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Misspecification is an inherent feature of many asset pricing models and reliable statistical inference

crucially depends on its robustness to potential model misspecification. Kan and Robotti (2008,

2009) and Gospodinov, Kan, and Robotti (2012b) show that by ignoring model misspecification,

one can mistakenly conclude that a risk factor is priced when, in fact, it does not contribute to

the pricing ability of the model. The problem can be particularly serious when the pricing model

includes factors that are weakly correlated with the returns on the test assets, such as macroeco-

nomic factors. While the three papers mentioned above provide a general statistical framework

for inference, evaluation and comparison of asset pricing models that are potentially misspecified,

the misspecification-robust inference in these papers is developed under the assumption that the

covariance matrix of asset returns and risk factors is of full column rank.

In the extreme case of model misspecification with one or more “useless” factors (i.e., factors

that are independent of the asset returns), the identification condition fails (i.e., the covariance

matrix of asset returns and risk factors is of reduced rank) and the validity of the statistical infer-

ence is compromised. The impact of the violation of this identification condition on the asymptotic

properties of parameter hypothesis and specification tests in models estimated via two-pass cross-

sectional regressions and generalized method of moments (GMM) was first studied by Kan and

Zhang (1999a, 1999b). Burnside (2010, 2011) discusses analogous identification failures for alter-

native normalizations of the stochastic discount factor (SDF). Kleibergen (2009, 2010) and Khalaf

and Schaller (2011) propose test procedures that exhibit robustness to the degree of correlation

between returns and factors in a two-pass cross-sectional regression framework.

In this paper, we focus on linear SDFs mainly because the useless factor problem is well-defined

for this class of models. In addition, we choose to present our results for the distance metric intro-

duced by Hansen and Jagannathan (HJ, 1997). This measure has gained tremendous popularity in

the empirical asset pricing literature and has been used both as a model diagnostic and as a tool for

model selection by many researchers.1 In particular, we investigate whether the misspecification-

robust standard errors proposed by Hall and Inoue (2003) and Kan and Robotti (2008, 2009) can

guard the standard inference against the presence of useless factors. The main contributions of

our analysis can be summarized as follows. First, we demonstrate that the misspecification-robust

Wald test for the useless factor is asymptotically distributed as a chi-squared random variable with

1While we study explicitly only the GMM estimator based on the HJ-distance, our results continue to hold for
the class of optimal GMM estimators.
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one degree of freedom. This stands in sharp contrast with the Wald test constructed under the

assumption of correct specification which is shown to be asymptotically chi-squared distributed

with degrees of freedom given by the difference between the number of assets and the number of

(useful and useless) factors included in the model. An immediate implication of the latter result

is that using standard inference will result in substantial over-rejection of the null hypothesis that

the risk premium on the useless factor is equal to zero.2

Second, we show that the estimate associated with the useless factor diverges with the sample

size while the remaining parameters are not consistently estimable. The limiting distributions of the

t-statistics corresponding to the useful factors are found to be non-standard and less dispersed when

a useless factor is present. Regardless of whether the model is correctly specified or misspecified,

the misspecification-robust standard errors ensure asymptotically valid inference and allow us to

identify factors that do not contribute to the pricing of the test assets (i.e., useless factors and

factors that do not reduce the HJ-distance).

Third, we show that the specification test based on the HJ-distance is inconsistent in the

presence of a useless factor. To restore the standard inference for the t-tests on the parameters

associated with the useful factors and for the test of correct model specification, we propose a simple

sequential procedure which allows us to eliminate the useless factors from the model. Monte Carlo

simulation results suggest that our sequential model selection procedure is effective in retaining

useful factors in the model and eliminating factors that are either useless or that do not provide

improved pricing. As a result, our proposed method can guard against both model misspecification

and the presence of useless factors in the analysis.

Empirically, our interest is in robust estimation of several prominent asset pricing models with

macroeconomic and financial factors using the HJ-distance measure. In addition to the basic CAPM

and consumption CAPM (CCAPM), the theory-based models considered in our main empirical

analysis are the CAPM with labor income of Jagannathan and Wang (1996), the CCAPM condi-

tioned on the consumption-wealth ratio of Lettau and Ludvigson (2001), the durable consumption

model (D-CCAPM) of Yogo (2006), and the five-factor implementation of the intertemporal CAPM

(ICAPM) used by Petkova (2006). We also study the well-known “three-factor model” of Fama and

2Our use of the term “over-rejection” is somewhat non-standard since the true risk premium on a useless factor is
not identifiable. Nevertheless, since a useless factor does not improve the pricing performance of the model, testing
the null of a zero risk premium is of most practical importance.
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French (1993). Although this model was primarily motivated by empirical observation, its size and

book-to-market factors are sometimes viewed as proxies for more fundamental economic factors.

Our main empirical analysis uses the monthly returns on the 25 size and book-to-market port-

folios of Fama and French (1993) and the one-month T-bill from February 1959 until July 2007.

The HJ-distance test rejects the hypothesis of a perfect fit for all models except for the ICAPM.

In addition, the rank restriction test proposed by Gospodinov, Kan, and Robotti (2012a) indicates

that only the CAPM and the three-factor model of Fama and French (1993), two models with

traded factors only, are properly identified. This clearly points to the need for statistical methods

that are robust to model misspecification and weak identification. We show empirically that when

misspecification-robust standard errors are employed, only the market and book-to-market factors

survive our sequential procedure at the 5% significance level.

It is important to stress that the useless factor problem is not an isolated problem limited

to the data and asset pricing models considered in our main empirical analysis. We show that

qualitatively similar pricing conclusions can be reached using different data frequencies and SDF

specifications. Overall, our results suggest that the statistical evidence on the pricing ability of

many macroeconomic and financial factors is weak and their usefulness in explaining the cross-

section of asset returns should be interpreted with caution.

The rest of the paper is organized as follows. Section I reviews some of the main results for

asymptotically valid inference under potential model misspecification. In Section II, we introduce

a useless factor in the analysis and present the limiting distributions of the parameters of interest

and their t-statistics under both correct model specification and model misspecification. We also

discuss some practical implications of our theoretical analysis and suggest an easy-to-implement

model selection procedure. Section III reports results from a Monte Carlo simulation experiment.

In Section IV, we conduct an empirical investigation of some popular asset pricing models with

traded and non-traded factors. Section V concludes.

I. Asymptotic Inference with Useful Factors

This section introduces the notation and reviews some main results that will be used in the

subsequent analysis. Let

yt(γ1) = f̃ ′
tγ1 (1)
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be a candidate linear SDF, where f̃t = [1, f ′
t ]
′ is a K-vector with ft being a (K − 1)-vector of risk

factors, and γ1 is a K-vector of SDF parameters with generic element γ1i for i = 1, . . . , K. Also,

let xt be the random payoffs of N assets at time t and q 6= 0N be a vector of their original costs.3

We assume throughout that the second moment matrix of xt, U = E[xtx
′
t], is nonsingular so that

none of the test assets is redundant. In addition, we assume B = E[xtf̃
′
t ] is of full column rank but

this assumption will be relaxed later on when we introduce a useless factor into the model. Note

that our setup can accommodate conditional asset pricing models that parameterize γ1 as a linear

function of a vector of conditioning variables zt−1. In this case, f̃t in (1) effectively denotes the

vector of scaled factors f̃t ⊗ zt−1, where ⊗ is the Kronecker product.

Define the model pricing errors as

e(γ1) = E[xtf̃
′
tγ1 − q] = Bγ1 − q. (2)

If there exists no value of γ1 for which e(γ1) = 0N , the model is misspecified. This corresponds to

the case when q is not in the span of the column space of B. The pseudo-true parameter vector γ∗
1

is defined as the solution to the quadratic minimization problem

γ∗
1 = arg min

γ
1
∈Γ1

e(γ1)
′We(γ1) (3)

for some symmetric and positive-definite weighting matrix W , where Γ1 denotes the parameter

space.

The HJ-distance is obtained when W = U−1 and is given by

δ =
√

e(γ∗
1)

′U−1e(γ∗
1).

Given the computational simplicity and the nice economic and maximum pricing error interpreta-

tion of the HJ-distance, this measure of model misspecification is widely used in applied work for

estimation and evaluation of asset pricing models. For this reason, we consider explicitly only the

case of the HJ-distance although results for the optimal GMM estimator are also available from

the authors upon request.

The estimator γ̃1 of γ∗
1 is obtained by minimizing the sample analog of (3):

γ̃1 = arg min
γ1∈Γ1

ê(γ1)
′Û−1 ê(γ1), (4)

3When q = 0N , the mean of the SDF cannot be identified and researchers have to choose some normalization of
the SDF (see, for example, Kan and Robotti, 2008, and Burnside, 2010).
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where Û = 1
T

∑T
t=1 xtx

′
t, ê(γ1) = B̂γ1 − q and

B̂ =
1

T

T
∑

t=1

xtf̃
′
t . (5)

Then, the solution to the above minimization problem is given by

γ̃1 = (B̂′Û−1B̂)−1(B̂′Û−1q). (6)

For ease of exposition, we assume that et(γ
∗
1) = xtf̃

′
tγ

∗
1 − q forms a stationary and ergodic mar-

tingale difference sequence and define S = E[et(γ
∗
1)et(γ

∗
1)

′]. Under suitable regularity conditions,

Kan and Robotti (2009) show that

√
T (γ̃1 − γ∗

1)
d→ N (0K, Σγ̃1

), (7)

where Σγ̃
1

= E[hth
′
t],

ht = (B′U−1B)−1B′U−1et(γ
∗
1) + (B′U−1B)−1(f̃t − B′U−1xt)ut (8)

and

ut = e(γ∗
1)

′U−1xt. (9)

Note that if the model is correctly specified (i.e., ut = 0), the expression for ht specializes to

h0
t = (B′U−1B)−1B′U−1et(γ

∗
1) (10)

and the asymptotic covariance matrix of
√

T (γ̃1 − γ∗
1) is simplified to

Σ0
γ̃
1

= E[h0
th

0′
t ] = (B′U−1B)−1B′U−1SU−1B(B′U−1B)−1. (11)

Suppose now that the interest lies in testing hypotheses on the individual parameters of the form

H0 : γ1i = γ∗
1i (for i = 1, . . . , K) and define a selector vector ιi with one for its i-th element and zero

otherwise (the length of ιi is implied by the matrix that it is multiplied to). Then, the t-statistic

for γ̃1i with standard error computed under potential model misspecification is asymptotically

distributed as

tm(γ̃1i) =
γ̃1i − γ∗

1i
√

ι′iΣ̂γ̃1
ιi

d→ N (0, 1), (12)
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where Σ̂γ̃
1

is a consistent estimator of Σγ̃
1
. Note that this result is valid irrespective of whether the

model is misspecified or correctly specified.

In applied work, it is a common practice to test parameter restrictions using t-tests based on

standard errors computed under the assumption of correct model specification. For this reason, it

is instructive to consider the large sample behavior of the t-test

tc(γ̃1i) =
γ̃1i − γ∗

1i
√

ι′iΣ̂
0
γ̃1

ιi

, (13)

where Σ̂0
γ̃
1

is a consistent estimator of Σ0
γ̃
1

. If the model is indeed correctly specified, the t-test

tc(γ̃1i) is asymptotically distributed as a standard normal random variable

tc(γ̃1i)
d→ N (0, 1). (14)

However, using the result in (7)–(8), we have that under misspecified models

tc(γ̃1i)
d→ N

(

0,
ι′iΣγ̃

1
ιi

ι′iΣ
0
γ̃
1

ιi

)

. (15)

Furthermore, under the assumption that xt and ft are multivariate elliptically distributed, it can be

shown (Kan and Robotti, 2009) that (ι′iΣγ̃1
ιi)/(ι′iΣ

0
γ̃1

ιi) > 1, which implies that standard inference

based on critical values from the N (0, 1) distribution would tend to over-reject the null hypothesis.

We conclude this section with several observations that emerge from a closer inspection of the

function ht in (8) which is used for computing the covariance matrix Σγ̂1
under misspecification.

It proves useful to rewrite ht as

ht = h0
t + (B′U−1B)−1(f̃t − B′U−1xt)ut. (16)

The adjustment term (B′U−1B)−1(f̃t − B′U−1xt)ut contains three components: (i) a misspecifi-

cation component ut, (ii) a spanning component f̃t − B′U−1xt that measures the degree to which

the factors are mimicked by the returns on the test assets, and (iii) a component (B′U−1B)−1 that

measures the usefulness of factors. The adjustment term is zero if the model is correctly specified

(ut = 0) and/or the factors are fully mimicked by the returns (f̃t = B′U−1xt). If the factors are

nearly uncorrelated with the returns (i.e., B is close to zero), the component (B′U−1B)−1 can be

very large and the adjustment term tends to dominate the behavior of ht.

6



II. Asymptotic Inference in the Presence of a Useless Factor

As argued in the introduction, many popular asset pricing models include macroeconomic risk

factors that often have very low correlations with the returns on the test assets. For this reason,

we now consider a candidate SDF which is given by

yt = f̃ ′
tγ1 + gtγ2, (17)

where gt is assumed to be a useless factor such that it is independent of xt and ft for all time periods.

For ease of exposition, we assume that E[gt] = 0 and Var[gt] = 1.4 Note that the independence

between gt and xt implies

d = E[xtgt] = 0N (18)

and

E[xtx
′
tg

2
t ] = E[E[xtx

′
t|gt]g

2
t ] = UE[g2

t ] = U. (19)

Now let D = [B, d], γ = [γ′
1, γ2]

′, e(γ) = Dγ − q, d̂ = 1
T

∑T
t=1 xtgt, and D̂ = [B̂, d̂]. Note that

since d = 0N , the vector of pricing errors

e(γ) = Bγ1 + dγ2 − q = Bγ1 − q (20)

is independent of the choice of γ2. For the pseudo-true values of the SDF parameters, we can set

γ∗
1 as in (3) but the parameters associated with the useless factor (γ∗

2) cannot be identified. In the

following, we set γ∗
2 = 0, which is a natural choice because in Theorem 1 we will show that γ̂2 is

symmetrically distributed around zero.

While the pseudo-true values of γ∗
2 are not identified, the sample estimates of the SDF param-

eters are always identified and they are given by

γ̂ = (D̂′Û−1D̂)−1(D̂′Û−1q). (21)

Note that this is equivalent to running an ordinary least squares (OLS) regression of Û− 1

2 q on

Û− 1

2 B̂ and Û− 1

2 d̂. In order to obtain γ̂2, we can project Û− 1

2 q and Û− 1

2 d̂ on Û− 1

2 B̂, and then

4The independence of the useless factor from the test asset returns and the other factors is a sufficient condition for
our results to go through. The assumption of zero mean for the useless factor does not affect our asymptotic results
on statistical inference for the slope parameters of the linear SDF. It does, however, affect the limiting distribution of
the estimated SDF’s intercept and the statistical inference on it. The limiting results derived under a generic mean
and variance of the useless factor are available from the authors upon request.
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regress the residuals from the first projection onto the residuals from the second projection. It

follows that

γ̂2 =
d̂′Û− 1

2

[

IN − Û− 1

2 B̂(B̂′Û−1B̂)−1B̂′Û− 1

2

]

Û− 1

2 q

d̂′Û− 1

2

[

IN − Û− 1

2 B̂(B̂′Û−1B̂)−1B̂′Û− 1

2

]

Û− 1

2 d̂
. (22)

Similarly, the parameter vector γ̂1 is obtained by projecting Û− 1

2 q and Û− 1

2 B̂ on Û− 1

2 d̂ and then

regressing the residuals from the first projection onto the residuals from the second projection,

which yields

γ̂1 = (B̂′Û− 1

2 [IN − Û− 1

2 d̂(d̂′Û− 1

2 d̂)−1d̂′Û− 1

2 ]Û− 1

2 B̂)−1

× B̂′Û− 1

2 [IN − Û− 1

2 d̂(d̂′Û− 1

2 d̂)−1d̂′Û− 1

2 ]Û− 1

2 q. (23)

Our first results are concerned with the limiting behavior of γ̂1 and γ̂2 under correctly specified

and misspecified models. We adopt the following notation. Let B̃ = U− 1

2 B, q̃ = U− 1

2 q, S =

E[et(γ
∗)et(γ

∗)′], and P be an N ×(N −K) orthonormal matrix whose columns are orthogonal to B̃

so that PP ′ = IN−B̃(B̃′B̃)−1B̃′. Also, let z ∼ N (0N , IN) and y ∼ N (0N , U− 1

2 SU− 1

2 ), and they are

independent of each other. Finally, we define w = P ′z ∼ N (0N−K, IN−K), s = (q̃′Pw)/(q̃′PP ′q̃)
1

2 ∼
N (0, 1), u = P ′y ∼ N (0N−K, Vu) with Vu = P ′U− 1

2 SU− 1

2 P , and r = (B̃′B̃)−
1

2 B̃′y ∼ N (0K, Vr)

with Vr = (B̃′B̃)−
1

2 B̃′U− 1

2 SU− 1

2 B̃(B̃′B̃)−
1

2 .

Theorem 1. Assume that N > K + 1, [x′
t, f ′

t , gt]
′ are jointly stationary and ergodic processes

and et(γ
∗) = xtf̃

′
tγ

∗
1 − q forms a martingale difference sequence with Et−1[et(γ

∗)] = 0N (a.s.),

Et−1[et(γ
∗)et(γ

∗)′] = S (a.s.) and supt E ‖et(γ
∗)‖4 < ∞, where S is a positive definite matrix,

Et−1[·] denotes the expectation conditional on {et−1(γ
∗), et−2(γ

∗), . . .}, and ‖·‖ is the Euclidean

norm.

(a) If δ = 0, i.e., the model is correctly specified, we have

√
T (γ̂1 − γ∗

1)
d→ (B̃′B̃)−

1

2

[

r − w′u
w′w

(B̃′B̃)−
1

2 B̃′z

]

, (24)

and

γ̂2
d→ w′u

w′w
. (25)

(b) If δ > 0, i.e., the model is misspecified, we have

γ̂1 − γ∗
1

d→ − δs

w′w
(B̃′B̃)−1B̃′z, (26)
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and
1√
T

γ̂2
d→ δs

w′w
. (27)

Proof. See the Appendix.

The results in Theorem 1 can be summarized as follows. First, for correctly specified models,

Theorem 1 shows that γ̂2 converges to a bounded random variable rather than zero.5 While the

parameter estimates for the useful factors are consistently estimable, they are asymptotically non-

normally distributed. Second, the presence of a useless factor further exacerbates the inference

problems when the model is misspecified. In this case, the estimator γ̂1 is inconsistent while the

estimator γ̂2 diverges at rate T
1

2 which is in agreement with the results in Kan and Zhang (1999b)

and Kleibergen (2009).

Despite the highly non-standard limits of the SDF parameter estimates, it is possible that their

t-statistics are well behaved. To investigate this, we define two types of t-statistics: (i) tc(γ̂1i), for

i = 1, . . . , K, and tc(γ̂2) that use standard errors obtained under the assumption that the model

is correctly specified, and (ii) tm(γ̂1i), for i = 1, . . . , K, and tm(γ̂2) that use standard errors under

potentially misspecified models. The two types of t-statistics are based on the estimated covariance

matrices Σ̂0
γ̂ = 1

T

∑T
t=1 ĥ0

t ĥ
0′
t and Σ̂γ̂ = 1

T

∑T
t=1 ĥtĥ

′
t, where

ĥ0
t = (D̂′Û−1D̂)−1D̂′Û−1êt, (28)

ĥt = ĥ0
t + (D̂′Û−1D̂)−1([f̃ ′

t, gt]
′ − D̂′Û−1xt)ê

′Û−1xt, (29)

and êt = xt(f̃
′
t γ̂1 + gtγ̂2)− q. We explicitly consider the behavior of tc(γ̂1i) and tc(γ̂2) because it is

a common practice for researchers to assume correct specification when computing the t-statistics.

In particular, the t-statistics of H0 : γ1i = γ∗
1i and H0 : γ2 = 0 under the assumption of a

correctly specified model have the form

tc(γ̂1i) =

√
T (γ̂1i − γ∗

1i)
√

ι′iΣ̂
0
γ̂ιi

(30)

and

tc(γ̂2) =

√
T γ̂2

√

ι′K+1Σ̂
0
γ̂ιK+1

. (31)

5The limiting random variable has mean zero and variance tr(Vu)/[(N − K)(N −K − 2)], where tr(·) is the trace
operator.
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Similarly, the t-statistics of H0 : γ1i = γ∗
1i and H0 : γ2 = 0 under a potentially misspecified model

are given by

tm(γ̂1i) =

√
T (γ̂1i − γ∗

1i)
√

ι′iΣ̂γ̂ιi

(32)

and

tm(γ̂2) =

√
T γ̂2

√

ι′K+1Σ̂γ̂ιK+1

. (33)

The results presented below are driven, to a large extent, by the limiting behavior of the matrix

Ŝ = 1
T

∑T
t=1 êtê

′
t. In the presence of a useless factor, the results in Theorem 1 imply that for

misspecified models

êt = (T− 1

2 γ̂2)(T
1

2 xtgt) + Op(1) (34)

and
Ŝ

T
= (T− 1

2 γ̂2)
2U + op(1), (35)

so Ŝ diverges at rate T . In contrast, for correctly specified models, we have

Ŝ = S + γ̂2
2U + op(1), (36)

so that Ŝ converges to a random matrix.

In addition to the random variables and matrices defined before Theorem 1, we introduce

the following notation. Let ũ ∼ N (0, 1), r̃i ∼ N (0, 1), z̃i ∼ N (0, 1), v ∼ χ2
N−K−1, and they

are independent of each other and w. Theorem 2 and Corollary 1 below provide the limiting

distributions of the t-statistics under correctly specified and misspecified models.

Theorem 2.

(a) Suppose that the assumptions in Theorem 1 hold. In addition, assume that E[εtε
′
t|f̃t] = Σ

(conditional homoskedasticity), where εt = xt − B(E[f̃tf̃
′
t ])

−1f̃t.
6 If δ = 0, i.e., the model is

6The limiting distribution of tc(γ̂2
) does not depend on the conditional homoskedasticity assumption. The expres-

sions for the limiting distributions of the other t-statistics under general conditional heteroskedasticity assumption
are more involved, and the results are available upon request.
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correctly specified, we have

tc(γ̂1i)
d→ ũz̃i +

√
λi

√
w′wr̃i

[

λiw′w + z̃2
i + ũ2

(

1 +
z̃2

i

w′w

)]
1

2

, (37)

tm(γ̂1i)
d→ ũz̃i +

√
λi

√
w′wr̃i

[

λiw′w + z̃2
i + ũ2

(

1 +
z̃2

i

w′w

)

+
z̃2

i
v

w′w

]
1

2

, (38)

tc(γ̂2)
d→ ũ

(

1 + ũ2

w′w

)
1

2

, (39)

tm(γ̂2)
d→ ũ

(

1 + ũ2+v
w′w

)
1

2

, (40)

where λi is a positive constant and its explicit expression is given in the Appendix.

(b) Suppose that the assumptions in Theorem 1 hold and denote the sign operator by sgn (·). If

δ > 0, i.e., the model is misspecified, we have

tc(γ̂1i)
d→ z̃i

(

1 +
z̃2

i

w′w

)
1

2

, (41)

tm(γ̂1i)
d→ N

(

0,
1

4

)

, (42)

tc(γ̂2)
d→ sgn(s)

√
w′w, (43)

tm(γ̂2)
d→ N (0, 1). (44)

Proof. See the Appendix.

Corollary 1.

(a) Suppose that the assumptions in part (a) of Theorem 2 hold. Then, for correctly specified

models, the limiting distributions of t2c(γ̂1i), t2m(γ̂1i), t2c(γ̂2), and t2m(γ̂2) are stochastically

dominated by χ2
1.

(b) Suppose that the assumptions in part (b) of Theorem 2 hold. Then, for misspecified models,

the limiting distributions of t2c(γ̂1i) and t2m(γ̂1i) are stochastically dominated by χ2
1.

Proof. See the Appendix.
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Theorem 2 and Corollary 1 illustrate the implications of using standard inference procedures

(critical values from N (0, 1)) for testing the statistical significance of the SDF parameters γ in the

presence of a useless factor. Apart from tm(γ̂2) in misspecified models, all the other statistics are

not asymptotically distributed as standard normal random variables. For example, in misspecified

models, the test statistic tc(γ̂2) will over-reject the null hypothesis when N (0, 1) is used as a refer-

ence distribution and this over-rejection increases with the number of test assets N . As a result,

researchers will conclude erroneously (with high probability) that the factor gt is important and

should be included in the model. In order to visualize the source of the over-rejection problem,

Figure 1 plots the probability density function of tc(γ̂2) for N −K = 7 when the model is misspec-

ified. Given the bimodal shape and a variance of 7 for the limiting distribution of tc(γ̂2), using the

critical values from the standard normal distribution would obviously result in highly misleading

inference. Importantly, part (b) of Theorem 2 shows that the t-statistic under potentially misspec-

ified models, tm(γ̂2), retains its standard normal asymptotic distribution even when the factor is

useless and Figure 1 provides a graphical illustration of this result. The reduction in the degrees of

freedom from N −K for the asymptotic chi-squared distribution of tc(γ̂2)
2 to 1 for the asymptotic

chi-squared distribution of tm(γ̂2)
2 is striking.

Figure 1 about here

Theorem 2 also suggests that the presence of a useless factor renders the inference on all the

remaining parameters non-standard. Testing the statistical significance of the parameters on the

useful factors, in both correctly specified and misspecified models, against the standard normal

critical values would lead to under-rejection of the null hypothesis and conservative inference.

The main conclusion that emerges from these results is that one should use misspecification-

robust t-statistics when testing the statistical significance of individual SDF parameters. This

will ensure that the statistical decision from this test is robust to possible model misspecification

and useless factors. If the model happens to be correctly specified, this will result in conservative

inference but the useless factor will be removed with probability greater than 1−α, where α is the

size of the test. If a useless factor is not present in the model, the standard normal asymptotics for

the misspecification-robust test is restored as discussed in Section I.

Finally, it is instructive to investigate whether the presence of a useless factor affects the limiting

12



behavior of the specification test based on the sample squared HJ-distance

δ̂
2

= ê′Û−1ê. (45)

In the absence of a useless factor, it is well known that under a correctly specified model (Jagan-

nathan and Wang, 1996)

T δ̂
2 d→

N−K
∑

i=1

ξiXi, (46)

where the Xi’s are independent chi-squared random variables with one degree of freedom and the

ξi’s are the N − K nonzero eigenvalues of

S
1

2 U−1S
1

2 − S
1

2 U−1B(B′U−1B)−1B′U−1S
1

2 . (47)

In practice, the specification test based on the HJ-distance is performed by comparing T δ̂
2

with

the critical values of
∑N−K

i=1 ξ̂iXi, where the ξ̂i’s are the nonzero eigenvalues of

Ŝ
1

2 Û−1Ŝ
1

2 − Ŝ
1

2 Û−1B̂(B̂′Û−1B̂)−1B̂′Û−1Ŝ
1

2 . (48)

When the model is misspecified, Hansen, Heaton, and Luttmer (1995) show that the sample squared

HJ-distance has a limiting normal distribution. However, in the presence of a useless factor, the

above results will not hold. In the next theorem, we add to the existing literature (Kan and Zhang,

1999b) by characterizing the limiting behavior of the sample squared HJ-distance in the presence

of a useless factor.

Theorem 3. Let Q1 ∼ Beta
(

N−K
2 , 1

2

)

with density fQ1
(·), Q2 ∼ Beta

(

N−K−1
2 , 1

2

)

with density

fQ2
(·) and cα be the 100(1− α)-th percentile of χ2

N−K−1.

(a) Suppose that the assumptions in part (a) of Theorem 2 hold. If H0 : δ2 = 0, we have

T δ̂
2 d→ E[(f̃ ′

tγ
∗
1)

2]χ2
N−K−1 (49)

and the limiting probability of rejecting H0 : δ2 = 0 by the HJ-distance test of size α is

∫ 1

0
P

[

χ2
N−K−1 >

cα

q

]

fQ1
(q)dq < α. (50)

(b) Suppose that the assumptions in Theorem 1 hold. If δ > 0, we have

δ̂
2 d→ δ2Q2 (51)
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and the limiting probability of rejecting H0 : δ2 = 0 by the HJ-distance test of size α is

∫ 1

0
P

[

χ2
N−K >

cαq

1 − q

]

fQ2
(q)dq < 1. (52)

Proof. See the Appendix.

An immediate consequence of the result in Theorem 3 is that the presence of a useless factor

tends to distort the inference on the specification test as well. More specifically, part (b) of The-

orem 3 reveals that the HJ-distance test of correct model specification is inconsistent under the

alternative. Hence, the test will not reject a misspecified model with a probability approaching one

when a useless factor is present.

Note that the limiting probabilities of rejection in (50) and (52) are only functions of the

significance level α and the degree of over-identification N − K. Figure 2 plots these probabilities

for different significance levels (α = 0.01, 0.05, and 0.1) and N − K ranging from 2 to 20. The

top panel of Figure 2 reveals that under a correctly specified model, the limiting probability of

rejection of the HJ-distance test is below its nominal level when a useless factor is present. When

the model is misspecified, the bottom panel of Figure 2 shows that the probability of rejection

of the HJ-distance test will not approach one even in large samples. In fact, there is a nonzero

probability that the HJ-distance test will favor the null of correct specification, and this probability

is particularly high when N − K is small. As a result, the presence of a useless factors makes it

more difficult for the HJ-distance test to detect a misspecified model.

Figure 2 about here

Overall, our theoretical results suggest that using the misspecification-robust t-test of zero

risk premium would be a convenient tool for identifying if a factor is useless. While it might be

desirable to develop an inference procedure on the remaining SDF parameters that is fully robust

to the presence of useless factors, this does not seem to be feasible in our framework. In fact, the

presence of a useless factor distorts the standard inference on the remaining SDF parameters, their

associated t-statistics and the model specification test. We show that the presence of a useless

factor renders the remaining parameter estimates inconsistent and causes their t-statistics under

both correct model specification and model misspecification to under-reject the null. Only after
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the useless factor is identified and removed using the misspecification-robust t-test, the validity of

the inference and the consistency of the parameters are restored.

These considerations suggest that a sequential procedure based on the misspecification-robust

t-tests is necessary. Specifically, in the first stage, we estimate the full model and the factors for

which the null of zero risk premium is not rejected are eliminated from the model. The model is

then re-estimated with only the factors that survive the first stage at the pre-specified nominal

level. This procedure is repeated until the SDF parameter estimates on the remaining factors are

found to be statistically significant at the desired nominal level when using the misspecification-

robust t-tests. The appeal of this model selection procedure is that the inference for testing the

significance of the SDF parameters γ is standard (i.e., it is based on the critical values from the

N (0, 1) distribution). The effectiveness of our proposed method in eliminating useless factors (and

factors with zero risk premia) and retaining useful factors in the model is analyzed in the simulation

section below.

III. Monte Carlo Simulations

In this section, we undertake a Monte Carlo experiment to assess the small-sample properties

of the various test statistics in models with useful and useless factors. In our simulations, we also

evaluate the effectiveness of the sequential model selection procedure described above in retaining

useful factors and eliminating useless factors and factors with zero risk premia.

A. Tests of Parameter Restrictions

For the analysis of the SDF parameter and specification tests, we consider three linear models:

(i) a model with a constant term and a useful factor, (ii) a model with a constant term and a

useless factor, and (iii) a model with a constant term, a useful factor and a useless factor. For each

model, we consider two separate cases: the case in which the model is correctly specified and the

case in which the model is misspecified. The returns on the test assets and the useful factor are

drawn from a multivariate normal distribution. In all simulation designs, the covariance matrix of

the simulated test asset returns is set equal to the estimated covariance matrix from the 1959:2–

2007:7 sample of monthly gross returns on the one-month T-bill and the 25 Fama-French size and

book-to-market ranked portfolios (from Kenneth French’s website). For misspecified models, the
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means of the simulated returns are set equal to the means of the actual returns. For correctly

specified models, the means of the simulated returns are set such that the asset pricing model

restrictions are satisfied (i.e., the pricing errors are zero).7 Similarly, the mean and variance of

the simulated useful factor are calibrated to the mean and variance of the value-weighted market

excess return. The covariances between the useful factor and the returns are chosen based on the

covariances estimated from the data. The useless factor is generated as a standard normal random

variable independent of the returns and the useful factor. The time-series sample size is taken to

be T = 200, 600, and 1000. These choices of T cover the range of sample sizes that are typically

encountered in empirical work. We also present the limiting rejection probabilities based on our

asymptotic results in Theorems 2 and 3.

In Tables I to III, we report the probabilities of rejection (based on 100,000 simulations) of

H0 : γi = γ∗
i for models (i), (ii), and (iii), respectively, where the γ∗

i ’s for the constant and

the useful factor are the chosen pseudo SDF parameters, and the γ∗
i for the useless factor is set

equal to zero. We present results by comparing two different t-statistics with the standard normal

distribution, the one computed under the assumption that the model is correctly specified, tc(γ̂i),

and the one computed under the assumption that the model is potentially misspecified, tm(γ̂i). For

each table, Panel A reports the probabilities of rejection when the model is correctly specified and

Panel B reports the probabilities of rejection when the model is misspecified.

Table I about here

The results in Table I.A show that for models that are correctly specified and contain only useful

factors, the standard asymptotics provides an accurate approximation of the finite-sample behavior

of the t-tests. Since the useful factor, calibrated to the properties of the value-weighted market

excess return, is closely replicated by the returns on the test assets, the differences between the

t-tests under correctly specified models (tc) and the t-tests under potentially misspecified models

(tm) are negligibly small even when the model fails to hold exactly (see Panel B).

Tables II and III present the empirical size of the t-tests in the presence of a useless factor.

Tables II and III about here

7See Gospodinov, Kan, and Robotti (2012b) for a detailed description of how the parameters are chosen in the
different simulation designs.
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The simulation results for the t-tests on the parameters of the useful factor (and the constant term)

confirm our theoretical findings that the null hypothesis is under-rejected when N (0, 1) is used as

a reference distribution. This is the case for correctly specified and misspecified models.

Similarly, the inference on the useless factor proves to be conservative when the model is cor-

rectly specified. However, when the model is misspecified, there are substantial differences be-

tween tc and tm for the useless factor. Under this scenario, we argued in Section II that the

t-statistics under correct model specification have a non-normal asymptotic distribution while the

misspecification-robust t-statistic for the parameter on the useless factor has a N (0, 1) asymptotic

distribution. Since the tc test for significance of the useless factor is asymptotically distributed

(up to a sign) as
√

χ2
N−K , it tends to over-reject severely when the critical values from N (0, 1) are

used and the degree of over-rejection increases with the sample size. In contrast, the tm test on the

useless factor has good size properties although, for small sample sizes, it slightly under-rejects. As

the sample size increases, the empirical rejection rates approach the limiting rejection probabilities

(as shown in the rows for T = ∞) computed from the corresponding asymptotic distributions in

Theorem 2.

B. Specification Test

As shown in Theorem 3, the model specification test based on the HJ-distance is not immune

to the useless factor problem and will be inconsistent under the alternative hypothesis of model

misspecification when a useless factor is present. To illustrate the differences in the rejection

probabilities for different number of assets, we also report results for the 10 size portfolio returns

obtained from Kenneth French’s website.

Table IV about here

The results in Table IV support our theoretical findings that the probability of rejecting the

null hypothesis is a function of the number of test assets and tends to be lower when N − K is

smaller. As the sample size increases, all empirical rejection rates approach the limiting rejection

probabilities (as shown in the rows for T = ∞) computed from the corresponding asymptotic

representations in Theorem 3.

C. Model Selection Procedure
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Our findings suggest that the misspecification-robust t-test should always be used, regardless

of whether a factor is deemed to be useful or useless and a model is considered to be correctly

specified or misspecified. However, since the procedure based on the tm test is often conservative,

some useful factors might be erroneously excluded from the model. The frequency at which this

happens is evaluated in the model selection procedure presented below.

Table V reports the survival rates of different factors when using the sequential procedure

described at the end of Section II. In particular, we compare the survival rates from using the tm

test to the survival rates from using the tc test. In our simulations, we consider a linear model with

a constant term, a useful factor with γ∗
i 6= 0, a useful factor with γ∗

i = 0, and a useless factor. As

in Tables I–IV, the returns and the factors are drawn from a multivariate normal distribution. The

mean and variance of the useful factor with γ∗
i 6= 0 are calibrated to the mean and variance of the

excess market return. The mean and variance of the useful factor with γ∗
i = 0 are calibrated to the

mean and variance of the small-minus-big factor of Fama and French (1993). Finally, the useless

factor is generated as a standard normal random variable, independent of the test asset returns and

the useful factors. The time-series sample size is taken to be T = 200, 600, and 1000. The nominal

level of the sequential testing procedure is set equal to 5%.

Table V about here

Panel A shows that when the model is correctly specified, the procedures based on tc and tm do

a similarly good job in retaining the useful factor in the model and eliminating the useless factor

and the factor that does not provide improved pricing. This indicates that using the tc test in the

presence of a useless factor is not problematic when the underlying model holds exactly. However,

as shown in Panel B, the situation drastically changes when the model is misspecified. In this case,

the procedures based on tc and tm still retain the useful factor with similarly high probability (as

the sample size gets larger), but they produce very different results when it comes to the useless

factor. For example, the procedure based on tc will retain the useless factor 47% of the times for

T = 1000. In contrast, the procedure based on tm will retain the useless factor only about 4% of

the times for T = 1000. It should be emphasized that the effectiveness of the proposed sequential

procedure in retaining the useful factor in the model depends on the correlation between the useful

factor and the returns on the test assets and on the magnitude of the SDF coefficient associated
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with the useful factor. Our procedure will be more effective in retaining a useful factor in the

model, the higher this correlation and the larger the SDF coefficient on the useful factor.8

IV. Empirical Analysis

Our theoretical and simulation results point out some serious pitfalls in the empirical analysis of

asset pricing models with non-traded factors. In the following, we use monthly data to demonstrate

the relevance of our theoretical results. To show that our pricing findings are not specific to the

SDFs considered in the main empirical application, we also use a quarterly dataset to analyze the

performance of additional models with non-traded factors.9

A. Main Application

First, we describe the data used in the empirical analysis and outline the different specifications

of the asset pricing models considered. Then we present our results.

A.1. Data and Asset Pricing Models

As in the Monte Carlo simulations, the test asset returns are the monthly gross returns on the

one-month T-bill and the value-weighted 25 Fama-French size and book-to-market ranked portfolios

from February 1959 until July 2007. We analyze seven asset pricing models starting with the simple

static CAPM. The SDF specification for this model is

yCAPM
t (γ) = γ0 + γ1vwt,

where vw is the excess return (in excess of the one-month T-bill rate) on the value-weighted stock

market index (NYSE-AMEX-NASDAQ) from Kenneth French’s website. The CAPM performed

well in the early tests, e.g., Fama and MacBeth (1973), but has fared poorly since.

One extension that has performed better is our second model, the conditional CAPM (C-LAB)

of Jagannathan and Wang (1996). This model incorporates measures of the return on human

capital as well as the change in financial wealth and allows the conditional SDF coefficients to vary

8Results for the properties of our selection procedure when the model includes factors that are only weakly
correlated with the test asset returns are available from the authors upon request. These additional simulation
results also investigate how well our proposed asymptotics characterizes the less extreme case of a factor that exhibits
a low (but nonzero) correlation with the returns.

9Some additional empirical results are provided in an online appendix available on the authors’ websites.
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with a state variable, prem, the lagged yield spread between Baa and Aaa rated corporate bonds

from the Board of Governors of the Federal Reserve System.10 The SDF specification is

yC−LAB
t (γ) = γ0 + γ1vwt + γ2premt−1 + γ3labt,

where lab is the growth rate in per capita labor income, L, defined as the difference between

total personal income and dividend payments, divided by the total population (from the Bureau

of Economic Analysis). Following Jagannathan and Wang (1996), we use a two-month moving

average to construct the growth rate labt = (Lt−1 + Lt−2)/(Lt−2 + Lt−3) − 1, for the purpose of

minimizing the influence of measurement error.

Our third model (FF3) extends the CAPM by including two empirically-motivated factors. This

is the Fama-French (1993) three-factor model with

yFF3
t (γ) = γ0 + γ1vwt + γ2smbt + γ3hmlt,

where smb is the return difference between portfolios of stocks with small and large market capi-

talizations, and hml is the return difference between portfolios of stocks with high and low book-

to-market ratios (“value” and “growth” stocks, respectively) from Kenneth French’s website.

The fourth model (ICAPM) is an empirical implementation of Merton’s (1973) intertemporal

extension of the CAPM based on Campbell (1996), who argues that innovations in state variables

that forecast future investment opportunities should serve as the factors. The five-factor specifica-

tion proposed by Petkova (2006) is

yICAPM
t (γ) = γ0 + γ1vwt + γ2termt + γ3deft + γ4divt + γ5rft,

where term is the difference between the yields of ten-year and one-year government bonds, def

is the difference between the yields of long-term corporate Baa bonds and long-term government

bonds (from Ibbotson Associates), div is the dividend yield on the Center for Research in Security

Prices (CRSP) value-weighted stock market portfolio, and rf is the one-month T-bill yield (from

CRSP, Fama Risk Free Rates). The actual factors for term, def , div, and rf are their innovations

from a VAR(1) system of seven state variables that also includes vw, smb, and hml.

10All bond yield data are from this source unless noted otherwise.
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Next, we consider consumption-based models. Our fifth model (CCAPM) is the unconditional

consumption model, with

yCCAPM
t (γ) = γ0 + γ1ct,

where c is the growth rate in real per capita total consumption (seasonally adjusted at annual rates)

from the Bureau of Economic Analysis. This model has generally not performed well empirically.

Therefore, we also examine two other consumption models that have yielded more encouraging

results.

One such model (CC-CAY) is a conditional version of the CCAPM due to Lettau and Ludvigson

(2001). The relation is

yCC−CAY
t (γ) = γ0 + γ1ct + γ2cayt−1 + γ3ct ·cayt−1,

where cay, the conditioning variable, is a consumption-aggregate wealth ratio.11 This specification

is obtained by scaling the constant term and the c factor of a linearized consumption CAPM by a

constant and cay. Scaling factors by instruments is one popular way of allowing factor risk premia

to vary over time. See Cochrane (1996), among others.

The last model (D-CCAPM), due to Yogo (2006), highlights the cyclical role of durable con-

sumption in asset pricing. The specification is

yD−CCAPM
t (γ) = γ0 + γ1vwt + γ2cnd,t + γ3cd,t,

where cnd (cd) is the growth rate in real per capita nondurable (durable) consumption (seasonally

adjusted at annual rates) from the Bureau of Economic Analysis.

A.2. Results

Before presenting the estimation results for the SDF parameters, we first investigate whether

the various risk factors are correlated with the asset returns and whether the seven models described

above are properly identified. As mentioned in the theoretical section of the paper, the presence of

a useless factor leads to a violation of the crucial identification condition that the N × K matrix

B = E[xtf̃
′
t ] is of full column rank. Therefore, it is of interest to test if B is of (reduced) rank K−1.

Under the null hypothesis H0 : rank(B) = K − 1, there exists a nonzero K-vector c̃ = [−1, c′]

11Following Jørgensen and Attanasio (2003), we linearly interpolate the quarterly values of cay to permit analysis
at the monthly frequency.
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such that Bc̃ = 0N . Let M̂ be a consistent estimator of the asymptotic covariance matrix of
√

Tvec(B̂ − B), where vec(·) is the vec operator, and Q(c) = [−1, c′] ⊗ IN . Consider the rank

restriction test

W∗ = min
c

Tvec(B̂)′Q(c)′[Q(c)M̂Q(c)′]−1Q(c)vec(B̂). (53)

Under some regularity conditions and H0 : rank(B) = K − 1 (see Cragg and Donald, 1997, and

Gospodinov, Kan, and Robotti, 2012a),

W∗ d→ χ2
N−(K−1). (54)

Table VI.A reports the rank restriction test (W∗) and its p-value (p-val) of the null that

E[xt(1, fit)] has a column rank of one. The panel shows that we cannot reject the null of a

column rank of one at the 5% significance level for eight out of 14 macroeconomic and financial

factors. This finding suggests that several risk factors can be reasonably considered as useless and

that our asymptotic results on useless factors are of practical importance. Panel B further shows

that only CAPM and FF3 convincingly pass the test of full rank condition. This is consistent with

the fact that vw, smb and hml are highly correlated with the returns on the test assets while most

factors in the other models are not. Panel B also shows that only ICAPM passes the HJ-distance

specification test at conventional levels of significance. Since the HJ-distance test has been shown

to substantially over-reject under the null in realistic simulation settings with many test assets,

we also consider an alternative test of H0 : λ = U−1e = 0N (which is equivalent to the test of

H0 : δ = 0). Gospodinov, Kan and Robotti (2012b) show that this alternative Lagrange multiplier

(LM) test has excellent size properties. The results in Panel B indicate that one would reach the

same conclusions using the LM and HJ-distance tests. Therefore, the model rejections documented

in Table VI.B do not seem to be driven by the finite-sample properties of the HJ-distance test.

Overall, these empirical findings suggest that valid inference should account for the fact that models

are often misspecified and very poorly identified.

Table VI about here

Although the rank restriction test serves as a useful pre-test for possible identification problems,

this test does not allow us to unambiguously identify which factor contributes to the identification

failure of the model. In addition, this test does not address the question of which risk factors
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are important in explaining the cross-sectional differences in asset returns. Our misspecification-

robust test of H0 : γi = 0 proves to be of critical importance in (i) providing the direction of

the identification failure and (ii) allowing us to determine whether a given risk factor is priced.

Panels C and D of Table VI present the t-tests under correct model specification and potential model

misspecification. The t-tests under correct model specification suggest that the SDF parameters

on lab in C-LAB, term and def in ICAPM, c in CCAPM, c and cay in CC-CAY, and cnd in

D-CCAPM are statistically significant at the 5% nominal level. However, given the violation of

the full rank condition for these models, the standard normal distribution is not the appropriate

reference distribution in this case. In contrast, using the misspecification-robust t-tests, we do not

reject the null hypothesis of a zero SDF parameter for these variables.

Finally, Panel D shows that only vw in CAPM and FF3 and hml in FF3 survive the first stage

of the sequential procedure based on misspecification-robust t-tests at the 5% significance level.

Since smb is not found to be statistically significant in the first stage, we drop this factor from the

analysis and estimate an asset pricing specification with vw and hml as the only two risk factors.

We still find strong evidence of pricing for the vw and hml factors with misspecification-robust

t-statistics of −4.20 and −4.89, respectively.

B. Additional Empirical Evidence

In this subsection, we analyze the performance of some prominent asset pricing models using

quarterly data. The test asset returns are the quarterly gross returns on the one-month T-bill and

the value-weighted 25 Fama-French size and book-to-market ranked portfolios from 1952 Q2 until

2007 Q4. In addition to CAPM, FF3, CCAPM, CC-CAY and D-CCAPM, we consider the following

asset pricing specifications: (i) the conditional CAPM (C-ML) of Santos and Veronesi (2006) with

vw and vw scaled by the labor income-consumption ratio (ml) as risk factors; (ii) a version of the

conditional consumption CAPM (CC-MY) proposed by Lustig and Van Nieuwerburgh (2005) with

the housing collateral ratio (my), c, and the interaction term my ·c as risk factors; and (iii) the

sector investment model (SIM) of Li, Vassalou, and Xing (2006) with the log investment growth

rates for households (ih), non-financial corporations (ic), and non-corporate sector (inc) as risk

factors. These three additional models with non-traded factors have yielded encouraging results in

cross-sectional asset pricing.
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The empirical results for quarterly data are reported in Table VII, with Panel A showing that

for all factors except for vw, vw·ml, smb, hml, and cd, we cannot reject the null that E[xt(1, fit)]

has a column rank of one at the 5% significance level. In addition, the results in Panel B indicate

that we cannot reject the null of reduced rank for all models except for CAPM and FF3 and that all

models except for SIM are rejected by the HJ-distance specification test.12 This clearly points to

the need of statistical procedures that are robust to model misspecification and weak identification.

Table VII about here

Panel D of Table VII shows that all the non-traded factors except for ih do not survive the

first stage of the model selection procedure based on the misspecification-robust t-test.13 This

stands in sharp contrast to the results in Panel C of Table VII where the t-ratio under correctly

specified models is employed. However, our theoretical and simulation analyses clearly showed

that relying on the t-ratio under correct specification is grossly inappropriate when the underlying

model is misspecified and the factors are very weakly correlated with the returns on the test

assets. As one example, consider C-ML. The t-statistic under correctly specified models on the risk

premium estimator for the vw·ml factor goes from −2.10 to −1.54 when misspecification and weak

identification are taken into account.

Finally, as in the monthly case, only the two traded factors vw and hml appear to be priced in

the cross-section of asset returns at the 5% significance level. Taken together, these results serve

as a warning signal to researchers that are interested in estimating and analyzing SDF parameters

on non-traded risk factors.

V. Conclusion

It is well known that asset returns are, at best, only weakly correlated with many macroeconomic

factors. Nonetheless, researchers in finance have typically relied on inference methods that are not

robust to weak identification and model misspecification when evaluating the incremental pricing

12Using the LM test and a 5% significance level, we can reject the null of correct specification for all models.
13Since ih is the only factor in SIM that passes the first stage of the proposed sequential procedure at the 5%

nominal level (misspecification-robust t-statistic of −2.15), we drop ic and inc from the analysis and estimate an
asset pricing specification with ih as the only risk factor. The misspecification-robust t-statistic of −1.82, however,
indicates that ih is not a priced factor in the second stage of our model selection procedure at the 5% significance
level.
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ability of these factors. Our paper demonstrates that when a model is misspecified, the standard

t-test of statistical significance will lead us to erroneously conclude, with high probability, that a

useless factor is relevant and should be included in the model. Importantly, we show that the t-test

of statistical significance will be asymptotically valid only if it is computed using misspecification-

robust standard errors. Furthermore, we argue that the presence of a useless factor affects the

inference on the remaining model parameters and the test of correct specification. In particular,

when a useless factor is present in the model, the limiting distributions of the t-statistics for the

useful factors are non-standard and the HJ-distance specification test is inconsistent.

In order to overcome these problems, we propose an easy-to implement sequential model se-

lection procedure based on misspecification-robust t-tests that restores the standard inference on

the parameters of interest. We show via simulations that the proposed procedure is effective in

eliminating useless factors as well as factors that do not improve the pricing ability of the model.

Finally, we investigate the empirical performance of several prominent asset pricing models with

traded and non-traded factors. We find that only the market factor and the book-to-market factor

of Fama and French (1993) survive the model selection procedure based on misspecification-robust

t-ratios. For non-traded factors, there is not enough statistical evidence for us to conclude that

they are important in explaining the cross-sectional differences in expected asset returns.
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Appendix: Preliminary Lemma and Proofs of Main Results

A.1 Preliminary Lemma

Lemma A.1. Let

xt = BS−1
f̃

f̃t + εt, (A.1)

where B = E[xtf̃
′
t ], Sf̃ = E[f̃tf̃

′
t ] and E[εt|f̃t] = 0N . Suppose Cov[εtε

′
t, (f̃

′
tγ

∗
1)

2] = 0N×N (a

sufficient condition for this to hold is E[εtε
′
t|f̃t] = Σ, i.e., conditional homoskedasticity). When the

model is correctly specified, we have

S = E[(xt − f̃ ′
tγ

∗
1)(xt − f̃ ′

tγ
∗
1)

′] = E[(f̃ ′
tγ

∗
1)

2]U + BCB′ , (A.2)

where U = E[xtx
′
t] and C is a symmetric (K + 1)× (K + 1) matrix.

Proof of Lemma A.1. Under a correctly specified model, we have q = Bγ∗
1. It follows that

S = E[xtx
′
t(f̃

′
tγ

∗
1)

2] − qq′ = E[xtx
′
t(f̃

′
tγ

∗
1)

2] − Bγ∗
1γ

∗
1B

′. (A.3)

For the first term, we have

E[xtx
′
t(f̃

′
tγ

∗
1)

2] = E[xtx
′
t]E[(f̃ ′

tγ
∗
1)

2] + Cov[xtx
′
t, (f̃

′
tγ

∗
1)

2]

= E[(f̃ ′
tγ

∗
1)

2]U + Cov[BS−1

f̃
f̃tf̃

′
tS

−1

f̃
B′ + εtε

′
t, (f̃

′
tγ

∗
1)

2]

= E[(f̃ ′
tγ

∗
1)

2]U + BS−1
f̃

Cov[f̃tf̃
′
t , (f̃

′
tγ

∗
1)

2]S−1
f̃

B′, (A.4)

where the last equality follows from the assumption that Cov[εtε
′
t, (f̃

′
tγ

∗
1)

2] = 0N×N . Therefore, we

have

S = E[(f̃ ′
tγ

∗
1)

2]U + BCB′ , (A.5)

where

C = S−1

f̃
Cov[f̃tf̃

′
t , (f̃

′
tγ

∗
1)

2]S−1

f̃
− γ∗

1γ
∗
1
′. (A.6)

This completes the proof.

A.2 Proofs of Theorems and Corollary 1

Proof of Theorem 1.
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part (a): We start with the limiting distribution of
√

T (γ̂1 − γ∗
1). Under the assumptions in

Theorem 1, we have
√

T Û− 1

2 d̂
d→ z ∼ N (0N , IN) (A.7)

and

−
√

T Û− 1

2 (B̂ − B)γ∗
1

d→ y ∼ N (0N , (γ∗
1
′ ⊗ U− 1

2 )VB(γ∗
1 ⊗ U− 1

2 )), (A.8)

where VB is the asymptotic covariance of
√

Tvec(B̂−B) and vec(·) is the vec operator. In addition,

y and z are independent of each other. Since

VB = E[vec(xtf̃
′
t − B)vec(xtf̃

′
t − B)′], (A.9)

it follows that the covariance matrix of y is given by

Vy = (γ∗
1
′ ⊗ U− 1

2 )VB(γ∗
1 ⊗ U− 1

2 ) = E[mtm
′
t], (A.10)

where

mt = U− 1

2 (xtf̃
′
t − B)γ∗

1 = U− 1

2 (xtf̃
′
tγ

∗
1 − q) = U− 1

2 et(γ
∗), (A.11)

and the second equality is obtained by using the fact that Bγ∗
1 = q because the model is correctly

specified. Therefore, we have Vy = U− 1

2 SU− 1

2 for correctly specified models.

Then, using that q = Bγ∗
1, we can write (23) as

√
T (γ̂1 − γ∗

1) = (B̂′Û− 1

2 [IN − Û− 1

2 d̂(d̂′Û− 1

2 d̂)−1d̂′Û− 1

2 ]Û− 1

2 B̂)−1

× B̂′Û− 1

2 [IN − Û− 1

2 d̂(d̂′Û− 1

2 d̂)−1d̂′Û− 1

2 ]
√

TÛ− 1

2 (B − B̂)γ∗
1

d→ (B̃′[IN − z(z′z)−1z′]B̃)−1B̃′[IN − z(z′z)−1z′]y

= (B̃′[IN − z(z′z)−1z′]B̃)−1B̃′[IN − z(z′z)−1z′][PP ′ + B̃(B̃′B̃)−1B̃′]y

= −(B̃′[IN − z(z′z)−1z′]B̃)−1 B̃′zz′PP ′y
z′z

+ (B̃′B̃)−1B̃′y. (A.12)

Let w = P ′z ∼ N (0N−K, IN−K), u = P ′y ∼ N (0N−K , Vu) with Vu = P ′U− 1

2 SU− 1

2 P , r =

(B̃′B̃)−
1

2 B̃′y ∼ N (0K, Vr) with Vr = (B̃′B̃)−
1

2 B̃′U− 1

2 SU− 1

2 B̃(B̃′B̃)−
1

2 . Making use of the following

identity

(B̃′[IN − z(z′z)−1z′]B̃)−1 = (B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w
(A.13)

and z′z = z′B̃(B̃′B̃)−1B̃′z + w′w, we obtain

√
T (γ̂1 − γ∗

1)
d→ (B̃′B̃)−

1

2

[

−w′u
w′w

(B̃′B̃)−
1

2 B̃′z + r

]

. (A.14)
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For the derivation of the limiting distribution of γ̂2, we define M = IN−U− 1

2 B(B′U−1B)−1B′U− 1

2

and M̂ = IN − Û− 1

2 B̂(B̂′Û−1B̂)−1B̂′Û− 1

2 . Using that q = Bγ∗
1 and M̂Û− 1

2 B̂ = 0N×K, we obtain

√
TM̂Û− 1

2 q =
√

TM̂Û− 1

2 (B − B̂)γ∗
1

d→ My, (A.15)

and we can rewrite γ̂2 as

γ̂2 =
(
√

TÛ− 1

2 d̂)′(
√

TM̂Û− 1

2 (B − B̂)γ∗
1)

(
√

T Û− 1

2 d̂)′M̂(
√

T Û− 1

2 d̂)
. (A.16)

Then, from (A.7), (A.8) and M̂
p→ M = PP ′, we get

γ̂2
d→ z′My

z′Mz
=

(P ′z)′(P ′y)

(P ′z)′(P ′z)
=

w′u
w′w

. (A.17)

This completes the proof of part (a) of Theorem 1.

part (b): Using the fact that Û− 1

2 B̂
a.s.−→ B̃ and

√
T Û− 1

2 d̂
d→ z, we can obtain the limiting

distribution of γ̂1 in (23) as

γ̂1
d→ (B̃′[IN − z(z′z)−1z′]B̃)−1B̃′[IN − z(z′z)−1z′]q̃. (A.18)

Using (A.13) and the fact that γ∗
1 = (B̃′B̃)−1B̃′ q̃, we obtain

γ̂1 − γ∗
1

d→
[

(B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

](

B̃′q − B̃′zz′q̃
z′z

)

− (B̃′B̃)−1B̃′ q̃

= −(B̃′B̃)−1B̃′z
z′q̃
z′z

+ (B̃′B̃)−1B̃′z
z′B̃(B̃′B̃)−1B̃′ q̃

w′w
− (B̃′B̃)−1B̃′z

z′q̃
z′z

z′B̃(B̃′B̃)−1B̃′z
w′w

= −(B̃′B̃)−1B̃′z
z′q̃
w′w

+ (B̃′B̃)−1B̃′z
z′B̃(B̃′B̃)−1B̃′q̃

w′w

= −z′Mq̃

w′w
(B̃′B̃)−1B̃′z

= − δs

w′w
(B̃′B̃)−1B̃′z, (A.19)

and the last equality follows because δ2 = q̃′PP ′ q̃ and s = q̃′PP ′z/(q̃′PP ′ q̃)
1

2 .

For the limiting distribution of γ̂2, we have

T− 1

2 γ̂2 =
(
√

T d̂′Û− 1

2 )M̂Û− 1

2 q

(
√

T d̂′Û− 1

2 )M̂(
√

T Û− 1

2 d̂)

d→ z′Mq̃

z′Mz
=

δs

w′w
. (A.20)

This completes the proof of part (b) of Theorem 1.
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Proof of Theorem 2.

part (a): Using Lemma A.1, we have

S = E[(f̃ ′
tγ

∗
1)

2]U + BCB′ (A.21)

under the conditional homoskedasticity assumption. It follows that

Vu = P ′U− 1

2 SU− 1

2 P = E[(f̃ ′
tγ

∗
1)

2]IN−K , (A.22)

Vr = (B̃′B̃)−
1

2 B̃′U− 1

2 SU− 1

2 B̃(B̃′B̃)−
1

2 = E[(f̃ ′
tγ

∗
1)

2]IK + (B̃′B̃)
1

2 C(B̃′B̃)
1

2 , (A.23)

Cov[u, r′] = P ′U− 1

2 SU− 1

2 B̃(B̃′B̃)−
1

2 = 0(N−K)×K . (A.24)

Let ũ = w′u/(w′Vuw)
1

2 = E[(f̃ ′
tγ

∗
1)

2]−
1

2 w′u/(w′w)
1

2 . It is easy to show that ũ ∼ N (0, 1) and it is

independent of w, z and r. Using ũ, we can simplify the limiting distribution of
√

T (γ̂1 − γ∗
1) in

(A.14) to
√

T (γ̂1 − γ∗
1)

d→ −E[(f̃ ′
tγ

∗
1)

2]
1

2

ũ

(w′w)
1

2

(B̃′B̃)−1B̃′z + (B̃′B̃)−
1

2 r. (A.25)

The estimated covariance matrix of γ̂ for a potentially misspecified model is given by

V̂m(γ̂) =
1

T 2

T
∑

t=1

ĥtĥ
′
t, (A.26)

where

ĥt = (D̂′Û−1D̂)−1D̂′Û−1êt + (D̂′Û−1D̂)−1([f̃ ′
t, gt]

′ − D̂′Û−1xt)ût, (A.27)

and ût = ê′Û−1xt. In order to derive the limiting distribution of ĥt, we need to obtain the limiting

representations of (D̂′Û−1D̂)−1, (D̂′Û−1D̂)−1D̂′Û−1, and ût.

It is straightforward to show that

D̂′Û−1 =





B̃′U− 1

2 + Op(T
− 1

2 )

1√
T

z′U− 1

2 + Op(T
−1)



 , (A.28)

D̂′Û−1D̂ =





B̃′B̃ + Op(T
− 1

2 ) 1√
T
B̃′z + Op(T

−1)

1√
T

z′B̃ + Op(T
−1) z′z

T
+ Op(T

− 3

2 )



 . (A.29)

Then, using the partitioned matrix inverse formula, we have

(D̂′Û−1D̂)−1 =





H + Op(T
− 1

2 ) −
√

T
(B̃′B̃)−1B̃′z

w′w + Op(1)

−
√

T
z′B̃(B̃′B̃)−1

w′w + Op(1) T
w′w + Op(T

1

2 )



 , (A.30)
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where

H = (B̃′[IN − z(z′z)−1z′]B̃)−1 = (B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w
. (A.31)

After simplification, we obtain

(D̂′Û−1D̂)−1D̂′Û−1 =





(B̃′B̃)−1B̃′U− 1

2 − (B̃′B̃)−1B̃′zw′P ′U−
1
2

w′w
+ Op(T

− 1

2 )
√

Tw′P ′U−
1

2

w′w
+ Op(1)



 . (A.32)

With the above expressions, we now derive the limiting distribution of ût. Note that the vector

of sample pricing errors is given by

ê = D̂γ̂ − q = D̂(D̂′Û−1D̂)−1D̂′Û−1q − q. (A.33)

Using (A.15), (A.17), and the identity

IN − Û− 1

2 D̂(D̂′Û−1D̂)−1D̂′Û− 1

2 = M̂ − M̂Û− 1

2 d̂(d̂′Û− 1

2 M̂Û− 1

2 d̂)−1d̂′Û− 1

2 M̂, (A.34)

we can obtain the limiting distribution of −
√

T Û− 1

2 ê as

−
√

T Û− 1

2 ê =
√

TM̂Û− 1

2 q −
√

TM̂Û− 1

2 d̂γ̂2
d→ My − Mz

w′u
w′w

= P

(

IN−K − ww′

w′w

)

u, (A.35)

and we have
√

T ût
d→ −u′

(

IN−K − ww′

w′w

)

P ′U− 1

2 xt. (A.36)

Using (A.30), (A.32), (A.36), and the fact that

êt = xt(f̃
′
tγ̂1 + γ̂2gt) − q = xtf̃

′
tγ

∗
1 − q +

w′u
w′w

xtgt + Op(T
− 1

2 ) (A.37)

under a correctly specified model, we can write the limiting distribution of ĥt = [ĥ′
1t, ĥ2t]

′, where

ĥ1t denotes the first K elements of ĥt, as

ĥ1t
d→

[

(B̃′B̃)−1B̃′U− 1

2 − (B̃′B̃)−1B̃′zw′P ′U− 1

2

w′w

]

(

xtf̃
′
tγ

∗
1 − q + xtgt

w′u
w′w

)

+
(B̃′B̃)−1B̃′z

w′w
u′
(

IN−K − ww′

w′w

)

P ′U− 1

2 xtgt, (A.38)

ĥ2t√
T

d→ 1

w′w
w′P ′U− 1

2

(

xtf̃
′
tγ

∗
1 − q + xtgt

w′u
w′w

)

− 1

w′w
u′
(

IN−K − ww′

w′w

)

P ′U− 1

2 xtgt. (A.39)

Under the conditional homoskedasticity assumption, we have

1

T

T
∑

t=1

(xtf̃
′
tγ

∗
1 − q)(xtf̃

′
tγ

∗
1 − q)′

a.s.−→ S = E[(f̃ ′
tγ

∗
1)

2]U + BCB′. (A.40)
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Together with the fact that

1

T

T
∑

t=1

xtx
′
tg

2
t

a.s.−→ E[xtx
′
tg

2
t ] = E[xtx

′
t]E[g2

t ] = U, (A.41)

we can show that the estimated misspecification-robust covariance matrix of γ̂1 has a limiting

distribution of

T V̂m(γ̂1) =
1

T

T
∑

t=1

ĥ1tĥ
′
1t

d→ E[(f̃ ′
tγ

∗
1)

2]

(

1 +
ũ2

w′w

)

[

(B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

]

+ C

+ u′
(

IN−K − ww′

w′w

)

u
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

(w′w)2
. (A.42)

Let bi be the i-th diagonal element of (B̃′B̃)−1. Then, we can readily show that

z̃i = −ι′i(B̃
′B̃)−1B̃′z√

bi

∼ N (0, 1), (A.43)

v =
u′[IN−K − w(w′w)−1w′]u

E[f̃tγ∗
1)

2]
∼ χ2

N−K−1, (A.44)

and v is independent of ũ, z and w. Using z̃i and v, we can express the limiting distribution of

s2
m(γ̂1i) as

Ts2
m(γ̂1i) = T ι′iV̂m(γ̂1)ιi

d→ E[(f̃ ′
tγ

∗
1)

2]bi

[(

1 +
ũ2

w′w

)(

1 +
z̃2
i

w′w

)

+
z̃2
i v

(w′w)2

]

+ ci, (A.45)

where ci is the i-th diagonal element of C. In addition, by letting

r̃i = (E[(f̃ ′
tγ

∗
1)

2]bi + ci)
− 1

2 ι′i(B̃
′B̃)−

1

2 r ∼ N (0, 1), (A.46)

we can write the i-th element in (A.25) as

√
T (γ̂1i − γ∗

1i)
d→ (E[(f̃ ′

tγ
∗
1)

2]bi)
1

2

ũz̃i

(w′w)
1

2

+ (E[(f̃ ′
tγ

∗
1)

2]bi + ci)
1

2 r̃i. (A.47)

Finally, by letting14

λi = 1 +
ci

E[(f̃ ′
tγ

∗
1)

2]bi

> 0, (A.48)

we can write the limiting distribution of tm(γ̂1i) as

tm(γ̂1i) =
γ̂1i − γ∗

1i

sm(γ̂1i)
d→ ũz̃i +

√
λi

√
w′wr̃i

[

λi(w′w) + z̃2
i + ũ2

(

1 +
z̃2

i

w′w

)

+
z̃2

i
v

w′w

]
1

2

. (A.49)

14From (A.46), we can see that E[(f̃ ′

tγ
∗

1
)2]bi + ci is the variance of ι

′

i(B̃
′B̃)−

1

2 r. Therefore, we have λi > 0.
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The estimated covariance matrix of γ̂1 that assumes a correctly specified model is obtained by

dropping the second term in (A.42). Then, it can be shown that

Ts2
c(γ̂1i)

d→ E[(f̃ ′
tγ

∗
1)

2]bi

[(

1 +
ũ2

w′w

)(

1 +
z̃2
i

w′w

)]

+ ci (A.50)

and hence

tc(γ̂1i) =
γ̂1i − γ∗

1i

sc(γ̂1i)

d→ ũz̃i +
√

λi

√
w′wr̃i

[

λi(w′w) + z̃2
i + ũ2

(

1 +
z̃2

i

w′w

)]
1

2

. (A.51)

We now turn our attention to the limiting distributions of tc(γ̂2) and tm(γ̂2). From part (a) of

Theorem 1, we have

γ̂2
d→ w′u

w′w
=

(w′Vuw)
1

2

(w′w)
ũ, (A.52)

where ũ = w′u/(w′Vuw)
1

2 ∼ N (0, 1), and it is independent of w. Using (A.39), we obtain

s2
m(γ̂2) =

1

T 2

T
∑

t=1

ĥ2
2t

d→ 1

(w′w)2

[

w′Vuw +
(w′u)2

w′w

]

+
u′[IN−K − w(w′w)−1w′]u

(w′w)2

=
w′Vuw + u′u

(w′w)2
. (A.53)

Therefore, the t-statistic of γ̂2 under the misspecification-robust standard error is given by

tm(γ̂2) =
γ̂2

sm(γ̂2)

d→ ũ
(

1 + u′u
w′Vuw

)
1

2

. (A.54)

For s2
c(γ̂2) which assumes a correctly specified model, we drop the second term in ĥ2t, and we

obtain

s2
c(γ̂2)

d→ 1

(w′w)2

[

w′Vuw +
(w′u)2

w′w

]

=
w′Vuw

(w′w)2

(

1 +
ũ2

w′w

)

. (A.55)

It follows that

tc(γ̂2) =
γ̂2

sc(γ̂2)

d→ ũ
(

1 + ũ2

w′w

)
1

2

. (A.56)

Under the conditional homoskedasticity assumption, Vu = E[(f̃ ′
tγ

∗
1)

2]IK , so we can write

tm(γ̂2)
d→ ũ
(

1 + ũ2+v
w′w

)
1

2

, (A.57)
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where v is defined in (A.44). This completes the proof of part (a) of Theorem 2.

part (b): We first derive the limiting distribution of ĥt in (A.27). When a model is misspecified,

we can see from part (b) of Theorem 1 that γ̂2 = Op(T
1

2 ) and γ̂1 = Op(1), so γ̂2 is the dominant

term. Therefore, using (27), we have

êt = xt(f̃
′
tγ̂1 + gtγ̂2) − q = xtgtγ̂2 + Op(1) =

√
Tδs

w′w
xtgt + Op(1). (A.58)

In addition, using (A.33), (A.34) and (A.20), we have

−Û− 1

2 ê = M̂Û− 1

2 q − M̂Û− 1

2 d̂γ̂2
d→ Mq̃ − Mzz′Mq̃

z′Mz
= P [IN−K − w(w′w)−1w′]P ′q̃. (A.59)

It follows that under a misspecified model,

ût = ê′Û−1xt
d→ −q̃′P [IN−K − w(w′w)−1w′]P ′U− 1

2 xt. (A.60)

Then, using (A.30) and (A.32), we can express the limiting distribution of ĥt = [ĥ′
1t, ĥ2t]

′ as

ĥ1t√
T

d→ q̃′Pw

w′w
(B̃′B̃)−1B̃′

(

IN − zw′

w′w
P ′
)

U− 1

2 xtgt

+
(B̃′B̃)−1(B̃′z)

w′w
q̃′P [IN−K − w(w′w)−1w′]P ′U− 1

2 xtgt, (A.61)

ĥ2t

T
d→ q̃′Pw

(w′w)2
w′P ′U− 1

2 xtgt −
1

w′w
q̃′P [IN−K − w(w′w)−1w′]P ′U− 1

2 xtgt. (A.62)

Using the fact that P ′B̃ = 0(N−K)×K and [IN−K − w(w′w)−1w′]w = 0N−K , we have

B̃′
(

IN − zw′

w′w
P ′
)

P [IN−K − w(w′w)−1w′]P ′q̃ = 0K , (A.63)

and we can show that the two terms in the limiting distribution of ĥ1t/
√

T are asymptotically

uncorrelated. It follows that

V̂m(γ̂1) =
1

T 2

T
∑

t=1

ĥ1tĥ
′
1t

=
(q̃′Pw)2

(w′w)2

[

(B̃′B̃)−1 +
(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

w′w

]

+
1

(w′w)2

[

q̃′PP ′ q̃ − (q̃′Pw)2

w′w

]

(B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1

=
δ2

(w′w)2

[

s2(B̃′B̃)−1 + (B̃′B̃)−1B̃′zz′B̃(B̃′B̃)−1
]

. (A.64)
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Using z̃i as defined in (A.43), we can express the limiting distribution of s2
m(γ̂1i) as

s2
m(γ̂1i) = ι′iV̂m(γ̂1)ιi

d→ δ2bi

(w′w)2
(s2 + z̃2

i ). (A.65)

In addition, we can also use z̃i to express the i-th element in (26) as:

γ̂1i − γ∗
1i

d→ δs
√

biz̃i

w′w
. (A.66)

It follows that when the model is misspecified, tm(γ̂1i) has the following limiting distribution:

tm(γ̂1i) =
γ̂1i − γ∗

1i

sm(γ̂1i)

d→ sz̃i
√

s2 + z̃2
i

. (A.67)

To show that tm(γ̂1i)
d→ N (0, 1/4), consider the polar transformation s = ω cos(θ) and z̃i = ω sin(θ),

where ω =
√

s2 + z̃2
i . The joint density of (ω, θ) is given by

f(ω, θ) =
ωe−

ω
2

2

2π
I{ω>0}I{0<θ<2π}. (A.68)

Therefore, ω and θ are independent. Using the polar transformation, we obtain

sz̃i
√

s2 + z̃2
i

= ω cos(θ) sin(θ) =
ω sin(2θ)

2
. (A.69)

Since θ is uniformly distributed over (0, 2π), sin(θ) and sin(2θ) have the same distribution. It

follows that ω sin(2θ)
d
= ω sin(θ) ∼ N (0, 1). Therefore,

tm(γ̂1i)
d→ N

(

0,
1

4

)

. (A.70)

The estimated covariance matrix of γ̂1 that assumes a correctly specified model is obtained by

dropping the second term in the line before (A.64). We can then show that

s2
c(γ̂1i)

d→ δ2s2bi

(w′w)2

(

1 +
z̃2
i

w′w

)

. (A.71)

Using (A.66), we can then obtain the limiting distribution of tc(γ̂1i) as

tc(γ̂1i) =
γ̂1i − γ∗

1i

sc(γ̂1i)

d→ z̃i
(

1 +
z̃2

i

w′w

)
1

2

. (A.72)
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Turing our attention to the limiting distributions of tc(γ̂2) and tm(γ̂2), we use (A.62) and the fact

that δ2 = q̃′PP ′ q̃ to obtain

s2
m(γ̂2)

T
=

1

T 3

T
∑

t=1

ĥ2
2t

d→ (q̃′Pw)2

(w′w)4
w′w +

1

(w′w)2
q̃′P

(

IN−K − ww′

w′w

)

P ′q̃

=
δ2

(w′w)2
. (A.73)

Therefore, using (27), the t-statistic of γ̂2 under the misspecification-robust standard error is given

by

tm(γ̂2) =
γ̂2

sm(γ̂2)

d→ s ∼ N (0, 1). (A.74)

For s2
c(γ̂2) which assumes a correctly specified model, we drop the second term of ĥ2t in (A.62),

and we obtain
s2
c(γ̂2)

T
d→ (q̃′Pw)2

(w′w)3
=

δ2s2

(w′w)3
(A.75)

It follows that

tc(γ̂2) =
γ̂2

sc(γ̂2)

d→ sgn(s)
√

w′w. (A.76)

Note that since s ∼ N (0, 1), sgn(s) has probabilities of 1/2 of taking the values of −1 or 1, and it

is independent of s2. As a result, sgn(s) is also independent of w′w ∼ χ2
N−K .15 This completes the

proof of part (b) of Theorem 2.

Proof of Corollary 1.

We only provide the proof of part (a) since the proof of part (b) is similar for t2c(γ̂1i) and obvious

for t2m(γ̂1i). First, comparing the limiting distribution of t2c(γ̂1i) with the limiting distribution of

t2m(γ̂1i) in part (a) of Theorem 2, we see that there is an extra positive term z̃2
i v/(w′w) in the

denominator. Therefore, the limiting distribution of t2m(γ̂1i) is stochastically dominated by the

limiting distribution of t2c(γ̂1i). It remains to be shown that the latter is stochastically dominated

15It is straightforward to show that the limiting probability density function of tc(γ̂2
) is

f(t) =
|t|N−K−1e−

t
2

2

2
N−K

2 Γ
`

N−K

2

´

. (A.77)
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by χ2
1. From part (a) of Theorem 2, we have

t2c(γ̂1i)
d→ (ũz̃i +

√
λi

√
w′wr̃i)

2

λi(w′w) + z̃2
i + ũ2

(

1 +
z̃2

i

w′w

) . (A.78)

Let t̃ = z̃i/
√

w′w. It is easy to see that the limit of t2c(γ̂1i) is stochastically dominated by (t̃ũ +
√

λir̃i)
2/(λi + t̃2) ∼ χ2

1.

Next, since 1 + ũ2/(w′w) > 1 and 1 + (ũ2 + v)/(w′w) > 1 almost surely, both the limiting distri-

butions of t2c(γ̂2) and t2m(γ̂2) are stochastically dominated by ũ2 ∼ χ2
1. This completes the proof of

Corollary 1.

Proof of Theorem 3.

part (a): Using (A.35) in the proof of Theorem 2, we can easily obtain

T δ̂
2

= T ê′Û−1ê
d→ u′[IN−K − w(w′w)−1w′]u = u′PwP ′

wu, (A.79)

where Pw is an (N −K)×(N −K−1) orthonormal matrix such that PwP ′
w = IN−K −w(w′w)−1w′.

Let ṽ = (P ′
wVuPw)−

1

2 P ′
wu ∼ N (0N−K−1, IN−K−1), which is independent of w. Then, we have

T δ̂
2 d→ ṽ′(P ′

wVuPw)ṽ. (A.80)

For testing H0 : δ = 0, T δ̂
2

is compared with
∑N−K−1

i=1 ξ̂iXi, where the Xi’s are independent

chi-squared random variables with one degree of freedom and the ξ̂i’s are the N − K − 1 nonzero

eigenvalues of

Ŝ
1

2 Û−1Ŝ
1

2 − Ŝ
1

2 Û−1D̂(D̂′Û−1D̂)−1D̂′Û−1Ŝ
1

2 . (A.81)

Using (A.34), we can write the above matrix as

Ŝ
1

2 Û− 1

2 [IN − Û− 1

2 D̂(D̂′Û−1D̂)−1D̂′Û− 1

2 ]Û− 1

2 Ŝ
1

2

= Ŝ
1

2 Û− 1

2 M̂Û− 1

2 Ŝ
1

2 − Ŝ
1

2 Û− 1

2 M̂Û− 1

2 d̂(d̂′Û− 1

2 M̂Û− 1

2 d̂)−1d̂′Û− 1

2 M̂Û− 1

2 Ŝ
1

2 . (A.82)

Let P̂ be an N×(N−K) orthonormal matrix such that P̂ P̂ ′ = M̂ and P̂w be an (N−K)×(N−K−1)

orthonormal matrix such that P̂wP̂ ′
w = IN−K − P̂ ′U− 1

2 d̂(d̂′Û− 1

2 M̂Û− 1

2 d̂)−1d̂′Û− 1

2 P̂ . We can easily

show that ξ̂i’s are the nonzero eigenvalues of

Ŝ
1

2 Û− 1

2 P̂ P̂wP̂ ′
wP̂ ′Û− 1

2 Ŝ
1

2 , (A.83)

36



or equivalently the eigenvalues of

P̂ ′
wP̂ ′Û− 1

2 ŜÛ− 1

2 P̂ P̂w. (A.84)

Using (A.37), we can show that

P̂ ′Û− 1

2 êt
d→ P ′U− 1

2 et(γ
∗) +

w′u
w′w

P ′U− 1

2 xtgt. (A.85)

It follows that

P̂ ′Û− 1

2 ŜÛ− 1

2 P̂
d→ P ′U− 1

2 SU− 1

2 P +
(w′u)2

(w′w)2
IN−K = Vu +

(w′Vuw)ũ2

(w′w)2
IN−K , (A.86)

where ũ = w′u/(w′Vuw)
1

2 ∼ N (0, 1) and it is independent of w.

Under the conditional homoskedasticity assumption, we have Vu = E[(f̃ ′
tγ

∗
1)

2]IN−K and hence

T δ̂
2 d→ E[(f̃ ′

tγ
∗
1)

2]ṽ′ṽ ∼ E[(f̃ ′
tγ

∗
1)

2]χ2
N−K−1, (A.87)

P̂ ′
wP̂ ′Û− 1

2 ŜÛ− 1

2 P̂ P̂w
d→ E[(f̃ ′

tγ
∗
1)

2]

(

1 +
ũ2

w′w

)

IN−K−1. (A.88)

It follows that

ξ̂i
d→ E[(f̃ ′

tγ
∗
1)

2]

(

1 +
ũ2

w′w

)

=
E[(f̃ ′

tγ
∗
1)

2]

Q1
, (A.89)

where Q1 = w′w/(ũ2 + w′w) ∼ Beta
(

N−K
2 , 1

2

)

and it is independent of ṽ′ṽ. Therefore, the limiting

probability of rejection of the HJ-distance test of size α is

∫ 1

0
P

[

χ2
N−K−1 >

cα

q

]

fQ1
(q)dq, (A.90)

where cα is the 100(1 − α) percentile of χ2
N−K−1. Since 0 < Q1 < 1, the limiting probability of

rejection is less than α. This completes the proof of part (a) of Theorem 3.

part (b): Using (A.59), the limiting distribution of the squared sample HJ-distance δ̂
2

= ê′Û−1ê

can be obtained as

δ̂
2 d→ q̃′P [IN−K − w(w′w)−1w′]Pq̃

= (q̃′PP ′q̃)
w′[IN−K − P ′ q̃(q̃′PP ′q̃)−1q̃′P ]w

w′w
= δ2Q2, (A.91)

where

Q2 =
w′[IN−K − P ′q̃(q̃′PP ′ q̃)−1q̃′P ]w

w′w
∼ Beta

(

N − K − 1

2
,
1

2

)

(A.92)
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and it is independent of w.

From the proof of part (a), we know ξ̂i’s are the eigenvalues of

P̂ ′
wP̂ ′Û− 1

2 ŜÛ− 1

2 P̂ P̂w. (A.93)

From (35) and (27), we have

Ŝ

T

d→ δ2s2

(w′w)2
U, (A.94)

which implies

P̂ ′
wP̂ ′Û− 1

2 ŜÛ− 1

2 P̂ P̂w

T

d→ δ2s2

(w′w)2
IN−K−1. (A.95)

Therefore,

ξ̂i

T

d→ δ2s2

(w′w)2
=

δ2(1− Q2)

w′w
, (A.96)

and when we compare T δ̂
2

with the distribution of
∑N−K−1

i=1 ξ̂iXi, we are effectively comparing Q2

with (1− Q2)/(w′w)χ2
N−K−1, and we will reject H0 : δ = 0 when

w′w >
cαQ2

1 − Q2
. (A.97)

Note that w′w ∼ χ2
N−K and it is independent of Q2, so the limiting probability of rejection for a

test with size α is
∫ 1

0

P

[

χ2
N−K >

cαq

1 − q

]

fQ2
(q)dq. (A.98)

This completes the proof of part (b) of Theorem 3.
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Table I

Empirical Size of the t-tests in a Model with One Useful Factor

The table presents the empirical size of the t-tests of H0 : γi = γ∗
i

(i = 0, 1) in a model with a constant
and a useful factor. γ

0
is the coefficient on the constant term and γ

1
is the coefficient on the useful factor.

tc denotes the t-test constructed under the assumption of correct model specification and tm denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5% and 1%) and for
different values of the number of time series observations (T ) using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the 25 Fama-French portfolio returns and the risk-free rate for the period 1959:2–2007:7. The various
t-statistics are compared to the critical values from a standard normal distribution. The rejection rates for
the limiting case (T = ∞) are based on the standard normal distribution.

Panel A: Correctly Specified Model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.168 0.138 0.106 0.097 0.049 0.008

600 0.134 0.095 0.059 0.100 0.049 0.009
1,000 0.119 0.078 0.039 0.099 0.049 0.010

∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.168 0.138 0.106 0.097 0.048 0.008
600 0.134 0.095 0.059 0.100 0.049 0.009

1,000 0.119 0.078 0.039 0.099 0.049 0.010
∞ 0.100 0.050 0.010 0.100 0.050 0.010

Panel B: Misspecified Model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.167 0.137 0.105 0.099 0.048 0.009

600 0.134 0.096 0.059 0.099 0.050 0.010
1000 0.122 0.079 0.040 0.100 0.051 0.010

∞ 0.100 0.050 0.010 0.100 0.050 0.010

tm 200 0.167 0.137 0.105 0.098 0.048 0.009

600 0.134 0.096 0.059 0.099 0.050 0.010
1000 0.122 0.078 0.040 0.100 0.051 0.010

∞ 0.100 0.050 0.010 0.100 0.050 0.010
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Table II
Empirical Size of the t-tests in a Model with One Useless Factor

The table presents the empirical size of the t-tests of H0 : γ
i

= γ∗
i

(i = 0, 1) in a model with a constant
and a useless factor. γ

0
is the coefficient on the constant term and γ

1
is the coefficient on the useless factor.

tc denotes the t-test constructed under the assumption of correct model specification and tm denotes the
misspecification-robust t-test. We report results for different levels of significance (10%, 5% and 1%) and for
different values of the number of time series observations (T ) using 100,000 simulations, assuming that the
returns are generated from a multivariate normal distribution with means and covariance matrix calibrated
to the 25 Fama-French portfolio returns and the risk-free rate for the period 1959:2–2007:7. The various
t-statistics are compared to the critical values from a standard normal distribution. The rejection rates for
the limiting case (T = ∞) are obtained based on the asymptotic distributions given in Theorem 2.

Panel A: Correctly Specified Model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.003 0.001 0.000 0.103 0.045 0.005
600 0.001 0.000 0.000 0.087 0.036 0.003

1000 0.001 0.000 0.000 0.084 0.033 0.003
∞ 0.001 0.000 0.000 0.080 0.032 0.003

tm 200 0.001 0.000 0.000 0.026 0.007 0.000

600 0.000 0.000 0.000 0.019 0.005 0.000
1000 0.000 0.000 0.000 0.017 0.004 0.000
∞ 0.000 0.000 0.000 0.016 0.004 0.000

Panel B: Misspecified Model

γ̂0 γ̂1

t-test T 10% 5% 1% 10% 5% 1%

tc 200 0.012 0.003 0.000 0.314 0.212 0.074
600 0.017 0.004 0.000 0.484 0.389 0.215

1000 0.022 0.005 0.000 0.569 0.485 0.317
∞ 0.080 0.032 0.003 1.000 1.000 1.000

tm 200 0.001 0.000 0.000 0.067 0.028 0.003
600 0.001 0.000 0.000 0.079 0.035 0.005

1000 0.001 0.000 0.000 0.085 0.040 0.006
∞ 0.001 0.000 0.000 0.100 0.050 0.010
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Table III

Empirical Size of the t-tests in a Model with a Useful and a Useless Factor

The table presents the empirical size of the t-tests of H0 : γi = γ∗
i

(i = 0, 1, 2) in a model with a constant, a
useful and a useless factor. γ

0
is the coefficient on the constant term, γ

1
is the coefficient on the useful factor,

and γ
2

is the coefficient on the useless factor. tc denotes the t-test constructed under the assumption of
correct model specification and tm denotes the misspecification-robust t-test. We report results for different
levels of significance (10%, 5% and 1%) and for different values of the number of time series observations (T )
using 100,000 simulations, assuming that the returns are generated from a multivariate normal distribution
with means and covariance matrix calibrated to the 25 Fama-French portfolio returns and the risk-free
rate for the period 1959:2–2007:7. The various t-tests are compared to the critical values from a standard
normal distribution. The rejection rates for the limiting case (T = ∞) are obtained based on the asymptotic
distributions given in Theorem 2.

Panel A: Correctly Specified Model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.033 0.013 0.005 0.090 0.043 0.007 0.101 0.045 0.005

600 0.040 0.016 0.005 0.092 0.044 0.008 0.086 0.035 0.003
1000 0.040 0.017 0.004 0.092 0.045 0.008 0.083 0.034 0.003

∞ 0.040 0.014 0.002 0.093 0.045 0.008 0.079 0.031 0.002

tm 200 0.018 0.008 0.003 0.085 0.040 0.006 0.026 0.007 0.000
600 0.024 0.011 0.003 0.086 0.040 0.007 0.019 0.004 0.000

1000 0.026 0.011 0.003 0.086 0.041 0.007 0.018 0.005 0.000
∞ 0.027 0.010 0.001 0.087 0.041 0.007 0.016 0.004 0.000

Panel B: Misspecified Model

γ̂0 γ̂1 γ̂2

t-test T 10% 5% 1% 10% 5% 1% 10% 5% 1%

tc 200 0.036 0.012 0.003 0.091 0.044 0.007 0.303 0.205 0.069

600 0.041 0.013 0.002 0.089 0.043 0.007 0.476 0.380 0.205
1000 0.045 0.013 0.002 0.090 0.042 0.007 0.565 0.478 0.305

∞ 0.079 0.031 0.002 0.079 0.031 0.002 1.000 1.000 1.000

tm 200 0.011 0.004 0.001 0.077 0.036 0.005 0.065 0.027 0.003

600 0.007 0.003 0.001 0.065 0.028 0.004 0.078 0.034 0.005
1000 0.005 0.002 0.000 0.057 0.023 0.003 0.084 0.039 0.007

∞ 0.001 0.000 0.000 0.001 0.000 0.000 0.100 0.050 0.010
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Table IV

Empirical Size and Power of the HJ-Distance Test

The table presents the empirical size and power of the HJ-distance test of H0 : δ2 = 0. We report results for
different levels of significance (10%, 5% and 1%) and for different values of the number of time series observations
(T ) using 100,000 simulations, assuming that the returns are generated from a multivariate normal distribution
with means and covariance matrix calibrated to the risk-free rate and the 10 size portfolio returns (N = 11) or 25

Fama-French (N = 26) portfolio returns for the period 1959:2–2007:7. The HJ-distance statistic T δ̂
2

is compared
to the critical values from the weighted chi-squared distribution described in Section II. The rejection rates for
the limiting case (T = ∞) are obtained from the asymptotic results given in Theorem 3.

Panel A: Model with a Useful Factor

N = 11 N = 26

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

200 0.129 0.069 0.017 0.298 0.195 0.070 0.229 0.145 0.050 0.994 0.987 0.951

600 0.110 0.057 0.012 0.607 0.480 0.254 0.137 0.074 0.018 1.000 1.000 1.000
1000 0.108 0.056 0.012 0.829 0.736 0.509 0.121 0.064 0.014 1.000 1.000 1.000
∞ 0.100 0.050 0.010 1.000 1.000 1.000 0.100 0.050 0.010 1.000 1.000 1.000

Panel B: Model with a Useless Factor

N = 11 N = 26

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

200 0.091 0.046 0.010 0.334 0.228 0.092 0.190 0.115 0.036 0.970 0.949 0.878
600 0.076 0.036 0.007 0.692 0.597 0.395 0.110 0.058 0.013 0.996 0.994 0.987

1000 0.073 0.035 0.006 0.830 0.774 0.639 0.097 0.050 0.010 0.998 0.997 0.993
∞ 0.070 0.033 0.006 0.944 0.931 0.902 0.079 0.038 0.007 0.999 0.999 0.998

Panel C: Model with a Useful and a Useless Factor

N = 11 N = 26

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

200 0.090 0.047 0.010 0.200 0.122 0.039 0.184 0.111 0.035 0.959 0.932 0.845
600 0.076 0.037 0.007 0.423 0.311 0.142 0.109 0.057 0.013 0.995 0.992 0.984

1000 0.074 0.035 0.007 0.609 0.502 0.299 0.097 0.049 0.010 0.997 0.996 0.991
∞ 0.069 0.033 0.006 0.926 0.910 0.875 0.079 0.038 0.007 0.999 0.998 0.997
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Table V

Survival Rates of Risk Factors

The table presents the survival rates of the useful and useless factors in a model with a constant, a useful
factor (with γ∗

1
6= 0), a useful factor that does not contribute to pricing (with γ∗

2
= 0) and a useless factor

(with γ∗
3

unidentified). The sequential procedure is implemented by using the misspecification-robust t-
tests (tm(γ̂i) column) as well as the t-tests under correctly specified models (tc(γ̂i) column). The nominal
level of the sequential testing procedure is set equal to 5%. Panels A and B are for correctly specified
and misspecified models, respectively. We report results for different values of the number of time series
observations (T ) using 100,000 simulations, assuming that the returns are generated from a multivariate
normal distribution with means and covariance matrix calibrated to the 25 Fama-French portfolio returns
and the risk-free rate for the period 1959:2–2007:7.

Panel A: Correctly Specified Model

Useful Factor (γ∗
1 6= 0) Useful Factor (γ∗

2 = 0) Useless Factor

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3)

200 0.377 0.365 0.038 0.035 0.036 0.005
600 0.853 0.842 0.040 0.037 0.029 0.004

1000 0.974 0.970 0.041 0.039 0.029 0.003

Panel B: Misspecified Model

Useful Factor (γ∗
1 6= 0) Useful Factor (γ∗

2 = 0) Useless Factor

T tc(γ̂1) tm(γ̂1) tc(γ̂2) tm(γ̂2) tc(γ̂3) tm(γ̂3)

200 0.357 0.329 0.036 0.029 0.190 0.024

600 0.781 0.730 0.040 0.027 0.369 0.034
1000 0.907 0.862 0.040 0.022 0.470 0.039
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Table VI

Monthly Analysis of Some Popular Linear Asset Pricing Models

The table presents the estimation results of seven asset pricing models. The models include the CAPM, the condi-
tional CAPM (C-LAB) of Jagannathan and Wang (1996), the Fama and French (1993) three-factor model (FF3), the
intertemporal CAPM (ICAPM) specification of Petkova (2006), the consumption CAPM (CCAPM), the conditional
consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), and the durable consumption CAPM (D-CCAPM) of
Yogo (2006). The models are estimated using monthly gross returns on the 25 Fama-French size and book-to-market
ranked portfolios and the one-month T-bill. The data are from 1959:2 until 2007:7. Panel A reports the rank restriction
test (W∗) and its p-value (p-val) of the null that E[xt(1, fit)] has a column rank of one. In Panel B, we report the

sample HJ-distance (δ̂), the Lagrange multiplier (LM) test, and the rank restriction test (W∗) with the corresponding
p-values (p-val) for each model. The t-tests under correct model specification and the model misspecification-robust
t-tests are in Panels C and D, respectively. Each t-test is for the test of the null hypothesis that the coefficient associated
with a given risk factor is equal to zero.

Panel A: Rank Test for Individual Factors

Test vw smb hml c cnd cd cay c·cay prem lab term def div rf
W∗ 165.1 167.2 155.6 39.4 33.6 37.3 37.3 22.6 32.1 33.6 30.9 38.6 144.7 21.8
p-val 0.000 0.000 0.000 0.034 0.118 0.054 0.054 0.599 0.156 0.116 0.193 0.040 0.000 0.649

Panel B: HJ-Distance, Lagrange Multiplier, and Rank Tests

Model δ̂ p-val LM p-val W∗ p-val

CAPM 0.430 0.000 92.927 0.000 165.1 0.000
C-LAB 0.406 0.000 68.034 0.000 26.3 0.286
FF3 0.367 0.000 66.358 0.000 116.0 0.000
ICAPM 0.339 0.252 23.962 0.244 19.7 0.540
CCAPM 0.429 0.000 80.135 0.000 39.4 0.034
CC-CAY 0.395 0.001 50.374 0.001 23.1 0.454
D-CCAPM 0.408 0.000 70.547 0.000 30.4 0.139

Panel C: t-tests Using Standard Errors Under Correct Model Specification

Model vw smb hml c cnd cd cay c·cay prem lab term def div rf
CAPM −2.60
C-LAB −1.18 −1.33 2.51
FF3 −3.67 −1.77 −5.31
ICAPM 1.56 −2.55 2.05 1.67 0.58
CCAPM −2.65
CC-CAY −2.22 −2.83 0.73
D-CCAPM −0.89 −2.18 −1.18

Panel D: t-tests Using Model Misspecification-Robust Standard Errors

Model vw smb hml c cnd cd cay c·cay prem lab term def div rf
CAPM −2.60
C-LAB −1.03 −0.60 1.17
FF3 −3.66 −1.77 −5.33
ICAPM 1.16 −1.76 1.53 1.27 0.49
CCAPM −1.58
CC-CAY −1.66 −1.84 0.45
D-CCAPM −0.72 −1.30 −0.79
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Table VII

Quarterly Analysis of Some Popular Linear Asset Pricing Models

The table presents the estimation results of seven asset pricing models. The models include the CAPM, the conditional
CAPM (C-ML) of Santos and Veronesi (2006), the Fama and French (1993) three-factor model (FF3), the consump-
tion CAPM (CCAPM), the conditional consumption CAPM (CC-CAY) of Lettau and Ludvigson (2001), the durable
consumption CAPM (D-CCAPM) of Yogo (2006), the conditional consumption CAPM (CC-MY) proposed by Lustig
and Van Nieuwerburgh (2005), and the sector investment model (SIM) of Li, Vassalou, and Xing (2006). The models
are estimated using quarterly gross returns on the 25 Fama-French size and book-to-market ranked portfolios and the
one-month T-bill. The data are from 1959 Q2 until 2007 Q4. Panel A reports the rank restriction test (W∗) and its
p-value (p-val) of the null that E[xt(1, fit)] has a column rank of one. In Panel B, we report the sample HJ-distance

(δ̂), the Lagrange multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values (p-val) for
each model. The t-tests under correct model specification and the model misspecification-robust t-tests are in Panels C
and D, respectively. Each t-test is for the test of the null hypothesis that the coefficient associated with a given risk
factor is equal to zero.

Panel A: Rank Test for Individual Factors
Test vw vw·ml smb hml c cnd cd cay c·cay my c·my ih ic inc

W∗ 70.6 70.6 93.0 67.0 32.2 29.2 38.5 35.0 20.7 32.4 20.3 32.8 25.7 32.6
p-val 0.000 0.000 0.000 0.000 0.153 0.257 0.041 0.089 0.710 0.147 0.730 0.137 0.422 0.142

Panel B: HJ-Distance, Lagrange Multiplier, and Rank Tests

Model δ̂ p-val LM p-val W∗ p-val

CAPM 0.629 0.000 63.904 0.000 70.6 0.000
C-ML 0.608 0.000 63.995 0.000 26.7 0.318
FF3 0.549 0.000 49.269 0.001 66.4 0.000
CCAPM 0.658 0.000 66.084 0.000 32.2 0.153
CC-CAY 0.587 0.003 37.559 0.021 18.5 0.727
D-CCAPM 0.612 0.000 59.720 0.000 19.8 0.654
CC-MY 0.625 0.000 49.750 0.001 19.2 0.688
SIM 0.540 0.129 35.155 0.037 20.7 0.600

Panel C: t-tests Using Standard Errors Under Correct Model Specification
Model vw vw·ml smb hml c cnd cd cay c·cay my c·my ih ic inc

CAPM −2.94
C-ML 2.07 −2.10
FF3 −3.69 −0.28 −4.33
CCAPM −1.80
CC-CAY −0.62 −2.60 −0.38
D-CCAPM −1.79 −1.88 0.36
CC-MY −1.80 1.73 −0.01
SIM −2.90 2.50 −1.48

Panel D: t-tests Using Model Misspecification-Robust Standard Errors
Model vw vw·ml smb hml c cnd cd cay c·cay my c·my ih ic inc

CAPM −2.93
C-ML 1.51 −1.54
FF3 −3.71 −0.28 −4.37
CCAPM −1.27
CC-CAY −0.37 −1.60 −0.16
D-CCAPM −1.64 −1.17 0.25
CC-MY −1.31 1.06 −0.01
SIM −2.15 1.69 −1.10
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Figure 1. Asymptotic distributions of tc(γ̂2) and tm(γ̂2) under misspecified models.
The figure presents the probability density functions of the limiting distributions of tc(γ̂2) and
tm(γ̂2), the t-ratios for the useless factor that use standard errors constructed under correctly spec-

ified and potentially misspecified models, respectively, for N − K = 7 (see part (b) of Theorem 2).
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Figure 2. Limiting probabilities of rejection of the HJ-distance test. The figure presents

the limiting probabilities of rejection of the HJ-distance test under correctly specified and misspec-
ified models when one of the factors is useless.
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In this appendix, we provide some additional empirical results that are not included in the paper.

A Carry Trade Portfolios and Consumption Growth

Lustig and Verdelhan (2007) claim that aggregate consumption growth risk explains the excess

returns to borrowing U.S. dollars to finance lending in other currencies. In this section, we revisit

their findings in light of our new theoretical and simulation results.

The return data are the annual excess returns on eight currency portfolios from 1953 until

2002.1 It is well-known that when only excess returns are used in the analysis, the mean of the

SDF cannot be identified. As a result, researchers have to choose some normalization of the SDF.

We follow Kan and Robotti (2008) and employ the modified HJ-distance as our misspecification

measure. Kan and Robotti (2008) show that the modified HJ-distance measure has the desirable

property of being invariant to affine transformations of the factors. Under this metric and when

the model is linear, the SDF is written as

yt(γ) = 1 − γ ′(ft − E[ft]).

It should be noted that the theory developed in the paper can be easily modified to accommodate

the modified HJ-distance case. Importantly, under misspecified models, the misspecification-robust

t-statistic will still have a standard normal limiting distribution.

We consider the same four linear asset pricing models analyzed in Table V of Lustig and Verdel-

han (2007), and estimate them using the sample modified HJ-distance.2 The first model considered

is the consumption CAPM (CCAPM) with SDF given by

yCCAPM
t (γ) = 1 − γ1(cnd,t − E[cnd,t]),

where cnd is the growth rate in real per capita nondurable consumption. The second model

(DCAPM) explicitly breaks down consumption into consumption of nondurables and consump-

tion of durables (cd):

yDCAPM
t (γ) = 1 − γ1(cnd,t − E[cnd,t])− γ2(cd,t − E[cd,t]).

1See Lustig and Verdelhan (2007) for a detailed description of the data.
2Since Lustig and Verdelhan (2007) estimate the models using the ordinary least squares two-pass cross-sectional

regression methodology, our results are not directly comparable with theirs.
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The third model (EZ-CCAPM)

yEZ−CCAPM
t (γ) = 1 − γ1(cnd,t − E[cnd,t])− γ2(vwt − E[vwt])

is a linearized version of the model of Epstein and Zin (1989) with nondurable consumption and

the market return (vw) as risk factors. The last model (D-CCAPM)

yD−CCAPM
t (γ) = 1 − γ1(cnd,t − E[cnd,t]) − γ2(cd,t − E[cd,t])− γ3(vwt − E[vwt]),

is a linearized version of the durable consumption CAPM of Yogo (2006).

Table A.1 about here

Panel A of Table A.1 shows that for all risk factors, we cannot reject the null of E[xt(fit −

E[fit])] = 0N . Similarly, for all four models, we cannot reject the null of deficient rank at any con-

ventional significance level.3 At the same time, none of the models is rejected by the specification

test based on the modified HJ-distance at the 5% confidence level.4 However, as our theoretical

analysis suggests, the outcome of the specification test based on the HJ-distance should be inter-

preted with caution when useless factors are included in the model. In the useless factor case, the

HJ-distance test will be inconsistent under the alternative and may have very low power in rejecting

misspecified models.

In addition, Panel D clearly shows that no factor survives the model selection procedure based

on misspecification-robust t-tests. Even the market factor does not appear to be priced, probably

given its small (9%) average absolute correlation with the excess returns on the eight currency

portfolios. Consistent with Burnside (2011), our analysis based on the modified HJ-distance shows

that there is not enough statistical evidence for us to conclude that consumption growth risk prices

the cross-section of carry trade portfolio returns.

B Momentum Portfolios and Industrial Production Growth

Liu and Zhang (2008) claim that the growth rate of industrial production explains the cross-

sectional variation in momentum portfolios, yet the average absolute correlation between the mo-

3In this context, for a model to be identified, we need the covariance matrix between the excess returns on the
test assets and the risk factors to be of full column rank.

4Using the LM test and a 5% significance level, we can reject the null of correct specification for CCAPM and
EZ-CCAPM.
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mentum portfolio returns and the growth rate of industrial production is only about 2%.

The return data are the monthly excess returns on ten momentum, ten size and ten book-to-

market portfolios from January 1960 until December 2004.5

We consider the same four linear asset pricing models analyzed in Table V of Liu and Zhang

(2008), and estimate them using the sample modified HJ-distance.6 The first model considered is

a one-factor model (MP1) with the growth rate of industrial production, mp, as the only factor.

Its SDF is given by

yMP1

t (γ) = 1− γ1(cmp,t − E[cmp,t]).

The second model (FF3) is the usual three-factor model of Fama and French (1993) with SDF given

by

yFF3

t (γ) = 1 − γ1(vwt − E[vwt]) − γ2(smbt − E[smbt])− γ3(hmlt − E[hmlt]),

where vw, smb and hml are the market, size, and book-to-market factors of Fama and French (1993),

respectively. The third model (MP4) is an augmented FF3 model with mp as the additional factor.

Its SDF is given by

yMP4

t (γ) = 1− γ1(vwt − E[vwt])− γ2(smbt − E[smbt])− γ3(hmlt − E[hmlt])− γ4(mpt − E[mpt]).

The last model is the intertemporal CAPM-type model proposed by Chen, Roll and Ross (CRR,

1986):

yCRR
t (γ) = 1 − γ1(uit − E[uit]) − γ2(deit − E[deit])− γ3(utst − E[utst])

−γ4(uprt − E[uprt])− γ5(mpt − E[mpt]),

where ui, dei, upr, and uts denote the unexpected inflation, the change in expected inflation, the

term premium, and the default premium factors, respectively.

Table B.1 about here

Table B.1 shows that all four models do not pass the HJ-distance and LM tests. In addition,

we cannot reject the null of deficient rank for MP4 and CRR at the 5% nominal level and only

5We refer to Liu and Zhang (2008) for a detailed description of the data.
6Since Liu and Zhang (2008) estimate the models using the ordinary least squares two-pass cross-sectional regres-

sion methodology, our results are not directly comparable with theirs.
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FF3 appears to be identified at any conventional nominal level. The results of the specification and

rank restriction tests clearly point to the need for robust statistical methods.

Consistent with the other empirical illustrations, all the non-traded factors do not survive the

model selection procedure based on misspecification-robust t-tests. The only evidence of pricing

comes from the market factor and the book-to-market factor of Fama and French (1993). In

summary, there is not enough statistical evidence for us to conclude that industrial production risk

prices the cross-section of momentum portfolio returns.

C The Stock-Watson Factors

The paper considers several models with macroeconomic variables as risk factors. It is possible

that these individual factors do not capture adequately the risk incorporated in all of the macroe-

conomic data that is available to market participants. One approach to extract parsimoniously the

common variation in macroeconomic variables is the factor analysis advanced by Stock and Watson

(2002a, 2002b). See also Ludvigson and Ng (2007, 2009) for a similar approach in the analysis

of stock and bond risk premia. In this section, we follow Stock and Watson (2005) and construct

three orthogonal factors that summarize the dynamics of 127 macroeconomic time series for the

period February 1959 – July 2007. We use the same variables and transformations as described in

Stock and Watson (2005) with the exception of four series (houses authorized by building permits

for Northeast (BP: NE), Midwest (BP: MW), South (BP: South) and West (BP: West)) for which

there are missing observations for the beginning of the period.7

Let xit (i = 1, ..., N, t = 1, ..., T ) denote the i-th observed series at time t, where N is the total

number of variables and T is the number of time series observations. When the cross-sectional

dimension N is large, the use of all these variables as risk factors is impractical and even infeasible

if N ≥ T. Instead, suppose that xit admits an approximate factor structure of the form

xit = λ′

ift + eit (C.1)

A(L)ft = ut,

where ft is a K × 1 vector of latent common factors, λi is a K × 1 vector of latent factor loadings,

7We would like to thank Toni Braun for suggesting this to us and Sydney Ludvigson for making the data available
on her website.
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eit is a vector of idiosyncratic errors, A(L) is a possibly infinite dimensional lag polynomial, and ut

is a vector of iid errors with mean zero and a constant variance-covariance matrix. The idiosyn-

cratic shocks are assumed to be uncorrelated with the factors at all leads and lags although serial

correlation, heteroskedasticity, and a limited amount of cross-correlation is permitted (Stock and

Watson, 2002a). The selection of the number of factors in the approximate factor model (C.1) is

considered in Bai and Ng (2002).

Let X denote the stacked T × N data matrix with its t-th row given by x′

t = [x1t, x2t, ..., xNt]

and F = [f1 f2 ... fK ] be the T × K matrix of common factors. Provided that N, T → ∞,

the latent factors and factor loadings can be estimated by the method of principal components

by minimizing the objective function (NT )−1
∑N

i=1

∑T
t=1

(xit − λ′

ift)
2 subject to the identifying

restriction F ′F/T = IK . Concentrating out [λ′

1
, ..., λ′N ]′, the estimate of the factor matrix F ,

F̂ , is obtained by maximizing tr(F ′(XX ′)F ) and F̂ is a matrix of
√

T times the K eigenvectors

corresponding to the K largest eigenvalues of the matrix XX ′. The optimal number of factors can

be determined by the panel information criterion proposed by Bai and Ng (2002). While Stock and

Watson (2005) and Ludvigson and Ng (2009) estimate the optimal number of factors to be 7 and

8, respectively, we restrict our attention to the first three principal components given their clear

economic interpretation. More specifically, looking at the marginal R2 from a regression of each

individual series on each estimated factor, Ludvigson and Ng (2009) interpret the first estimated

factor as a real activity factor, the second estimated factor as a financial factor that loads most

heavily on interest rate variables, and the third estimated factor as an inflation factor. Also, note

that while the factors f̂t = [f̂1,t, f̂2,t, f̂3,t]
′ (t = 1, ..., T ) contain an estimation error, no adjustments

to the standard errors of the risk premium estimates are required provided that
√

T/N → 0 (Bai

and Ng, 2006).

We then consider the following SDF:

ySW3

t (γ) = γ0 + γ1f̂1,t + γ2f̂2,t + γ3f̂3,t.

The sample period and the returns on the test assets are the same as the ones used in the monthly

analysis in the paper. Table C.1 presents our results.

Table C.1 about here
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The rank tests for individual factors indicate that the first (real activity) and the third (inflation)

factors can be reasonably considered as useless (see Panel A). This message is further reinforced by

the rank restriction test for SW3 in Panel B. Given that the second factor appears to be the only

statistically significant factor (even when the misspecification-robust standard error is used), the

model is re-estimated after the first and the third factors are dropped from the model. Interestingly,

for the model that contains only the second estimated factor (SW1), the rank test rejects the null

of reduced rank and the interest rate factor is highly statistically significant. This finding is again

in line with our theoretical results and the other empirical applications.
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Table A.1
Estimation and Testing Results for the Linear Models Considered by Lustig

and Verdelhan (2007)

The table presents the estimation and testing results for the four linear asset pricing models considered by
Lustig and Verdelhan (2007). The models considered are the consumption CAPM (CCAPM), a CCAPM
specification (DCAPM) with consumption of durables and nondurables as risk factors, a linearized version of
the model of Epstein and Zin (EZ-CCAPM, 1989) with consumption of nondurables and the market return
as risk factors, and the durable consumption CAPM (D-CCAPM) of Yogo (2006). The models are estimated
using annual excess returns on eight currency portfolios. The data are from 1953 until 2002. Panel A reports
a Wald test (W) and its p-value (p-val) of the null that E[xt(fit − E[fit])] = 0N . This Wald test has a χ2

N

limiting distribution. In Panel B, we report the sample HJ-distance (δ̂), the Lagrange multiplier (LM) test,
and the rank restriction test (W∗) with the corresponding p-values (p-val) for each model. When K = 1, the
reported W∗ corresponds to the W test described in Panel A. The t-tests under correct model specification
and the model misspecification-robust t-tests are in Panels C and D, respectively. Each t-test is for the test
of the null hypothesis that the coefficient associated with a given risk factor is equal to zero.

Panel A: Wald Tests for Individual Factors

Test vw cnd cd

W 7.2 9.2 6.5
p-val 0.518 0.324 0.587

Panel B: HJ-Distance, Lagrange Multiplier, and Rank Tests

Model δ̂ p-val LM p-val W∗ p-val

CCAPM 0.754 0.179 16.358 0.022 9.2 0.324
DCAPM 0.657 0.165 6.928 0.328 1.5 0.982

EZ-CCAPM 0.751 0.092 12.792 0.046 2.8 0.899
D-CCAPM 0.649 0.122 6.486 0.262 1.5 0.962

Panel C: t-tests Using Standard Errors Under Correct Model Specification

Model vw cnd cd

CCAPM 1.90

DCAPM 0.41 1.47
EZ-CCAPM −0.25 2.31

D-CCAPM 0.50 0.15 1.63

Panel D: t-tests Using Model Misspecification-Robust Standard Errors

Model vw cnd cd

CCAPM 1.24
DCAPM 0.26 0.96

EZ-CCAPM −0.20 1.46
D-CCAPM 0.33 0.07 0.95
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Table B.1
Estimation and Testing Results for the Linear Models Considered by Liu and

Zhang (2008)

The table presents the estimation and testing results for the four linear asset pricing specifications considered
by Liu and Zhang (2008). The models considered are the one-factor model (MP1) with the growth rate of
industrial production, mp, as the only risk factor, the three-factor model of Fama and French (FF3, 1993),
the FF3 model augmented with mp (MP4), and the intertemporal CAPM-type model of Chen, Roll, and
Ross (CRR, 1986). The models are estimated using monthly excess returns on ten size, ten book-to-market
and ten momentum portfolios. The data are from 1960:1 until 2004:12. Panel A reports a Wald test
(W) and its p-value (p-val) of the null that E[xt(fit − E[fit])] = 0N . This Wald test has a χ2

N
limiting

distribution. In Panel B, we report the sample HJ-distance (δ̂), the Lagrange multiplier (LM) test, and
the rank restriction test (W∗) with the corresponding p-values (p-val) for each model. When K = 1, the
reported W∗ corresponds to the W test described in Panel A. The t-tests under correct model specification
and the model misspecification-robust t-tests are in Panels C and D, respectively. Each t-test is for the test
of the null hypothesis that the coefficient associated with a given risk factor is equal to zero.

Panel A: Wald Tests for Individual Factors

Test vw smb hml mp ui dei uts upr

W 246.4 222.8 247.3 48.1 35.3 43.5 48.4 44.4
p-val 0.000 0.000 0.000 0.020 0.231 0.052 0.018 0.044

Panel B: HJ-Distance, Lagrange Multiplier, and Rank Tests

Model δ̂ p-val LM p-val W∗ p-val

MP1 0.449 0.000 87.596 0.000 48.1 0.020
FF3 0.405 0.000 76.551 0.000 119.0 0.000

MP4 0.399 0.000 63.070 0.000 39.1 0.063
CRR 0.411 0.003 44.983 0.008 5.0 1.000

Panel C: t-tests Using Standard Errors Under Correct Model Specification

Model vw smb hml mp ui dei uts upr

MP1 1.87

FF3 3.37 1.55 4.19
MP4 3.10 1.39 3.74 1.39

CRR 1.51 −2.25 2.24 0.91 1.25

Panel D: t-tests Using Model Misspecification-Robust Standard Errors

Model vw smb hml mp ui dei uts upr

MP1 1.10
FF3 3.39 1.56 4.18

MP4 3.11 1.40 3.71 0.89
CRR 1.04 −1.15 1.00 0.45 0.59
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Table C.1
Estimation and Testing Results for the Models with the Factors of Stock and

Watson

The table presents the estimation and testing results for the asset pricing specifications with the factors
of Stock and Watson (2002a, 2002b) constructed from 127 macroeconomic time series. SW3 denotes the
model that includes the three estimated factors and SW1 denotes the model that includes only the second
estimated factor. The models are estimated using monthly gross returns on the 25 Fama-French size and
book-to-market ranked portfolios and the one-month T-bill. The data are from 1959:2 until 2007:7. Panel A
reports the rank restriction test (W∗) and its p-value (p-val) of the null that E[xt(1, fit)] has a column

rank of one. In Panel B, we report the sample HJ-distance (δ̂), the Lagrange multiplier (LM) test, and the
rank restriction test (W∗) with the corresponding p-values (p-val) for each model. The t-tests under correct
model specification and the model misspecification-robust t-tests are in Panels C and D, respectively. Each
t-test is for the test of the null hypothesis that the coefficient associated with a given risk factor is equal to
zero.

Panel A: Rank Tests for Individual Factors

Test f̂1 f̂2 f̂3

W∗ 35.7 56.8 23.2
p-val 0.076 0.000 0.564

Panel B: HJ-Distance, Lagrange Multiplier, and Rank Tests

Model δ̂ p-val LM p-val W∗ p-val

SW3 0.360 0.002 49.604 0.001 18.2 0.749

SW1 0.364 0.001 56.523 0.000 56.8 0.000

Panel C: t-tests Using Standard Errors Under Correct Model Specification

Model f̂1 f̂2 f̂3

SW3 0.83 −3.81 −0.31
SW1 −4.40

Panel D: t-tests Using Model Misspecification-Robust Standard Errors

Model f̂1 f̂2 f̂3

SW3 0.43 −2.59 −0.16

SW1 −3.69
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