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Abstract

Neyman and Scott (1948) define the incidental parameter problem. In panel data
with T observations per individual and unobservable individual-specific effects, the max-
imum likelihood estimator of the common parameters is in general inconsistent. This
paper develops the integrated moment estimator. It shows that the inconsistency of the
integrated moment estimator is of a low order, O(7~2), and thereby offers an approxi-
mate solution for the incidental parameter problem. The integrated moment estimator
allows for exogenous regressors, time dummies and lagged dependent variables and is
efficient for an asymptotics in which 7" o« N where o > % We adjust the integrated
likelihood estimator to allow for general predetermined regressors. The paper also shows
that methods that rely on differencing away the individual-specific effects can be viewed

as special cases of the integrated moment estimator.
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1 Introduction

ONE WAY to control for the heterogeneity in panel data is to allow for time-invariant, indi-
vidual specific parameters. This fixed effect approach introduces many parameters into the
model which causes the ‘incidental parameter problem’ of Neyman and Scott (1948): the
maximum likelihood estimator is in general inconsistent. In particular, Neyman and Scott
(1948), Mundlak (1961), Nickell (1981), and Chamberlain (1984) give examples in which
the inconsistency of the maximum likelihood estimator is O(T~!) where T is the number of
periods for which we observe an individual.

Cox and Reid (1987) are not concerned with panel data but they propose a general
method to deal with nuisance parameters. In particular, Cox and Reid (1987) propose
to reparameterize the log likelihood so that its cross derivative with respect to the nuisance
parameter and parameter of interest is zero in expectation. After this reparametrization, Cox
and Reid (1987) apply their conditional profile likelihood method. A limit of this approach
is that the reparametrization requires that a particular differential equation has an explicit
solution. It is well known and discussed by Critchley (1987) and Hills (1987), that differential
equations rarely have explicit solutions. Despite this drawback, Lancaster (2000 and 2002)
applies the idea of reparametrization to panel data where the fixed effect plays the role of
nuisance parameter. Lancaster (2000 and 2002) then integrates out the fixed effects but
does not present general results. This paper shows that the inconsistency of this integrated
likelihood estimator is O(T~2). Moreover, this paper removes the need for reparametrization
by using a moment function, g(3, f), that approximately separates the individual nuisance
parameter f from the parameter of interest (. Specifically, the partial derivative of g(/3, f)

with respect to f is zero at the true values of the parameters,

Egy(Bo, fo) = 0.

We show how to construct g(3, f) for any likelihood and some quasi-likelihood models, sub-
ject to regularity conditions. We thus avoid reparametrizations and differential equations

and the restrictions those imply. Moreover, we allow for general predetermined regressors,



time dummies, and the individual parameter does not necessarily have to be an individual
mean but can also be an individual regressor coefficient or an individual elasticity. We then
integrate the moment function g(f3, f) with respect to the likelihood of f, using a Laplace
approximation. We use this approximation as an estimating function and define the inte-
grated moment estimator accordingly. We then show that the inconsistency of the integrated
moment estimator is O(7?).

Alvarez and Arellano (1998) develop an alternative asymptotic where T increases at the
same rate as the number of individuals, N. We show that the integrated likelihood estimator
is asymptotically unbiased under this alternative asymptotic. Given that T is smaller than
N in most panel data, we argue that it might be more interesting to let 7" increase at a slower
rate than NV; we also show that the integrated moment estimator is asymptotically unbiased
as long as T grows faster than N'/3. The Cramér-Rao bound is well-defined for likelihood
models with lagged dependent variables and the integrated moment estimator reaches the
Cramér-Rao bound in this asymptotic. Simulations show the relevance of the asymptotic
approximation.

Mundlak (1961), Chamberlain (1985), and Arellano and Honoré (2001) discuss how op-
timizing behavior of individuals causes dependence between the regressors and the hetero-
geneity. This dependence, as well as the unobservability of the heterogeneity distribution,
motivates the fixed effect approach in which the heterogeneity distribution is left unspeci-
fied. If an applied researcher wants to specify a mixing distribution then the same line of
reasoning implies that some robustness against the wrong choice of mixing distribution is
desirable. Suppose a mixing distribution is specified for the individual parameter f. Using
9(B, f) where Eqr(Bq, fo) = 0 yields an estimator that is consistent for 3 if the model is
correctly specified and whose inconsistency is O(T~2) if the mixing distribution is misspeci-
fied. We thus generalize Mundlak’s (1978) linear random effects model to nonlinear models.
The argument against fixed effect models is usually that the set of models that can be esti-
mated is so small. The reason for aversion against random effects models is usually based on

the sensitivity to the choice of mixing distribution, see Nerlove (2000) and Trognon (2000)



for a recent exposition of these arguments. This paper gives an approximate solution for
the incidental parameter problem and some algebra can be used to increase the robustness
against the wrong choice of mixing distributions. For the linear and Weibull model with ex-
ogenous regressors, one can difference the (transformed) data to remove the fixed effects, see
the overviews of Chamberlain (1984, 1985) and Arellano and Honoré (2001). The integrated
moment estimator reproduces the difference estimator for these simple models.

The work of Hahn and Newey (2002) is related to this paper. They use a jackknife
technique to reduce the bias in panel likelihood models with strictly exogenous regressors
and without time dummies. Hahn and Newey (2002) assume that 7" increases as fast as
N and show that the jackknife technique reduces the bias to o(7T!), which is larger than
o(T2).

Arellano and Honoré (2001) note “almost nothing is known about nonlinear models with
general predetermined variables”. Recent progress has been made by Honoré and Lewbel
(2002) who consider the binary choice model with fixed effects and general predetermined
variables. Honoré and Lewbel (2002) linearize the binary choice model by dividing by the
density of an regressor which is assumed to be absolutely continuously distributed and con-
ditionally independent of the fixed effect and error terms. Honoré and Lewbel (2002) then
use instrumental variables to estimate the model. The integrated moment estimator allows
the regressors to have discrete support and to depend on the fixed effects but the estimator
needs 71" to increase slowly and is parametric.

This paper is organized as follows. Section 2 provides an informal description of the
estimator. Section 3 presents formal results. Section 4 discusses the panel probit model with
general predetermined regressors and fixed effects as an example. Section 5 concludes and

all the proofs are in the appendix.



2 Informal description of the estimator

Suppose we observe N individuals for T periods. Let the log likelihood contribution of the #*

period of individual i be denoted by L¥(3, f;). Summing over i and ¢ yields the log likelihood,

= ZZLit(@ fi),

where (3 is the common parameter, f; is the incidental parameter and f = {f,..., fx} and
we condition on exogenous regressors. Suppose that the parameter (3 is of interest and that
the incidental parameter f; is a nuisance parameter that controls for heterogeneity. One
could estimate 3 by maximum likelihood. However, Neyman and Scott (1948), Mundlak
(1961), Nickell (1981), and Chamberlain (1984) give examples in which the inconsistency
of the maximum likelihood estimator is O(7T!). The intuition for these examples is that
the score Lg(f3, f) depends on f and that replacing f by its maximum likelihood estimate
yields an estimating function with nonzero expectation since Lg(3, f) and the maximum
likelihood estimate for f are dependent. Specifically, + ELg(ﬁO,f) s O(T™) where £3,
denotes the true value and f is the maximum likelihood of f given ;. This paper gives
an approximate solution to this incidental parameter problem by reducing the dependence

between the moment function and f . In particular, consider the moment function

D, Digi i ‘E'Li. (B, f)
1 ) = = )Y = =058, f) — LY (B, f) =L~
1) 98.0) = FHIGI) = FHEO.D - Lo N )
h ELy(B.f) [ Lyp(8, e P Nd
where ‘E’L}f(ﬁvf) - /‘L 6 feLlﬁf)dt

and partial derivatives with respect to 3 and f are denoted by the subscripts 3 and f

while the subscript ¢ is suppressed. Thus, ‘E’ denotes the expectation that is yielded by

B (6.1)

treating el (B:F) as a density so that W

depends on 3 and f but is nonstochastic.

Differentiating with respect to f gives

= = E'Ly (5. ) Hprn)
_ L i _ 2airri i Bf\» i ‘E'LY% ¢ (B,f)



‘E'L 5r(Bofo) EL 57 (Bo>fo)

Taking expectations and assuming that BTy, Bofo) — BLhs(Borfo)

gives

, ‘E ’Li
Eg;(Bo, fo) = ELjyy — EL}jrmre™ = 0
E’LY,
Thus, the parameter of interest 3 is approximately separated from the nuisance parameter
f. For two simple models, the Poisson model with exogenous regressors and the linear model
with exogenous regressors!, the moment ¢(/3, f) does not depend on f. However, for other

models, the unknown parameter f does appear in the moment function of equation (1) and

the next step is to integrate? out f with respect to the likelihood for given 3. Let

L
. d,
9171(/6) - [g Lz f
| eldf
Kass et al. (1990, theorem 7) give a Laplace approximation for this ratios of integrals,
Z. i(peldf oo 195 1L(gp(f) .
o =Lty 10D B DG oo
J et df 2L ()2 L)}

where f denotes the maximum likelihood estimate of f for given 3. The expansion is valid
for well-behaved likelihoods. We use this approximation® to estimate 3 and thus define the
integrated moment function.

195406, f) L 1L(8, N8, 1)
QU JB. )2 {18, D)

We define the integrated moment estimator as follows

®) 48, 1) = 5 16" (8.1) - }

3= arg win{g” (4, Ha (8, )}

Under conditions that are slightly weaker than correct specification of the model®, the ex-

pectation of ¢*(/3, f) is of a low order at the true value of the parameter, that is

Eg*(Bo, ) is O(T7?).

There are two causes of bias in panel data models. First, bias can be caused by a nonzero
expectation of the estimating function. We dealt with this cause by applying approximate

parameter separation so that Eg*(ﬁo,f) is of a low order. Bias can also be caused by



correlation between the estimating function and its derivative, i.e. the correlation between
7*(Bo, f) and its derivative, g}}(ﬁo). The latter source of bias is of small order in panel data
models, O(w7), if N or T is large, see Newey and Smith (2001) for a discussion of this type
of bias in cross section models. We approximate the finite sample properties of B by using

an asymptotics in which N or T increases. In particular,
VNT(5 = By) =4 N(VNTB, V),

where W denotes the variance-covariance matrix and B denotes the bias. We show that B
is of a low order, O(T~2). This implies that v/ NTB is O(\/TAT), which goes to zero if T
grows faster then N1/3. Moreover, we show in the next section that the integrated moment
estimator reaches the Cramér-Rao efficiency bound in this asymptotic. An intuition for this
efficiency result is that g(f, fo) is the efficient score and that the difference between the
integrated moment and this efficient score is small in terms of mean squared error at (3.

That is,

VNT{g*(Bo, f) = 9(Bo, fo)} is oms(1)-

An important topic in panel data econometrics is robustness against common shocks. For
example, labor force participation or expenditure decisions depend, among other things, on
the business cycle. If the common shocks are caused by observables, such as the unemploy-
ment rate or the growth rate of Gross Domestic Product, then one may be able to control
for the common shocks by including these observables as regressors. In other applications
the common shock may not be observable to the econometrician and one prefers to include
a vector of time dummies. A time dummy has value one for a fixed set of periods and is
zero for all other periods. We can, therefore, only estimate time dummies at rate N —1/2 We
again assume that T grows faster than N'/3. Applying the estimating function of equation
(3) yields an efficient estimator with a bias of order O(T~2) that converges at rate (NT')~1/2

1/2 for the time dummies.

for the common parameter and at rate N~
Optimizing behavior of individuals often implies that the dependent variable influences

the regressors in subsequent periods, as discussed in Arellano and Honoré (2001). We show



how to adjust the estimating function of equation (3) to allow for general predetermined

regressors.

3 Assumptions and theorems

This section presents conditions under which the estimator for the common parameter, B,

can be efficiently estimated. Let

J ,Bf /67 Ll ﬁf)d
L5 (B, e @t

@ (8.1 = 2G5 D)) = LA ) - LA )

where we suppress the subscript of f. Consider the following objective function

Q(B, ) =—{g" (B, H}{g" (B, /)} = {n(B, /)Y {1(B, f)},

where

. B Z 19}}“(67]0) le"ff(/gvf)g}(ﬁvf)
g'B.f) = 5B, f) - 2L}f(6,f)+2 RO

Lf(ﬁ,f)
r

} and

h(B, f) =

We assume that the moments g(f3, f) and h(f3, f) identify the parameter of interest 3 and

the nuisance parameter f. Let z = {z,y}.

Assumption 1 (Moments): Let {Eg(z,3,f) = 0, Eh(z,0,f) = 0} be uniquely solved for
{8, f} ={Bo, fo} where {By, fo} € © and O is compact.

The compactness assumption is standard in econometrics and can be replaced by the re-
quirement that g(3, f)'g(3, f) + h(B, f)'h(B, f) is concave in its parameters. The following
assumptions ensures that g(3, f), ¢*(3, f) and h(3, f) converge uniformly to their expecta-

tions; let ||-|| denote the Euclidean norm.

g (80) Ly (580} (=B.)
TGan ey bz )

be continuous for all {B3,f} € © with probability one for all i; let ||g(z, 53, f)|| < a(z),

[ qff(i’ﬁ§)|| < b(2), ||L?fg£;ﬁj EPD)| < e(2), and ||h(z, 8, £)|| < d(2) for all i and for al

{6, f} € © where Ela(z)] < 0. E[b(z)] < 00, Elc(z)] < 0o and E[d(z)] < co.

Assumption 2 (Uniform Convergence): Let g(z, 3, f)




Assumption 3 (Stationary and Exogeneity): Let z; = {x;,y;} be strictly stationary and

ergodic for all i; let x; be exogenous.
Assumption 4 (Asymptotics): Let T"— oo.

Proposition 1

Suppose {3, f} = argming ree{Q(B, f}. Let assumption 1-4 hold. Then 3 —p By and
f —p Jo

Proof: See appendix.

Examples by Neyman and Scott (1948), Nickell (1981) and Chamberlain (1984) show
that the asymptotic bias of the maximum likelihood is O(T!). Neyman and Scott called
this the incidental parameter problem. We now show that approximate separation reduces

the asymptotic bias of the maximum likelihood estimator to O(T~2) for large N.

Assumption 5 (Approximate separation):

Let (i) Egg(Bo, fo) = 0 and (ii) ELy(By, fo)gr(Bos fo) + Egry(Bg, fo) = 0.

Condition (i) is implied by ‘E’Lys = ELys and ‘E’Lgy = ELgy; condition (ii) holds if, in
addition, E(Ls)? = ELyys, ‘E’Lgrs = ELgrp, ‘E'LggLy = ELgeLy and “E’Lyss = ELyyy,
where ‘E’ denotes the expectation that is yielded by treating el (B:F) g a density. Moreover,
condition 5 holds under correct specification of the model, as shown in the appendix. In an
dynamic linear model® with an individual parameter, we can assume normality of the error
terms in order to derive moment functions but it follows from Assumption 5 that approximate
separation only depends on correct specification of the first two moments of the error term.

We need T to increase with N and assume the following.

Assumption 6 (Asymptotics):

Let T oc N* where o > %

We also impose an assumption about the conditionally independent across individuals.
For a misspecified model, assuming that the data generating process is conditional indepen-

dent across individuals is not sufficient. The reason for this is that a common regressor, in



combination with some misspecification, could induce dependence of the contribution to the
moment functions of different individuals, i.e. that ¢*(3,, fo) and ¢’(8,, fo) are dependent
for i # j. The following assumption assumes that ¢*(3,, fo) and ¢’ (3, fo) are uncorrelated
and also assumes their approximations, ¢**(f3, f) and g*’j(ﬁo,f) are uncorrelated as well,

where f solves Lf(ﬁo,f) =0.

Assumption 7 (Conditional independence across 1):
Let (i) Egr{32; 9" (B0, £) X297 (B0, )} = w7 X3 E{g"* (B0, ))g"* (Bo, )’} and
(7’7’) Eﬁ{Zz gi(607 fO) Zz gi(607 fO)/} = ﬁ Zz E{gi(ﬁm fO)gi(/Bm fO),}'

For correctly specified models, assumption 7 can be replaced by the requirement that
the expectations exist and that p(yi|zit, fi,y1,---Yi—1,Yi+1,Yn) = p(Yit|it, fi). That is, con-
ditional on the regressors and incidental parameters, y; is independent of the values of y of

other individuals.

Assumption 8

Let (i) {By, fo} € interior of ©; (ii) +Ls(2,3, f) be three times continuously differentiable
with respect to f in a neighborhood M of {By, fo} with probability approaching one; (iii) 3 Ty
such that, for all i, —oo < %L;f(z,ﬁ, f) <0 in a neighborhood M of {By, fo} and T' > Tp; (iv)
Elllkg} (2, Bor SN P1, BURL (2, o S, BUIALiys (2, Gos Sl 12, ElIST 15 (2 o o)), and
E[||%L}fff(z,50,f0)||2] are finite for all i (v) M%@l is continuous in a neighborhood N

of {By} with probability approaching one and supgemH%g(ﬂ))H < 00.

At the cost of a more complicated proof, assumption 8 (iii) only has to hold with a probability
larger than 1 — e~“L for some ¢ > 0, see appendix. Assumptions 1-8 ensure that /NT x
g*(ﬁo,f) = V/NT % g(By, fo) + 0ms(1). After ensuring that the asymptotic distribution of
g*(By, f) is determined by the asymptotic distribution of g(8,, fo), we impose the following
standard method of moment condition to ensure asymptotic normality of the estimator if

9(B, fo) would be used as a moment. Let G = E{g3(8y, fo)} = E{%(%ilm:go}.
Assumption 9

10



Let (i) g(z, 03, f) be continuously differentiable in a neighborhood M of {f3y, fo} with proba-

bility approaching one; (ii) Elllg(z, Bo, fo)|I?) be finite; (iii) sups,emllgs(z B, F)]] < o0s (iv)

G be nonsingular.

Theorem 1
Let assumption 1-3 and 5-9 hold and {B, f} = argming rco{Q(5, f} where (3 is a common

parameter and f = {fi,..., [N} is a vector of individual parameters. Then

VNT(B — B3y) —a N(0,¥)

where
U =G E{NT *g(Bo, fo)g(Bo, fo) Y.
Under the additional assumption that EL;iLi = —‘E’L%fi, ELE;L% = —‘E’sz, and EL% =

—ELy,y, for all i, the integrated moment estimator reaches the Cramér-Rao efficiency bound
and

1

W= G = [ B(L) — o B(Ls B (L)} E (L) ™

Proof: See appendix.

58, F)
and E{NT = g(B, f0)9(Bo, fo)'} can be consistently estimated by ﬁ S G B, P (B, f)-
Following LeCam (1953), Van der Vaart (1998, chapter 8) discusses how the Cramér-Rao

Under the conditions of theorem 1, G can be consistently estimated by ﬁ > g

bound gives a lower bound on the variance for regular estimators.
In section 2, we introduce the integrated moment function as an approximation to a ratio
of integrals. Under regularity and smoothness conditions, this approximation is still valid if

we use a prior for f. That is

[ 9(B, e (8, f)df
J e (8, f)df

The regularity conditions are implied by Kass et al. (1990, lemma 2, theorem 4 and 7)

(5) = 9" (B, f) + Op(T 7).

and are stated in the appendix. Using a prior is formally equivalent to using a mixing dis-

tribution. Let the mixing distribution be denoted by 7 (¢, f) where ¢ is a finite parameter

11



vector. Replacing 7(3, f) by (6, f) does not change the approximation result in equation
(5). Theorem 1 is based on properties of g»* (83, f) and still holds if we use a prior or mixing
distribution for f. Thus, approximately separating 3 from f by using g(3, f) results in a
certain robustness against the wrong choice of prior or mixing distribution. In particular,
misspecifying the initial conditions or misspecifying the dependence between the heterogene-
ity and the regressors only results in an asymptotic bias of low order, O(T~2). See Wooldridge
(2001) for an overview of models with mixing distributions and Gelman et al. (1995) for a
motivation of Bayesian techniques.

Cox and Reid (1987) propose to reparameterize the log likelihood so that its cross deriva-
tive with respect to the nuisance parameter and parameter of interest is zero in expectation.
After this reparametrization, Cox and Reid (1987) apply their conditional profile likelihood
method. A limit of this approach is that the reparametrization requires that a particular
differential equation has an explicit solution. It is well known and discussed by Critchley
(1987) and Hills (1987), that differential equations rarely have explicit solutions. Despite
this drawback, Lancaster (2000 and 2002) applies the idea of reparametrization to panel
data where the fixed effect plays the role of nuisance parameter. Lancaster (2000 and 2002)
then integrates out the fixed effects and derives a new estimator for the dynamic linear model
with fixed effects. However, Lancaster (2000 and 2002) does not present general results. It
is easy to show that the orthogonality of Cox and Reid (1987), ELg¢ (53, fo) = 0, for all
{Bo, fo} is equivalent to ‘E’Lgs(3, f) = 0 for all {§3, f}, so that a simplified version of the
arguments in this section yields that the inconsistency of this integrated likelihood estimator
is O(T~2). Applying the integrated moment estimator to the dynamic linear model yields
Lancaster’s (2002) estimator without a need for reparametrization. The beauty of the in-
tegrating moment approach is its combination of simplicity with generality: It is easy to

compute and can be applied to a large range of models.

3.1 Time Dummies®’

The individuals in a panel dataset may be exposed to common shocks. If these common

shocks are caused by observables then one may be able to control for the common shocks by

12



including these observables as regressors. In other applications the common shock may not
be observable to the econometrician and one prefers to include a vector of time dummies.
This section shows that the conclusion of the last section, that the moment function g(/3, f)
delivers asymptotically unbiased and efficient estimators, remains true in an asymptotic in
which T grows slower than N but faster than N1/3.

A time dummy has the value one for a fixed set of periods and is zero for all other
periods. As a consequence, these time dummies are only estimated at rate N~V/2 in an
asymptotic with increasing 7" and N. We show that the common parameter still converges
at a rate (NT)~1/2 and, therefore, partition the parameter vector 3. Let 8 = {f3,, 3,} where
(3. is the common parameter that appears in the quasi log likelihood contributions of all
individuals for all time periods and (3; is the vector of dummy variables. In order that the
derivative of g([3, f) converges to a constant matrix G we also change the normalization. Let

9B, f) = {9°(B, £),9%(B, f)} where g¢(3, f) is defined as in the last section, equation (4),
and ¢%(, f) is defined similarly but is normalized by N instead of NT. That is,

j ﬂdf (B, ) L (B) it
J Lps(B, e @Dt

9'(8. F) = Zig B, ) = 2L (5, )~ Ly(5. )

As is shown in the appendix, ﬂga%l converges to a matrix G if N and T' — oo, 8 — [y,
and f —, fo. Under assumptions given below, the integrated moment estimator is consistent

and has the following variance-covariance matrix,

= G_lE{g(/Bm fo)g(ﬁm fO)/}G_l'

Note that the upper left block of the matrix E{g(3, fo)g(Bo, fo)'} is normalized by ﬁ and
is O((NT)™1) while the lower right block is O(N~1). In particular, let the dimension of the

common parameter, (3., be equal to K and the dimension of the vector of time dummies, 3,4,

Hcc Hcd
I —
< Mge  aa >

where 1l is K by K and Ilg; is D by D. Define ¥, = NT %11, and V45 = N *Ilz; and note

be D. Let

that U, and ¥, converge to constant matrices for N, T — oco.

13



We assume” that T grows slower than N but faster than N1/3.

Assumption 10 (Asymptotics):

Let T oc N* where%<oz<1.

The following assumption formalizes the notion that 3, is the vector of time dummies. It is

satisfied if, for example, each time dummy only appears in the likelihood contribution of a

. 89°(B, 8g%(B, 99%(B,
fixed set of periods.®. Let ggc = %fo)w:go, gf;d = %fo)k}:ﬁ}o, ggc = %fo)w:

d _ 99%(B.fo)
9ou = "om;  o=bo’

Bo and

Assumption 11 (Time Dummies):

Let

95, be Op(T1): B{g°(Bo, fo)g*(Bo. fo)} be O((NT)™1);

{Egs, — Egs,[Egs,] " Egs ) be O(1).

Theorem 2

Let assumption 1-3,5 and 7-11 hold and {B,f} = argming ree{g(B, ) 9(B, f)+hs(B, f)he(B, f)}.
Then
VNT(B. - ) — aN(0,%)and
VNBa—By) — aN(0,Ty),
where W, = NT xIl,. and Vg = N *Ilgy. Under the additional assumption that ELZJ}iL}'; =
—‘E’L;fi, EL

%Li = —‘E’L%ﬂ, and EL% = —FELy,y, for all i the integrated moment estimator

reaches the Cramér-Rao efficiency bound and
11 1I d -1 —1
Im= e = —|E(Lgg) — E(L E(L E(L ,
(T ) = ~[E(Lap) = B (B} ElLgo)
where 1., is K by K and Ilgg is D by D.
U, = NT x1lg,
1 1 _
Wa = Nl =—[5E(Lg,s,) — wE(Ls,){E(Lsp)}  E(Lyg,)]

Proof: See appendix.
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3.2 General Predetermined Regressors

Neyman and Scott (1948) describe the incidental parameter problem by showing that the
maximum likelihood estimator fails to be consistent in a couple of examples. The regressors
of these examples are all exogenous but the incidental parameter problem obviously remains
when the assumption of exogeneity is relaxed. In the previous sections, we derived an ap-
proximate solution to the incidental parameter problem by using a moment function that
approximately separates the nuisance parameters from the parameters of interest. As dis-
cussed above, this framework allows for predetermined regressors that are lagged dependent
variables or whose density is known, up to a finite parameter vector. In some applications,
however, one is not willing to specify the stochastic process of such explanatory variables.
In their handbook chapter, Arellano and Honoré (2001) note “almost nothing is known
about nonlinear models with general predetermined variables”. This section derives new es-
timators for (quasi) likelihood models with general predetermined regressors and incidental

p‘cn"ameters9

. For models with weakly exogenous regressors, the technique to condition on
a sufficient statistic is unlikely to work. A sufficient statistic for the incidental parameter
fi would be a function of ¥;1, ..., y;7. Conditioning requires the distribution of the sufficient
statistic conditional on the predetermined regressors of all periods. This distribution is not
specified since the regressors are only required to be predetermined.

Analogously to the last section, we develop a moment function g(/3, f) which approxi-
mately separates 3 and f, i.e. Eg(8g, fo) = 0 and Egs(f3, fo) = 0. However, we can no
longer calculate a probability distribution for predetermined variables. We, therefore, just

use the fact that the regressors are predetermined and predict Lgf using the predetermined !

xt = x{z;1,...,vit} and the parameters 3 and f. In particular, consider

' T } cEa(Lit |5Ct767f) }
6 i = LY - b LY
(6) g'(8, f) ;{ 50D - Faas G0
whore 270 1) [ L5, fle O Ddt
B2l B, F) [ LB, fe B Dat
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Analogously to the last sections, let g(3, f) = NT L{g'(3, f)}. This yields

Lﬂ(ﬁvf) Zz 1Zt 1{‘E (thf 575 f)
NT N E (LY, B, f)

and note that Eg¢(f5g, fo) = 0. Suppose the incidental parameter is a fixed effect and appears

(7) 9B, f) = L} (8, f)}

through an index in the likelihood function. An example is the probit model where Pr(Y;; =
1) = ®(py) and gy = i3+ fi. Using the moment function of equation (7) does not identify
the parameter of the regressors appearing in the index. Therefore, we use the following
moment if the incidental parameter appears through an index in the likelihood function. Let
Ly, denote the first derivative of the log likelihood with respect to p;; and let L, denote

the second derivative. Consider

T—1 ¢ Opiy it 2t
(8) gl (/6 f) _ Z 8lu‘lt L’it _ E ( E’ft LlJ’ztlJ’zt i 7/67 f) Li,t+1
’ - Hit oo Oy pit41 1 Hig4177
t=1 op E ( B}H LIJ’z FERION t+1| ayt 5, f)

where x;; denotes a vector of predetermined variables. If the incidental parameter is a fixed

effect, then we have

‘E(Ly ek B, )
(9) Z xzt{L - H—{mﬂn LZ?-H )
(LlJ'z 1M1 | t+17 6 f) o

‘B’ (L zt B,f - . 4|t 8, f
— t(“"”“”‘ = t+1) has a similar role as the ratio %
E(Lii g qami g 1250 B ) (Lfyl27.8,0)

The ratio

above. However,
notice that the expectations are now conditional on x! and :(;f , respectively. The idea behind
the moment functions is the same and in both cases, 3 is approximately separated!! from f
if

it 2t
E( /’L1fuzt| 7‘ ”607]00) (Lz1fuzt| i77/607f0)}7

ng ,807f0 EZ$Zt{Lﬁtﬂzt (Lﬁzt“zt| g:’ﬁo’fo)} =0

The same vector moment can be used for the regressor coefficients of the transformation
model with a parametric transformation or the Weibull model'2. Suppose yit = H (1) + €it
where p1;; = X3+ f;, H() is a parametric function, E(ey|at) = 0 and E(e?|zl) < co. As-

suming normality and homoscedasticity of the error term yields a quasi likelihood. Applying
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the moment function of equation (9) to the linear model with predetermined variables yields

a familiar'® moment function,
T-1
9'(B) = Z Tit(€it — Eit+1)-
t=1

We thus use the moment vector function of equation (6). If the incidental parameter is a
fixed effect and appears through an index in the likelihood function then we replace those
moments by (8). This yields g(3, f). We then use the same objective function as in the last

section,

QB 1) =—{g" (B, H{g" (B, )} = {n(B, HY{R(B. )}

where

Yo _lg}f(f) ].Léfff(f)g}(f)

g (B, f) = ﬁgl(f) QL}f(f)+§ {L}f(f)}Q }
ne.p = 2D

Imposing the same assumptions as in Theorem 1, except that x is exogenous, gives the

following theorem.

Theorem 3
Let {x;,y;} be strictly stationary and ergodic for all i and let x; be predetermined for all i.

Let assumption 1-2 and 5-9 hold and 3 = arg ming ree{Q(B, f)}. Then
VNT(3 = ) —a N(0,0)
where

U =G 'E{NT % g(Bo, f0)9(Bo, fo) }G .

Proof: See appendix.
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4 Simulations

Heckman (1981a,b) introduces the distinction between “state dependence” and “spurious
correlation” as two sources of correlation over time between outcomes of labor market par-
ticipation or other decisions by an individual. “State dependence” is caused by a lag depen-
dent variable whereas “spurious correlation” is the result of heterogeneity. Heckman (1981b)
presents a simulation study and notes that the fixed effect estimator is biased, in particular
if lagged dependent variables are present. The simulation study of this section is intended to
illustrate the integrated likelihood approach and shows that the integrated moment estimator

is unbiased in the simulation designs considered by Heckman (1981b).

Exogenous Regressors

Heckman (1981b) assumes the following. Let
Yii = XuBB+ ou7i + i,
where Xj; is generated by a Nerlove (1971) process

Xy = 01t+ 0-5Xi,t—1 + Uit, Uy ~U (—0.5, 0.5)
Xi = 5+ 10UZ’07
T; ~ N(O,l), SitNN(O,l)

Yie = 1Yz >0].
Using the fixed effect probit estimator yields the following average estimates for (.

Table 1
[ F=1 3=—01 5=-1]
o2 =3 13052 —0.1097 —1.2422
o7 =1 11598 —0.1042 —1.2026
0? =05 11028 -0.1056 —1.1825
Based on 1000 replications

These results differ somewhat from Heckman’s (1981b) findings, probably because the
number of replications is larger' but the conclusion, namely that the fixed effect probit

estimator is biased, remains the same.
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As is apparent from the following table, the integrated moment estimator is unbiased.

Table 2
n =1 j——oi =i )
O'% =3 (MSFE) 0.9969 (0.0216) —0.0879 (0.0208) —0.9998 (0.0219)
O'% =1 (MSFE) 1.0070 (0.0209) —0.0978 (0.0211) —0.9964 (0.0212)
of =0.5 (MSE) 0.9973 (0.0214) —0.1045 (0.0200) —1.0010 (0.0212)

Based on 1000 replications

See the appendix for details.

Lagged Dependent Variables

The data generating process is the same as in the previous case but now a lagged dependent

variable is included as an explanatory variable

*
Yit

Using Heckman’s (1981b) design, the conditional fixed effect probit estimator yields the

XitB+ Y-

. In particular,

17+ 04T + Eit-

following average estimates for 3 and + for various values of the parameters.

Table 3
0 =3 0 =3 o =3
B =-0.1 g=1 B=0
vy=05 7 (MSE) —0.4401 (0.9307) 1.7461 (194.22) —0.5424 (0.9604)
v=10.5 B (MSE) —0.2008 (0.0442) 3.7034 (55.4247)  0.0376 (0.0227)
vy=0.1 7 (MSE) —0.3898 (0.2568) —4.5833 (395.79) —0.4785 (0.3843)
v=0.1 B (MSE) —0.1353 (0.0199) 13.0668 (1011.52) 0.0312 (0.0305)
o7 =1 o7 =1 or =1
B=-0.1 B=1 B=0
vy=05 75 (MSE) —0.3503 (0.7520) 0.5079 (0.0003) —0.2907 (0.6446)
v=0.5 B (MSE) —0.1167 (0.0102) 1.0444 (0.0051) 0.0513 (0.0105)
v=0.1 7 (MSE) —0.4066 (0.2807) 0.1174 (0.0006) —0.4312 (0.2999)
v=0.1 B (MSE) —0.1692 (0.0143) 1.0671 (0.0106) 0.0457 (0.0024)

Based on 1000 replications

The following table contains the mean of the estimates for 3 and v as well as the mean

squared error for the integrated moment estimator.
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Table 4

0 =3 0 =3 0 =3
B=-0.1 B=1 p=0
7y=05 7 (MSE) 0.4973 (0.0214) 0.4922 (0.0202) 0.5058 (0.0202)
v=0.5 3 (MSE) —0.1041 (0.0211) 1.0058 (0.0201) —0.0025 (0.0213)
7y=01 7 (MSE) 0.1008 (0.0207) 0.0946 (0.0224) 0.1005 (0.0205)
v=0.1 B (MSE) —0.0973 (0.0196) 0.9994 (0.0215) —0.0043 (0.0213)
or =1 ol =1 or =1
B=-0.1 B=1 B=0
vy=05 7 (MSE) 0.5019 (0.0210) 0.4952 (0.0204) 0.4908 (0.0197)
v=0.5 B (MSE) —0.1081 (0.0212) 0.9933 (0.0215) 0.0016 (0.0209)
vy=01 75 (MSE) 0.0942 (0.0213) 0.1073 (0.0206) 0.0953 (0.0214)
v=0.1 3 (MSE) —0.0959 (0.0208) 1.0034 (0.0205) 0.0052 (0.0212)

Based on 1000 replications

5 Conclusion

This paper develops the integrated moment estimator. It shows that the integrated moment
estimator yields an approximate solution to the incidental parameter problem of Neyman
and Scott (1948). A nice feature of this approximate solution is that estimators that rely on
‘differencing’ are shown to be special cases and that the estimator is efficient in an asymptotic
where T increases slowly, in particular, T is only required to increase faster than N1/3.

In their conclusion, Arellano and Honoré (2001) note that almost nothing is known about
nonlinear models with general predetermined variables. Using approximate separation and
the integrated moment function, we derive new estimators for (quasi) likelihood models
with incidental parameters and predetermined regressors. It thus seems that approximate
parameter separation and the integrated moment function are very promising approaches
to study models with general predetermined variables and many nuisance parameters. In
particular, the idea of approximate separation is not limited to quasi-likelihood functions
and it seems to be possible to apply it to other smooth objective functions such as the

smoothed maximum score estimator of Horowitz (1992). This is a topic of further study.
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6 Appendices

Proposition 1
Suppose {3, f} = argming ;co{Q(3, f}. Let assumption 1-4 hold. Then 3 —, B, and
f = fo.

Proof: Assumption 1 implies that Qo(8, f) = —{Eg(83, /)}{Eg(B, [)}—{ER(B, [)Y{ER(B, )}

is uniquely solved for {3, f} ={fy, fo}. Assumption 2-4 and the compactness assumption of

gff (8,1) Llff(ﬂf)gf(ﬂf)
DLy ()7 LG (B}
gff (8,1) E fff(ﬂ f)g}(ﬂyf)
L% (B.f)’ {158,032

continuous, see Newey and McFadden (1994, Lemma 2.4, where Newey and McFadden note

assumption 1 imply that (1) g(3, f) and h((, f) converges uniformly

to their expectations and (2) FEg(f3, f), E

and Eh(f, f) are

that “The conclusion [of Lemma 2.4 remains true if the i.i.d. hypothesis is changed to strict

stationarity and ergodicity of z;”, see Newey and McFadden (1994, page 2129)). This implies

* ; b1 (B.S) LYy (B,)95(B,f) .
that ¢*(6,f) —g(B,f) = %%:vl _%i{)};(ﬂ,f) -I—% fﬁ}f(ﬂi‘f)P } converges uniformly to zero

so that Q(f, f) converges uniformly to Qo(S3, f). All assumptions of Newey and McFadden

(1994, Theorem 2.1) are satisfied and consistency follows. Q.E.D.

We frequently use the fact that the product of three normally distributed random variables
has expectation zero. Seminar participants were often surprised by this so we state the result

as a lemma.

Lemma 1: Let 7,7, and 13 be scalars and let

T
1y | ~ N(0,%) where ¥ is a 3 x 3 matrix and det(X) < oco.

UE!
Then E(119m3) = 0.

Proof: We first consider det(X) > 0. Note that E(n|n2,7m3) = vans + 313 where 75 =
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2 and vy, = PR This gives
E(mmnans) = E{E(mnan3|n2,13)

= E{(vam + v3n3)m2n3}
= E{E(yym3msln3)} + E{E(v3nam3|na)}

= Y9079 E(n3) + X3373E(n9) =0,

using the fact that E(n?|n,) = E(n}) = Sy for | # k.
For det(X) = 0, we have (a) n; is a linear combination of 7, and 73 or (b) 1y = cn5 for some
finite c. If (a) applies then 7; = 7515 + 375 and the above proof holds. If 7, = cng then

E(n1|n2,m3) = E(n1|n2) = $215 and E(nynans) = E(E203n3) = E(L1213) = 0.
Q.E.D.

Differentiating ¢*(j3, f)

G(B.1) = Ly(B.1) ~ Ly(5. Do, f)
J Lsp (B, et Dt
[ L (B, f)e" Bt

where §(3, f)

Differentiating ¢*(/3, f) with respect to f gives

. , , , F)el (B gy
%WJF=@WJ%—h%ffﬁf )e

I L ﬁé%ﬁﬁ+@@JWWJ)

where
58, f) = _J.{L%ff(ﬁaf) + Ly Liyek BNy
R [ L%, (B, f)el BNt

AL f ) + L (B, LB, £) e Bt [ LE (B, f)el Bt
{J L1 (B, flet' BNt} -

Note that 6;}(6, f) is nonstochastic and that,

I Liz¢(Bo, fo)e L (Bos o) it E i
fL /807f0 eL (BO:fO)dt .f.f’

Eg;(Bo, fo) = ELjp —
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since Ech (By, fo) = 0 by assumption 1. Differentiating g*(3, f) with respect to 3 gives

J LS8, fe L“ﬂ’”dt

fLZ (8, fel"B1d

f) J{ Bﬂf (B, f) + (5 f)Ll (8, f)}ey(ﬂ’f)dt
fL 5 fel’B:dt

[ Ly (B, NP @Dt [{Lly (8.1) + Ly (5, NL(B, De G
(T2, (5. ) By -

95(8. ) = ]Z\;[ng(ﬁ,fw%f(ﬁ,f)

+L% (3,

—L5(B, f)

. o  ‘E'LE
GG, fo) = &[LWL@LEL?’”

N
LE’ Ll

srli

L 3

ir
I ‘E,sz{‘E’(szf + LypLp)}
(B'L, )

I

where we omitted the argument if a function is evaluated at (3, fo)-

Stronger alternatives to Assumption 5
Assumption 5 (Approximate separation): Let (i) Egs (B3, fo) = 0 and (ii) EL¢(8g, fo)ar(Bo, fo)+

Eqrr(Bo, fo) = 0.

The following two assumptions imply assumption 5.

Assumption 5% ‘E’Lyy = ELygs, ‘E'Lgy = ELgy; E(Ly)* = ELyy, ‘E’Lgyy = ELgyy,
‘E’ngfo = ELgfo and ‘E’Lfff = ELfff.

Assumption 5%*: (Correct specification): p(y;|z;, 8, f) = e (Bfl2ivi) for all 4.
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In particular, assumption 5* implies assumption 5 since

Egy (B0, fo) + ELy(Bo. fo) g% (Bo- fo)

’ 2

= ELjgpy — ELypprmr — 2B (Lgpp + Ligr L)

‘EL;f
o B L P Ly + Ly Ly}
(EL'L
71
o . ‘E'L! . CE(LYe .+ LY LY)
i i i Elar i B Ly + Ly Ly
E{Lﬂfo_LffocEaLi ~ Ll
+L§LZ‘ELZf{E( f-l-L}fL})}]:
(E'L},)?

Assumption 5% implies assumption 5 since ‘E’L%f = EL}';f so that Egjc = 0 and differ-

entiating both sides of the equation Eg} = 0 with respect to f gives E{g;}Lz} + g}f} = 0.

Lemma 2: Let the assumptions of theorem 1 hold, including the assumption that E{g}L} +
ghp} = 0. Then Jofgiat akl: f*qff} is O(T71).

Proof: E{g}sz} -I-gff} = 0 implies that E{%L—iﬂﬁ} = (. Thus,

E{gfo +9ff} _ E{gfo +9ff} E{gfo +9ff}
Ll L’ ELZ
— (97 L7 + 9rs)(ELYy — Lff) |
L2 ELz
_ prlits +9ff)(ELff Loy o
(EL}f)
i ri )2
since % is O(T~1). Thus,
f
E{gfo+9ff} L L T 9y Ly ELYyy — Ly Lff}+0( )
L VT "ELY ELY JTNT T
The terms 3}?, L—\/}—, and % each have expectation zero and their asymptotic distri-

bution is normal with mean zero (with remainder term O,,s(T~'/?)). Lemma 1 states that
the product of three normally distributed stochasts, with mean zero, has expectation zero

and the result follows. Q.E.D.
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Lemma 3: Let the assumptions of theorem 1 hold, including the assumption that Eg} = 0.
i (T2 i i
Then B{EL Dy (Larfhy) 45 O(17Y).
Ly (Lyg)
Proof: Eg} = 0 and E[||£g¢|*] < oo imply that g} is O(v/T). In particular,

. o o o - o
P ik o R 771 AT 17 L) R 1A VI 172 AR
Ir I Ir If Ir
o . o o
= Iy = BLypp) e DT Lpi9r g e
Ir Ir Ir
= _LE{( T, )BEEﬁEL}ff}_;_O(T—l)
N kT RN ANV AN
) L. . —EL L qg e e el . .
since w, \/’{F and \/ff have an asymptotic distribution that is normal with mean
zero. Q.E.D.

Taylor expansion

The advantage of panel data over a single time series is that one can average over individuals.
We often average over random variables with zero mean and bounded variance. We therefore
introduce the following notation concerning a sequence of error terms that is bounded in
mean square. The random variable Wy is Q7" ™ean (T=1/2) if and only if var(Wr) is O(T ")

and EWp = 0. The definition of f implies that
Ly(f) = L+ (f = fo) Lyp(f) = 0,

where f denotes an intermediate value, f € [fo, f] and we omitted the argument when

evaluating a function at the true value. Similarly,
i F i ¢ i I i (F
Ly(f) =L+ (f = fo) ff-l-§(f—f0)2 wrr(f) =0,

where 7 denotes another intermediate value, 7 € [fo, f} Combining the last two equations

gives
. L. 1 L L (])
(f = fo)= —Lif - §{Li )Ef)}g fof
ff ff ff
Under the assumptions of theorem 1, we have
. L
(f - fO) = 7 +OmS(T_1)‘
Ly
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More algebra gives

%

(F- ol = ()4 O )

11

Ofi Ly | LyLpsy 1
oy O (112

95 o, T e O

Lt
— Llﬁf +Oms(T_1/2)

Similarly,

Li(f) =Ly + (f — fo) ff+ (f fO)QLfff+ (f = fo)PLiss () =
and
Ly
Ly

. L 1L
Ir If

)2 4 O (T73/7).

(

If we replace the assumption E[||+Lssrs(2, B0, fo)|[*] by Ell|lFLssrr(2: Bo, fo)|[*] then we
have
. Ly 1LYy L

(f—fo) = ~
Ly 2Ly L

P+ﬂﬂ+0( 2)

where 7; is normally distributed. We maintain the assumption E[||%Ly (2, B, fo)||] since

it simplifies the proof of theorem 1.

Lemma 4: Let the assumptions of theorem 1 hold. Then

7B ) = 9B, f) + Oms(T™Y), for B in a neighborhood N of 3,
97 (B0) = ¢'(Bos fio) + O ™ (1) + O(T ™) and
VNT " (B0, f) = VNT x9(By, fo) + oms(1)-

Proof: Equation (3) in the text states that

7 I N ~ +_ ) =
Z{g &1 TR0 B.)) 2 LB DY

}.

26



The consistency result of Proposition 1 together with continuity of Ly implies that f is

in a neighborhood M of fy. This implies, by assumption 8, that sz}f(ﬁ, f) < 0 so that
(B, ) = g(B, f) + Oms(TY). Evaluating ¢*(3, f) at 3, gives,

VT x g G P — S - LB D) 1Ly B0 Dgy (B, ),
NT g (B0, f) = —= ;[g (8o, f) 3T, Gorf) +3 TN ]

A Taylor approximation about fp and omitting the argument (3, gives

. o 1. . 195 1L%44" ~ _
9" = g+ g5 (F— fo) + 505 (f — f0)? = 5L + s HEL O Y) + O men (1 1/2)
2 2L 2{L%.}
Ir fr
_ gL L9 Ty +1(L_})2g}f 19y
Lyp 2 Ly Ly 2Ly 2Ly
1LY 19]
4= fff J;+O(T—1)+Og1e;omean(T—l/2)
Q{L}f}
iTi i i iN2 i
i 9Ly rgpy 1 Ly (L)7 gy
I I Ir
+§{ If = f }{ ([Ji{‘f)g}_i_o(Tfl) _I_Ozigo mean(Tfl/Q)'
i Ir
Note that
E{{L?f + (Léc)Q}Eg;f} _ E{{L?f + (L?)Q}Eg}f} _E{{L?f + (L;)Q Eg}f Lyy _EL?f
LYy Ly Ly  ELY Ly, ELy  ELY,
= B o),
Ir Ir
i P2 i i
since E[{Lff+(Lf) 9y (Lff ELff)] is O(T~?) by Lemma 1.

EL%, EL%, EL%,

gz,*:gz_{ f 21 ff}+§{ ffLi f }{([Jj{f)g}‘i‘O(T 1)+07Z7$£0mean(T 1/2)'
ff ff ff

The expectation of the second and third term are O(7"!) by lemma 2 and 3. Moreover,

i io: L (80)9%(Bo)+Eg}, . 7ero mean fe
95r — Egf; is Opms(VT) and =L (}ELf;'«f(%o) LL s 07" (1). This yields

Eg*(By) = O(T") and

9 (Bo) = ¢'(Bo) + Ope? ™™ (1) + O(T ™).
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Using the conditional independence assumption implies

VNT * g*(By. f) = ZQT(T%) = VNT # g(50) + OmalI72) + 01 5.

Assumption 6, T oc N® where o > %, implies that O(1/253) is o(1). Q.E.D.
As noted in the text, theorem 1 remains true if we somewhat weaken assumption 8.

Lemma 4%: Let the assumptions of theorem 1 hold but assumption 8 (iii) only has to hold

with probability one and E[||%chfff(z,50, fo)|I?] < oo is replaced by E[||%L}fff(z,60, folll <

oo in assumption 8 (iv). Then

9" (3, f) = g(ﬁ,f) + Op(Tfl), for 3 in a neighborhood M of 3,
9" (Bo) = ' (Bos fip) +m; +Op(T 1) and
VNT*g*(Bmf) = VNT*Q(BOLfO)—’_OP(l)

oo where n; ~ N(0,0?) and 0? < co.

Proof: Evaluating ¢*(8, f) at (3, gives

A 19580, f)+ L1 1(Bo, /)5 (B0, f)
205 (B, ) 2 {L4;(Bo, )Y

A Taylor approximation about fy and omitting the argument (3, gives

VET 4" (B0, f) = <= 3 la' By ) ]

195 1 L5495
i 2
2Ty, 2 (L)

gt = gi+g}(f—fo)+%g§f(f—fo)2— +T1/2+0( ")

_ 4 _{ f+gff} 1{Lff+(Lf) }g?f
Ly 2 Ly Ly

1, Ly, — (L})? fffgf
- . 0,

where 7, is normally distributed but differs from equation to equation. Note that

Bl ff+(L Byy (L1 Pl i O(T=2) by Lemma 1.

ELff EL}f
: : gfo + 9y Ly (L )? fffg .
ik i O T .
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The expectation of the second and third term are zero and O(T~!) by assumption 5 and

L; (ﬂo)g} (ﬂo)‘f‘EQ;f

R () is 1; + Oms(T~1/?). This

lemma 3. Moreover, gjcf — Eg}f is Ops(VT) and

yields

Eg"* () = O(T™) and

9" (Bo) = ¢'(Bo) +mi +O0p(T ).

Using the conditional independence assumption implies

\/ﬁ*g*(ﬁ(),f) — % = \/ﬁ*g(ﬁo) —l—Op(T_1/2) —l—Op( %)

Assumption 6, T oc N where a > %, implies that Op( %vg) is op(1).

Lemma 5: Let the assumptions of theorem 1 hold. Then

93(50) = 95(Bo, fo) + OmS(Til/Q)-

Proof: As mentioned in the text, the estimate for the incidental parameter, f, depends on

(. Applying the chain rule when differentiating g(z, f(ﬁ)) with respect to 3 gives

dg(B, f 1 N
WI;&% = 9580, fo) + 555 D 95" (Bo) ‘(’;(BB) |6=p,-

i

923(50) =

Above we show that 9£(8) 8

23 l3=8, = —%Zﬂ +OmS(T_1/2). Note that
ff

97" (Bo) = g5(Bo, F) = g5 (Bo. fo) + (f — F)g1(Bo, )

where f € [fo, f] is an intermediate value. Reasoning similar'® to lemma 2 and 3 gives that

NT 2i g?*(ﬁo)%w:go is Ops(T~1/?) and the lemma follows.
Lemma 6: Let the assumptions of theorem 1 hold. Then

G(607f0) = Egﬂ(/B()?fO)

= 2L (BLY (5, o) +

ELj3 (B0, fo) E’Li; (8o, fo)'
‘E,L;'f(607f0) '
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Proof: Differentiating g(f3, f) with respect to 3 gives

95(8.5) = Egh(B.F) = LB 1) + Lhy (8. )

[ zf B, f)el' B-Nat
[ L5, (3. e Bt

)+ Lo (B, LG (B, f)}er Gt
[ Ly 5 f)el B.f)dt

Ly D)e BNt [{ Ll (8, F) + Ly (8, )L (B, f)}e P di
(J L (8, f) eU(ﬂf dt)?

+ip, e

~L5(8, )

The only stochastic term in the last two lines is L} (5 f) and EL? (50, fo) = 0. The lemma fol-

dg*(gg(ﬁ)) ( dg* ﬂf(ﬂ) Il <

lows. Note that continuity of with probability approaching one) and supgem||

oo implies that g5(B, f(8)) —p 95(80, fo) for B —, Bo.

(B3, f)
Ly (B, f)

G TELg;
0 +ELyy

since Egr(By, fo) = 0. Note that LELys is a diagonal matrix with +EL}

Full Rank: Differentiating the moment < > with respect to 3 and f and taking

expectation gives

Tf 1=1,...,N as

its elements. Thus, the assumption 8 and 9 (that G has full rank) implies that
G %EL[; r
0 FELygy

has full rank.

The Cramér-Rao bound:
Stuart et al. (1991, section 17.13-17.17, 17.24-17.28, and 18.15-18.16) give a clear exposition
of the Cramér-Rao bound. We briefly review the derivation of the Cramér-Rao bound and

allow for an asymptotic in which N and/or T increases. Let the estimator 6 be a function

of the data and have bias b(f). That is'®
/ / Ger 1 T FtINdy,  dyn = 0+ b(6).
Differentiating gives
> / OLje" dy; = I+1(0)
> / (0 —0) Ly dy; = T +0b(0)+(0)

i
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where /() denotes the derivative of b(f) with respect to #. The Cauchy-Schwartz inequality
gives
> / '(9 —0)2eldy + / LyLyeldy} < T+V(6).
Thus
E{(0—0)*} < {Z E(LyLy)} ' + {Z E(LyLy)} ' {(0) +b'(0)}-

Note that {}, E(L;LY)} ™t — 0 if either N or 7" increases. Let {>, E(LyLy)}1{b(0) +
b'(6)} — 0if both N and T increase. Thus, the bound on the variance for regular,

asymptotically unbiased estimators is {>°, E(L)Ly)} ! in this asymptotic. We can allow for
exogenous regressors x by repeating the arguments above while conditioning on x and then
taking expectation over x. Thus, the information bound for the incidental parameter models

is given by

-1
ELgs FElLgy
ELiz FELygy ’

Using the fact that E'Lsy is a diagonal matrix gives

-1 _ _ _ -1

<ELBB ELgy ) _ < {ELgs — ELgf(ELyy) 1E1Lfﬂ} ' —(BELgg) ' (ELgy)F )
ELys Eljy —F(ELjp)(ELpg) F ’

where F = {ELs; — ELy3(ELgg) 'ELgs}™".

Following LeCam (1953), Van der Vaart (1998, chapter 8) discusses how the Cramér-Rao

bound gives a lower bound on the variance for regular estimators.

Theorem 1

Let assumption 1-3 and 5-8 hold and 3 = arg ming rea{Q(5, f)}. Then

VNT(B — B3y) —a N(0,¥)

(10) U =G E{NT * g(Bo, Jo)g(Bo, fo) }G~".
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Under the additional assumption that EL’f Llﬁ =—‘F Llﬁf , ELZ;UB =—'FK Lgﬂ,

—ELy,y, for all i, the integrated moment estimator reaches the Cramér-Rao efficiency bound

2 _
and ELf,—, =

and

(1) W = <= B(Lag) — =B (Lo E(Lgg)} " E(Lys)]

Proof: The consistency result of proposition 1 implies that we only need to consider parameter
values close to the true values. Assumption 8 (i) is identical to the assumption of theorem 3.4,
(i) of Newey and McFadden (1994). Assumption 1, combined with assumption 9, (i)-(iv), is
identical to the assumption of theorem 3.4, (ii)-(v), of Newey and McFadden (1994)!7. This
implies that the score \;T is normally distributed so that £ \/— is normally distributed as well,
since % \/— 4 Ozero mean(=1/2y 1 O(T—3/2) by Lemma 4. Assumption 6 (conditional
independence) implies that v/ NTg(8y, fo) = \/_Z g ﬂo’fo = \/LJV > gi(ﬁ#fo) is normally
distributed with variance NT > E(g'g") = NT x Egg’. The rest of the proof follows Newey

and McFadden (theorem 3.4). In particular, the first order condition states that

9" (B, f(B)) = 0.

Applying the delta method!® gives

(B = Bo) = {g5(B.. f(BN} 9" (Bo, )

where 3 € [B,BO] is an intermediate value. By lemma 3 and 4 we have

(5 = Bo) = {98(B)} " 9(Bo) + oms( )-

1
VvNT
In particular, applying the Slutsky theorem gives

(B~ Bo) = (G} g+ oma( =)
0 g ms \/ﬁ bl

where we omitted the argument when evaluating a function at {3, fo}. Thus, the asymptotic
variance of VNT(3 — 3,) equals U = G E{NT % g¢’}G ! and the result of equation (10)

follows.
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Under the additional assumption that EL;iL% = —‘'F LZ?f’ EL%LZ% = —‘'F sz, and

EL% = —FELy,y, for all i we have

‘ ’ ﬂf
GE L’L }

Y

E{g'g"} = BE{(Lp)(Lp)"} — 2B{(Ly) (LY H 7"

‘E’L z' ‘EL
‘E'Li, }{‘ELZ

(12) +E{(Ly) (L) H

‘BLy(BF) [ LB (5.0 d
Ly (B.S) S, (8,1)el (B.Nat"

where This gives

v [NlTE(Lﬁﬁ) - ﬁE(Lﬂf){E(Lff)}*1E(Lﬂ,)]*1 -G,

using the fact that E(Lsy) is diagonal.
Q.E.D.

Relaxing Assumption 8:

Assumption 8 (iii) can be replaced by the following: “(iii) for all 7, let %L’ﬁ(z,ﬁ, f) <0in
a neighborhood N of {f3, fo} with probability larger than 1 — e <! for some ¢ > 0.” To see
why assumption 8 (iii) can be relaxed let the distribution of vV NT¢(3q, fo) be denoted by
p(VETg(Bo, fo)). Note that

p(VNT4(Bo, fo) = p(vVNTg(Bo, fo)%L}f(z, B, F) < 0) for all i)p(%chf(z, B, F) < 0 for all i)
p(VNTg(Bo, f0)|%chf(z, B, f) > 0 for some i)p(%L;f(z, B, F) > 0 for some i),

where p(%L’}}f(z,ﬁ, f) > 0 for some i) is smaller than Ne “!" so that the distribution of

p(VNTg(S3y, f0)|%L}f(z,6, f) > 0) converges to p(vVNTg(f3, fo)) by the Slutsky theorem.

Priors and Mixing Distributions

Kass et al. (1990, theorem 4) states that

J 798, " BDu (B, f)df 1
[ Chn(3 a1

Kass et al. (1990) assume that

(13)

(B, f) +0p(T 7).

(1) (B3, f) is four times differentiable with respect to f for {3, f} € © with probability one
and [ e 7(B, f)df < M, for some finite M; (see Kass et al. (1990, lemma 2).
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(2) g(B, f) is four time differentiable with respect to f for {3, f} € © with probability one
and | [ Lg (8, el w(3, f)df| < My for some finite My (see Kass et al. (1990, theorem 4);
note that the function v that is used by Kass et al. (1990, theorem 4) equals one in our
application).

Kass et al. (1990, lemma 2 and theorem 4) assume that the Laplace approximation is
“regular”. A Laplace approximation of a function that depends on random variables is
“regular” under the following conditions (these conditions are slightly stronger than Kass et
al. (1990, theorem 7).

(3a) L'(3, f) is six times continuously differentiable with respect to f for {3, f} € © with
probability one.

(3b) Let fo(B) be the unique probability limit of the maximum likelihood estimator f for
given (3. Let B:(f) be a ball with radius € around fy() and let f € B:(/3) where € can be

arbitrarily small. Assume that, 71,6 59%3 /) is bounded in probability for j =1,...,6.

(3¢) imr—comLysp(3, f) <0 for all f € B.(B).

Note that requirement (iv) of Kass et al. (1990, theorem 7) is implied by the assumed

uniqueness of f in 3b. Finally, we need a condition on 3 to make the Laplace approximation
useful. In particular, we need that
(4) (i) the Laplace approximation holds for all 5 € O or (ii) that 5 —, 3y in which case we

only need the Laplace approximation to hold for 3 in the neighborhood of 3.

Assume that the assumptions of theorem 1 hold and that (1)-(4) hold for all i. Thus,

[ A4 (B,f) “w”wwaf 1 g0
J et" @D (B, f)df (8,5) + Op(T"

. [ £5'B.1)eE D w(B,pdf 1 i -
assumption 1 and 2 above, e DB and (8, f) are finite so that the

difference is finite as well. This implies that the difference has a finite variance so that

2). By the assumptions of theorem 1 and the

[ g BN CDBIY 1 ais
f6L1(Bf)7T(ﬂf)df g (/67f)+0m3(

gives

T2). Summing over individuals and normalizing

Ll(ﬂf)ﬂ N
\/721 i fLJ:Bf (8, f;ﬁf )dfz\/ﬁg*(ﬁ,f)JrOms(\/g),

where Opys(4 /%Vg) is oms(1) in the asymptotic of theorem 1 so that the asymptotic distribu-
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i [T 5~ [ 4B OO pdf . g ? .
tion of /% >, Tl NG is determined by vV NT'g*(3, f) and theorem 1 applies.

Replacing 7 (3, f) by w(8, f) does not change the approximation result in equation (13) so

that the same arguments yield robustness against mixing distributions.

Integrated Likelihood
To be shown: ELgs(By, fo) = 0, for all {3y, fo} is equivalent to ‘E’Lgs(3, f) = 0 for all

{3, f}.
Proof:

ELgs(Bo, fo) = 0, for all {5y, fo} <

/ Lgt(Bo, fo)e"Pololdt = 0 for all {8y, fo} &

[ Las(8. 1) Pa = 0 tor all (5.1}
BLes(B,f) = 0, for all {5, f)

Note that neither ELgs(By, fo) = 0 nor ‘E’Lg¢ (3, f) = 0 depends on the realization of the
data and that the proof only depends on relabelling.

Time Dummies

Theorem 2

Let assumption 1-8,5 and 7-11 hold and {B, f} = argming rco{9(B, f)'9(B, f) + h’fhf}. Let
the dimension of the common parameter, 3., be equal to K and the dimension of the vector

of time dummies, B4, be D. Then

(14) \/ﬁ(ﬁc —Bo) — aN(0,%c)and
(15) VN(By—By) — aN(0,¥y),

where W, = NT xIl,. and Vg = N *Ilgy. Under the additional assumption that ELZJ}iL}'; =
—‘E’Lz;fi, EL%U = —‘E’sz, and EL% = —FELy,y, for all i, the integrated moment esti-

mator reaches the Cramér-Rao efficiency bound and

= ( T ) = —[E(Lgg) — E(Lsp){E(Lrp)} " E(Lyg)] ™",
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where , Il is K by K, and 11z is D by D.

U, = NT I,

Wi = NeTlu= B (Ly,s,) ~ B Lo B (L)} ElLys,)

Proof: The proof of equation (14) and (15) is nearly identical to the proof of Theorem 1

and therefore omitted. To prove the remainder of the theorem, consider partitioning G. Let

1 ELs ;EL
G = Lpr,, - PP oy
NT ere ELff
1 ELﬂdeL/B f
Gu = —1{BLg gy — ——2d "Bl
s = 1ELp,p, BL;;
1 ELIg fEL/B f
Gge = —{ELzgz — —oPaf
dc N{ Babe ELff
1
ch bl ? /dca

and

Egc cf Egc dr
I __
Egg = < Eglg” Eglg?

where g¢ = Lg_— Lf el and g¢ _Lﬁd—Lf EL —24L This gives

E'L
Eg’y” = @{—E%cﬁc + EL%JZLM} = —%Eggc = — 577 Glec
Eg'g" = sz{-Elgs,+ EL%ZLM} = —%Egéd = —%Gdd
B = (s, ~ L gl s, ~ L)
= wopi—ELls.p, + —ELiiifbdf = —%ch
= (Eg'y") = _WG

Thus

Ead — _L Gcc T * ch
99 = NT Gdc T % Gdd ’
Inverting G gives (see, for example, Greene (2002b))

a1 = {Gee — #G1,GaaGac} ™" —G 4G {Gaa — $GacGecGlp} ™!
_{Gdd - %GchccG&C}_lGchc_cl {Gdd - %GchccGIdC}_l ’
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where Gog = %G:ic‘ This yields,
1
~=1 0
-1 r_ _ [ NT'K
G “Egg < 0 %ID )

where I and Ip are identity matrices with dimensions K and D respectively. Thus,

ﬁ {Gcc - %G:ichdec} !

G LG G — 2CaGenGl ) !
-1 1 NT Y cc Tde\Pdd — 7HdcT e e
¢ PG = < — 5 {Gaa — 7GacGecGl} " GacGy! > '

% {Gdd - %GchccGIdc} -1

Above we discussed the Cramér-Rao bound for the integrated moment estimator for the

parameter of interest,

ELL ,EL:
-1 -1 i Bf fBy1-1
{ELgs — ELgp(ELsp)'ELgg} ™' =Y {ELjs— —2—237"

i ELYy
Partitioning [ using 5 = {3., B4} gives
{ELps — ELgg(ELysp) ' ELgg} ™"
. EL: ,ELE . EL' ,EL! -1
Bos s, Bes s

, EL: .EL’ ) ELY EL:
Bal fBe Baf fB
ilBLgp, —— b XLy, — —

[ NT%Ge NT#Ge \ '
- NxGge NxGyq

which is the asymptotic variance of the integrated moment estimator. @.FE.D.

Predetermined Variables
Reasoning similar to Lemma 2, 3 and 4 gives that, under the conditions of Theorem 3, we

have

U2 Iy s oY

Ly

g D Bt oy
Ly (Lf)

E{gf

7B f) = 9B, f) + Oms(T™Y), for § in a neighborhood M of S,

VNT % g*(Bo, f)

9" (Bos fio) + 05 ™ (1) + O(T™) and

VNT x 9(Bos fo) + oms(1).
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If E(LZ i, 1255 Bos fo) = E(L IJ‘ztlJ'zt| i.» B0, fo), e.g. under correct specification, then G has a

simple form,

T Bl B VL, 2 B )
Wity V3,0 P05 JO B, » 20> J0
G = Egﬁ (8o, fo) =Z Ly, p,,) — E{zitxip - t‘E 7i tt:i AR }
t=1 ' Ky t+1/~/'zt+1| i B0, fo)
T—1
= Z[E(x%t[’#it#it) E{mltml t+1 E( uztu”| i, 7607f0)H
t=1

T-1
= Y E{(h —wimip)E(LL, 12, B0, fo))-
t=1
The proof of Theorem 3 is identical to the proof of theorem 1 and, therefore, omitted.

Simulation Results

Consider the panel probit model with exogenous regressors,

Pr(yi = 1) = ®(zaB + fi).

We condition on 0 < ),y < 1,

Pr{0 < yi <1} =1 [[ @b+ f) — [[ 2(xieB + fi).
t t

t

This gives the following conditional log likelihood,

> {yir In @ (piy) + (1 — yir) In S(p) }
t
—In{l - H‘D(Nz’t) - H D (pu4) }
t t
where p;; = 233+ fi and ®(xyS+ f;) = 1 — ®(wufS + f;).

Z{ Vit (1 — ) o)

Hit) ‘i)(#it)}
+Zt (uit){Hs# (pis) — 1lze @ D(11;5) }
1 =TT, @) — TTp P (i)

]-
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Note that

, ' N
Ly, = ;[?Jit{—uit g((zz)) _ (q}?((zz)p}
Lit 1ig)?

+(1 = yir){ it ii";t)) — ii': %t))Q}

B H¢t¢(/~%t){ns¢t D(pis) — Hs;ét D (pis) }
=TT @(pa) — 11t D(p1y)

P {1 Lope ®(is) = 1o ‘5(;%)}]2
=1L @) — T T (rear) '

: % nkl 1- s Dy . .
Using ‘E’(yit| 3, f, xit,0 < Zt yir < 1) = ®(uy) 1—]'[t<1>1?u“;—l£ﬁ (5)(#“) gives an expression for

‘E’szf.

|

Average Bias for the fixed effects probit model with exogenous regressors (Heckman (1981b,

table 4.1 results).
| B=1 p=-01 g=-1]

o7=3 090 —0.10 —0.94
o?=1 091  —0.09 —0.95
07=05 093 —0.10 —0.96

Average Bias for the fixed effects probit model with exogenous regressors as reported by

Greene (2002b); simulation design as in Heckman (1981b, table 4.1 results).

| B=1 g=-01 p=-1]
o?=3 1240 —0.110  —1.224
o?=1 1242 —0.1127 —1.200
0?=05 1225 —0.1230 —1.185

Heckman (1981, table 4.2) reported the following average estimates for [ and v for various

values of the parameters.

o =3 oi=3 0;=3 oi=1 oi=1 of=1

p=-01 = =0 p=-01 = =0
v=05 7 0.14 0.19 003 na? 025  0.17
y=05 B —0.07 121 — nad 117 —
y=01 7 -0.34 —021 -0.04 —0.28 ~0.15 —0.01
y=01 B -0.06 114 - —0.08 112 -

7 References

Alvarez, J. and M. Arellano (1998): “The Time Series and Cross-Section Asymptotics of

39



Dynamic Panel Data Estimators,” Working Paper 9808, CEMFI, Madrid.

Anderson, T. W. and C. Hsiao (1981): “Estimation of Dynamic Models with Error
Components,” Journal of the American Statistical Society, 76, 598-606.

Arellano, M. and S. R. Bond (1991): “Some Tests of Specification for Panel Data: Monte
Carlo Evidence and an Application to Employment Equations,” Review of Economic
Studies, 58, 277-297.

Arellano, M., and B. E. Honoré, (2001): “Panel Data Models: Some Recent Developments,”
in Handbook of Econometrics, Vol. 5, ed. by J. Heckman and E. Leamer, Amsterdam:
North-Holland.

Baltagi, B. H. (1995): Econometric Analysis of Panel Data, New York: John Wiley and
Sons, New York.

Chamberlain, G. (1984): “Panel Data,” in Handbook of Econometrics, Vol. 2, ed. by
7. Griliches and M. D. Intriligator. Amsterdam: North-Holland.

(1985): “Heterogeneity, Omitted Variable Bias, and Duration Depen-
dence,” in Longitudinal Analysis of Labor Market Data, ed. by J. J. Heckman and
B. Singer. Cambridge: Cambridge University Press.

Cox, D. R., and N. Reid (1987): “Parameter Orthogonality and Approximate Conditional
Inference (with Discussion),” Journal of the Royal Statistical Society, Series B, 49, 1-39.

—————(1993): “A Note on the Calculation of Adjusted Profile Likelihood,” Journal of the
Royal Statistical Society, Series B, 45, 467-471.

Critchley, F. (1987): “Discussion of Parameter Orthogonality and Approximate Conditional
Inference (by Cox, D. R., and N. Reid),” Journal of the Royal Statistical Society, Series
B, 49, 25-26.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Rubin (1995): Bayesian Data Analysis. New
York: Chapman and Hall.

Greene, W. H. (2002a): “The Behavior of the Fixed Effects Estimator in Nonlinear
Models”, NYU Stern School of Business working paper.

Greene, W. H. (2002b): Econometric Analysis, fifth edition, Prentice Hall, Upper Saddle

40



River New Jersey.

Griliches, Z. and J. A. Hausman (1986): “Errors in Variables in Panel Data”, Journal of
Econometrics, 31, 93-118.

Hahn J. and W. Newey (2002): “Jackknife and Analytical Bias Reduction for
Nonlinear Panel Models“, MIT manuscript.

Hansen, L.P. (1982): “Large Sample Properties of Generalized Method of Moments
Estimators”, Econometrica, 50, 1029-1054.

Hausman, J. , B. H. Hall and Z. Griliches (1984): “Econometric Models for Count Data
with an Application to the Patents R. and D Relationship,” Econometrica, 52, 909-938.

Heckman, J. J. (1981a): “Statistical Models for Discrete Panel Data,” in Structural Analysis
of Discrete Data with Econometric Applications, edited by C. F. Manski and D.
McFadden, pp. 114-178, MIT Press, Cambridge.

Heckman, J. J. (1981b): “The Incidental Parameter Problem and the Problem of Initial
Conditions in Estimating a Discrete Time-Discrete Dtata Stochastic Process,” in
Structural Analysis of Discrete Data with Econometric Applications, edited by C. F.
Manski and D. McFadden, pp. 179-195, MIT Press, Cambridge.

Heckman, J., H. Ichimura, J. Smith and P. Todd (1998): “Characterizing Selection Bias
Using Experimental Data,” Econometrica, 66, 1017-1098.

Horowitz, J. L. (1992): “A Smoothed Maximum Score Estimator for the Binairy Response
Model,” Econometrica, 60, 505-531.

Hsiao, C. (1986): “Analysis of Panel Data”. New York: Cambridge University Press.

Hills, S. E. (1987): “Discussion of Parameter Orthogonality and Approximate Conditional
Inference (by Cox, D. R., and N. Reid),” Journal of the Royal Statistical Society, Series
B, 49, 23-24.

Holtz-Eakin, D., W. Newey, and H. Rosen (1988): “Estimating Vector Autoregressions with
Panel Data”, Econometrica, 56, 1371-1395.

Honoré, B. E. and L. Hu (1999): “Estimation of Censored Regression Models with

Endogeneity,” unpublished manuscript, Department of Economics, Princeton University.

41



Honoré, B. E. and E. Kyriazidou (2000): “Panel Data Discrete Choice Models with Lagged
Dependent Variables,” Econometrica, 68, 839-874.

Honoré, B. E. and A. Lewbel (2002): “Semiparametric Binary Choice Panel Data Models
without Strictly Exogenous Regressors,” Econometrica, 70, 2053-2063.

Kass, R. E., L. Tierney, and J. B. Kadane (1990): “The Validity of Posterior Expansions
Based on Laplace’s Method,” in Essays in Honor of George Barnard, ed. by S. Geiser,
S. J. Press, and A. Zellner. Amsterdam: North-Holland.

Lancaster, T. (2000): “The Incidental Parameter Problem since 1948,” Journal of
Econometrics, 95, 391-413.

(2002): “Orthogonal Parameters and Panel Data, The Review of Economic Studies,

Vol.69 (3), No.240, 647-666.

LeCam, L. (1953): “On some Asymptotic Properties of Maximum Likelihood Estimates
and related Bayes’ estimates,” Annals of Mathematical Statistics, 41, 802.

Mundlak, Y. (1961): “Empirical Production Function Free of Management Bias,” Journal
of Farm FEconomics, 43, 44-56.

Mundlak, Y. (1978): “On the pooling of time series and cross-section data,”
Econometrica, 46, 69-86.

Nerlove, M. (1971): “Further Evidence on the Estimation of Dynamic Economic
Relations from a Time Series of Cross Sections,” Econometrica, 39, 359-382.

Nerlove, M. (2000): “The Future of Panel Data Econometrics,” Working Paper, Department
of Agriculture and Resource Economics, University of Maryland.

Neyman, J., and E. L. Scott (1948): “Consistent Estimation from Partially Consistent
Observations,” Econometrica, 16, 1-32.

Newey, W. K. (1990): “Semiparametric Efficiency Bounds,” Journal of Applied Econome-
trics, 5, 99-135.

Newey, W. K., and D. McFadden (1994): “Large Sample Estimation and Hypothesis
Testing,” in Handbook of Econometrics, Vol. 4, ed. by R. F. Engle and D.
MacFadden. Amsterdam: North-Holland.

42



Newey, W. K., and R. J. Smith (2001): “Higher Order Properties of GMM and
Generalized Empirical Likelihood Estimators” MIT manuscript.

Stuart, A., and J. K. Ord, and S. Arnold (1999): Kendall’s Advanced Theory of Statistics,
Volume 2A. New York: Oxford University Press.

Tierney, L., R. E. Kass and J. B. Kadane (1989): “Fully Exponential Laplace Approximations
to Expectations and Variances of Nonpositive Functions,” Journal of the American
Statistical Society, 84, 710-716.

Trognon, A. (2000): “Panel Data Econometrics: A Successful Past and a Promising Future,”
Working Paper, Genes (INSEE).

Van der Vaart, A. W. (1998): Asymptotic Statistics, Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge: Cambridge University Press, UK.

Wooldridge, J. (2001): Econometric Analysis of Cross Section and Panel Data, MIT Press,
Cambridge.

Woutersen, T. M. (2000): “Consistent Estimation and Orthogonality,” Working paper,

Department of Economics, University of Western Ontario.

43



Notes

1For the Poisson model with Ey;; = f;e®*?, g(3, f) gives the conditional maximum likeli-
hood estimator of Hausman, Hall and Griliches (1984); for the linear model, g(3, f) produces
the difference estimator.

2Replacing f by its maximum likelihood estimate for given 3 implies LZ}}Z, (s, fl) = 0so
that g(83, f) = Lg(B, f) which yields the maximum likelihood estimate for 3.

3Subject to regularity conditions given in the next section, using a prior on f does not
change the approximation, i.e.

% — _Ig 5 f)df
9" (B) = fey . 7)df

+O0,(T ).

4See section 3.

®A dynamic linear model has the following form, y;; = ¢+ x; 3+ Zgzl PsYit—s + €t Where
one of the coefficients can be individual specific; unlike existing estimators, the integrated
moment estimator reaches the Cramér-Rao bound for slowly increasing 7.

6T thank Jeffrey Wooldridge for his encouragement to include a section about time dum-
mies in the paper.

7If all regressors are exogenous, the same estimating functions can be used for an asymp-
totics in which 7" increases faster than IV by relabelling the time periods as individuals and
vice versa; in that case, the common parameter is approximately separated from the time
dummies.

8However, ‘only appearing in the likelihood of a particular period’ is not a satisfactory
definition since the linear model with a moving average error term has the time dummy of
period t appearing in all subsequent periods.

9A regressor x is predetermined or weakly exogenous if
P(xit| fi,yin, - vir) = P(wit| fis yin, -, Yig—1) for all .

1011 the last section, we conditioned on the exogenous x?

HUNote that 8“}? =1.

12The Weibull model is a duration model with hazard @(t|f;, x;s) = e%isPtfiat®=1; using
g(a, 3, f) gives an estimator that is consistent for fixed 7.

13This moment function is mentioned by Anderson and Hsiao (1981), Griliches and Haus-
man (1986), Holtz-Eakin, Newey, and Rosen (1988), and Arellano and Bond (1991) amongst
others.
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“The simulation results are very close to the results obtained by Greene (2002a).
Bhut here we divide by NT
16We first consider the case without regressors.

17 Assumption 1, 8 (i) and 9 (i-iii) are very close to Hansen (1982), assumption 3.1-3.6.
Newey and McFadden (1994) is based on Hansen (1982) and the point of Hansen (1982) is
to allow for predetermined variables; Newey and McFadden (1994, page 2148) note that “the
hypotheses of Theorem 2.6 are only used to make sure that 6 — 0o, so that they can be
replaced by any other conditions that imply consistency.” Proposition 1 implies consistency
so all assumptions of theorem 3.4 are satisfied.

Bsee for example Newey and McFadden (1994)
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Omitted appendices of Robustness against Incidental Parameters

Appendix A: Simple Models with fixed Effects

1. Poisson Model with exogenous regressors

Hausman, Hall and Griliches (1984) assume that y;; has a Poisson distribution with mean

f;e®B_ The likelihood contribution of individual i has the following form,

LB, fi) = —fiy e +1(fi) D yie + > yawwael — Y In(yal).
¢ t t t
Differentiating gives
L%(ﬁv fi) = —fi Zl'z'tez“ﬂ + Zyitwit
t t
%fi (67 fz) = - Z J:itezitﬂ
¢

}z(ﬁvfz) = —Z znﬂJthyzt

_ Zt Yit

5o, (85 ) I

Thus,
Ly (5 1) _ J Loy (B, fi)e” Lt Y maett N wgetitP
B L}f(ﬁ’ fz) f Lff Bafz)eL (B, 1) dt ZE}E,yit ’ Zt et

i

using ‘E’y;; = f;e®8. This gives

9B.0) = ZEHLYB, ) — Ly (0 ) Gt

B Llf1f1 (/6’ fz)
Z [ .Z:L‘itezztﬂ + Zyitxit _ {Zezztﬂ + Z}'yzt }fl Zt it v ]
t t Y .

> emith
_ ) Z Dot Yit Dot e P
- N { - yitmit - Zt ezitﬂ }7

which is the estimating function first derived by Hausman, Hall and Griliches (1984); see
also Lancaster (2002).
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2. Weibull Model

The Weibull model is a duration model with hazard
O(t| fi, o, B, wis) = eTisPtligpe1
First, we assume that z;s is exogenous. This gives
Li(a,ﬁ,fi) = Tfi+TIn(a)+ (a—1) Zln is) insﬁ—eﬂZez“ﬂtf‘s
t s
Ly, f;) = = + Zln is) — el Z TieB 0 In(tis)
Lg(a,ﬁ,fi) = Z:{:,S—e Z:{: e ’Sﬂt
Differentiating with respect to f; gives
chi(oz,ﬁ, fi) = T—eéf Zex“ﬂt%
ap(00 B, fi) = —el Y ;“sﬂt?s In(tis)
Lip(a,B,f;) = —ef ixiseIiSﬁt%
Ly (@B, fi) = L (a.f,f;) ==Y el

1J1
S

Thus,
fi _ T
- Zs ezisﬁt?s

and

‘E'Ly (a8, fi) = =B e Piiin(t) = ——{¢ szsﬁ}

S
‘E’Lligfi(a,ﬁ,fi) = _ins-
S

Let g(o, 3, fi) = {g1(e, B, fi), g2(v, 3, fi)} where g1(a, 3, f;) is a scalar and ga(e, 3, fi) has

the same dimension as x;s.
(B, f) = =+ In(t) — e > i nft)
b 2J12 «a - 18 78 18
—{T - efi Z erisﬁta } {w Z xis 3}

s
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gl»fi(Oé?viz = —e” Zez“ﬂt(x ln
e 3 e () =D wisf)

s

1
T — el 3 e -,

s

and
950 B, fi) = —efiz eTisB4% 1n(1;5)
+el Zewt“—w =3 )
2 fi T;s 310
_Ee Ze tz’s-
S
Note that £) = L3, In(tys) — Tomsetiinttin) g 2 A
ote that gy (a., 3, fi) = 5 +22 Intis) ~ T =52 and g1, (@, B, fi) =91, 1.5 (@, B, fi) =

%. This yields
60, = 7 3lo' ) - 2L (0.5 ) r3 {Lﬁf,-,f,.,(a,ﬁ,fn}Q

B . Z %Pt In(t;s) 1
= NT ;[a + ;ln(tzs) Z emzsﬁto‘ aT]

}

Similary,
gh(a, B, fi) = —efizszite%ﬂt;;
G (B fi) = o5 (B, fi) = = Z:ctew’ta.

where Z;t = vy — ;% This yields

. - 19558, fi) 1LY B, fi)gy (. B, fi)
g5(a, ) = NTZ{g B.f) =57 o AL TR }

1’1sﬂta

B > s Tite
- NTZ o eTisBte

Chamberlain (1985) derived the estimating function ¢g*(«, 3) by differencing the logarithms of

the durations. If the regressors are predetermined (as opposed to exogenous), then estimating
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function g3(a, 3) needs to be changed in accordance with section (3.2); this yields

i B 1 Zs Iis( mzsﬁta — %, s+1ﬂt +1)
92 (a7 /6) - NT Z Z eIzs/gtq
i S 8

while ¢7(a, ) remains unchanged. Note g («, ) only depends on the predetermined regres-
sor x;s through exisﬂt%, where e””isﬂtff9 has an exponential distribution and is independent of
xis. Also note that Fgj(«, ) = Egs(«, ) = 0 and that the resulting estimator is consistent
for fixed T.

3. Linear Model with exogenous regressors
Assume normality of the error term in order to derive a quasi-likelihood function. This gives

the following likelihood contribution of individual 1,

: T
L'(B, fi) = = In(ro” ; yie — fi = zaf)’.
Reasoning similar to the Poisson model yields L%f(ﬁ, fi) = ;lgzt z; and a well known
moment function,
T
9(670—27fi) = %:V 0_2 Z{yzt fz wztﬁ}(xlt_ Zt t)

= %:VZ % {ijt - i‘z’tﬁ}iit = g*(67‘72)-
t

Zt Yit
= -

Doy Tit
T

where &;; = @y — and it = yir —
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