spherical example we derive the signalling equilibrium (α∗, ξ∗, φ∗)

when λ = λ∗. Indifference curves for a type t agent are give by,

(t− x)2 + λ(1− b)2 = C

where x is action and b is inferred type. In equilibrium indifference curves

must be tangent to φs(x) and beliefs must be self fulÞlling implying,

φ0s(x) =
x− φs(x)
λ(1− φs(x))

. (14)

As pointed out by Bernheim, (14) is equivalent to the following linear dy-

namic system: · dt
dv
dx
dv

¸
=

·
x− t
λ(1− t)

¸
.

Working through one obtains the differential equation x00+x0+λx = λ. This

has roots −1
2
± 1

2
(1− 4λ) 12 . Clearly the roots are real if and only if λ ≤ 1

4
.

When λ = 1
4
one gets the general solution x = C1e

− 1
2
v + C2ve

− 1
2
v + 1

and t = 1 − 4x0. Appropriate initial conditions are x(0) = t(0) = 0 giving
particular solution,

x = −e−1
2
v − v

4
e−

1
2
v + 1

t = 1− e−1
2
v
³
1 +

v

2

´
.

Let d ≡ (4λ − 1) 12 . When λ > 1
4
one gets the general solution x =

e−
1
2
v
¡
C1 cos

d
2
v + C2 sin

d
2
v
¢
+ 1. Using t = 1− 1

λ
x0 one gets t = 1 + 1

2λ
e−

1
2
v
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¡
(C1 − C2d) cos d2v + (C2 + C1d) sin

d
2
v
¢
. Using initial conditions x(0) =

t(0) = 0 one obtains the particular solution,

x = 1 + e−
1
2
v

µ
2λ− 1
d

sin
d

2
v − cos d

2
v

¶
t = 1 + e−

1
2
v

µ
1

2λ

µ
2λ− 1
d

− d
¶
sin
d

2
v − cos d

2
v

¶
.

Plugging in d = 1 when λ = 1
2
, d = 2 when λ = 1.25 and d =

√
3 when λ = 1

one gets the desired solution.

Finally, if an agent of type t∗l is indifferent between playing action 1 and

action φ−1s (t
∗
l ) this implies that,

−(t∗l − φ−1s (t∗l ))2 − λ(1− t∗l )2 = −(1− t∗l )2 + λξ∗(1)

where

ξ∗(1) =
1

F (2− t∗l )− F (t∗l )
Z 2−t∗l

t∗l

−(1− b)2f(b)db.

Thus, ξ∗(1) = − (1−t∗l )2
3

when f(t) = 1
2
for all t. One can now Þnd t∗l and

fully characterize the signalling equilibrium (α∗, ξ∗, φ∗). We do this using

numerical search. When λ∗ = 1.25 and f(t) = 0.5 we obtain t∗l = 0.0761

and ξ∗(1) = −0.2845. When λ∗ = 1 and f(t) = 0.5 we obtain t∗l = 0.1932
and ξ∗(1) = −0.2170. Finally, when λ∗ = 0.5 and f(t) = 0.5 we obtain

t∗l = 0.6907 and ξ
∗(1) = −0.0319.
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Figure 1a: A fully separating signalling equilibrium:  

 
 
 
Figure 1b: A signalling equilibrium with incomplete separation where xp = 1. 
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Figure 2a: c*(t) and 1 - 2F(t) plotted against t when f(t) = 0.5
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Figure 2b: c*(t) and 1 - 2F(t) plotted against t when f(t) = 1 - t
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Figure 2c: c*(t) and 1 - 2F(t) plotted against t when many agents with extreme types
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Figure 2d: c*(t) and 1 - 2F(t) plotted against t when f is bimodal
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Figure 3: c*(t) and 1 - 2F(t) plotted against t when f(t) = 0.5 and lambda* = 1.25
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Figure 4: c*(t) and 1 - 2F(t) plotted against t when f(t) = 0.5 and lambda* = 0.5
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Figure 5: c*(t) and 1 - 2F(t) plotted against t when f(t) = 0.5 and lambda* = 1
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Figure 6: c*(t) and 1 - 2F(t) plotted against t when f(t) = 0.5 and lambda* = 0.25
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