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Abstract
This paper discusses the problem of estimating aspiration or reference levels
in criteria space from choices between alternatives characterized by multi-
ple criteria. Several methods for such estimations are developed and com-
pared, taking into account both solution quality and computational efficiency.
Methods based on mixed integer linear programming, which provide optimal
solutions, require inacceptable computing times for application in interac-
tive systems. An alternative method, based on a direct search algorithm, is
shown to be an effective way of generating high quality estimates with small
computational effort.

'Paper to be presented at the EURO/TIMS conference, Helsinki 1992
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1 Introduction

Over the last 10 to 15 years, multi-criteria decision methods based on as-
piration or reference levels have been established as a viable alternative to
approaches based on weights and additive utility functions (c.f. Roy/Vincke,
1981; Evans, 1984; Gershon, 1984; Zanakis/Gupta, 1985; Vincke, 1986;
Wierzbicki, 1986; Vanderpooten, 1989; Weidner, 1989; Habenicht, 1990;
Shin/Ravindran, 1991). The importance of such approaches for multi-criteria
decision making can be attributed to three factors:

• It is possible to reproduce most basic results of multi-criteria decision
theory, which can be formulated using additive utility functions, via
formulations based on reference outcomes (Wierzbicki, 1980).

• Reference criteria levels are formulated in decision space, while weights
are dual to decision space and thus more difficult to specify (Wierzbicki,
1986).

• In combination with Tchebycheff or similar norms, approaches based
on reference levels allow easy characterization of any arbitrary efficient
point as an optimal solution without resorting to transformations of
criteria. This is not the case for additive functions (c.f. Belkeziz/Pirlot,
1991).

If one regards aspiration or reference levels as a natural representation of
preferences in multi-criteria decision problems, a logical next step is the for-
mulation of estimation models, which determine aspiration levels consistent
with observed choice behavior. However, up to now, this problem has rarely
been addressed in the literature.

This lack of research is even more astonishing given that estimation proce-
dures are an important and integral part of the literature on utility based
approaches to multi-criteria decision making (e.g. Srinivasan/Shocker, 1973;
Huber, 1974; Fischer, 1979; Jacquet-Lagreze/Siskos, 1982; Horsky/Rao, 1984;
Klein et al., 1985; Weber, 1985; a comparison of methods is provided by
Schoemaker/Waid, 1982). This contrast can be attributed to the different
roles assigned to preference representations by the two schools. In utility
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based approaches, it is implicitly assumed that the decision maker already
has a consistent system of preferences, which only needs to be estimated to
be applied to any problem at hand. Approaches based on reference levels, on
the other hand, are usually based on the assumption that learning about the
problem and forming preferences are the central issues in solving a decision
problem. If there is no a priori fixed system of preferences, it does not make
sense to try to estimate one.

While this aspect of learning and experimentation is certainly important,
there is still a role for estimation techniques in reference-based decision meth-
ods. It might be easier for a decision maker, who is not yet familiar with the
problem at hand, to make comparisons and indicate preferences between two
alternatives, than to formulate aspiration levels for the criteria. Hence, the
estimation of a preference system based on reference levels does not serve the
purpose of identifying the decision maker's "true" preferences, but is an aid
in formulating initial parameters for further interaction.

In this paper, we will study the problem of estimating reference levels in
criteria space given choice statements between discrete alternatives. The
remainder of the paper is structured as follows: Section two gives a brief
review of preference representations based on preference cones, of estima-
tion problems arising in this context and of previous work in this direction.
In section three, several models for estimating reference levels from discrete
choices are formulated. Section four presents results of computational exper-
iments obtained with those models and section five summarizes the results
and provides an outlook for future research.

2 Estimation Problems in Aspiration Based
Decision Methods

Attempts to represent preferences in multi-criteria decision problems by means
of objective levels rather than weights, date back to the concepts of goal pro-
gramming, which were developed in the fifties and sixties mainly by Charnes
and Cooper (Charnes et al., 1955, Charnes/Cooper, 1961). Important con-
tributions to the theoretical foundations for this methodology were made by
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Wierzbicki (1980; 1986), who proposed a representation of preferences based
on cones in criteria space. This approach allows for a convenient represen-
tation of any efficient (Pareto optimal) point, even if the feasible set of the
decision problem is not convex.

A simple example of this approach concerns evaluating alternatives by their
Tchebycheff distance to a reference level. We consider a decision problem
with K objectives A; = 1 , . . . , K. Using the Tchebycheff norm, the evaluation
of an alternative represented by a criteria vector Xn = ( x n l , . . . , XUK) relative
to an aspiration vector X = (afj",..., X~K) is given by the scalarizing function
(Wierzbicki, 1986):

s(Xn) = min(a;nfc - z£) (1)

Function (1) induces a set of rectangular indifference curves in criteria space.
Maximization of (1) will always result in the selection of a weakly efficient
alternative and any (weakly) efficient alternative can be chosen by shifting
the reference level X. If the preference cone is slightly extended as in

(2)

only strongly efficient solutions will be chosen, but not all of them can be
represented.

While, as already stated above, estimation of such preference systems is not
a topic widely discussed in the literature, some similar research has been
conducted:

Mustafi/Xavier (1985) extended the estimation procedure for utility weights
developed by Srinivasan/Shocker (1973) to estimate "threshold values". In
contrast to the formulation discussed above, their "threshold values" were
properties of alternatives, which were a priori classified into "acceptable"
and "inacceptable" alternatives without referring to criteria values. Jask-
iewicz/Slowinski (1991) used ordinal regression techniques in order to fit
scalarizing functions to preference rankings derived from outranking meth-
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ods. In their approach, the scalarizing function is not fitted by changing the
reference point, but by rescaling the criteria by means of additional parame-
ters. Majchrzak (1991), in an approach still under development, proposed to
fit scalarizing functions by modifying the width of the preference cone, i.e.
by changing parameter e in (2). Similarly, Korhonen et al. (1984) used linear
combinations of objectives to construct cones of different widths for eliminat-
ing alternatives in discrete MCDM problems. Since all these approaches do
not consider explicitly the estimation of reference levels, we will not discuss
these techniques in more detail here.

3 Approximation Models

In the most general form, the problem of estimating parameters for any
kind of preference representation can be stated as: "Minimize the difference
between the ranking implied by the estimated preference representation and
the preference statements made by the user". For actual application, the
concept of "difference", which is left open to interpretation in the above
definition, must be specified.

For decision methods which provide a cardinal evaluation of alternatives, this
"difference" (and the preference statements themselves) can be measured on a
cardinal or ordinal scale. For estimating utility functions, it has been argued
that preference statements should not only be made in the form of ordinal
choices between alternatives, but also in cardinal form. Such statements can
be made as holistic cardinal evaluations of alternatives, possibly as ranges to
reduce the cognitive strain on the decision maker (e.g. Weber, 1985). It is
also possible to obtain cardinal information via statements on the strength of
preference between alternatives (e.g. Horsky/Rao, 1984; Klein et al., 1985).

Here, we want to provide a method which allows for easy specification of
initial reference levels, which will later be changed during an interactive de-
cision process. In this context, difficult questions involving significant cog-
nitive strain on the decision maker will be counterproductive. We therefore
limit the input from the decision maker to simple statements of preference
between two alternatives.
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Using again the sum of deviations as an objective function, the following
mixed integer programming model can be used for reference point estimation
problems:

minimize

Zi + dij > Zj ViRj

zn < xn,i —%1 Vn

Vn
(8)

Vn

Vn

dij > 0 V»,j

xT > 0 VJfe

This model can be solved using any standard mixed-integer or binary pro-
gramming package. An example model for the GAMS system using the
binary solver GAMS/ZOOM is given in the appendix.

While model (8) will generate an optimal solution to the estimation problem,
the solution of a mixed integer programming model with K x N binary
variables might require considerable computational effort. We will therefore
develop other, approximate techniques, which require less time to solve.

The formulation of a mixed integer model was necessitated by the use of
the minimum operator in function (1). This function can be interpreted as
measuring the distance of the alternative in question (Xn) to the reference
point using the Tchebycheff norm. Since the Tchebycheff norm is a limiting
case of the ip norm for p = oo, it is also possible to approximate this function
by an £p norm using a large value of p (Fortuna/Krus, 1984). This leads to
the following nonlinear programming formulation:
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Several estimation procedures for utility functions are based on similar inputs
(e.g. Srinivasan/Shocker, 1973; Jacquet-Lagreze/Siskos, 1982). These tech-
niques proceed in two steps: first, the amount of contradiction of a preference
representation with single preference statements is defined in cardinal form,
and then these contradictions are aggregated to a total measure of difference,
which is minimized.

The approach outlined above can be formalized as follows: Preference state-
ments made by the user form a relation R, where iRj represents the fact
that the user has stated that he/she prefers alternative Xi to alternative Xj.
It should be noted that relation R need not fulfil the usual requirements for
preference relations, otherwise the decision problem would already be solved.
Specifically, R will not usually be complete, and need not even be transitive.
However, the estimation process will not yield a perfect fit if R contains
elements which actually violate transitivity, i.e. at least three elements for
which iRj,jRl and IRi holds. If it contains iRj and jRl, but neither iRl nor
IRi, a perfect fit is still possible.

The individual contradiction with one preference statement can then be de-
fined as:

dij = ma,x(v(Xj) — v(Xi); 0) for iRj (3)

where v(Xn) represents the evaluation of alternative Xn. Function v might,
in general terms, correspond to an additive utility function, a scalarizing
function like (1) or (2) or any other function that generates a cardinal eval-
uation of alternatives. Equation (3) can be reformulated as a constraint of a
mathematical programming problem as:

77.
dij > 0 [ '

We thus obtain the following general mathematical programming problem
for fitting a preference representation v:
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minimize F(dij : iRj)
*>(*,-)+ 4 ; >»(*;) ViRj (5)
d^ > 0

where F is some function used to aggregate the individual contradictions dij.
A common choice for F in estimating utility functions is merely the sum of
deviations.

Using also the sum of deviations as an objective function, we obtain an
estimation model for reference points by substituting scalarizing functions
(1) or (2) for the general evaluation function v in model (5). For simplicity,
all further expositions will use (1), but extension to the other function (2) is
straightforward. Model (5) thus becomes:

minimize

ViRj

dij > 0

The second constraint in (6) provides a scaling for the reference levels. While,
in contrast to additive utility functions, the goodness of fit of a scalarizing
function based on the Tchebycheff norm does not depend on the scaling of
the reference levels, acceptance of proposed reference levels by the user can be
improved by providing "realistic" levels. Assuming that the feasible interval
in all criteria is scaled to the interval (0,1), this constraint, together with the
non-negativity condition on the xjT's, will in most instances lead to a reference
level which is not feasible, but also not too far "beyond imagination".

Unfortunately, problem (6) is not a straightforward mathematical program-
ming problem because of the minimum function in the constraints. In points
in which the minimum difference shifts from one criterion to another, the
derivative of this function does not exist.
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Some mathematical programming packages, however, do allow the use of
minimum functions in constraints and try to solve such problems by standard
nonlinear programming techniques. The first approach to reference point
estimation analyzed in this study is such a direct implementation of (6)
using the GAMS system (Brooke et al, 1989) for model formulation and
GAMS/MINOS as a nonlinear solver. The corresponding GAMS model is
given in the appendix.

A minimum function can also be represented by a set of constraints using
binary variables. The minimum of K numbers can be characterized by two
properties:

• it is less than or equal to all the numbers

• it is greater than or equal to at least one of the numbers.

Using K binary variables \nk, we can represent the value zn = minfc(zn,fc — x~k)
by the following set of constraints:

(a)

Zn > (xn,l - 5 7 ) - \n,\M (7)

i _ (b)
zn > (xn,K - XR)- K,KM

£*Kk <K-\ (c)

In (7), M is a suitably large constant. Part (a) of (7) states that the minimum
value zn should be smaller than or equal to all the values (xn<k — x~k). If the
corresponding An,fc is zero, part (b) forces zn to be larger than or equal
to {xn,k — x~k). If \Uik is one, zn need only be larger than a value that is
considerably smaller than (zn,fc — z£), so that part of the constraint becomes
ineffective. Part (c) finally guarantees that at least one Xn>k is actually zero.
zn will therefore be equal to the minimum of the {xn^ — z*r)' s.
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minimize N dij

W 1 / xjtk - a*)"]1" ViRj
(9)

dij > 0
xl>0

The solution of (9), which is only an approximation of the true optimum, can
further be improved. Since the efficiency of the branch and bound technique
for mixed integer programming can be enhanced by providing a good starting
integer solution to the model, it is possible to combine both approaches. In
the combined approach, the solution of the nonlinear programming model
(9) is used as an initial guess for the mixed integer solution, which helps to
reduce the branching tree and thus speed up the solution process.

However, the solution of (9) cannot be directly used as a starting point for
(8), since it might be an interior solution to the linear problem. But it is
possible to "translate" (and at the same time improve) that solution into
a solution of the linear programming problem underlying (8) using a linear
program. The following algorithm represents the entire process:

x°1 Solve problem (9), denote the solution by x

2 From (xn<k — x]?), determine for every alternative Xn which criterion is
the limiting factor in its evaluation according to (1) and fix the variables
\n<k in (8) accordingly, i.e.:

. - /
n'k ~ \ 1 otherwise

3 Solve model (8) as a continuous linear programming model in variables
x~k~. The resulting solution is an integer solution of (8), since all bi-
nary variables were previously fixed to zero or one, fulfilling also the
constraints ^2k \Uik < K — 1.
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4 Solve model (8) as a mixed integer programming model in variables x~k
and \n,k, using the solution from step 3 as a starting point.

In the GAMS system used for the computational experiments underlying this
paper, it is not possible to introduce such an "incumbent" integer solution
directly into the branch and bound process. However, it can be indirectly
introduced as follows: let z° denote the objective value of the linear program-
ming solution generated. By adding a constraint of the form

(10)

to the model, all nodes with larger objective values are eliminated from the
search tree. Using a slightly increased value z° • (1 + e) rather than z° will
prevent the model from becoming infeasible due to round-off errors. While
the branch and bound process still has to find the corresponding integer
solution, this solution is usually obtained quickly in GAMS/ZOOM.

Computational experiments shown in the next section have indicated that
while this heuristic considerably reduces solution times in some instances,
the resulting computational effort is still rather high and the heuristic fails to
reduce computation time at all in other cases. Therefore, an entirely different
strategy was also studied. The constraints in (5) serve mainly as a way
of defining the deviation variables dij. This definition can be incorporated
into the objective function. The resulting problem is the minimization of a
continuous, but nondifferentiable function under just a few constraints: the
scaling and the non-negativity conditions on the aft's. The scaling condition
can be eliminated by substituting

A ' - l

X~K~ = K - J ^ X f c (11)

and the non-negativity condition can be taken into account by adding a
penalty term for negative values.
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For the computational experiments described in the next section, a FOR-
TRAN routine from Spath (1974), which is based on an extension to the
"direct search" algorithm of Hooke and Jeeves (1961; c.f. Bazaraa/Shetty,
1979) was used. The resulting program is also given in the appendix.

4 Computational Results1

4.1 Experimental Setup

The estimation techniques developed above were used in computational ex-
periments. For each experiment, a test problem consisting of 10 alternatives
and 6 criteria was randomly generated. The preference statements were spec-
ified as a complete order of all alternatives in the form X\ >- Xi >- ... y Xio.
For each test problem, the following estimation problems were solved:

MIN

MIP-10

MIP-OPT
DIRECT
MIX-10

MIX-OPT

A direct implementation of model (6) in GAMS, using
the nonlinear solver GAMS/MINOS.
An implementation of model (8) in GAMS, solved with
GAMS/ZOOM to within 10 % of optimality (i.e. to an
integer solution which is at most 10 % worse than the
optimal solution).
The same model as MIP-10, but solved to optimality.
The direct search procedure.
An implementation of the three-step procedure out-
lined above. Model (9) in step 1 was solved us-
ing GAMS/MINOS, model (8) in steps 3 and 4 with
GAMS/ZOOM. The integer solution process of model
(8) was terminated within 10% of optimality.
The same as above, but solving the final mixed integer
problem to full optimality.

here
would like to thank Werner Buser for running most of the experiments described
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All experiments were run on a personal computer with a 25MHz Intel 486
processor using GAMS/386 with its corresponding solvers.

4.2 Results: Calculation Times

Table (1) contains the solution times (T) and solution quality (Q) for ten
test problems and the strategies defined above. Solution times and quality
measures for strategy MIX-10 are given separately for all three stages. Since
the first two stages for MIX-10 and MIX-OPT are identical, only the last
stage is given for MIX-OPT. Solution quality is measured for strategy i as
Zi/zmip-opt, where z, is the sum of deviations for the solution generated by
the strategy under consideration and zmip-.opt is the optimum value obtained
by solving'the mixed integer problem. Times are given in seconds.

The last two rows of table 1 provide the means and standard deviations of
the respective columns.

Several points should be noted about these results:

• The mixed integer models lead in almost all cases to solution times
which are not acceptable for interactive systems.

• Contrary to "common wisdom" in mixed integer programming, the
time needed to prove optimality of a solution is rather short compared
to the time needed to find a good integer solution for the problem.
Relaxing the quality requirement, which is usually recommended for
mixed integer programming, does not reduce solution times signifi-
cantly.

• Also contrary to expectations, providing a bound on the solution (phase
3 of strategies MIX-10 and MIX-OPT) in many instances even increased
the solution time as compared to the strategies MIP-10 and MIP-OPT,
which directly solve the original mixed integer problem. In other in-
stances, though, the combined strategy led to a significant improvement
in the speed of the solution process.
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Problem

1
2
3
4
5
6
7
8
9

^ 10

a

MIN

Q
2.05
1.07
3.07
1.73

1
1.12

1
1.33
1.30

1
1.47
0.66

T
1.43
2.09
0.77
1.32
1.26
1.37
0.82
1.10
2.96
1.10
1.42
0.65

MIP-10

Q
l
l
l
l
l
l
l
l

1.03
1
1

0.01

T
245

6190
4884

394
714
342
330

1137
1276
231

1574
2142

MIP-OPT

Q
1
1
1
1
1
1
1
1
1
1
1

0.00

T
245

6192
4887

394
915
354
330

1137
1302
231

1599
2134

DIRECT

Q
1

1.32
1

1.44
1
1
1
1
1
1

1.08
0.16

T
0.77
0.66
0.93
0.72

1.1
0.77
0.99
0.82
0.72
0.77
0.83
0.14

Problem.

1
2
3
4
5
6
7
8
9
10

a

MIX-10/1

Q
2.38
1.39
2.14
2.52
1.86
1.78
2.37
1.24
1.56
2.28
1.95
0.45

T
3.95
9.88
1.81
2.09
6.76
4.56
7.03
3.74
6.31
4.06
5.02
2.48

MIX-10/2

/ Q
2.18
1.27
1.30
1.06
1.42
1.31
1.87
1.21
1.56

1.001
1.42
0.37

T
0.99
0.71
0.77
0.98
0.93
0.76
0.82
0.71
0.88
0.77
0.83
0.11

MIX-10/3

Q
l
l
l
l

1.04
1
1

time
1

1.001
1

0.01

T
146

16307
1573

167
1891
1408
526

limit
1504
159

2631
5175

MIX-OPT/3

Q
1
1
1
1
1

. 1
1

time
1

1.001
1

0.00

T
146

16310
1573
167

1966
1694
526

limit
1504
159

2672
5167

Table 1: Results for ten experiments
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• All three approaches, which were not based on integer programming
provided usable solutions in an acceptable time. It should be pointed
out that for estimation problems in general, it is not really necessary
to obtain the best fit possible, but rather to find a good approximation
of data which is significantly disturbed anyway (Klein et al., 1985).

• As expected, the additional linear programming phase significantly im-
proved the results of the nonlinear approximation, while requiring little
computational effort.

• Among the three approximation approaches (MIN, DIRECT and MIX/1),
the simple "Direct search" procedure in most cases outperformed the
other methods. It also has the best average solution quality and the
smallest variance.

4.3 Results: Perfect Fits

The results of the last subsection clearly indicate that a heuristic method
must be used to solve the estimation problem in an interactive system and
that the direct search approach seems to be the most promising heuristic.
For use in actual application, it is also important whether a heuristic will find
a perfect fit solution, i.e. a solution in which the preferences specified by the
user are completely reproduced, if such a solution exists. This question was
analyzed in a second set of experiments. Since direct search was especially
successful in the first set of experiments, only this method was tested in the
second set.

The following method was used for this test: using again randomly created
test problems with 10 alternatives and 6 criteria, successively more complex
preference statements were included in R until the first problem was founds
for which the direct search method could not find a perfect fit, i.e. a solution
with Ziirect > 0. Preference statements in R were generated as follows: first,
unconnected preferences were generated in the order X\ >- X2,X3 >- X4 etc.
After all such preference statements were included, connecting preferences
were generated in the order Xi >~ X$, X4 y X5 and so on. The first problem
for which the heuristic could not find a perfect fit was then solved using a
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mixed integer program to verify whether a perfect fit solution existed or not.
Table 2 presents the results from 20 randomly generated test problems.

Number of
Problems

12

6

1
1

Results
The solution obtained with the mixed integer program
was the same as with the heuristic
No perfect fit existed, but the mixed integer program
found a better solution than the heuristic
The mixed integer program found a perfect fit
The mixed integer program failed to find a solution
within 1 hour of calculation time

Table 2: Results for "Perfect fif-test

The average performance of the heuristic (defined again as ZdWectl'zmip) in
the 6 problems in which it generated a worse solution than the mixed integer
program, was 2.25; over all 18 problems of the first two categories it was 1.41.
The worse relative performance compared to the results in table 1 is due to
the fact that in most of the problems, the absolute value of the objective
was very low, so a small absolute increase produced a large loss in relative
performance.

5 Conclusions

Reference point estimation as studied in this paper is used to provide a set
of initial reference levels, which will later be modified during an interactive
decision procedure. The results presented in the last section clearly indicate
that for this task, a heuristic method based on direct search is the best ap-
proach. This technique requires small computational effort to generate a very
good solution, in many instances even the optimal solution. Furthermore,
this approach can be easily implemented; the original FORTRAN procedure
given in (Spath, 1974) is just 68 lines of code. These considerations have led
to the use of this method in an integrated system for multiattribute decision
making currently under development.



REFERENCES 17

References

Bazaraa, M.; Shetty, CM. (1979): Nonlinear Programming, Theory and
Algorithms. J. Wiley h Sons, New York.

Belkeziz, K.; Pirlot, M. (1991): Proper efficiency in nonconvex vector-
maximization-problems. European Journal of Operational Research 54:
74-80.

Brooke, A.; Kendrick, D.; Meeraus, A. (1989): GAMS - A User's Guide.
The Scientific Press, San Francisco.

Charnes, A.; Cooper, W.W.; Ferguson, R.O. (1955): Optimal Estimation of
Executive Compensation by Linear Programming. Management Science
1: 138-151.

Charnes, A.; Cooper, W.W. (1961): Management Models and Industrial
Applications of Linear Programming. Vol. I. J. Wiley & Sons, New
York.

Evans, G. (1984): .An Overview of Techniques for Solving Multiobjective
Mathematical Programs. Management Science 30: 1268-1282.

Fischer, G. (1979): Utility Models for Multiple Objective Decisions: Do
they Accurately Represent Human Preferences? Decision Sciences 10:
451-479.

Fortuna, Z.; Krus, L. (1984): Simulation of an Interactive Method Support-
ing Collective Decision Making Using a Regional Development Model.
In: Grauer, M.; Wierzbicki, A.P. (Eds.): Interactive Decision Analysis.
Springer, Berlin et al.: 202-209.

Gershon, M. (1984): The role of weights and scales in the application of mul-
tiobjective decision making. European Journal of Operational Research
15: 244-250.

Habenicht, W. (1990): Neuere Entwicklungen auf dem Gebiet der Vektorop-
timierung - ein Uberblick. Arbeitspapier 1/90, Institut fur Betriebs-
wirtschaftslehre - Lehrstuhl fur Industriebetriebslehre, Universitat Ho-
henheim.



REFERENCES 18

Hooke, R.; Jeeves, T.A. (1961): "Direct Search" Solution of Numerical and
Statistical Problems. Journal of the ACM 8: 212-229.

Horsky, D.; Rao, M.A. (1984): Estimation of Attribute Weights from Pref-
erence Comparisons. Management Science 30: 801-822.

Huber, G. (1974): Methods for Quantifying Subjective Probabilities and
Multi-Attribute Utilities. Decision Sciences 5: 430-458.

Jacquet-Lagreze, E.; Siskos, J. (1982): Assessing a set of additive utility
functions for multicriteria decision-making, the UTA method. Euro-
pean Journal of Operational Research 10: 151-164.

Jaskiewicz, A.; Slowinski, R. (1991): An Interactive Method for Multiple
Objective Nonlinear Programming Based on Outranking and Ordinal
Regression. Paper presented at the IIASA Workshop on User-Oriented
Methodology and Techniques of Decision Analysis and Support, Serock
near Warsaw.

Klein, G.; Moskowitz, H.; Mahesh, S.; Ravindran A. (1985): Assessment of
Multiattribute Measurable Value and Utility Functions via Mathemati-
cal Programming. Decision Sciences 16: 309-324.

Korhonen, P.; Wallenius, J.; Zionts, S. (1984): Solving the Discrete Multiple
Criteria Problem Using Convex Cones. Management Science 30: 1336-
1345.

Majchrzak, J. (1991): Pairwise Comparisons in Decision Support for Multi-
criteria Choice Problems. Paper presented at the IIASA Workshop on
User-Oriented Methodology and Techniques of Decision Analysis and
Support, Serock near Warsaw.

Mustafi, C.K.; Xavier, M.J. (1985): Mixed-Integer Linear Programming For-
mulation of a Multi-Attribute Threshold Model of Choice. Journal of
the Operational Research Society 36: 935-942.

Roy, B.; Vincke, P. (1981): Multicriteria analysis: survey and new direc-
tions. European Journal of Operational Research 8: 207-218.



REFERENCES 19

Schoemaker, P.; Waid, C. (1982): An Experimental Comparison of Dif-
ferent Approaches to Determining Weights in Additive Utility Models.
Management Science 28: 182-196.

Shin, W.; Ravindran, A. (1991): Interactive Multiple Objective Optimiza-
tion: Survey I: Continuous Case. Computers and Operations Research
18: 97-114.

Spath, H. (1974): Algorithmen fur multivariable Ausgleichsmodelle. Olden-
bourg, Miinchen.

Srinivasan, V.; Shocker, A. (1973): Estimating the Weights for Multiple
Attributes in a Composite Criterion Using Pairwise Judgements. Psy-
chometrika 38: 473-493.

Vanderpooten, D. (1989): The Use of Preference Information in Multiple
Criteria Interactive Procedures. In: Lockett, A.G.; Islei, G. (Eds.):
Improving Decision Making in Organisations. Springer, Berlin et al:.
390-399.

Vincke, P. (1986): Analysis of multicriteria decision aid in Europe. Euro-
pean Journal of Operational Research 25: 160-168.

Weber, M. (1985): A Method of Multiattribute Decision Making with In-
complete Information. Management Science 31: 1365-1371.

Weidner, P. (1989): Problems in Models and Methods of Vector Optimiza-
tion. Wiss. Schriftenreihe der TU Karl-Marx-Stadt 5: 47-57.

Wierzbicki, A. (1980): The Use of Reference Objectives in Multiobjective
Optimization. In: Fandel, G.; Gal, T. (Eds.): Multiple Criteria Deci-
sion Making- Theory and Application. Springer, Berlin et al.: 468-486.

Wierzbicki, A. (1986): On the Completeness and Constructiveness of Para-
metric Characterizations to Vector Optimization Problems. OR Spek-
trum 8: 73-87.

Zanakis, S.; Gupta, S. (1985): A Categorized Bibliographic Survey of Goal
Programming. Omega 13: 211-222.



Appendix

GAMS model using the minimum operator

***************************************************************
* Reference point estimation
* Method: DNLP
***************************************************************

* Specification of Options

OPTIONS ITERLIM=100000;

SOFFSYMLIST OFFSYHXREF

* Starting value for random number generator

OPTIONS SEED = 555555;

* Options to limit output

OPTION LIMROU=0, LIMCOL=0;

OPTION SOLPRINT=OFF

* The following sets define the dimensions of the model

SETS

N Alternatives /1*10/

K Criteria /1*6/

TABLE

X(n,k) Performance of alternatives

1

1 0;

* Randomly generate an N*K decision matrix

x(n,k) = UNIFORM(O.I);

DISPLAY X;

FREE VARIABLES

z Objective function;

POSITIVE VARIABLES

xq(k) Reference Point

d(i) Deviations;

* Provide a feasible starting value

xq.l(k) = 1;

* Definition of the model rows

EQUATIONS

ZF Objective function

Pr(i) Preference statements

Summe Sum of xq's;

ZF..

Z =E=

i) =G=SMIN(k, x(i,k)-xq(k))

SMIN(k, x(i+1,k)-

Summe..

SUMCk, xq(k)) =E= 6;

* Definition and solution of the model

MODEL nmod /ALL/; i

SOLVE nmod USING DNLP MINIMIZING Z;

* Output of results

DISPLAY XQ.L;

PARAMETER

s(n) Evaluation of alternatives

dd(n) Deviations

sd Sum of deviations;

s(n)=SMIN(k,x(n,k)-xq.l(k));

dd(n)=0.0;

dd(n+1)$(s(n+1) GT s(n)) =

sd=SUM(n, dd(n));

D1SPLAY s.dd.sd;



GAMS model to solve the mixed integer problem

***************************************************************
* Reference point estimation
* Method: Mixed Integer / Optimum
***************************************************************

* Specification of Options

OPTIONS ITERLIM=10000000, RESLIM=60000, OPTCR=0;

SOFFSYMLIST OFFSYMXREF

* Starting value for random number generator

* (different values were used for different experiments

OPTIONS SEED = 555555;

* Options to limit output

OPTION LIMROU=0, LIMCOL=O;

OPTION SOLPRINT=OFF

M /10.0/ The Big M constant;

FREE VARIABLES

z Objective value

y(n) Minima;

POSITIVE VARIABLES

xq(k) Reference Point

d(n) Deviations;

BINARY VARIABLES

l(n,k) Switches;

* Definition of the model rows

EQUATIONS

ZF Objective function

P1(n) Preference statements

DefY1(n,k) Minimum operations, part 1

DefY2(n,k) Minimum operations, part 2

LS(n) Sum of lambdas

Summe Sum of xq's;

* The following sets define the dimensions of the model

SETS

N Alternatives /1*10/

K Criteria /1*6/

TABLE

X(n,k) Performance of alternatives

1

1 0;

* Randomly generate an N*K decision matrix

x(n,k) = UNIFORM(0,1);

DISPLAY X;

* Variables

SCALAR

ZF..

Z =E= , ;

P1(n)$(ORD(n) LT 10)..

y(n) + d(n) =G=

DefYKn.k)..

y(n) =L= x(n,k) - xq(k);

DefY2(n,k)..

y(n) =G= x(n,k) - l(n,k)*M - xq(k);

LS(n)..

SUM(k, Kn.k)) =E= 5;

Summe..

SUM(k, xq(k)) =E= 6;

* Definition and solution of the model

MODEL TEST /ALL/;

TEST.OPTFILE=1;

SOLVE TEST USING HIP MINIMIZING Z;



* Output of results

DISPLAY XQ.L;

PARAMETER

s(n) Evaluation of alternatives

dd(n) Deviations

sd Sum of deviations;

s(n)=SMIN(k,x(n,k)-xq.l(k));

dd(n)=0.0;

dd(n+1)$(s(n+1) GT s(n)) =

sd=SUM(n, dd(n));

DISPLAY s.dd.sd;

GAMS model for the combined strategy

***************************************************************
* Reference point estimation

* Method: Combined
***************************************************************

* Specification of Options

OPTIONS ITERLIM=10000000, RESLlM=60000, OPTCR=0.1;

SOFFSYMLIST OFFSYMXREF

* Starting value for random number generator

* (different values were used for different experiments

OPTIONS SEED = 555555;

* Options to limit output

OPTION L1MROW=0, LIMCOL=0;

OPTION SOLPRINT=OFF

* The following sets define the dimensions of the model

SETS

N Alternatives /1*10/

K Criteria /1*6/

U N ) /1*9/;

TABLE
X(n,k) Performance of alternatives

1

1 0;

* Randomly generate an N*K decision matrix

x(n,k) = UNIF0RM(0,1);

DISPLAY X;



* The nonlinear approximation model of step 1

SCALAR

q /5/ Exponent of approximation;

FREE VARIABLES

z Objective function;

POSITIVE VARIABLES

xq(k) Reference Point

d(i) Deviations;

* Provide a feasible starting value

xq.l(k) = 1.0;

* Definition of the model rows

EQUATIONS

ZF Objective function

Pr1(i) Preference statements

Summe Sum of xq's;

ZF..

Z =E= SUM(i,d(i));

PrKi)..

(SUM(k, (xq(k)-x(i,k))**q))**(1/q) - d(i) =1=

(SUM(k, (xq(k)-x(i+1,k))**q))**(1/q);

Summe..

SUM(k, xq(k)) =E= 6.0;

MODEL Stepi /ZF, Pr1 ,Summe/;

SOLVE Stepi USING NLP MINIMIZING Z;

* Display results from step 1

PARAMETER

s(n) Evaluation of alternatives

dd(n) Deviations

sd Sum of deviations;

s(n)=SMIN(k,x(n,k)-xq.l(k));

dd(n)=0.0;

dd(n+1)$(s(n+1) GT s(n))

sd=SUM(n, dd(n));

DISPLAY "=====> Ergebnis Phase 1:";

DISPLAY xq.l;

DISPLAY s.dd.sd;

* Additional variables used in steps 3 and 4

SCALAR

M /10.0/;

FREE VARIABLES

y(n) Minima;

BINARY VARIABLES

l(n,k) Switches;

* Step 2: fix values of lambda according to the first solution

l.fx(n.k) = 1;

PARAMETER

Mini(n) Minimal values

xqKk) First solution;

Mini(n)=SMIN(k,x(n,k)-xq.l(k));

xq1(k)=xq.l(k);

l.fx(n,k)$((x(n,k)-xq.l(k)> EQ Mini(n)) = 0;

* Definition of the model used in steps 3 and 4

EQUATIONS

P1(n) Preference statements

DefYKn.k) Minimum operations, part 1

DefY2(n,k) Minimum operations, part 2

LS(n) Sum of lambdas;

P1(n)$(ORD(n) LT 10)..

y(n) + d(n) =G= y(n+1);

DefYKn.k)..

y(n) =L= x(n,k) - xq(k);

DefY2(n,k)..

y(n) =G= x(n,k) - l(n,k)*M - xq(k);



LS(n)..

SUM(k, l(n,k)) =E= 5;

* Model of step 3

MODEL Step3 /ZF, P1, DefY1, DefY2, LS, Summe/;

SOLVE Step3 USING MIP MINIMIZING Z;

* Display results from step 3

s(n)=SMIN(k,x(n,k)-xq.l(k));

dd(n)=0.0;

dd(n+1)$(s(n+1) GT s(n))

sd=SUM(n, dd(n));

DISPLAY "=====> Ergebnis Phase 2:";

DISPLAY xq.l;

DISPLAY s.dd.sd;

* Define upper bound on objective for step 4

PARAMETER

Z1 Objective value from step 3;

Z1=z.l;

EQUATIONS

ZLim Limit on objective;

ZLim..

Z =L= Z1*1.01;

* Make binary variables switchable again

l.lo(n,k)=0;

l.up(n,k)=1;

MODEL Step4 /ZF, P1, DefY1, DefY2, LS, Summe, ZLim/;

Step4.OPTFILE=1;

SOLVE Step4 USING MIP MINIMIZING Z;

* Display results from last step

s(n)=SM!N(k,x(n,k)-xq.l(k));

dd(n)=0.0;

dd(n+1)$(s(n+1) GT s(n)) =

sd=SUM(n, dd(n));

DISPLAY »=====> Ergebnis Phase 3:";

DISPLAY xq.l;

DISPLAY s.dd.sd;



FORTRAN program for the direct search method

C FORTRAN Program for reference point estimation

C using the direct search heuristic

REAL XD(10,6)

REAL X(6),SX,H,R,DT,SS

INTEGER N.ITMAX.DS

INTEGER*2 IHR1,1HR2,IMIN1,IMIN2,ISEC1,ISEC2.11001,11002

COMMON /DATEN/ XD.DS

EXTERNAL S

10

C

20

30

40

OPEN(1,FILE='DATEN')

DO 10 i=1,10

READ(1,1010) (XD(I,J),J=1,6)

CONTINUE

DO 20 1=1,10

WRITE(*,1010) (XD(I,J).J=1,6)

CONTINUE

N=5

DO 30 1=1,6

X(I)=1.0

CONTINUE

SX=1.0

H=0.5

R=0.9

HMIN=0.000001

ITMAX=10000

DS=0

CALL GETTIM(IHR1,IMIN1,ISEC1,I1001)

CALL SEARCH (N,X,SX,H,R,HMIN,S,ITMAX)

SS=0.0

DO 40 1=1,5

SS=SS+X(I)

CONTINUE

X(6)=6.0-SS

CALL GETTIM(IHR2,IMIN2,ISEC2,11002)

DT=FLOAT(ISEC2-1SEC1)+0.01*FLOAT(I1002-11001)

DT=DT+60.0*FLOAT(IMIN2-IMIN1)+3600.0*FLOAT(IHR2-IHR1)

URITE(*,*) 'Optimalwert von S=',SX

WRITE(*,*) 'An der Stelle x=..."

WRITE(*,*)

URITE(*,*>

WRITE(*,*)

STOP

'Nach '.ITMAX,1 Iterationen'

'Zeit: ',DT,' Sekunden1

1010 FORMAT(6F12.10)

END

FUNCTION S(X)

C Function to be minimized

REAL X(6)

REAL SD,Y(10),H,XMIN, XX(6), SS

REAL XD(10,6)

INTEGER DF

COMMON /DATEN/ XD.DF

SS=0.0

DO 5 1=1,5

XX(I)=X(I)

SS=SS+XX(I)

5 CONTINUE

XX(6)=6.0-SS

IF (DF.GT.1) URITE(*,*) 'SS=',SS

DO 20 1=1,10

XMIN=XD(I,1)-XX(1)

DO 10 J=2,6

H=XD(I,J)-XX(J)

IF (DF.GT.1) WRITE(*,*) 'Wert(',1,•,',J,')=',h

IF (H.LT.XMIN) XMIN=H

10 CONTINUE



Y(I)=XMIN

20 CONTINUE

SD=0.0

DO 30 1=1,9

IF(Y(I).LT.Y(I+D) SD=SD+(Y(I+1)-Y(D)

30 CONTINUE

DO 40 1=1,6

IF (XX(I).LT.O.OD SD=SD+100.0*(0.01-XX(I))

40 CONTINUE

S=SD

IF (DF.GT.O) THEN

URITE(*,*) 'Aufruf mit Werten...'

WR1TE(*,*) (X(i),I=1,6)

WRITE(*,*) 'Minima:1

URITE(*,*) (Y(i),I=1,10)

WR1TE(*,*) 'Ergebnis ',sd

END IF

RETURN

END

Subroutine SEARCH is published in Spath (1974), pp. 109-110. It is defined as

SUBROUTINE SEARCH (N,X,SX,H,R,HMIN,S,ITMAX)

and has the parameters

N Number of variables

X Vector of variables
sx Optimal value of the objective funciton
H Initial step size
R Step size multiplier used to reduce the step size after each major iteration
HMIN Minimum step size (termination criterion)
s Function to be evaluated
ITMAX Maximum number of function calls (termination criterion)


