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ABSTRACT

Estimating Returns to Education when the IV Sample is Selective’

The literature estimating returns to education has often utilized spousal education and
parental education as instrument variables (IV). However, due to usual survey designs, both
IVs are available only for the individuals whose spouse or parents are present in the same
household. The IV estimates based on these selective sub-samples may be inconsistent,
even when the Vs satisfy the standard assumptions. In this paper, we examine the empirical
relevance of this issue in the Chinese context. To our surprise, unlike the selection issue in
other situations, this kind of selection does not appear particularly worrisome, suggesting that
the previous IV results are robust. In particular, using China Household Income Project 1995
and 2002, we find that correcting for this potential issue has only a modest impact on the
magnitude of the standard IV estimates using parental education as an IV, but a negligible
impact on those using spousal education. Using the specification tests proposed, we find that
these impacts are generally not statistically significant. These results are further confirmed by
our analysis using U.S. data. We believe that these results are of use to both policymakers
and practitioners.
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1. Introduction

Estimation of the returns to education is often complicated by potential endogeneity and
measurement error problems. A typical solution is to employ an instrument variable (IV)
approach. The literature has “a long tradition of using family background information”
as an IV (see Card (1999) for a selective review of the past studies). Some recent studies
(e.g. Chen and Hamori, 2009; Trostel et al., 2002; Arabsheibani and Mussurov, 2007) have
utilized spousal education as an IV, while some have utilized parental education (e.g. Flabbi
et al., 2008; Gao and Smyth, 2011; Heckman and Li, 2004; Li and Luo, 2004; Wang et al.,
2009).! While the validity of these two IVs is controversial, the literature has utilized them
and argued in different contexts that both variables satisfy the standard requirements for
consistency of the IV estimates. For example, using the same data and specifications as in
this paper, Wang (forthcoming) employs various statistical techniques to show that spousal
education is strongly correlated with own education and at least plausibly exogenous in the
Chinese context. Using a Bayesian approach and the German Socio-Economic Panel data,
Hoogerheide et al. (2010) similarly find that moderate violation of the assumption of perfect
instrument validity does not affect the results when parental education is used as an IV.

We want to emphasize that our purpose in this paper is not to argue the standard
assumptions are met for two IVs. As noted in Trostel et al. (2002) in this journal, these IVs
have been used in many applications, and their validity is “ultimately an empirical question”.
Instead, we would like to point out a novel problem that has been overlooked in the literature
— even if these variables satisfy the standard IV requirements, IV estimations based on either
spousal or parental education may still fail to deliver consistent estimates of the returns to
education.

To see this, note that due to typical survey designs, information on spousal or parental

!Flabbi et al. (2008) use a control function approach to include parental education as an IV, which is
actually equivalent to the two stage least squares approach in the linear context (see, e.g., Wooldridge, 2010,
p.127).



characteristics is asked only when they are present in the same household. As a result,
spousal education is only available for married individuals and parental education is only
available for individuals whose parents are present in the same household. The IVs are miss-
ing for the rest of the population, which causes a selective estimation sample. There has been
ample research work indicating that married workers systematically differ from non-married
ones (e.g. Maasoumi et al., 2009) and that living arrangement is an endogenous choice (e.g.
Lei et al., 2011). For example, married men may be more likely to possess desirable traits
such as responsibility and maturity than single men, which is also a popular explanation for
existence of marriage premium (see, e.g. Chiodo and Owyang (2002) for a review of compet-
ing theories). Similarly, Lei et al. (2011) (Table 3) show that individual characteristics such
as age and education differ greatly across living arrangements. Altogether, this implies that
the IVs are missing in a selective way and these samples are not necessarily representative of
the population. Our data indeed show that this is true. In such cases, Mogstad and Wiswal-
| (Forthcoming) (hereafter MW) show that IV estimations based on selective sub-samples
cannot produce consistent estimates under general conditions.

The theoretical result in MW is not surprising. Past studies of selection issues encoun-
tered in other situations (such as female labor supply) have shown that the selection issue
generally leads to inconsistent estimates, both theoretically and empirically. Estimation of
returns to education is an important research area in which the results are useful not only
because of their theoretical implications, but also owing to the fact that they provide a basis
for sound policy advice about educational investment. It is thus of paramount importance
to examine the empirical relevance of the selection issue discussed above and evaluate the
magnitude of its impact on previous IV results.

In this paper, we adopt the robust approach developed in MW to investigate the impact
of correcting for the selection bias on the IV estimates of returns to education (based on
spousal and parental education) in urban China, while following the literature by assuming

the standard IV assumptions are satisfied. To our surprise, unlike in other areas, the selection



issue does not appear to be particularly worrisome in this context. We further assess the
robustness of this result using U.S. data and again find the existing I'V results hold up, at least
for the samples investigated. Confirming the prior results is equally important and useful
because assessing the empirical impact of the selection issue is more than academic curiosity
and has important policy implications. Moreover, our results indicate that the direction
of the selection bias is a priori unknown and that if possible, the MW estimator, which is
consistent regardless of existence of the selection issue, should always be used. However, the
MW approach involving nonparametric estimation is often computationally costly. We thus
also believe that such exercises and results in this paper are of use to practitioners — when
the MW approach is computationally infeasible in practice (due to too many observations
and control variables), our results do increase our confidence in the IV estimations using
family backgrounds as IVs.

Even though focusing on estimating the returns to education in China and U.S. as specific
examples, we believe that the issue discussed here is prevalent but overlooked in many
empirical studies using the IV approach in the field of economics of education, even when
the standard IV assumptions are met. For example, the gender of first two children is
usually used as an IV for the number of children to identify the effect of family size on
children’s educational attainment (e.g. de Haan, 2010). However, this IV is only available
for the households where parents choose to have two and more children (see MW for more
examples). Although our illustration of a (first) application of the MW approach shows no
significant impact of non-randomly missing I'Vs such as spousal and parental education, it
is still important to re-evaluate the empirical relevance of other commonly used IVs in the
existing literature that may potentially suffer from this issue. Moreover, the MW approach
entails nonparametric estimation to construct the IV, but the authors discuss only the cases
when the variables are either continuous or discrete, but not both. However, we often
encounter both continuous and discrete control variables in practice. On the methodological

front, we discuss how to operationalize the MW approach based on Generalized Kernel



Estimation in this type of situations. Furthermore, we propose two specification tests for
the MW approach. We believe that these technical discussions are also of use for applied

researchers who are interested in applying the method.

2. Empirical Methodology

To begin, we consider the following (augmented) Mincer equation:

In(w;) = p1S; + X[ 0Bs + ¢ (1)

where In(w;) is the log of earnings for an individual 7; S; is years of schooling. X; includes
all other covariates, ([1, E;, E2, Minority;, Age;, Province;]), where E; is working experience,
and E? working experience squared; Minority; is a dummy variable equal to one if an
individual is a minority, zero otherwise; Age; is a set of age group dummy variables, and
Province; a set of provincial dummy variables; ¢; is the error term as usual, Ele;] = 0.2 3 3
measures the returns to education, the parameter of main interest in this paper.

Note that following MW, f3; is assumed to be constant and homogeneous across the
population, and we abstract from heterogeneous returns to education in this paper. That is,
we below consider the results using spousal and parental education as separate approaches
to obtain 1, and we discuss how selection bias affects the results in each case, but do not
discuss why the results using different IVs may be different.

We can consistently estimate §; by Ordinary Least Squares (OLS) if cov(e, S|X) = 0.

2Such variables as tenure, occupation and sector are also available in the survey data, but these variables
are potentially endogenous variables that themselves could be determined by schooling. That is, these
variables could be the reasons why education affects individuals’ earnings. As noted in the literature (e.g.
Pearl, 2000; Frolich, 2004; Lee, 2005), controlling for these variables “would block the part of the causal effect
that acts through these variables”. Therefore, following the literature, we exclude various determinants of
earnings such as tenure, occupation and sectors from the estimation. We condition on only exogenous
variables here to simplify the interpretations of returns to education.

3It can be argued that the actual labor market experience itself could also be endogenous. There has
been empirical evidence showing that ”"the treatment of labor market experience as exogenous does not
introduce a significant bias in the IV estimates of the return to education” (see, e.g. Lemieux and Card,
2001). Moreover, as noted in Lemieux and Card (2001), there exists much evidence that earnings are better
described by the current specification even though it may be endogenous.

4



However, if cov(e, S| X) # 0, the OLS estimates are generally inconsistent. A typical solution
is to employ the IV estimation. The consistency of the IV estimates relies on the fact that

the following conditions hold for the IV, Z:

(A1) Existence of First Stage Correlation: E[SZ|X] # 0

(A2) Conditional Mean Independence: E[e| X, Z] = E[e| X]

Note that (A1) implies that conditioning on X, the endogenous variable is sufficiently corre-
lated with the IV. When the IV is only weakly correlated with the endogenous variable, the
IV estimates are biased toward the OLS estimates and inference is not reliable (Bound et al.,
1995). (A2) implies that conditioning on X, the IV is exogenous (i.e. mean independent of
the error term).

The standard IV estimation assumes the availability of an IV for the full sample. However,
such an IV does not necessarily exist. Instead, the literature often relies on IVs such as
spousal and parental education that are available only for certain subpopulations; and the
estimations are performed on the sample for which the IV is available. Implicitly, these IV

estimations are based on the following assumptions:

(A1’) Existence of First Stage Correlation: E[SZ|X,D =1] #0

(A2’) Conditional Mean Independence: Ele| X, Z, D = 1] = E[¢| X, D = 1]

where D is equal to one if the IV is not missing and zero otherwise. In other words, (A1) and
(A2) are now stated based on the sub-samples where the IV is not missing. However, Mogstad
and Wiswall (Forthcoming, Proposition 1) show that if the IV is not missing randomly and
D is correlated with the error term ¢, the IV estimates are generally inconsistent estimates
of f;.

In this paper, we focus on this particular issue while maintaining that the standard IV
assumptions (A1) and (A2’) are met. One solution is to construct a full-sample IV. An

example is proposed by Angrist et al. (2010) as follows:



Z-X'\ ifD=1
Zip =
0, it D=0

where X'\ is the linear projection of Z on X using the sub-sample with non-missing IV.
However, even though this full-sample IV approach may produce more efficient IV estimates
asymptotically, Mogstad and Wiswall (Forthcoming, Lemma 1.) show that it is actually
equivalent to the standard IV based on the non-missing IV sample, and therefore it is also
generally inconsistent under (A1’) and (A27).4

To solve this problem, MW propose a robust IV estimator based on the following full-

sample IV

Z -ElZIX,D=1], if D=1
Z Robust —
0, if D=0

Unlike the Angrist et al. (2010) approach, the MW approach is based on the true conditional
expectation of Z on X, instead of the linear projection of Z on X. MW show that under
(A1’) and (A2’), this IV estimator produces consistent estimates of ;.

Notice that if E[Z]| X, D = 1] is linear in X (i.e. E[Z|X, D = 1] = X’)), the MW estimator
nests both the standard IV and the Angrist et al. (2010) IV. The equivalence between these
approaches in this special case implies that the standard IV and the Angrist et al. (2010)
approaches are consistent when E[Z|X, D = 1] is linear in X; in other words, the linearity
of E[Z|X,D = 1] is a sufficient condition for the consistency of both the standard IV and
the Angrist et al. (2010) approach (see MW for other two sufficients conditions).

The underlying functional form could depart from linearity for many reasons. For exam-

4The equivalence between the standard IV and the Angrist et al approach is probably better un-
derstood when the sample analogs of both estimators are explicitly written out. The standard IV es-
timator is given by [E;V:ll(ZiSi)]_l[Zév:ll(Ziln(wi))}, and the Angrist et al IV estimator is given by
[Zfil(ZLpﬂ-Si)]*l[Zf;l(ZLp’iln(wi))] (see MW for detailed discussions). Recall that the only difference
between Z; and Zpp; is that Zpp; is zeros for those observations with missing Z;. Adding more zeros to
both denominator and numerator in the Angrist et al estimator would not change the value. It is essentially
the standard IV estimator.



ple, minority students generally receive preferential treatments such as lower admission score
for college entrance from the government, but the preferential treatments vary by the extent
of the concentration of ethnic minority communities where they live (Wang, 2007). And
there is indeed a very unequal distribution of minority communities across provinces. More-
over, the extent of the preferential treatments received by minority students also changes
over time. Altogether, these facts suggest that there could be very complicated interactions
between minority status, provincial dummies, and age cohort dummies (capturing time ef-
fects) in determining education. In addition, there were several nation-wide events such as
Cultural Revolution in China that affected the educational attainment of then school-aged
children and that the extent of the impacts of these events differs across provinces (see, e.g.
Giles et al., 2004). This also suggests that there could be a potential interaction between
geographic variable and age dummies, which is also ignored in a linear projection. Our
nonparametric method allows for even more complicated forms of interactions between all

control variables.

2.1. Practical Issues

Practical implementation of the robust IV estimator requires nonparametric estimation
of E[Z|X,D = 1]. In our case, X contains a continuous variable, (experience, F), two
unordered categorical variables (minority status, Minority and province, Province), and a
ordered categorical variable, (age group, Age). Typical kernel methods, however, do not
allow for smoothing categorical variables that are generally encountered in practice.® To
overcome this issue, we adopt a variant of the local-linear least-squares (LLLS) estimator

based on Generalized Kernel Estimation (see, e.g. Li and Racine, 2004; Racine and Li, 2004

5In their paper, MW employ a parametric regression with polynomial terms up to fourth order as an
example to approximate the underlying conditional expectation. Given the specific Monte Carlo simulation
design used by the authors (the conditional expectation is a quadratic function of X), this approximation
works well by construction. However, this is still a parametric approach, instead of a nonparametric one.
Despite computationally easier to implement, polynomial regressions using all the observations for estima-
tions are still global functions and cannot capture local anomalies. It is thus generally not consistent and not
a good approximation to the unknown function. Moreover, higher-order polynomial regressions are shown
to have “undesirable nonlocal effects”, which kernel estimators do not have (Magee, 1998).

7



for more detailed discussions). The nonparametric regression model is given by:

where m(-) is the unknown conditional expectation, a smooth regression function with X;,

and u; is the error term as usual. To ease the discussion, we arrange the variables with

respect to their types: the first ¢. are continuous variables, X¢ the next ¢, are unordered,

X" and the last ¢, are ordered, X°. Note that ¢°, ¢*, ¢° represent the dimension of each type

of variable, respectively. In our case, ¢. = 1,9, = 2,9, = 1. Notice that taking a first-order

expansion of (2.1) with respect to X yields

Q

m(X) + (X — X)m/(X) + u;

Treating m(X) and m/(X) as parameters to be estimated, we have the following model:

Zi = m(X)+ (X7 - X)m'(X) +

The LLLS estimator, (0 = [d1, d2]’), minimizes the following objective function:

X, - X
min Y (Z; — 01 — (X7 — X9)8,)2K(
01,02 h

)

where K(-) is a generalized kernel function and h a bandwidth vector. Notice that the

minimization problem is similar to generalized least squares problem but with the weight

K (%), We have a closed-form solution for the LLLS estimator:

) DY (EastiSh e o Rl Y NCAImESs



where X; = (1,[(X¢ — X°)]).

The first practical issue of implementation of LLLS is concerned with the choice of
the kernel function, K(-). Unlike the conventional nonparametric estimation, for which
the kernel function is designed for continuous variables only (thus usually a popular den-
sity function), the Generalized Kernel Estimation permits both continuous and discrete
variables. In particular, the generalized kernel is the product of different kernel func-
tions specifically designed for each type as follows (recall that X; = [X¢ X* X¢] =
[(XTis o X)) s (X X)) (X, X))

X;i—X

K(h

) = TG, RO (X, XE ROTTE k™ (X

819

X BT R (X

s

X3 hy)
where the kernel function for continuous variables is given by

c c c 1cC 1 1 ch_Xc
k(X XS, he) = mexp{—§(7)2}

The kernel function for unordered discrete variables (Aitchison and Aitken, 1976) is given

by
1—h if X% = Xv

hs
ds—1

EY(X%, Xo, hY) =

s19

otherwise

where d, is the number of unique values a variable can take. The kernel function for ordered
discrete variables is given by:
ds , g
k(X XS he) = (hg)! (1 = h3)™™ when |X§ — X7 =j
Notice that the rate of convergence of the estimator depends solely on the number of
continuous variables, and the number of discrete variables does not add to the “curse of

dimensionality” problem (Henderson, 2009). It is widely believed in the literature that the

choice of kernel functions matters little in the nonparametric estimation (see, e.g. textbook



discussions in Hardle (1990) and Li and Racine (2007)).

However, selection of bandwidths is often considered to be the most salient factor in the
nonparametric estimations. The second practical issue is thus concerned with selection of
an optimal bandwidth vector. To see the issue, consider (2.1). Given the choice of a kernel
function, the value of h determines the size of the neighborhood around a point X, and the
observations within this neighborhood are given more weights in estimations. A very small
bandwidth means a very small neighborhood and very few points will be given weights in
estimations, resulting in estimates with smaller bias yet less precision. On the other hand, a
large bandwidth means a large neighborhood and more points will be utilized in estimations,
resulting in estimates with larger bias yet more precision. The key issue is to balance the
trade-off between bias and precision. To avoid any arbitrariness in our selection, we opt
for a popular choice of optimal bandwidth selection method — least square cross validation
(LSCV). Stone (1984) shows that this method is asymptotically optimal “in the sense of
minimizing the estimation integrated square error” (Li and Racine, 2007, p.18).

Another useful feature of the LSCV procedure, among others, is its ability to detect
whether a continuous variable enters the function linearly in the LLLS case (Hall et al.,
2007). In (2.1), a very large bandwidth (h — oo) (thus K(-) — K(0), a constant) implies
each observation is given an equal weight in estimation, which makes the original minimiza-
tion problem essentially an OLS problem over the whole support. In this case, the true
functional form is linear. Recall that the linearity of E[Z|X, D = 1] is a sufficient condition
for the consistency of the standard IV estimator. The LSCV bandwidth is thus partic-
ularly informative of the source of the (in)consistency of the conventional IV estimator by

identifying the linearity of the conditional expectation function in the continuous variable(s).

2.2. Specification Tests

We have thus far discussed the practical details of the implementation of the MW ap-
proach. It would also be useful to provide a formal assessment of whether the MW approach

is preferred to the standard IV or Angrist et al. approach and is needed in practice. Here,
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we propose two statistical tests for this purpose: the first test is an indirect test, which tests
whether the parametric functional form used in the Angrist et al approach is misspecified;
and the second test is a direct comparison of these two estimators, which determines whether
or not the differences are indeed statistically significant. An ideal test should be able to de-
tect the significant difference between these two approaches and thus be informative of the

severity of the selection issue.

2.2.1. Test of Functional Form

As discussed above, the difference between the Angrist et al. approach and the MW
approach lies in the assumed functional form of E[Z|X, D = 1]. If the parametric form is
misspecified (and thus the Angrist et al. estimator is inconsistent), then the MW approach
(relying on nonparametric estimation and thus free of misspecification of functional form) is
preferred. To test the correctness of the parametric form, we employ the specification test
recently developed in Hsiao et al. (2007). The null hypothesis is that a parametric model is
correctly specified (Hy : Pr[E[Z|X, D = 1] = X'A] = 1), and the alternative is that the model
is misspecified (H,4 : Pr[E[Z|X, D = 1] = X’A] < 1). Notice that the alternative hypothesis
includes all other alternatives than the specification in the null hypothesis. Therefore, unlike
most popular parametric tests that lack power in certain directions, this test is a consistent
test. Moreover, this test, again, permits both continuous and discrete data, which is usually

not allowed in the existing kernel-based tests. The test statistic is given by:
In = N(hS, ... he )2 In[oa ~ N(0,1)

=~ PR 2(hS,...,he 9~
where Iy = 55 SV Z;.V:L#i WU K(2); 00 = % SV Z?{:L#i ;>0 K (-)%. Follow-

c

ing the notations above, K(-) is the product kernel, hS, ..., hg

are the optimal bandwidths
for the continuous variables, g. is the number of continuous variables. As noticed in Hsiao
et al. (2007), the asymptotic approximation usually performs poorly in finite samples, there-

fore we conduct inference based on a bootstrap procedure to improve the finite properties of

11



the test statistic. This test is useful since rejection of the null hypothesis implies that there

would be a difference between the Angrist et al. approach and MW approach.

2.2.2. Hausman Type of Test

The test of functional form, though useful, does not necessarily provide any informa-
tion regarding the magnitude of the difference and whether such difference is statistically
significant. Thus, we provide an alternative test to further examine this issue. The test is
based on the principle that was first developed by Hausman (1978). The idea is as follows.

Under the null hypothesis (a parametric model is correctly specified), both the Angrist et al.

estimator (8¢™"") and MW estimator (fM") are consistent, which implies the difference
g = Bt — BMW tends to zero. Under the alternative hypothesis (a parametric model is

o~

misspecified), only MW is consistent, and ¢ differs from zero. The test is to detect whether
¢ departs from zero. Notice that under the null hypothesis, both estimators are normally
distributed with variances V497! and VMW respectively. It follows that ¢ is also normally

distributed with variance V9, and with this result, we could easily construct the Hausman

type of test. Moreover, if """ is asymptotically efficient, asymptotic variance is further

simplified V7 = VMW _ yangrist - However, as noted in Wooldridge (2010), the assumption
of asymptotic efficiency is only needed for simplification of the asymptotic variance, and
“it is essentially irrelevant” when applying the Hausman’s (1978) principle. To relax the
assumption of asymptotic efficiency and allow for more complicated variance structure, we
also conduct inference based on a bootstrap procedure. We believe that the Hausman test
is of more empirical use, since we just need to calculate the parametric estimates, which are

easy to obtain, and then contrast them with the MW estimates.

3. Data

The data are obtained from the the urban sample of the China Household Income Project
1995 and 2002. The data have been used widely in the literature; we thus provide limited

discussions here (see e.g. Gustafsson et al., 2008). Interested readers are referred to Wang
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(forthcoming) for detailed explanations of sample restrictions and choices of variables, which
we follow here. The outcome variable is annual wages, measured by the total individual
salary (equal to the sum of regular salary, bonuses and subsidies, allowance for temporarily
laid off workers, and other income from the work unit) plus income from private enterprise.’
The independent variable is years of schooling. Also included in estimations are working
experience, minority status, a set of age group dummy variables and provincial dummy
variables. We restrict the sample to individuals aged 16 to 65. The legal minimum working
age is set at 16 in China, and the announced maximum retirement age is 65. Summary
statistics of the data used in the analysis are reported in Table (1).

To gain a sense of potential severity of the selection issue, we also report in Table (2) the
percent of sample that have spouses and the percent that have parents living at home. We
first notice that utilization of the IVs reduces the sample size. However, the size of reduction
and the pattern of changes over time are different across IVs. In the case of spousal IV, we
notice that whereas the percent of married women slightly decreased over time, the percent
of married men actually increased. Regardless, marriage is still prevalent in urban China —
at least 80 percent of the samples for both men and women are married. By contrast, the
number of individuals living with their parents is relatively small, comprising roughly 10
percent of the samples. The number of observations is 795 for men and 614 for women in
1995, and it decreases further to 615 for men and to 449 for women in 2002. This pattern is
consistent with the increasing trend of Chinese elderly living alone.

The above results indicate that use of either spousal education or parental education as an

6In the Chinese context, it is difficult to separate different income variables; the distinction between
different types of income from the work unit (Danwei) is often blurry in different units. Separating them
may create additional measurement errors. Moreover, private enterprise income is rare especially in the
early stages of economic reforms in China, accounting for only a small fraction of individual incomes (Shu
and Bian, 2003). Also, employees in private business and individual entrepreneurs (getihu) are substantially
under-sampled (Shu and Bian, 2002). Moreover, as mentioned above, nonparametric estimations are com-
putationally expensive. Given the focus of this paper on assessing the robustness of the previous results,
we follow the literature by using the total annual income as our dependent variable. However, this issue is
worth further explorations to assess the returns to education for different income measures, and we leave it
for future research.
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IV precludes certain individuals, resulting selective samples. And the selection issue is likely
more severe with using parental education as an IV due to a drastic reduction in the sample
sizes. The next question is whether the selection is random. To answer this question, we
examine the summary statistics of observable characteristics used in our analysis by marital
status and by living arrangements. These results are reported in Tables (3) and (4). As we
can clearly see, married workers are different from their single counterparts. For example, in
1995, single men have less working experiences (-14.129) and are much younger than married
men. These differences are statistically significant at at least p < 0.001. We observe a similar
pattern across living arrangement. For example, workers with parents living at home are
more likely to be younger and have more education and experiences, consistent with the
results reported in Lei et al. (2011) using CHARLS data. These differences confirm that the
selection is not random. More worrisome, the selection may be partly due to nonrandomness
along unobservable dimensions such as ability, thereby biasing the estimations that cannot
be eliminated simply by including observable characteristics in estimations. Thus, we turn

to the MW approach that could help to address this issue.

4. Results

Recall that the difference between the Angrist et al approach and the MW approach
arises from the non-linearity of the underlying conditional expectation, E[Z|X, D = 1]. In
the LLLS case, the size of the bandwidth for a continuous variable provides useful information
about the linearity — a large bandwidth (tending to infinity) determines that the variable
enters linearly in E[Z|X, D = 1]. In practice, a rule of thumb is that when using a Gaussian
kernel function (as in our analysis), if the bandwidth on a continuous variable is larger than
two standard deviations of the variable, the conditional expectation is linear in this variable
(Hall et al., 2007; Henderson et al., Forthcoming). The LSCV results are presented in Table
(5). Indeed, we find that none of the bandwidths on the continuous variable, experience (E)

exceeds two standard deviations of it (reported in parentheses). This result implies that the
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conditional expectation E[Z]|X, D = 1] is at least not linear in experience and the nonlinear
form could be potentially highly complicated, which may render the standard IV estimates
inconsistent; recall linearity is a sufficient but not necessary condition.

Thus, we turn to a more formal assessment of reasonableness of the linearity assumption
and conduct the Hsiao et al. (2007) test for functional form. The results are reported in
Table (6). When using spousal education as an IV, we easily reject the null of a correctly
specified linear model at p < 0.0001 level, consistent with the interpretation of the band-
widths discussed above. This result implies that the nonparametric specification is strongly
preferable and failure to correctly specify the functional form could lead to inconsistent IV
estimates. On the other hand, when using parental education as an IV, we fail to reject the
parametric functional form at the conventional level, except for female in 2002. This result
suggests that the selection issue may not be too severe and the traditional IV and Angrist
et al. approaches may be preferable on efficiency grounds. However, these results do not
directly speak to the size of the actual impact of selection on estimates and whether the
impact is indeed statistically significant.

We therefore turn to the actual estimates obtained from different approaches. The re-
sults are presented in Table (7). Column (1) reports the OLS estimates of the returns to an
additional year of schooling. The estimates for men are .0358 in 1995 and 0.0662 in 2002,
while those for women are 0.0562 in 1995 and 0.081 in 2002. Even though the OLS esti-
mates imply positive returns to education, these figures are generally smaller relative to the
international standard (roughly 10 percent reported in Psacharopoulos and Patrinos, 2004).
These OLS results are similar to those reported in the literature (e.g. Li, 2003). Correcting
for the potential endogeneity and measurement error problem, the IV estimates in Columns
(2) and (3) imply larger returns to education compared to the OLS estimates, regardless of
which IV is used. For example, when using parental education as IV, the implied returns
to an additional year of schooling are about 11 percent for men and 14 percent for women

in 2002. This result is consistent with the literature that generally finds the OLS approach
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underestimates the returns to education (Card, 1999).

Columns (4) and (5) report the IV estimates using the Angrist et al. (2010) approach.
As expected, the estimates are identical to the standard IV estimates. However, pooling
the samples together to construct a full-sample IV does not improve the precision of the
estimates. The standard errors of the Angrist et al IV estimates are even slightly larger
than those of the standard IV estimates. This difference between two standard errors is not
statistically significant. Lack of efficiency gains may be explained by the fact that pooling
together the whole sample simply adds more zeros to the IV, which does not necessarily
increase useful variation for identification of the parameter. However, we should see more
definitive efficiency gains for other variables in this case. To verify this conjecture, we report
the standard errors of all control variables for both approaches in Table (A1). We find that
differences in standard errors of the conventional and Angrist et al. IV estimates of control
variables are indeed positive, suggesting that pooling the whole sample (the Angrist et al.
approach) produces smaller standard errors and thus the efficiency gains!

Both the bandwidths results and the results of functional forms indicate the potential
severity of the selection problem among studies using spousal and parental education as I'Vs,
especially in more recent years. To address this problem, the results using the robust IV
are reported in Columns (6) and (7). We observe that the estimates using both IVs change,
but differently. In particular, when using spousal education as an IV, correcting for the
non-random sample problem generally produces smaller IV estimates, except in the case for
men in 2002. The magnitude of the difference between the robust and standard IV estimates
is relatively small, ranging from -.23 (=(0.0704-0.0727)*100) and .06 (=(0.0888-0.0882)*100)
percentage points. By contrast, when using parental education as IV, correcting for the non-
random sample problem has a larger impact, producing larger IV estimates. Compared to the
case of spousal education, the magnitude of the difference between the robust and standard
IV estimates, when using parental education, is much larger. For example, the difference is

1.26 (=(0.12-0.1074)*100) percentage points for men and 1.21(=(0.1504-0.1383)*100) per-
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centage points for women in 2002. These differences imply that the magnitude of the bias
due to the non-randomly missing IV is sizable — about 10.5 percent for men and 8 percent for
women. Another interesting finding is that there does not appear to be a discernible pattern
of the direction of the selection bias. This is primarily because the selection mechanism (and
the nonparametric conditional expectation) is unknown and may differ substantially across
IVs and samples (also evident in the results of functional form tests). Given the fact that the
MW estimator is always consistent, we recommend that it should always be used in practice,
if possible.

In sum, we find that the IV estimates using spousal education suffer much less from the
selection bias in terms of the magnitude than do those using parental education, especially
in recent years. This result may be explained by the fact that marriage is still prevalent
and divorce rate is low in China, compared to other developed countries. For example, the
divorce rates, according to China Internet Information Center’, are 0.18 percent in both
1995 and 2002. Despite these results, the Hausman test results, however, suggest that these
differences are not statistically significant at the conventional levels, except for the sample of
female workers in 1995. The results remain unchanged when we take into account potential
unknown variance structure using the bootstrap procedure. Our results suggest that the
selection issue exists but is not as severe as in other contexts. A note of caution is in order
concerning this test. As noted in Hausman (1978), power considerations of this type of test
are important in practice, and a test may fail to reject the null hypothesis may be simply
due to lack of power (which in turn depends such factors as sample size). Thus, further

explorative analysis is warranted of finite sample properties of this test.

4.1. Further Results Excluding Age Dummies

We include age dummies in our specification to control for several nation-wide events in

the past. Here, we also examine what impact the correlation between age and experience

"http://www.china.org.cn/english/en-sz2005/sh/biao/23-42.htm
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may have on our results.

To capture the correlation between age dummies and education and experience, we report
the R-squared values from regressions of schooling or experience on age group dummies
(Table B1). As we can see, age and experience is correlated, but not perfectly. Specifically,
R? ranges from .6 to .8. Given the focus in this paper is on estimations of the returns to
education, the correlation between age group and experience should matter little for the
results. What really matters is the correlation between schooling and age groups. And
indeed, we find statistically significant relationship, but R? is smaller as opposed to the case
of experience. To assess the impact of the correlation between age and other variables, we
exclude age group dummies and repeat all our analyses. The results are reported in Tables

(B2) and (B3) in the Appendix. We find that the results remain mostly unchanged.

5. International Evidence

In the Chinese context, there is only modest evidence to suggest that selection may lead
to inconsistent estimates, especially when utilizing parental education as an IV. However,
this result is not necessarily going to hold true universally. Given the potential importance
of this topic, we feel it imperative that we should also assess the impact of selection on
the results reported in the previous important studies using data from other countries. We
do this by first replicating the results in Trostel et al. (2002) and then repeat our analysis
using the same data. The data are from International Social Survey Programme data (U.S.
sample), 1985 — 1995. To focus on the selection issue, we follow their sample selection
criteria and model specifications. In particular, we utilize in estimations log of hourly wages
as dependent variable, years of schooling as measure of education, and such control variables
as year fixed effects, marital status, union status, age and age squared (when appropriate).
The sample consists of only employed workers aged 21-59.

The results are reported in Tables (C1)-(C2). Examining the results for specification

tests of functional forms, we notice that for both the sample of men using spousal education
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and the sample of women using parental education as IVs, the null hypothesis of correctly
specified parametric form is rejected at least at p < 0.10 levels. But we cannot reject the
null hypothesis for the sample of men using parental education and the sample of women
using spousal education as IVs. These results suggest that selection issue could potentially
bias the IV estimates for certain samples and that there may be room for improvement by
addressing the selection issue.

Turning to actual estimates, we are able to successfully replicate the standard IV results
in Trostel et al. (2002) (Tables 5 and 6, first row in their paper). The estimates in U.S.
are larger than the estimates in China in 1995, but close to those in China in 2002. The
drastic increase in the returns to education over time in China, catching up with U.S., seems
to suggest that the ongoing economic transition during this period increase the value of
education, which could be due to either increased demand for highly-educated workers or
more appropriately valuing human capital at its market rate (Wang, forthcoming). When
addressing the nonrandom selection issue, we find the results change only slightly, and the
selection issue does not appear to bias the results much, even though the tests results of
functional form suggest such possibility. Confirming the casual observation, the Hausman
test results suggest that we cannot reject the null hypothesis of the difference between the

two methods being zero at the conventional levels.

6. Conclusions

This paper first estimates the returns to education in China, adjusting for the selection
bias due to non-randomly missing IV. As noted in Fleisher et al. (forthcoming), due to
the difficulty in finding a valid instrument variable, very few studies estimating returns to
education have attempted to address the endogeneity and measurement error problems in
the Chinese context. A good IV candidate is much needed for future studies. Our results
suggest that the non-random selection does not bias the IV results much (at least the effect

is not statistically significant). This result is important since it suggests family backgrounds
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such as spousal and parental educations could be used as IVs for own education provided
that the standard IV assumptions are met. For example, together with the evidence in
Wang (forthcoming) (verifying that the standard IV assumptions are indeed met for spousal
education), our results thus show some supporting evidence for the use of spousal education
as an IV in the Chinese context. We also further assess the robustness of our results using
the U.S. samples. We similarly find evidence that the selection issue exists but does not
bias the results significantly. While these results cannot necessarily be generalized to other
countries, they do increase our confidence in the IV results using family backgrounds as I'Vs,

especially when implementation of the MW method is not computationally viable.
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