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1 Introduction

Imbens (2000), Lechner (2001), Hirano and Imbens (2004) and Imai and van Dyk
(2004) should be credited with an invaluable generalization of the seminal propensity
score method by Rosenbaum and Rubin (1983) to the case of multivalued and, in
particular, continuous endogenous treatments. The idea is to utilize the propensity
score as a scalar-valued control function which is based on observable characteristics
in the data in order to remove the endogeneity bias in average effects of endoge-
nous treatments on outcome of interest. For instance, Hirano and Imbens (2004)
show that this works well with continuous treatments when utilizing the residuals
from an estimated continuous-treatment-generating econometric model to generate
a generalized propensity score which assumes normality and is used in a flexible
(e.g., polynomial) functional form as a control function in the outcome-generating
model.

This short paper follows up on this idea. It shows that the approach of Hirano
and Imbens (2004) is as well applicable with multiple correlated continuous endoge-
nous treatments as it is with single treatment variables. We illustrate that consis-
tency proofs are straightforward and the small sample properties of the estimator
are similar between single-treatment and multiple-treatment frameworks. The next
section introduces the notation and outlines the approach for multiple treatments
with the large-sample properties being relegated to the Appendix, and Section 3
summarizes the small sample properties for three data-generating processes and one
to five endogenous treatments.

2 Generalized propensity scores for multiple treat-

ments

We wish to nonparametrically estimate the average treatment effect function (ATE)
of M continuous, endogenous treatments which are indexed by m = 1, ...,M on
outcome Yi of cross-sectional units i = 1, ..., N . There are three treatment concepts.
First, denote the mth set of potential treatment levels by Tm ∈ [tm, tm], where
tm and tm are the corresponding lower and upper bounds, respectively. Second,
denote particular levels of potential treatment in the interval [tm, tm] by tm ∈ Tm.
Finally, refer to actual treatment levels for unit i by Tmi, and the combinations of
potential and realized treatments in M dimensions by vectors t = t1, ..., tM and
Ti = (T1i, . . . , TMi), respectively.

Postulate outcome Yi as a flexible function of Tmi as Yi(Ti) = f(T1i, ..., TMi) and
of potential treatments as Yi(t) = Yi(t1, ..., tM). The latter may be referred to as
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the unit-level dose-response function, whose average across units i is the average
dose-response function, µ(t) ≡ E[Yi(t)]. Specify Tmi as a function of nonstochastic
regressor vector Xmi which may potentially be correlated with Yi:

Tmi = f(Xmi, δm) + εmi, (1)

where δm is an unknown parameter vector and εmi is a stochastic term which is
uncorrelated with both Xmi and Yi. Define the joint matrix of nonstochastic regres-
sors (instruments) in the system by Zi which contains at least X1i ∪ ... ∪XMi and
possibly also interactive terms of elements of the individual vectors Xmi, so that we
may formulate a reduced-form specification for all M treatments as

Tmi = f(Zi, γm)︸ ︷︷ ︸
=Tmi

+ νmi, (2)

where γm is an unknown parameter vector and νmi is a stochastic term which is
uncorrelated with both Zi and Yi.

For identification, we have to assume weak unconfoundedness as stated in Rosen-
baum and Rubin (1983) for the binary propensity score and in Hirano and Imbens
(2004) and Imai and van Dyk (2004) for the generalized propensity score with a
single, multi-valued (continuous) treatment.

Assumption (Weak Unconfoundedness)

Yi(t) ⊥ T1i, ..., TMi |Zi ∀t1 ∈ T1, ..., tM ∈ Tm.

Hence, the potential outcome Yi(t) is conditionally independent of treatment status
Tm. The generalized propensity score in the M -dimensional continuous treatment
is specified as follows.

Definition (Generalized Propensity Score)
Denote any possible vector of covariates determining treatment by z and define the
M -variate conditional joint density of t1, ..., tM given z as

g(t, z) = fTi|Zi
(t|z).

Then, the generalized propensity score (GPS) is defined as

Gi = g(Ti, Zi), Zi ⊥ 1{Tmi = tm∀m = 1, ...,M} |g(t, Zi) .

Hence, the probability of Ti = (T1i, ..., TMi) being equal to some potential treatment
combination t is independent of the covariates in Zi once we condition on the GPS.
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Accordingly, treatment status is independent of outcome conditional on the GPS
once the above assumption is met. For identification, this implies that under weak
unconfoundedness conditioning on (some function of) the scalar-valued Gi instead
of (some function of) all elements in Zi is sufficient to remove the selection bias in
the unconditional impact of all treatments on outcome.

Let us denote the N×1 GPS vector by G = (Gi), the N×M matrix of demeaned

treatments by T̃ = (νmi) with νmi = Tmi−Tmi where Tmi is the (conditional) mean
of Tmi, and the M ×M symmetric and positive definite variance-covariance matrix
of treatments by Σ = Cov[νm, νm′ ] where νm = (νmi) and νm′ = (νm′i) denote two
N × 1 residual vectors for treatments m and m′. Then, G = (Gi), and its estimated

counterpart Ĝ = (Ĝi) based on the multivariate normal are given by

G =
1

(2π)M/2|Σ|1/2
exp

(
− 1

2
T̃ ′Σ−1T̃

)
, Ĝ =

1

(2π)M/2|Σ̂|1/2
exp

(
− 1

2
̂̃
T
′
Σ̂−1

̂̃
T
)
. (3)

The estimated Ĝ = (Ĝi) can then be used in a flexible control function to reduce (if
not remove) the endogeneity bias of the estimated average treatment effect in the
model determining outcome Yi. The Appendix proves consistency of this approach
and the next section illustrates its small-sample performance.

3 Monte Carlo set-up and simulation results

Consider the treatment-generating process

Tmi = Tmi + νmi = Xmiβm + νmi

where Xmi ∼ i.i.d.N(0, 1) and βm = 5 for each m = 1, . . . ,M , and

νi = [ν1i, . . . , νMi]
′ ∼ i.i.d.N(0,Σ),

where all diagonal elements of Σ are assumed to be unity and all off-diagonal ele-
ments are assumed to be 0.25, for simplicity. Let us specify
Li = [T1i, . . . , TMi, T

2
1i, . . . , T

2
Mi, T

3
1i, . . . , T

3
Mi], Hi = [X1i, . . . , XMi, X

2
1i, . . . , X

2
Mi],

Ξi = [T1iX1i, . . . , TMiXMi], and Γi = [G1
i , . . . , G

3
i , GiT1i, . . . , G

3
iT

3
Mi] to formulate

three considered processes for outcome:

Y A
i = Liα1 + Γiα2 + ui (4)

Y B
i = Liα1 +Hiα3 + ui (5)

Y C
i = Liα1 +Hiα3 + Ξiα4 + ui (6)
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where ui ∼ i.i.d.N(0, s) and s scales the variance of ui. We set all elements in the
vectors αk for k = 1, . . . , 4 to unity. In the counterfactual situation, we raise T1i
to T c

1i = T1i + 0.01 at Zi without loss of generality. This changes ν1i and Gi and,
in turn, it changes Y j

i to Y jc
i for j ∈ {A,B,C}. Let us denote the true average

treatment effect of such a change in T1i on outcome Y j
i by ATEj

1 = Y jc
i /Y j

i − 1.
We aim at estimating the latter by OLS, assuming linearity and mean indepen-

dence (ÂTE
j

1OLS = α̂1,1) and, alternatively, by the GPS estimator (ÂTE
j

1GPS).

Specifically, after defining Υ̂i = [Ĝ1
i , . . . , Ĝ

3
i , ĜiT1i, . . . , Ĝ

5
iT

5
1i], ν̂mi = Tmi− T̂mi, and

Zi = [Xi1, . . . , XiM ], the GPS-based estimates are obtained as follows:1

First stage: T̂mi = Ziϑ̂m; Second stage: Ŷ j
i = [Li, Υ̂i]ϕ̂

j, (7)

where ϑ̂m and ϕ̂j are estimated conformable parameter vectors. Notice that there
are two approximation errors in (7). First, (7) ignores the exclusion restrictions
(that Tmi only depends on Xmi only) and, second, the functional form in which Y j

i

depends on T1i in (7) is different from the true processes in (4)-(6).
We consider cases of M ∈ {1, . . . , 5}, of N ∈ [1, 200; 2, 400; 4, 800] observations

in the data, and of two configurations for the scaling factor of the variances in the
second-stage models, s ∈ {1, 10}. Altogether, this gives 5 ·3 ·2 = 30 experiments for
which we do 2, 000 Monte Carlo runs each. The results for the average bias and root
mean squared error (RMSE) across all runs and observations i within an experiment
are summarized in Table 1.

Table 1 suggests the following conclusions. First of all, OLS assuming ATE
linearity is always dramatically biased and exhibits a large RMSE. This is not sur-
prising, given the assumed high degree of ATE nonlinearity and endogeneity in the
data-generating process both of which are ignored by OLS across all Models A-C.
Obviously, bias as well as RMSE are always higher with more noise in the outcome
process, i.e., for s = 10 compared to s = 1. Moreover, OLS tends to perform weakest
for Model C due to ignoring the interactive terms in Ξ.

Second, among Models A-C, the GPS approach works relatively best for Model
A. The reason is simply that the control function is perfectly specified in expected
value in that model. Hence, the only error accrues to pure stochastics. Clearly, this
is not what one will encounter empirically. In Models B and C there is a polynomial
approximation error about the control function, which leads to higher bias than in
Model A.2 Third, as expected, the bias declines as N gets bigger (to the extent that

1Alternatively, we considered approximations, where Υ̂i was based on a (less flexible) form with
P = 3 and a (more flexible) form with P = 10. The results are summarized in an online appendix.
Naturally, the bias declines with the degree of flexibility of the control function.

2Empirically, this could be further reduced by a search algorithm about the functional form of
the control function, e.g., based on information criteria.
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there is small sample bias on top of functional form bias of the control function).
Naturally, the RMSE declines as N increases. Moreover, the RMSE rises as the
signal-to-noise ratio declines in the outcome equation with much less impact on the
bias.

Finally, the extent of bias and RMSE is largely invariant to an increase in M .
Hence, the GPS approach works as well with multiple treatments as with a single
treatment.
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Appendix

For ease of notation, we suppress subscripts for individuals in this section.

Theorem 1 If the assignment to treatment is weakly unconfounded given pre-treatment covariates
Z, then for every potential multiple treatment level t

fT (t|g(t, Z), Y (t)) = fT (t|g(t, Z)) (8)

Proof 1 Denote the conditional probability distribution for Z by FZ(z|.) and the conditional den-
sities of T = (T1, ..., TM ) by fT (t|.). Weak unconfoundedness means

fT (t|z, g(t, Z), Y (t)) = fT (t|z) = g(t, z).

This is the case, since fT (t|Z, g(t, Z), Y (t)) = fT (t|Z, g(t, Z)) = fT (t|g(t, Z)) = g(t, Z), so that
(8) holds under weak unconfoundedness whereby treatments and outcome are mutually independent
conditional on the GPS for multiple treatments.
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Theorem 2 Denote the conditional expectation of outcome by η(t, g) and the average dose re-
sponse function by µ(t). Referring to element-wise equality Tm = tm for all m = 1, ...,M by T = t,
under weak unconfoundedness we have (a) η(t, g) = E[Y (t)|g(t, Z) = g] = E[Y |T = t, G = g] and
(b) µ(t) = E[η(t, g(t, Z)].

Proof 2 Denote the conditional density of Y (t) = y conditional on T = t and g(t, Z) = g by
fY (t) (y|t, g). Using Bayes’ rule and Theorem 1, we obtain

fY (t) (y|t, g) =
fT (t|Y (t) = y, g(t, Z) = g) fY (t) (y|g)

fT (t|g(t, Z) = g)
= fY (t) (y|g) .

With E [Y (t)|T = t, g(t, Z) = g] = E [Y (t)|g(t, Z)],

E[Y |T = t, G = g] = E[Y (t)|T = t, g(T,Z) = g] = E[Y (t)|g(t, Z) = g] = η(t, g), (9)

which proves Part (a). Estimating E[Y |T = t, G = g] yields the parameters needed for calculating
the dose response function. Part (b) follows from (9) together with the law of iterated expections:

E[η(t, g(t, Z)] = E[E[Y (t)|g(t, Z) = g]] = E[Y (t)].
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