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1 Introduction

The aim of this paper is to conceptualize a practical computational scheme for CARMA
models. Time-dependency is a fundamental feature of many types of data analysis. Hence,
time-series analysis is an important aspect of modelling many phenomena in business and
science. In traditional time-series the main emphasis is on the case when a continuous
variable is measured at discrete equi-spaced time-points. The famous book by Box &
Jenkins (1970) has made the discrete time ARMA approach highly popular. As in classical
time-series analysis analytical results are sparse and it is necessary to rely on numeri-
cal techniques. This paper will review various results that might be of use in applied
continuous-time modelling. The paper will not deal with asymptotic properties of estima-
tors nor with identification of parameters.

Many real phenomena consist of a continuous-time process and the discrete-time model
is a technical approximation, due to the facts that data are only observed (sampled) at
discrete time-points and the continuous-time models are sometimes analytically difficult.
Irregular sampling is sometimes treated as missing data in the traditional discrete-time
approach. A lot of missing data requires a lot of extra programming effort. If the model is
defined as a continuous-time process from the beginning, then by design there is no such
thing as a missing data problem. It is just discrete sampling of a continuous process.

Using a continuous-time model implies that irregularly spaced observations are treated
in a natural and objective manner. Another feature is that high frequency variability
is acknowledged. In discrete-time analysis high-frequency variability, i.e., the variability
above the Nykvist frequency is mapped, aliased, into the frequency band defined by the
sampling intensity. A classical textbook on the ARMA and CARMA models is by Priestley
(1981).

The organization of this paper is as follows. In section 2 basic representations of
discrete-time ARMA and continuous-time CARMA are reviewed. In section 3 key concepts
of simulating and estimating CARMA models are reviewed. Numerical considerations are
important for all practical work with time-series models. In section 4 some numerical
aspects are discussed. Brief results of simulated models and textbook data are shown in
section 5. Section 6 concludes.

2 Some properties of ARMA and CARMA

The traditional time-domain representation of an equispaced ARMA(p,q) process is:

Yt = φ1Yt−1 + · · ·+ φpYt−p + εt − θ1εt−1 − · · · − θqεt−q,

where Yt is the observed process and εt is the unobserved innovation process. Among
typical assumptions about the distribution, is that the εt’s, are independent zero mean
normal, or white-noise with finite variance. Relaxing the finite variance assumption is
discussed in Mikosch, Gadrich, Kluppelberg & Adler (1995). Frequently the ARMA(p,q)
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process is stated in terms of polynomials of the backward operator B (or L), BYt = Yt−1.

φ(B)Yt = θ(B)εt,

φ(z) = 1− φ1z − · · · − φpz
p, θ(z) = 1 + θ1z + · · ·+ θqz

q.

Second order properties are described with the spectral density function,

f(ω) =
σ2

2π

θ(exp(iω))θ(exp(−iω))

φ(exp(iω))φ(exp(−iω))
.

The process Y (t) can also be represented as a stochastic integral,

Yt =

∫ π

−π

exp(iω t) dZ(ω),

E(dZ(ω)) = 0, E(dZ(ω) dZ(ω)) = f(ω) dω, E(dZ(ω) dZ(λ)) = 0, λ 6= ω.

A continuous-time ARMA, CARMA, process can be defined in terms of a continuous-
time innovation process and a stochastic integral. A common choice of innovation process
is the Wiener process, W (t). A representation of a CARMA(p,q) process in terms of the
differential operator D is:

Y (p)(t) + α1Y
(p−1)(t) + · · ·+ αpY (t) = σ d(W (t) + β1W

1(t) + · · ·+ βqW
(q))(t)),

or α(D)Y (t) = σβ(D) dW (t),

α(z) = zp + a1z
p−1 + · · ·+ ap, β(z) = 1 + β1z + · · ·+ βqz

q.

Here, Y (p) = DpY (t), denotes the p-th derivative of Y (t). The path of a Wiener process is
nowhere differentiable so the symbol DW (t), and higher derivatives, is of a purely formal
nature. The spectral density of Y (t) is a rational function:

f(ω) =
σ2

2π

β(iω)β(−iω)

α(iω)α(−iω)
.

The spectral representation of CARMA is:

Y (t) =

∫ ∞

−∞

exp(iω t) dZ(ω), E(dZ(ω)) = 0,

E(dZ(ω) dZ(ω)) = f(ω) dω, E(dZ(ω) dZ(λ)) = 0, λ 6= ω.

The stationarity condition of the ARMA requires that the roots of the polynomial φ(z)
are outside the unit circle. The stationarity condition of the CARMA requires the roots
of the polynomial α(z) to have negative real-parts and that p > q.

A regularly sampled CARMA(p,q) process is also ARMA process. For example the
CAR(1) process,

dY (t) + aY (t) = dW (t), ( The Ornstein-Uhlenbeck process),
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is if observed reglulary at time-points t, t+∆, t+ 2∆, . . ., an AR(1) process:

Y (t+∆) = exp(−a∆)Y (t) + σ

∫ t+∆

t

dW (t),

i.e. φ = exp(−a∆). Obviously this means that φ > 0. Therefore an AR(1) process with
a negative φ cannot be a CAR(1) process. In general a CARMA(p, q) process observed
regularly can be written as an ARMA process. The converse is not true, i.e. there exist
ARMA(p′, q′) processes which are not a discrete version of some CARMA(p, q). An intuitive
explanation is seen by looking at the relation between the spectral density of a continuous-
time process and a discretely equispaced sampled version of that process. If a continuous-
time process with spectral density fc(ω) is sampled at discrete time intervals, ∆, the
discretely observed process has spectral density,

f∆(ω) =
∞
∑

k=−∞

1

∆
fc((ω + 2 kπ)/∆), −π ≤ 0 ≤ π. (1)

Finding a continuous-time process that, when observed at regular time intervals, ∆, has a
particular spectral density f∆, by solving equation (1) is a non-trivial exercise. It is clear
that different continuous-time processes can look the same when observed discretely. Equa-
tion (1) explains the concept of embedding a discrete time ARMA model in a continuous-
time model. Chan & Tong (1987) give a description of a particular case. Further details
on embedding of a CARMA within an ARMA and other aspects of CARMA processes
are discussed by Brockwell (2009). Normal processes are completely defined by their sec-
ond order properties, i.e. the spectral-density/auto-covariance function. For non-normal
processes the question of embedding is more complicated because it addresses the whole
distribution of the process, not just the first two moments.

A key feature of ARMA and CARMA models is that the spectral density has the form
of a rational function. If the assumption of rational spectral density is abandoned, Priestley
(1963) shows a method of finding a candidate for fc based on f∆. Equation (1) also reflects
the aliasing phenomenon. I.e. that variability due to higher frequencies is mapped into the
interval defined by the sampling process. The estimation of a discrete-time model assigns
all the variance to the interval of length 2π/∆, i.e., the variance associated with higher
frequencies is aliased with lower frequencies.

3 Simulation and estimation

The literature suggests several ways of simulating a CARMA process. A frequency domain
approach is to use the fact that for a stationary process Y (t),

V (Y (t)) =

∫ ∞

−∞

f(ω) dω,
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where f(ω) is the spectral density of Y (t). Then, an interval (−ωc, ωc), that represents a
high proportion of the variability in Y (t) is chosen. The interval (0, ωc) is then divided
into M subintervals with ∆i = (ωi − ωi−1). A classical approach is that of Rice (1954):

YRice(t) =
M
∑

i=1

2
√

f(ωi)∆i cos(ωit− Ui), with Ui independent U(−π, π). (2)

Sun & Chaika (1997) give a modified version:

YSC(t) =
M
∑

i=1

Ri cos(ωit− Ui), with Ui independent U(−π, π), and (3)

Ri independent Rayleigh with E(R2
i ) = 4f(ωi)∆i.

The simulated processes YRice(t) and YSC(t) have the same second order properties as a
theoretical normal Y (t) with spectral density f(ω). YSC(t) is normally distributed, whereas
YRice(t) is only approximately normal. The Kalman-filter algorithm offers an easy way of
programming a time-domain approach. A traditional state-space representation of a normal
CARMA process is:

Y (t) = β′X(t), t ≥ 0,

dX(t) = AX(t) + σR dW, (4)

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−αp −αp−1 · · · −α2 −α1















, X(t) =















Y (t)
Y (1)(t)

...
Y (p−2)

Y (p−1)















, β =















β0 = 1
β1
...
βq

0















,

R′ = [0 · · · 0 1] , 0 = p− q − 1 dimensional vector of zeroes,

with p > q, see, e.g., Tsai & Chan (2000) and Brockwell, Chadraa & Lindner (2006).
Equation (4) is a multivariate linear stochastic differential equation. Given an initial value
of the state vector X(t0) = x(t0), the solution is, is given by

X(t) = exp(A(t− t0))x(t0) + σ

∫ t

t0

exp(A(t− s))R dW (s).

Here exp, denotes the matrix exponential, exp(A) = I + A+ A2/2 + · · · . The conditional
mean and covariance matrix of the state vector X(t) are given by,

E(X(t)|X(t0) = x(t0)) = exp(A(t− t0))x(t0), (5)

Vt|t0 = V (X(t)|X(t0) = x(t0)) = σ2

∫ t

t0

exp(A(t− s))RR′ exp(A′(t− s)) ds. (6)
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The unconditional mean of X(t) is zero, and the relation between the unconditional vari-
ance, V∞, and the innovation variance are related by:

V∞ = exp(A(t− t0))V∞ exp(A(t− t0))
′ + Vt|t0 . (7)

Integration by parts shows that Vt|t0 solves the equations system,

AVt|t0 + Vt|t0 A
′ = σ2

[

− exp(A(t− s))RR′ exp(A′(t− s))(A′)−1
]t

t0
.

In particular, the stationary covariance matrix of the state vector, V∞ = lim
t0→−∞

V0|t0 solves,

AV∞ + V∞A′ = −σ2RR′.

Combining results in Shoji & Ozaki (1998) and Tsai & Chan (2000), equation (7), gives,

Vt|t0 = V∞ − exp(A(t− t0))V∞ exp(A′(t− t0)).

Applying a standard matrix algebra result on Kronecker products,

vec(ABC) = (C ′ ⊗ A) vec(B),

to

AV∞I and IV∞A′,

shows, that V∞ solves:

vec(I ⊗ A) vec(V∞) + vec(A⊗ I) vec(V∞) = −σ2 vec(RR′).

The number of equations in this system is p2. However, the matrix p × p matrix V∞ is a
function of only p elements and has a particular structure. Tsai & Chan (2000) derive an
explicit algorithm for calculating V∞ by solving a system of p equations.

The traditional approaches of estimating the parameters, (α, β , σ), based on a set of
observations y(t1), . . . , y(tn), are first, a frequency-domain approach, and second a time-
domain least-squares/maximum-likelihood approach. For a frequency domain approach, a
sample estimate, f̂(ω), of the spectral density is needed, and then by minimizing (maxi-
mizing) some objective function, e.g.,

min
α,β ,σ

∫ ∞

−∞

(log(f(ω) + f̂(ω)/f(ω)) dω,

an estimator is obtained. Solving this optimization problem yields the Whittle estimator. A
time-domain approach is to use the Kalman-filter to calculate the conditional log-likelihood,
l(y(ti)|y(ti−1),α, β , σ) and solve,

max
α,β ,σ

n
∑

i=1

l(y(ti)|y(ti−1),α, β , σ).

When a value of the conditional expectation, (5), and variance, (6), are available it is
straightforward to set up the Kalman-filter iterations and calculate the log-likelihood. The
MLE (maximum-likelihood-estimates) are then obtained by some numerical optimization
routine.
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α1 α2 β1 σ
Original time-scale 2 40 0.15 8
Time multiplied by 10 0.2 0.4 1.5 0.253
Time multiplied by 0.1 20 4000 0.015 252.98

Table 1: Impact of scaling of time on CARMA parameters.

4 Some technicalities

4.1 The time scale

The continuous-time ARMA model has the property that the parameters are not a function
of the sampling intensity. They are, however, a function of the definition of the time scale.
The impact of transformations of the time scale are best understood by studying the
spectral density. The spectral density of a particular CARMA process is:

f(ω) =
σ2

2π

β(iω)β(−iω)

α(iω)α(−iω)
dω. (8)

The units of ω are radians per time unit. If the time scale is multiplied by a constant c,
i.e., ω∗ = c ω, then the spectral density of the time-transformed process will be,

f(ω∗) =
σ∗

2

2π

β∗(iω∗)β∗(−iω∗)

α∗(iω∗)α∗(−iω∗)
dω∗. (9)

The vectors α∗ and β∗ in equation (9) are derived by solving for the corresponding powers
of ω in (8). Solving for the (βj)∗ is straightforward, (βj)∗ = cjβj. The (αj)∗ have to be
scaled such that the coefficient of the highest power of the polynomial in the denominator
is one, i.e., (αj)∗ = c−jαj. Then σ∗ = c−(p−1/2)σ. The term −1/2 in the scaling transform
of σ is due to the Jacobian of the transform. An example of the impact of scaling of a
simple CARMA(2,1) model is shown in table 1. In numerical work a proper scaling of the
time axis can be helpful.

4.2 Enforcing stationarity

The stability demand of a linear differential equation, dX(t) = AX(t) dt, restricts the real
parts of the eigenvalues of the matrix A to be negative. For p = 2, this is equivalent to
α1 > 0 and α2 > 0. Checking the condition of negative real parts of the eigenvalues of a
matrix is in general a non-trivial exercise. Probably the best known approach for checking
this condition is the Routh-Hurwitz theorem. Here two different, more computationally
oriented approaches, that apply to the case where A is a companion matrix (like the matrix
in equation (4)), are suggested.

The former approach is based on linking the stability condition of a continuous-time
differential equation to the stability condition of a discrete-time AR process. A CAR(p),
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Y (p) + α1Y
(p−1) + · · ·+ αp = σ dW , process is stationary if the roots of:

α(z) = zp + α1z
p−1 + · · ·+ αp−1z + αp, (10)

have negative real parts. Analogously for the discrete-time AR(p) process, Yt + φ1Yt−1 +
· · ·φpYt−p = εt is stationary if the roots of:

φ(z) = 1 + φ1z + · · ·+ φpz
p, (11)

lie outside the unit circle. The condition that the roots of φ(z) lie outside the unit circle
is equivalent to the roots of zpφ(1/z) lie inside the unit circle. Belcher, Hampton &
Tunnicliffe Wilson (1994)(BHT) use the following transformation transforming stationary
AR(p) parameter values to stationary CAR(p) parameter values. If z is a complex number
within the unit circle then

s = −κ
1− z

1 + z
,

lies in the left half-plane. This fact is used to establish a connection between α(z) and
φ(z) such that:

h(s) = h0s
p + h1s

p−1 + hp−1z + hp =
p

∑

i=0

φi(1− s/κ)i(1 + s/κ)p−i, (φ0 = 1).

Then define the coefficients of α(z) are such that αi = hi/h0. If w1, . . . , wp are the roots
of zpφ(1/z), then max(|wi|) < 1 is equivalent to that the roots of α(z) are in the left-
half plane. The κ coefficient in the above notation is taken from BHT. The κ reflects
the impact of time-scaling on the CAR parameters. In this work κ is set to one, and
time-scaling performed separately. A transformation described by Monahan (1984) gives a
one-to-one relationship between the stationary parameter space of a stationary AR(p) and
the p-dimensional cube [−1, 1]p. By combining the transformations described by Monahan
(1984) and Belcher et al. (1994) on gets a transformation:

γMBHT : [−1, 1]p y the space of valid (α1, . . . , αp).

The transformation described in Monahan (1984) is essentially a recursive way of cal-
culating the partial auto-correlation function for a set of discrete-time AR parameters
(φ1, . . . φp). The Durbin-Levinson algorithm is a well known algorithm for calculating the
partial auto-correlation function.

Applying a similar idea in the continuous-time setting gives another approach of enforc-
ing the stationarity restriction. Pham & Breton (1991) give a continuous-time version of
the Durbin-Levinson algorithm. Their approach results in a one-to-one transformation that
maps a p-dimensional vector, (γ1, . . . , γp) of positive real numbers into to the parameter
space of the stationary CAR.

γPB : Rp
+ y the space of valid (α1, . . . , αp).
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These two transformations offer two ways of enforcing the stationarity restriction of the
parameter (α1, . . . , αp). They make programming of restricted numerical maximization of
the likelihood function straightforward. The results shown in this paper are based on nu-
merically maximizing the log-likelihood enforcing the stationary restriction by performing
unconstrained optimization of log(γPB) over R

p,

max
log(γPB)

n
∑

i=1

l(y(ti)|y(ti−1).

A similar type of transformation, γMBHT or γPB, of the MA part of the model ensures a
unique stationary parameterization of the CARMA(p,q) model.

4.3 Frequency domain approach

The Whittle estimator requires an estimate of the spectral density. Obtaining an estimate
of the spectral density is a demanding numerical tasks. For the case of equally spaced
observations the fast-Fourier-transform (FFT) is an efficient way of getting an estimate,
f̂(ω), of the spectral density, f(ω). For irregularly spaced observations the case is not so
simple. One way is to use the approach described by Masry (1978a,b,c). The idea is to
use a bias-correction term in the Fourier transform.

1

2π∆̄n
|

[n/2]
∑

j=1

eiωktjy(tj)|
2 −

1

2π∆̄n

n
∑

j=1

y(tj)
2, ∆̄ =

1

n

n
∑

j=2

(tj − tj−1).

This can be calculated for a set of frequencies, ω1 < ω2, . . ., and used for calculating
the Whittle-objective function. For large n this will be a computationally demanding
task. Another approach is to interpolate the observations, e.g., linearly, and then sample
equally spaced observations from the interpolated time-series. Then one can use the FFT
to get an estimate of the spectral density and use a discrete-time model spectrum as an
approximation. Greengard & Lee (2004) derive an acceleration of the non-uniform Fourier
transform and call the result NUFFT. Using such an algorithm gives a computationally fast
way of computing a frequency-domain based estimate of the spectrum. Typically, using
bias correction methods such as those above, results in negative values of the estimated
spectrum for a range of ωk’s. If the variance of the process is estimated with:

2
K
∑

k=1

f̂(ωk)(ωk − ωk−1),

there is a possibility of a negative estimate of the variance. In general, as pointed out in
Greengard & Lee (2004) the non-uniform Fourier transform is sensitive to the choice of
frequencies, ωk, and it is not clear how to choose them. Therefore some tweaking of sets
of frequencies is inevitable for getting a good candidate for the empirical spectrum in the
irregular sampling case. An alternative might be to approach the empirical spectrum by a
positive function.
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4.4 Some numerical considerations

The Kalman-filter algorithm offers an analytical way of calculating the normal likelihood.
For a given set of parameter values all terms in the likelihood function are straightforward,
except for the stationary covariance matrix of the state vector, V∞. Tsai & Chan (2000) give
an analytical iterative method of calculating V∞. Here the parameter values are restricted
in such a manner that stationarity is enforced. This restricts the eigenvalues of the matrix
A to have negative real parts. The estimates shown in this paper are based on combining
the algorithms of Tsai & Chan (2000) and Pham & Breton (1991) mentioned earlier. This
yields an analytical way of calculating the likelihood function. A γPB-type transformation
is also used for MA parameters to ensure a unique MA representation corresponding to
the numerator of the spectral density.

The matrix-exponent that appears in the likelihood function is a numerically challenging
object. Moler & Van Loan (2003) review the progress of the last 25 years of several
methods to calculate the matrix exponent. The results shown in this paper are based on the
EXPOKIT FORTRAN subroutines, Sidje (1998). Many numerical optimization packages
demand the derivative of the log-likelihood. Tsai & Chan (2003) give analytical methods
for calculating the derivative of the matrix-exponent with respect to the matrix A. Their
results show that the calculation of the analytical derivative will be quite computationally
demanding so here numerical methods are used to calculate the derivative of the log-
likelihood. The scoring algorithm is a convenient way of numerically maximizing the
likelihood. The parameter space can easily be transformed in such a way that unrestricted
optimization can be performed. Then the application of standard optimization packages,
e.g., in R (R Development Core Team, 2011), is straightforward.

A standard way of calculating an estimate of the covariance matrix of the estimated is
to numerically calculate the information matrix, by either:

Iθ =
−∂2 logL(θ|y)

∂θ∂θ′ or Iθ =
1

n

n
∑

i=1

∂ logL(θ|y(ti))

∂θ

∂ logL(θ|y(ti))

∂θ′

Precision of function of the parameters, such as e.g., the logged-spectrum, g(θ, w) =
log(f(ω|θ)) can then be approximated by the delta-method, i.e.,:

var(g(θ̂)) ≃
∂g

∂θ′ I
−1(θ)

∂g

∂θ

The derivative of the log-spectral density log(f(ω)), with respect to the parameters, can
be calculated analytically. The confidence bands shown in graphs in this paper are based
on this method. BHT give a different method suitable for their parameterization.

4.5 Nested models and starting values

In the discrete-time ARMA all AR(1) models are a subset of any ARMA(p,q) models
with p>1. The AR(1) model is nested within an AR(2) model with φ2 = 0. In the
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continuous-time case the CAR(1) is not a subset of any CAR(2). A feature shared with
the discrete, and continuous-time ARMA is that if a common root is added to the AR and
MA components of the model, then the dynamic structure is the same.

α(D)Y (t) = σβ(D) dW (t) is the same as

(k +D)α(D)Y (t) = σ(k +D)β(D) dW (t).

If fit of a CARMA(p,q) is available it is always possible to find infinitely many exactly
equivalent CARMA(p+1,q+1)’s. It is therefore to be expected that the correlations be-
tween the CARMA parameter estimates are very close to one in an overparameterized
CARMA(p,q). In general it is difficult to find suitable starting values for the numerical
maximization of the log-likelihood function of a CARMA model. Even if transformations
such as γPB and γMBHT ensure a mathematically valid parameter value, the log-likelihood
value can be so flat that numerical maximization is difficult. Sometimes a good guess can
be obtained by a Whittle estimate. In the case of irregular sampling it may take some
tweaking of which frequencies to use in deriving a useful spectral estimate. BHT give an-
other way of nesting models by designing a special structure on the MA component. Their
idea is that if φ = (φ1, . . . , φp) is a valid set of parameters for a stationary AR(p), then if
the MA coefficients of CARMA are defined in a particular manner,

βk =

(

(p− 1)

(k − 1)

)

, k = 1, . . . , p− 1, β0 = 1, (12)

then calculating the AR coefficients using the function γMBHT (r1, . . . , rp), −1 ≤ rk ≤ 1,
will give a stationary CARMA(p,p-1) which will be nested in a stationary CARMA(p+1,p)
with AR coefficients γMBHT (r1, . . . , rp, 0) and β calculated by equation (12). The BHT
method offers a way of numerically estimating a CARMA(p,p-1) directly by imposing these
restriction on the MA part. Both methods, adding a common root to the AR and MA
components, and using the BHT transforms offer a way of getting a sequence of nested
models.

5 Some illustrative examples

5.1 The sampling of a simple CARMA(2,1) model

A CARMA process with spectral density:

f(ω) =
σ∗

2

4π

(

1

(ωc + ω)2 + a2
+

1

(ωc − ω)2 + a2

)

, (13)

has a peak in the spectrum at ω0 and an overall variance of σ2
∗/(2a). If ω0 = 0 it is an

Ornstein-Uhlenbeck, CAR(1). If a = σ∗ = 1 and ω0 = 2π, it has a CARMA(2,1) repre-
sentation with α ≃ (2, 40.478)′, β ≃ (1, 0.1572)′ and σ ≃ 6.362. Regular sampling of one
observation per time unit will obviously not be informative as the process has a cycle with
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frequency one cycle per time unit (ω0 = 2π). The term for this well known phenomenon in
time-series analysis is aliasing. In the continuous-time case the question how much data is
needed has two aspects. Observations are dependent, and the dependency decreases with
the increase of time between observation. It is therefore not only a question of how many
data points are obtained, but also the timing of the observations has an impact. In tables
2 and 3 estimates of a particular replication of this process are shown. The observation
periods are of length T = 100 and T = 1000 units of time, respectively. The sampling fre-
quencies are 10, 20, and 100 observations per unit of time. The estimated standard errors
of the estimates are shown in tables 4 and 5. The pattern is clear. Increasing the number of
datapoints by increasing the length of the observation period increases the precision of the
estimates. However, increasing the number of datapoints by sampling more observations
per unit of time has only marginal impact on the precision of the parameters describing
the cyclical properties. Increasing the number of observations increases the precision of
the overall variability, σ, of the process. This is natural because the main feature of this
process is its cyclical structure and for getting a precise information about its cyclical na-
ture it is necessary to observe many cycles. I.e., what is needed is, a reasonable number
of datapoints within each cycle and then a large T , i.e. many cycles. For this particular
process over 99% of the variation is due to frequencies below 5π, two and a half cycle per
time unit. Therefore it is understandable that not much information is gained by sampling
more frequently than 10 observations per unit of time.

α̂1 α̂2 β̂1 σ̂
∆=0.1 1.733 41.269 0.174 5.678
∆=0.05 1.727 41.477 0.167 5.784
∆ = 0.01 1.741 40.890 0.179 5.573

Table 2: Parameter estimates for T = 100.

α̂1 α̂2 β̂1 σ̂
∆=0.1 1.980 39.516 0.168 6.012
∆=0.5 1.985 39.662 0.166 6.060
∆=0.01 1.995 39.830 0.163 6.141

Table 3: Parameter estimates for T=1000.

s.e.(α̂1) s.e.(α̂2) s.e.(β̂1) s.e.(σ̂)
∆=0.1 0.284 1.888 0.013 0.762
∆=0.05 0.286 1.802 0.012 0.689
∆=0.01 0.213 1.422 0.015 0.444

Table 4: Standard errors of parameter estimates for T=100.
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s.e.(α̂1) s.e.(α̂2) s.e.(β̂1) s.e.(σ̂)
∆=0.1 0.090 0.632 0.004 0.229
∆=0.05 0.088 0.574 0.003 0.201
∆=0.01 0.075 0.482 0.004 0.154

Table 5: Standard errors of parameter estimates for T=1000.

Another virtue of defining the statistical model in continuous time is that the pa-
rameterization of the model is not a function of the sampling frequency. Comparing the
parameter estimates of discrete-time ARMA model of the data generated by the above
reveals this difference between the discrete-time and the continuous-time case. Compare
table 6 and table 3.

Regular sampling cannot give information about cycles with frequency above the Nykvist
frequency. If there is substantial variation in the process above the Nykvist frequency it
will be aliased in to a low frequency band of the spectrum. Random sampling is in principle
alias-free, i.e., all frequencies have a possibility of being represented by the data. It is not
clear how to define a ,,Nykvist” frequency in irregular finite sample cases. In finite samples
it is obvious that there is a bound on which part of the spectrum can be reasonably esti-
mated. It is clear that sometimes it is possible to measure a cycle that has higher frequency
that than the average sampling frequency. In table 7 results of 5000 observations of two
simulated cases of the above model are shown. In one case the time between observations
are exponentially distributed with mean ∆̄ = 1, i.e., on average one observation per unit of
time, in the other case the time interval are exponentially distributed with ∆̄ = 4. In both
cases reasonable estimates of the parameters are obtained. The precision is worse in the
sparser sampling case. This suggests that there exists some kind of optimal sampling rate.
Here on average one measurement per time unit is better than on average one observation
every four time units. A long period is needed to observe many cycles and sufficiently dense
observations are needed to get information about the nature of the cycles. For the case
of table 7 sufficiently many fragments of cycles are available to get reasonable parameter
estimates.

φ̂1 φ̂2 θ̂ σ̂
∆=0.1 1.485 -0.840 -0.490 0.358
∆=0.05 1.819 -0.914 -0.714 0.242
∆=0.01 1.978 -0.982 -0.939 0.102

Table 6: Parameter estimates in an unevenly sampled ARMA.

5.2 Simulation of a CARMA(4,3)

Fifty replications of a particular CARMA(4,3) models were simulated. The length of the
simulated series is T=1000 time units and the interval between observations are expo-
nentially distributed with an average of 10 observation per day. Table 8 shows summary
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α̂1 α̂2 β̂1 σ̂
estimate - ∆̄ = 1 1.963 40.439 0.146 6.521
estimate - ∆̄ = 4 1.851 39.178 0.145 6.348
s.e. - ∆̄ = 1 0.085 0.673 0.013 0.359
s.e. - ∆̄ = 4 0.121 1.032 0.031 0.726

Table 7: Parameter estimates and standard errors of an irregularly observed CARMA(2,1).

statistics of the average value of the maximum-likelihood estimates of the parameters,
the standard deviation of the estimates within the simulation and the average estimated
standard errors. The estimated standard errors are calculated by inverting the observed
estimated information matrix in each replication. For the case of about 10000 observations
averaging 10 observations per time unit the level of the MLE estimates and the estimated
standard errors are of a correct order of magnitude. This particular CARMA was chosen
because it contains two cycles of similar amplitude at frequencies π and 2π ( a half cycle
and a full cycle per unit of time, respectively). The simulation method was a frequency
domain method based on adding two spectral function of the type in equation (13), ωc = π
and ωc = 2π, respectively. The true theoretical spectrum is shown in figure 5.2. In this ex-
ample the magnitude of the parameters α4 and β3 is, 10

2 and 10−2, respectively. Therefore
an observation period of 1000 units of time results in about 500 cycles of the longer type
and about 1000 oft the shorter one. This is an easy example. A reasonable number of both
types of cycle was observed and both cycles were of comparable size and frequency. In all
fifty replications the correct type of model would have been chosen if say a BIC-type, or
comparable model selection method was used.

If the process would consist of two very different cycles, say 2π and 2000π, this difference
in size between α4 and β3, would be more dramatic, i.e. 109 and 10−9, respectively. This
shows that the numerical treatment of a CARMA model with very different frequencies
is difficult. If indeed, one believes that there are two important frequencies, one cycle
per time unit, and one thousand cycles per time unit, a practical approach could be to
take some subsamples within one period and try to correct for the long cycle with some
deterministic function. Similarly, then one could try to filter out the short cycle and get a
mean value within the short cycle and then estimate the dynamics of the long cycle.

α1 α2 α3 α4 β1 β2 β3 σ
True value 4.000 55.348 102.696 439.984 0.398 0.075 0.009 212.567
Average MLE 3.968 55.462 102.538 442.105 0.401 0.075 0.009 212.562
Std. sim. 0.247 1.730 10.864 30.894 0.044 0.007 0.001 20.339
Average Std.est 0.258 1.580 10.092 30.523 0.063 0.009 0.002 30.076

Table 8: Summary statistics of 50 replication of a CARMA(4,3) model. T=1000, ∆ inde-
pendent exponentially distributed, ∆̄=0.1.
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Figure 1: The spectum of the CARMA(4,3) of table 8.

5.3 Sunspots data

The Wolfer sunspots data is well known from time-series textbooks. As many other au-
thors Phadke & Wu (1974) use that series to illustrate methodology. Phadke and Wu give
a method for transforming discrete-time ARMA estimates to continuous-time CARMA.
Their data sets is the average monthly number of sunspots from 1749 to 1924. The dataset
is available for R-datasets (R Development Core Team, 2011). It seems to differ slightly
from that used by Phadke and Wu, i.e., their average is 44.75, whereas in R-datasets the
average is 44.78. Graphical inspection, figure 2, of the 176 datapoints suggests that this is
the same series. Table 9 compares the discrete-time results of Phadke and Wu with the

Year
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1750 1800 1850 1900
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0

15
0

Average yearly sunspots

Figure 2: Average montly number of sunspots in the period 1749 to 1924 (data from
R-datasets).
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φ̂1 φ̂2 θ̂1 σ̂
Phadke & Wu (1974) 1.424 -0.721 -0.151 15.51
Results of arima in R 1.426 -0.721 -0.159 15.30

Table 9: Result of a discrete ARMA(2,1) modelling of sunspots 1749 to 1924.

α̂1 α̂2 β̂1 σ̂
Phadke & Wu (1974) 0.327 0.359 0.633 15.51
Author’s R-program 0.327 0.357 0.645 15.52

Table 10: Results of a continuous time CARMA(2,1) modelling of sunspots 1749 to 1924.

results of a standard discrete-time ARMA program, arima from the R-package. Table 10
compares the derived CARMA(2,1) estimates of Phadke and Wu with the author’s imple-
mentations of direct CARMA estimation. The cycle of this model is about 10 years. The
author also tested the sunspots series up to 1983. Direct estimation. based on removing
the mean, suggests a CARMA(4,3), but if trend also is removed, a CARMA(2,1) seems
usable. Still the cycle is roughly 10 years.

5.4 Cycles in the Earth’s temperature

Jouzel & et al. (2007) show data describing the evolution of the climate on Earth for the
past 800 Kyears. One of their data series is used for describing the evolution of the Earth’s
average temperature. A variable, deltaT, is used as an indicator temperature. The 800
Kyear past is shown in figure 3. There are 5.788 observation points and thereof 4.921 in
the past 400 Kyears. A quick look a the series and an estimated spectrum suggests that the
main action in this variable is due to a low frequency component. In figure 4 an empirical
estimate of the spectrum is shown. The spectrum is calculated by use of the Masry (1978c)
bias correction and the NUFFT, the non-uniform fast Fourier transform of Greengard &
Lee (2004). Table 11 shows the maximized log-likelihood value of some CARMA(p,p-1)
models. Usual model selection critera, AIC, BIC, etc., suggest that a value of p, between 3
and 6 is a good choice. A typical form of the logged spectrum and the respective confidence
interval, of these CARMA models is shown in figure 5. The CARMA(6,5) shown in figure
5 suggests that the most important cycle is of length 80.5 Kyears. The other CARMA(p,p-
1)(p≥ 2) models also suggest a similar cycle. The estimated CARMA models also agree on
allocating about 50% of the variance to cycles longer than 50 Kyears. Substantial variance
is also allocated to the high frequencies, 1% to frequencies above 360 radians per Kyear
(about a cycle of 15 years). Splitting the data in two equally long periods suggests that
the dynamics are similar in both periods.
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Figure 4: Empirical spectrum of the climate on Earth for the past 800.000 years.
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p=1 p=2 p=3 p=4 p=5 p=6 p=8
Log-likelihood -8580.4 -5696.5 -5655.1 -5648.8 -5645.7 -5642.3 -5637.9

Table 11: The maximized log-likelihood of some CARMA(p,p-1) models for climate data.
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Figure 5: Log-spectrum and 95% confidence band of an estimated CARMA(6,5) model of
the earth’s temperature.

5.5 Analysis of IBM transaction data

Data on IBM transactions at the New York Stock Exchange from first of November 1990
to 31st of January 1991 have been used as an example in the high frequency financial
literature, (Engle & Russel, 1998; Tsay, 2010). The data contain both transaction time
measured in seconds and transaction prices. In the 91 day period, there are 63 days of
trading and roughly 60.000 transactions, whereof about 53.000 have distinct transaction
times. This makes these data a candidate for continuous-time modelling. The transactions
per day range from 304 a day up to 1844, with an average of 854. As to be expected with
financial market price data the long-term linear dynamic structure is weak. Figure 6 shows
an empirical estimate of the spectrum of the logged returns. It is clear that the variability
is not concentrated to the lower frequencies.

One can also analyse the dynamics within each day, e.g., measuring the time in minutes
rather than days. An empirical spectral estimate was calculated for each of the 63 days
and the average of the 63 spectral curves is shown in figure 7. The figure does not show
a decrease in the spectrum. CAR(1) and a CARMA(2,1) models were compared for each
of the 63 days. The average value of twice the log-likelihood-ratio was 26, suggesting
that frequently the CARMA(2,1) was giving a better fit than the CAR(1). The estimated
CARMA(2,1) models have a peak in the spectrum corresponding to a very high frequency.
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Figure 6: Empirical spectrum of 91 days of IBM transaction prices.

This peak represented a much higher frequency than the average trading frequency. The
average trading frequency corresponds to about two transactions per minute on average,
but the peak in the spectrum was in the range from 4 to 20 seconds. That means 3-15 cycles
a minute. Some restricted models were estimated, demanding that all 63 days have exactly
the same CARMA(p,p-1) dynamic structure. Inspection of log-likelihood values, suggests
that the main features are already captured by a CARMA(5,4). These main features are
a two-peaked spectral curve. The estimated spectrum of a common CARMA(5,4) for the
63 days is shown in figure 8. The first peak suggest a cycle of about 10 seconds and the
second a cycle of about 4 seconds.

From the simulation example presented earlier it is clear that irregular sampling of
a CARMA can give information on cycles that are of higher frequency than the average
sampling frequency. It is however, not clear how to interpret the result for the returns
in the IBM transaction prices. Even if one believes in efficient market hypothesis of no
linear dynamics of prices, the observed prices might show some dynamics due to market
micro-structure. A plausible explanation for the high frequency variance is that prices
mostly bounce between the bid and ask quotes. A transaction at the ask price is often
followed by a transaction at the bid price. Perhaps the New York Stock Exchange market
specialist is balancing his portfolio according to some rule. In this example the transac-
tion times are treated as exogenous. The discussion of whether that is realistic is outside
the scope of this paper. Engle & Russel (1998) use the same data to illustrate the ACD
(Autoregressive-Conditional-Duration) model. They show that the transaction times have
a dynamic structure. Simple examination of mean, variance, and quantiles of the dura-
tions also reveal that many thousand durations are between 1 and 3 seconds and that the
standard deviation of durations divided by the mean duration within a day is about 1.9,
suggesting more clustering of transaction than in a Poisson process.
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6 Discussion

With access to modern computer and software application of CARMA models is merely a
technical implementation. The tools have been scattered in the literature for years. Many
of the usual textbook examples of ARMA can easily be analysed with the CARMA tools
described in this paper. Application of CARMA models to scientific problems, as any
statistical model, requires intuition and understanding of the underlying scientific process.
If the process in question is by construction a continuous-time process, issues such as
stationarity, and deterministic components have to be addressed. The path of a stationary
CARMA(p,q) process is p-differentiable, so at very dense sampling it is a virtually a
constant. In the case of the returns in the IBM transaction it seems plausible that the
variance does not fade away with increasing sampling frequency, i.e., there is an inherit
variation, perhaps due to the bid/ask structure of the data generating process. In the case
of the Earth’s temperature it is natural to assume that this is a slowly evolving process,
i.e., if there was a possibility of high density sampling, a near constant pattern would be
measured. If variation of a process is due to cycles of very different frequencies, special
measures are necessary due to the fact that many short cycles are observed, but relatively,
only a few long cycles are observed. The CARMA representation of very heterogeneous
cycles can also cause numerical problems due to very big range of the parameter values.
There exist several ways of enforcing the stationarity restriction of the AR parameters so
that application of standard numerical software for optimization of the likelihood function
can be applied.
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