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parental education as instrument variables (IV). However, due to usual survey designs, both 
IVs are available only for the individuals whose spouse or parents are present in the same 
household. The IV estimates based on these selective sub-samples may be inconsistent, 
even when the IVs satisfy the standard assumptions. In this paper, we examine the empirical 
relevance of this issue in the Chinese context. To our surprise, unlike the selection issue in 
other situations, this kind of selection does not appear particularly worrisome, suggesting that 
the previous IV results are robust. In particular, using China Household Income Project 1995 
and 2002, we find that correcting for this potential issue has only a modest impact on the 
magnitude of the standard IV estimates using parental education as an IV, but a negligible 
impact on those using spousal education. Using the specification tests proposed, we find that 
these impacts are generally not statistically significant. These results are further confirmed by 
our analysis using U.S. data. We believe that these results are of use to both policymakers 
and practitioners. 
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1. Introduction

Estimation of the returns to education is often complicated by potential endogeneity and

measurement error problems. A typical solution is to employ an instrument variable (IV)

approach. The literature has “a long tradition of using family background information”

as an IV (see Card (1999) for a selective review of the past studies). Some recent studies

(e.g. Chen and Hamori, 2009; Trostel et al., 2002; Arabsheibani and Mussurov, 2007) have

utilized spousal education as an IV, while some have utilized parental education (e.g. Flabbi

et al., 2008; Gao and Smyth, 2011; Heckman and Li, 2004; Li and Luo, 2004; Wang et al.,

2009).1 While the validity of these two IVs is controversial, the literature has utilized them

and argued in different contexts that both variables satisfy the standard requirements for

consistency of the IV estimates. For example, using the same data and specifications as in

this paper, Wang (forthcoming) employs various statistical techniques to show that spousal

education is strongly correlated with own education and at least plausibly exogenous in the

Chinese context. Using a Bayesian approach and the German Socio-Economic Panel data,

Hoogerheide et al. (2010) similarly find that moderate violation of the assumption of perfect

instrument validity does not affect the results when parental education is used as an IV.

We want to emphasize that our purpose in this paper is not to argue the standard

assumptions are met for two IVs. As noted in Trostel et al. (2002) in this journal, these IVs

have been used in many applications, and their validity is “ultimately an empirical question”.

Instead, we would like to point out a novel problem that has been overlooked in the literature

– even if these variables satisfy the standard IV requirements, IV estimations based on either

spousal or parental education may still fail to deliver consistent estimates of the returns to

education.

To see this, note that due to typical survey designs, information on spousal or parental

1Flabbi et al. (2008) use a control function approach to include parental education as an IV, which is
actually equivalent to the two stage least squares approach in the linear context (see, e.g., Wooldridge, 2010,
p.127).
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characteristics is asked only when they are present in the same household. As a result,

spousal education is only available for married individuals and parental education is only

available for individuals whose parents are present in the same household. The IVs are miss-

ing for the rest of the population, which causes a selective estimation sample. There has been

ample research work indicating that married workers systematically differ from non-married

ones (e.g. Maasoumi et al., 2009) and that living arrangement is an endogenous choice (e.g.

Lei et al., 2011). For example, married men may be more likely to possess desirable traits

such as responsibility and maturity than single men, which is also a popular explanation for

existence of marriage premium (see, e.g. Chiodo and Owyang (2002) for a review of compet-

ing theories). Similarly, Lei et al. (2011) (Table 3) show that individual characteristics such

as age and education differ greatly across living arrangements. Altogether, this implies that

the IVs are missing in a selective way and these samples are not necessarily representative of

the population. Our data indeed show that this is true. In such cases, Mogstad and Wiswal-

l (Forthcoming) (hereafter MW) show that IV estimations based on selective sub-samples

cannot produce consistent estimates under general conditions.

The theoretical result in MW is not surprising. Past studies of selection issues encoun-

tered in other situations (such as female labor supply) have shown that the selection issue

generally leads to inconsistent estimates, both theoretically and empirically. Estimation of

returns to education is an important research area in which the results are useful not only

because of their theoretical implications, but also owing to the fact that they provide a basis

for sound policy advice about educational investment. It is thus of paramount importance

to examine the empirical relevance of the selection issue discussed above and evaluate the

magnitude of its impact on previous IV results.

In this paper, we adopt the robust approach developed in MW to investigate the impact

of correcting for the selection bias on the IV estimates of returns to education (based on

spousal and parental education) in urban China, while following the literature by assuming

the standard IV assumptions are satisfied. To our surprise, unlike in other areas, the selection
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issue does not appear to be particularly worrisome in this context. We further assess the

robustness of this result using U.S. data and again find the existing IV results hold up, at least

for the samples investigated. Confirming the prior results is equally important and useful

because assessing the empirical impact of the selection issue is more than academic curiosity

and has important policy implications. Moreover, our results indicate that the direction

of the selection bias is a priori unknown and that if possible, the MW estimator, which is

consistent regardless of existence of the selection issue, should always be used. However, the

MW approach involving nonparametric estimation is often computationally costly. We thus

also believe that such exercises and results in this paper are of use to practitioners – when

the MW approach is computationally infeasible in practice (due to too many observations

and control variables), our results do increase our confidence in the IV estimations using

family backgrounds as IVs.

Even though focusing on estimating the returns to education in China and U.S. as specific

examples, we believe that the issue discussed here is prevalent but overlooked in many

empirical studies using the IV approach in the field of economics of education, even when

the standard IV assumptions are met. For example, the gender of first two children is

usually used as an IV for the number of children to identify the effect of family size on

children’s educational attainment (e.g. de Haan, 2010). However, this IV is only available

for the households where parents choose to have two and more children (see MW for more

examples). Although our illustration of a (first) application of the MW approach shows no

significant impact of non-randomly missing IVs such as spousal and parental education, it

is still important to re-evaluate the empirical relevance of other commonly used IVs in the

existing literature that may potentially suffer from this issue. Moreover, the MW approach

entails nonparametric estimation to construct the IV, but the authors discuss only the cases

when the variables are either continuous or discrete, but not both. However, we often

encounter both continuous and discrete control variables in practice. On the methodological

front, we discuss how to operationalize the MW approach based on Generalized Kernel
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Estimation in this type of situations. Furthermore, we propose two specification tests for

the MW approach. We believe that these technical discussions are also of use for applied

researchers who are interested in applying the method.

2. Empirical Methodology

To begin, we consider the following (augmented) Mincer equation:

ln(wi) = β1Si +X ′iβ2 + εi (1)

where ln(wi) is the log of earnings for an individual i; Si is years of schooling. Xi includes

all other covariates, ([1, Ei, E
2
i ,Minorityi, Agei, P rovincei]), where Ei is working experience,

and E2
i working experience squared; Minorityi is a dummy variable equal to one if an

individual is a minority, zero otherwise; Agei is a set of age group dummy variables, and

Provincei a set of provincial dummy variables; εi is the error term as usual, E[εi] = 0.2 3 β1

measures the returns to education, the parameter of main interest in this paper.

Note that following MW, β1 is assumed to be constant and homogeneous across the

population, and we abstract from heterogeneous returns to education in this paper. That is,

we below consider the results using spousal and parental education as separate approaches

to obtain β1, and we discuss how selection bias affects the results in each case, but do not

discuss why the results using different IVs may be different.

We can consistently estimate β1 by Ordinary Least Squares (OLS) if cov(ε, S|X) = 0.

2Such variables as tenure, occupation and sector are also available in the survey data, but these variables
are potentially endogenous variables that themselves could be determined by schooling. That is, these
variables could be the reasons why education affects individuals’ earnings. As noted in the literature (e.g.
Pearl, 2000; Frolich, 2004; Lee, 2005), controlling for these variables “would block the part of the causal effect
that acts through these variables”. Therefore, following the literature, we exclude various determinants of
earnings such as tenure, occupation and sectors from the estimation. We condition on only exogenous
variables here to simplify the interpretations of returns to education.

3It can be argued that the actual labor market experience itself could also be endogenous. There has
been empirical evidence showing that ”the treatment of labor market experience as exogenous does not
introduce a significant bias in the IV estimates of the return to education” (see, e.g. Lemieux and Card,
2001). Moreover, as noted in Lemieux and Card (2001), there exists much evidence that earnings are better
described by the current specification even though it may be endogenous.
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However, if cov(ε, S|X) 6= 0, the OLS estimates are generally inconsistent. A typical solution

is to employ the IV estimation. The consistency of the IV estimates relies on the fact that

the following conditions hold for the IV, Z:

(A1) Existence of First Stage Correlation: E[SZ|X] 6= 0

(A2) Conditional Mean Independence: E[ε|X,Z] = E[ε|X]

Note that (A1) implies that conditioning on X, the endogenous variable is sufficiently corre-

lated with the IV. When the IV is only weakly correlated with the endogenous variable, the

IV estimates are biased toward the OLS estimates and inference is not reliable (Bound et al.,

1995). (A2) implies that conditioning on X, the IV is exogenous (i.e. mean independent of

the error term).

The standard IV estimation assumes the availability of an IV for the full sample. However,

such an IV does not necessarily exist. Instead, the literature often relies on IVs such as

spousal and parental education that are available only for certain subpopulations; and the

estimations are performed on the sample for which the IV is available. Implicitly, these IV

estimations are based on the following assumptions:

(A1’) Existence of First Stage Correlation: E[SZ|X,D = 1] 6= 0

(A2’) Conditional Mean Independence: E[ε|X,Z,D = 1] = E[ε|X,D = 1]

where D is equal to one if the IV is not missing and zero otherwise. In other words, (A1) and

(A2) are now stated based on the sub-samples where the IV is not missing. However, Mogstad

and Wiswall (Forthcoming, Proposition 1) show that if the IV is not missing randomly and

D is correlated with the error term ε, the IV estimates are generally inconsistent estimates

of β1.

In this paper, we focus on this particular issue while maintaining that the standard IV

assumptions (A1’) and (A2’) are met. One solution is to construct a full-sample IV. An

example is proposed by Angrist et al. (2010) as follows:
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ZLP =

 Z −X ′λ, if D = 1

0, if D = 0

where X ′λ is the linear projection of Z on X using the sub-sample with non-missing IV.

However, even though this full-sample IV approach may produce more efficient IV estimates

asymptotically, Mogstad and Wiswall (Forthcoming, Lemma 1.) show that it is actually

equivalent to the standard IV based on the non-missing IV sample, and therefore it is also

generally inconsistent under (A1’) and (A2’).4

To solve this problem, MW propose a robust IV estimator based on the following full-

sample IV

ZRobust =

 Z − E[Z|X,D = 1], if D = 1

0, if D = 0

Unlike the Angrist et al. (2010) approach, the MW approach is based on the true conditional

expectation of Z on X, instead of the linear projection of Z on X. MW show that under

(A1’) and (A2’), this IV estimator produces consistent estimates of β1.

Notice that if E[Z|X,D = 1] is linear inX (i.e. E[Z|X,D = 1] = X ′λ), the MW estimator

nests both the standard IV and the Angrist et al. (2010) IV. The equivalence between these

approaches in this special case implies that the standard IV and the Angrist et al. (2010)

approaches are consistent when E[Z|X,D = 1] is linear in X; in other words, the linearity

of E[Z|X,D = 1] is a sufficient condition for the consistency of both the standard IV and

the Angrist et al. (2010) approach (see MW for other two sufficients conditions).

The underlying functional form could depart from linearity for many reasons. For exam-

4The equivalence between the standard IV and the Angrist et al approach is probably better un-
derstood when the sample analogs of both estimators are explicitly written out. The standard IV es-
timator is given by [

∑N1

i=1(ZiSi)]
−1[

∑N1

i=1(Ziln(wi))], and the Angrist et al IV estimator is given by

[
∑N

i=1(ZLP,iSi)]
−1[

∑N
i=1(ZLP,iln(wi))] (see MW for detailed discussions). Recall that the only difference

between Zi and ZLP,i is that ZLP,i is zeros for those observations with missing Zi. Adding more zeros to
both denominator and numerator in the Angrist et al estimator would not change the value. It is essentially
the standard IV estimator.
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ple, minority students generally receive preferential treatments such as lower admission score

for college entrance from the government, but the preferential treatments vary by the extent

of the concentration of ethnic minority communities where they live (Wang, 2007). And

there is indeed a very unequal distribution of minority communities across provinces. More-

over, the extent of the preferential treatments received by minority students also changes

over time. Altogether, these facts suggest that there could be very complicated interactions

between minority status, provincial dummies, and age cohort dummies (capturing time ef-

fects) in determining education. In addition, there were several nation-wide events such as

Cultural Revolution in China that affected the educational attainment of then school-aged

children and that the extent of the impacts of these events differs across provinces (see, e.g.

Giles et al., 2004). This also suggests that there could be a potential interaction between

geographic variable and age dummies, which is also ignored in a linear projection. Our

nonparametric method allows for even more complicated forms of interactions between all

control variables.

2.1. Practical Issues

Practical implementation of the robust IV estimator requires nonparametric estimation

of E[Z|X,D = 1]. In our case, X contains a continuous variable, (experience, E), two

unordered categorical variables (minority status, Minority and province, Province), and a

ordered categorical variable, (age group, Age). Typical kernel methods, however, do not

allow for smoothing categorical variables that are generally encountered in practice.5 To

overcome this issue, we adopt a variant of the local-linear least-squares (LLLS) estimator

based on Generalized Kernel Estimation (see, e.g. Li and Racine, 2004; Racine and Li, 2004

5In their paper, MW employ a parametric regression with polynomial terms up to fourth order as an
example to approximate the underlying conditional expectation. Given the specific Monte Carlo simulation
design used by the authors (the conditional expectation is a quadratic function of X), this approximation
works well by construction. However, this is still a parametric approach, instead of a nonparametric one.
Despite computationally easier to implement, polynomial regressions using all the observations for estima-
tions are still global functions and cannot capture local anomalies. It is thus generally not consistent and not
a good approximation to the unknown function. Moreover, higher-order polynomial regressions are shown
to have “undesirable nonlocal effects”, which kernel estimators do not have (Magee, 1998).
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for more detailed discussions). The nonparametric regression model is given by:

Zi = E[Z|X,D = 1] + ui = m(Xi) + ui

where m(·) is the unknown conditional expectation, a smooth regression function with Xi,

and ui is the error term as usual. To ease the discussion, we arrange the variables with

respect to their types: the first qc are continuous variables, Xc, the next qu are unordered,

Xu, and the last qo are ordered, Xo. Note that qc, qu, qo represent the dimension of each type

of variable, respectively. In our case, qc = 1, qu = 2, qo = 1. Notice that taking a first-order

expansion of (2.1) with respect to X yields

Zi = m(Xi) + ui

≈ m(X) + (Xc
i −Xc)m′(X) + ui (2)

Treating m(X) and m′(X) as parameters to be estimated, we have the following model:

Zi = m(X) + (Xc
i −Xc)m′(X) + ui

= δ1 + (Xc
i −Xc)δ2 + ui

The LLLS estimator, (δ = [δ1, δ2]
′), minimizes the following objective function:

min
δ1,δ2

∑
(Zi − δ1 − (Xc

i −Xc)δ2)
2K(

Xi −X
h

)

where K(·) is a generalized kernel function and h a bandwidth vector. Notice that the

minimization problem is similar to generalized least squares problem but with the weight

K(Xi−X
h

). We have a closed-form solution for the LLLS estimator:

δ = [
∑

K(
Xi −X

h
)Xi

′
Xi]
−1[

∑
K(

Xi −X
h

)XiZi]
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where Xi = (1, [(Xc
i −Xc)]′).

The first practical issue of implementation of LLLS is concerned with the choice of

the kernel function, K(·). Unlike the conventional nonparametric estimation, for which

the kernel function is designed for continuous variables only (thus usually a popular den-

sity function), the Generalized Kernel Estimation permits both continuous and discrete

variables. In particular, the generalized kernel is the product of different kernel func-

tions specifically designed for each type as follows (recall that Xi = [Xc′
i , X

u′
i , X

o′
i ] =

[(Xc
1i, . . . , X

c
qci)
′, (Xu

1i, . . . , X
u
qui)
′, (Xo

i1, . . . , X
o
qoi)
′].):

K(
Xi −X

h
) = Πqc

s=1k
c(Xc

si, X
c
s , h

c
s)Π

qu
s=1k

u(Xu
si, X

u
s , h

u
s )Π

qo
s=1k

o(Xo
si, X

o
s , h

o
s)

where the kernel function for continuous variables is given by

kc(Xc
si, X

c
s , h

c
s) =

1√
2π

exp{−1

2
(
Xc
i −Xc

hc
)2}

The kernel function for unordered discrete variables (Aitchison and Aitken, 1976) is given

by

ku(Xu
si, X

c
u, h

u
s ) =

 1− hus if Xu
si = Xu

s

hus
ds−1 otherwise

where ds is the number of unique values a variable can take. The kernel function for ordered

discrete variables is given by:

ko(Xo
si, X

o
s , h

o
s) =

 ds

j

 (hos)
j(1− hos)ds−j when |Xo

si −Xo
s | = j

Notice that the rate of convergence of the estimator depends solely on the number of

continuous variables, and the number of discrete variables does not add to the “curse of

dimensionality” problem (Henderson, 2009). It is widely believed in the literature that the

choice of kernel functions matters little in the nonparametric estimation (see, e.g. textbook

9



discussions in Hardle (1990) and Li and Racine (2007)).

However, selection of bandwidths is often considered to be the most salient factor in the

nonparametric estimations. The second practical issue is thus concerned with selection of

an optimal bandwidth vector. To see the issue, consider (2.1). Given the choice of a kernel

function, the value of h determines the size of the neighborhood around a point X, and the

observations within this neighborhood are given more weights in estimations. A very small

bandwidth means a very small neighborhood and very few points will be given weights in

estimations, resulting in estimates with smaller bias yet less precision. On the other hand, a

large bandwidth means a large neighborhood and more points will be utilized in estimations,

resulting in estimates with larger bias yet more precision. The key issue is to balance the

trade-off between bias and precision. To avoid any arbitrariness in our selection, we opt

for a popular choice of optimal bandwidth selection method – least square cross validation

(LSCV). Stone (1984) shows that this method is asymptotically optimal “in the sense of

minimizing the estimation integrated square error” (Li and Racine, 2007, p.18).

Another useful feature of the LSCV procedure, among others, is its ability to detect

whether a continuous variable enters the function linearly in the LLLS case (Hall et al.,

2007). In (2.1), a very large bandwidth (h → ∞) (thus K(·) → K(0), a constant) implies

each observation is given an equal weight in estimation, which makes the original minimiza-

tion problem essentially an OLS problem over the whole support. In this case, the true

functional form is linear. Recall that the linearity of E[Z|X,D = 1] is a sufficient condition

for the consistency of the standard IV estimator. The LSCV bandwidth is thus partic-

ularly informative of the source of the (in)consistency of the conventional IV estimator by

identifying the linearity of the conditional expectation function in the continuous variable(s).

2.2. Specification Tests

We have thus far discussed the practical details of the implementation of the MW ap-

proach. It would also be useful to provide a formal assessment of whether the MW approach

is preferred to the standard IV or Angrist et al. approach and is needed in practice. Here,
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we propose two statistical tests for this purpose: the first test is an indirect test, which tests

whether the parametric functional form used in the Angrist et al approach is misspecified;

and the second test is a direct comparison of these two estimators, which determines whether

or not the differences are indeed statistically significant. An ideal test should be able to de-

tect the significant difference between these two approaches and thus be informative of the

severity of the selection issue.

2.2.1. Test of Functional Form

As discussed above, the difference between the Angrist et al. approach and the MW

approach lies in the assumed functional form of E[Z|X,D = 1]. If the parametric form is

misspecified (and thus the Angrist et al. estimator is inconsistent), then the MW approach

(relying on nonparametric estimation and thus free of misspecification of functional form) is

preferred. To test the correctness of the parametric form, we employ the specification test

recently developed in Hsiao et al. (2007). The null hypothesis is that a parametric model is

correctly specified (H0 : Pr[E[Z|X,D = 1] = X ′λ] = 1), and the alternative is that the model

is misspecified (HA : Pr[E[Z|X,D = 1] = X ′λ] < 1). Notice that the alternative hypothesis

includes all other alternatives than the specification in the null hypothesis. Therefore, unlike

most popular parametric tests that lack power in certain directions, this test is a consistent

test. Moreover, this test, again, permits both continuous and discrete data, which is usually

not allowed in the existing kernel-based tests. The test statistic is given by:

JN = N(hc1, . . . , h
c
qc)

1
2 ÎN/σα ∼ N (0, 1)

where ÎN = 1
N2

∑N
i=1

∑N
j=1,j 6=i ûiûjK(·); σα =

2(hc1,...,h
c
qc
)

N2

∑N
i=1

∑N
j=1,j 6=i ûi

2ûj
2K(·)2. Follow-

ing the notations above, K(·) is the product kernel, hc1, . . . , h
c
qc are the optimal bandwidths

for the continuous variables, qc is the number of continuous variables. As noticed in Hsiao

et al. (2007), the asymptotic approximation usually performs poorly in finite samples, there-

fore we conduct inference based on a bootstrap procedure to improve the finite properties of
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the test statistic. This test is useful since rejection of the null hypothesis implies that there

would be a difference between the Angrist et al. approach and MW approach.

2.2.2. Hausman Type of Test

The test of functional form, though useful, does not necessarily provide any informa-

tion regarding the magnitude of the difference and whether such difference is statistically

significant. Thus, we provide an alternative test to further examine this issue. The test is

based on the principle that was first developed by Hausman (1978). The idea is as follows.

Under the null hypothesis (a parametric model is correctly specified), both the Angrist et al.

estimator (β̂angrist1 ) and MW estimator (β̂MW
1 ) are consistent, which implies the difference

q̂ = β̂angrist1 − β̂MW
1 tends to zero. Under the alternative hypothesis (a parametric model is

misspecified), only β̂MW
1 is consistent, and q̂ differs from zero. The test is to detect whether

q̂ departs from zero. Notice that under the null hypothesis, both estimators are normally

distributed with variances V angrist and V MW , respectively. It follows that q̂ is also normally

distributed with variance V q, and with this result, we could easily construct the Hausman

type of test. Moreover, if β̂angrist1 is asymptotically efficient, asymptotic variance is further

simplified V q = V MW − V angrist. However, as noted in Wooldridge (2010), the assumption

of asymptotic efficiency is only needed for simplification of the asymptotic variance, and

“it is essentially irrelevant” when applying the Hausman’s (1978) principle. To relax the

assumption of asymptotic efficiency and allow for more complicated variance structure, we

also conduct inference based on a bootstrap procedure. We believe that the Hausman test

is of more empirical use, since we just need to calculate the parametric estimates, which are

easy to obtain, and then contrast them with the MW estimates.

3. Data

The data are obtained from the the urban sample of the China Household Income Project

1995 and 2002. The data have been used widely in the literature; we thus provide limited

discussions here (see e.g. Gustafsson et al., 2008). Interested readers are referred to Wang
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(forthcoming) for detailed explanations of sample restrictions and choices of variables, which

we follow here. The outcome variable is annual wages, measured by the total individual

salary (equal to the sum of regular salary, bonuses and subsidies, allowance for temporarily

laid off workers, and other income from the work unit) plus income from private enterprise.6

The independent variable is years of schooling. Also included in estimations are working

experience, minority status, a set of age group dummy variables and provincial dummy

variables. We restrict the sample to individuals aged 16 to 65. The legal minimum working

age is set at 16 in China, and the announced maximum retirement age is 65. Summary

statistics of the data used in the analysis are reported in Table (1).

To gain a sense of potential severity of the selection issue, we also report in Table (2) the

percent of sample that have spouses and the percent that have parents living at home. We

first notice that utilization of the IVs reduces the sample size. However, the size of reduction

and the pattern of changes over time are different across IVs. In the case of spousal IV, we

notice that whereas the percent of married women slightly decreased over time, the percent

of married men actually increased. Regardless, marriage is still prevalent in urban China –

at least 80 percent of the samples for both men and women are married. By contrast, the

number of individuals living with their parents is relatively small, comprising roughly 10

percent of the samples. The number of observations is 795 for men and 614 for women in

1995, and it decreases further to 615 for men and to 449 for women in 2002. This pattern is

consistent with the increasing trend of Chinese elderly living alone.

The above results indicate that use of either spousal education or parental education as an

6In the Chinese context, it is difficult to separate different income variables; the distinction between
different types of income from the work unit (Danwei) is often blurry in different units. Separating them
may create additional measurement errors. Moreover, private enterprise income is rare especially in the
early stages of economic reforms in China, accounting for only a small fraction of individual incomes (Shu
and Bian, 2003). Also, employees in private business and individual entrepreneurs (getihu) are substantially
under-sampled (Shu and Bian, 2002). Moreover, as mentioned above, nonparametric estimations are com-
putationally expensive. Given the focus of this paper on assessing the robustness of the previous results,
we follow the literature by using the total annual income as our dependent variable. However, this issue is
worth further explorations to assess the returns to education for different income measures, and we leave it
for future research.
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IV precludes certain individuals, resulting selective samples. And the selection issue is likely

more severe with using parental education as an IV due to a drastic reduction in the sample

sizes. The next question is whether the selection is random. To answer this question, we

examine the summary statistics of observable characteristics used in our analysis by marital

status and by living arrangements. These results are reported in Tables (3) and (4). As we

can clearly see, married workers are different from their single counterparts. For example, in

1995, single men have less working experiences (-14.129) and are much younger than married

men. These differences are statistically significant at at least p ≤ 0.001. We observe a similar

pattern across living arrangement. For example, workers with parents living at home are

more likely to be younger and have more education and experiences, consistent with the

results reported in Lei et al. (2011) using CHARLS data. These differences confirm that the

selection is not random. More worrisome, the selection may be partly due to nonrandomness

along unobservable dimensions such as ability, thereby biasing the estimations that cannot

be eliminated simply by including observable characteristics in estimations. Thus, we turn

to the MW approach that could help to address this issue.

4. Results

Recall that the difference between the Angrist et al approach and the MW approach

arises from the non-linearity of the underlying conditional expectation, E[Z|X,D = 1]. In

the LLLS case, the size of the bandwidth for a continuous variable provides useful information

about the linearity – a large bandwidth (tending to infinity) determines that the variable

enters linearly in E[Z|X,D = 1]. In practice, a rule of thumb is that when using a Gaussian

kernel function (as in our analysis), if the bandwidth on a continuous variable is larger than

two standard deviations of the variable, the conditional expectation is linear in this variable

(Hall et al., 2007; Henderson et al., Forthcoming). The LSCV results are presented in Table

(5). Indeed, we find that none of the bandwidths on the continuous variable, experience (E)

exceeds two standard deviations of it (reported in parentheses). This result implies that the
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conditional expectation E[Z|X,D = 1] is at least not linear in experience and the nonlinear

form could be potentially highly complicated, which may render the standard IV estimates

inconsistent; recall linearity is a sufficient but not necessary condition.

Thus, we turn to a more formal assessment of reasonableness of the linearity assumption

and conduct the Hsiao et al. (2007) test for functional form. The results are reported in

Table (6). When using spousal education as an IV, we easily reject the null of a correctly

specified linear model at p ≤ 0.0001 level, consistent with the interpretation of the band-

widths discussed above. This result implies that the nonparametric specification is strongly

preferable and failure to correctly specify the functional form could lead to inconsistent IV

estimates. On the other hand, when using parental education as an IV, we fail to reject the

parametric functional form at the conventional level, except for female in 2002. This result

suggests that the selection issue may not be too severe and the traditional IV and Angrist

et al. approaches may be preferable on efficiency grounds. However, these results do not

directly speak to the size of the actual impact of selection on estimates and whether the

impact is indeed statistically significant.

We therefore turn to the actual estimates obtained from different approaches. The re-

sults are presented in Table (7). Column (1) reports the OLS estimates of the returns to an

additional year of schooling. The estimates for men are .0358 in 1995 and 0.0662 in 2002,

while those for women are 0.0562 in 1995 and 0.081 in 2002. Even though the OLS esti-

mates imply positive returns to education, these figures are generally smaller relative to the

international standard (roughly 10 percent reported in Psacharopoulos and Patrinos, 2004).

These OLS results are similar to those reported in the literature (e.g. Li, 2003). Correcting

for the potential endogeneity and measurement error problem, the IV estimates in Columns

(2) and (3) imply larger returns to education compared to the OLS estimates, regardless of

which IV is used. For example, when using parental education as IV, the implied returns

to an additional year of schooling are about 11 percent for men and 14 percent for women

in 2002. This result is consistent with the literature that generally finds the OLS approach
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underestimates the returns to education (Card, 1999).

Columns (4) and (5) report the IV estimates using the Angrist et al. (2010) approach.

As expected, the estimates are identical to the standard IV estimates. However, pooling

the samples together to construct a full-sample IV does not improve the precision of the

estimates. The standard errors of the Angrist et al IV estimates are even slightly larger

than those of the standard IV estimates. This difference between two standard errors is not

statistically significant. Lack of efficiency gains may be explained by the fact that pooling

together the whole sample simply adds more zeros to the IV, which does not necessarily

increase useful variation for identification of the parameter. However, we should see more

definitive efficiency gains for other variables in this case. To verify this conjecture, we report

the standard errors of all control variables for both approaches in Table (A1). We find that

differences in standard errors of the conventional and Angrist et al. IV estimates of control

variables are indeed positive, suggesting that pooling the whole sample (the Angrist et al.

approach) produces smaller standard errors and thus the efficiency gains!

Both the bandwidths results and the results of functional forms indicate the potential

severity of the selection problem among studies using spousal and parental education as IVs,

especially in more recent years. To address this problem, the results using the robust IV

are reported in Columns (6) and (7). We observe that the estimates using both IVs change,

but differently. In particular, when using spousal education as an IV, correcting for the

non-random sample problem generally produces smaller IV estimates, except in the case for

men in 2002. The magnitude of the difference between the robust and standard IV estimates

is relatively small, ranging from -.23 (=(0.0704-0.0727)*100) and .06 (=(0.0888-0.0882)*100)

percentage points. By contrast, when using parental education as IV, correcting for the non-

random sample problem has a larger impact, producing larger IV estimates. Compared to the

case of spousal education, the magnitude of the difference between the robust and standard

IV estimates, when using parental education, is much larger. For example, the difference is

1.26 (=(0.12-0.1074)*100) percentage points for men and 1.21(=(0.1504-0.1383)*100) per-
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centage points for women in 2002. These differences imply that the magnitude of the bias

due to the non-randomly missing IV is sizable – about 10.5 percent for men and 8 percent for

women. Another interesting finding is that there does not appear to be a discernible pattern

of the direction of the selection bias. This is primarily because the selection mechanism (and

the nonparametric conditional expectation) is unknown and may differ substantially across

IVs and samples (also evident in the results of functional form tests). Given the fact that the

MW estimator is always consistent, we recommend that it should always be used in practice,

if possible.

In sum, we find that the IV estimates using spousal education suffer much less from the

selection bias in terms of the magnitude than do those using parental education, especially

in recent years. This result may be explained by the fact that marriage is still prevalent

and divorce rate is low in China, compared to other developed countries. For example, the

divorce rates, according to China Internet Information Center7, are 0.18 percent in both

1995 and 2002. Despite these results, the Hausman test results, however, suggest that these

differences are not statistically significant at the conventional levels, except for the sample of

female workers in 1995. The results remain unchanged when we take into account potential

unknown variance structure using the bootstrap procedure. Our results suggest that the

selection issue exists but is not as severe as in other contexts. A note of caution is in order

concerning this test. As noted in Hausman (1978), power considerations of this type of test

are important in practice, and a test may fail to reject the null hypothesis may be simply

due to lack of power (which in turn depends such factors as sample size). Thus, further

explorative analysis is warranted of finite sample properties of this test.

4.1. Further Results Excluding Age Dummies

We include age dummies in our specification to control for several nation-wide events in

the past. Here, we also examine what impact the correlation between age and experience

7http://www.china.org.cn/english/en-sz2005/sh/biao/23-42.htm
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may have on our results.

To capture the correlation between age dummies and education and experience, we report

the R-squared values from regressions of schooling or experience on age group dummies

(Table B1). As we can see, age and experience is correlated, but not perfectly. Specifically,

R2 ranges from .6 to .8. Given the focus in this paper is on estimations of the returns to

education, the correlation between age group and experience should matter little for the

results. What really matters is the correlation between schooling and age groups. And

indeed, we find statistically significant relationship, but R2 is smaller as opposed to the case

of experience. To assess the impact of the correlation between age and other variables, we

exclude age group dummies and repeat all our analyses. The results are reported in Tables

(B2) and (B3) in the Appendix. We find that the results remain mostly unchanged.

5. International Evidence

In the Chinese context, there is only modest evidence to suggest that selection may lead

to inconsistent estimates, especially when utilizing parental education as an IV. However,

this result is not necessarily going to hold true universally. Given the potential importance

of this topic, we feel it imperative that we should also assess the impact of selection on

the results reported in the previous important studies using data from other countries. We

do this by first replicating the results in Trostel et al. (2002) and then repeat our analysis

using the same data. The data are from International Social Survey Programme data (U.S.

sample), 1985 – 1995. To focus on the selection issue, we follow their sample selection

criteria and model specifications. In particular, we utilize in estimations log of hourly wages

as dependent variable, years of schooling as measure of education, and such control variables

as year fixed effects, marital status, union status, age and age squared (when appropriate).

The sample consists of only employed workers aged 21-59.

The results are reported in Tables (C1)-(C2). Examining the results for specification

tests of functional forms, we notice that for both the sample of men using spousal education
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and the sample of women using parental education as IVs, the null hypothesis of correctly

specified parametric form is rejected at least at p ≤ 0.10 levels. But we cannot reject the

null hypothesis for the sample of men using parental education and the sample of women

using spousal education as IVs. These results suggest that selection issue could potentially

bias the IV estimates for certain samples and that there may be room for improvement by

addressing the selection issue.

Turning to actual estimates, we are able to successfully replicate the standard IV results

in Trostel et al. (2002) (Tables 5 and 6, first row in their paper). The estimates in U.S.

are larger than the estimates in China in 1995, but close to those in China in 2002. The

drastic increase in the returns to education over time in China, catching up with U.S., seems

to suggest that the ongoing economic transition during this period increase the value of

education, which could be due to either increased demand for highly-educated workers or

more appropriately valuing human capital at its market rate (Wang, forthcoming). When

addressing the nonrandom selection issue, we find the results change only slightly, and the

selection issue does not appear to bias the results much, even though the tests results of

functional form suggest such possibility. Confirming the casual observation, the Hausman

test results suggest that we cannot reject the null hypothesis of the difference between the

two methods being zero at the conventional levels.

6. Conclusions

This paper first estimates the returns to education in China, adjusting for the selection

bias due to non-randomly missing IV. As noted in Fleisher et al. (forthcoming), due to

the difficulty in finding a valid instrument variable, very few studies estimating returns to

education have attempted to address the endogeneity and measurement error problems in

the Chinese context. A good IV candidate is much needed for future studies. Our results

suggest that the non-random selection does not bias the IV results much (at least the effect

is not statistically significant). This result is important since it suggests family backgrounds

19



such as spousal and parental educations could be used as IVs for own education provided

that the standard IV assumptions are met. For example, together with the evidence in

Wang (forthcoming) (verifying that the standard IV assumptions are indeed met for spousal

education), our results thus show some supporting evidence for the use of spousal education

as an IV in the Chinese context. We also further assess the robustness of our results using

the U.S. samples. We similarly find evidence that the selection issue exists but does not

bias the results significantly. While these results cannot necessarily be generalized to other

countries, they do increase our confidence in the IV results using family backgrounds as IVs,

especially when implementation of the MW method is not computationally viable.
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