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Asset pricing models are, at best, approximations. Although it is of interest to test whether a

particular asset pricing model is literally true or not, a more interesting task for empirical researchers

is to find out how wrong a model is and to compare the performance of different asset pricing

models. The latter task requires a scalar measure of model misspecification. While there are many

reasonable measures that can be used, the one introduced by Hansen and Jagannathan (1997) has

gained tremendous popularity in the empirical asset pricing literature. Their proposed measure,

called the Hansen-Jagannathan distance (HJ-distance), has been used both as a model diagnostic

and as a tool for model selection by many researchers. Examples include Jagannathan and Wang

(1996), Jagannathan, Kubota, and Takehara (1998), Campbell and Cochrane (2000), Lettau and

Ludvigson (2001), Hodrick and Zhang (2001), Farnsworth, Ferson, Jackson, and Todd (2002), and

Dittmar (2002), among others.

Many asset pricing models only predict how cross-sectional differences of risk premia are deter-

mined. Therefore, empirical performances of these asset pricing models are often judged by how

well they price excess returns. The problem is that when only excess returns are used, the mean of

the stochastic discount factor (SDF) cannot be identified. As a result, researchers have to choose

some normalization of the SDF. It is generally believed that the choice of normalization of the SDF

does not matter. In this paper, we show that the normalization of a SDF is only irrelevant when

the model is correctly specified. When the model is misspecified, the mean of the SDF can be a

very important determinant of the measure of model misspecification. The choice of normalization

can also heavily influence the relative rankings of competing asset pricing models. For the case of

linear factor asset pricing models, we show that the standard way of writing the SDF as a linear

function of the factors is problematic when only excess returns are used. In particular, the HJ-

distance and other specification test statistics are not invariant to an affine transformation of the

factors. Under a linear factor asset pricing model, the factors are only unique up to a linear trans-

formation. If one can change the relative rankings of competing models by simply performing an

affine transformation of the factors, then it is rather difficult to make sense of the misspecification

measure. We suggest that an alternative specification that defines the SDF as a linear function

of the de-meaned factors is free from this problem and it should be the preferred specification for

linear SDFs. Under the de-meaned linear SDF model, we propose a modified HJ-distance that has

a nice economic interpretation and is more appropriate than the traditional HJ-distance. In order
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to conduct statistical inference, we also provide an asymptotic analysis of the modified HJ-distance

and of the traditional HJ-distance based on the de-meaned SDF under both the correctly specified

model and the misspecified models.

Besides being interested in specification tests and model comparisons, researchers often ask the

question of whether a particular factor in a proposed asset pricing model is “priced” or not. This

question is typically addressed by testing whether the SDF parameter associated with the factor

is significantly different from zero or not. With no exception, all existing studies perform this

test by using a standard error that assumes that the model is correctly specified. In reality, it is

hard to justify this assumption when we estimate the SDF parameters for many different models

because some (if not all) of the models are bound to be misspecified. In this paper, we propose

robust standard errors of the estimates of the SDF parameters that are applicable to both correctly

specified and misspecified models.

Although we focus on excess returns in this paper, many of the problems that we discuss are

equally applicable to specification tests that use gross returns. Since many of our points are the same

for gross returns and for excess returns, we do not repeat our analysis for the case of gross returns.

The only problem that does not apply to the case of gross returns is that the misspecification

measure is no longer affected by an affine transformation of the factors. Nevertheless, competing

models can still have very different means for their SDFs. In addition, testing whether a factor is

priced or not is still typically performed by using a standard error that assumes that the model is

correctly specified.

The rest of the paper is organized as follows. The next section discusses the population measures

of model misspecification and the HJ-distance when only excess returns on test assets are used.

We then study the impact of normalization schemes of the linear SDF on the misspecification

measures and show how these measures could be affected by affine transformations of the factors.

To overcome this problem, we suggest using a de-meaned version of the linear SDF. In addition, we

introduce a modified HJ-distance that is more appropriate than the traditional HJ-distance when

only excess returns are used. Section II presents the sample measures of model misspecification

and provides their asymptotic distributions under the correctly specified and misspecified models.

In addition, we provide an asymptotic analysis of the estimators of the SDF parameters for a

potentially misspecified model. Section III provides an empirical example to illustrate all the issues

2



raised in the paper. The example shows that when the SDF is written as a linear function of the

factors and excess returns are used, comparing models with the HJ-distance is problematic. The

example also allows us to demonstrate the differences between the traditional HJ-distance and the

modified HJ-distance. In addition, we also use this empirical example to illustrate the potential

impact of model misspecification on the standard errors of the estimated SDF parameters. The

final section concludes our findings and the Appendix contains proofs of all propositions.

I. Population Measures of Model Misspecification

A. Pricing Errors and Specification Tests

Let y be a proposed SDF and r be a vector of the payoffs of N zero-cost portfolios. We define r as

the excess returns of the N portfolios. If y correctly prices the N portfolios, we have zero pricing

errors on the excess returns of the N portfolios

e ≡ E[ry] = 0N , (1)

where 0N is an N -vector of zeros. However, if y is a misspecified model, then the pricing errors

of the model are nonzero. In most cases, the proposed discount factor y involves some unknown

parameters λ and it is customary to suggest that y(λ) is a misspecified model if for all values of λ,

we have

e(λ) = E[ry(λ)] 6= 0N . (2)

When an asset pricing model is misspecified, researchers are often interested in obtaining a scalar

measure of the magnitude of the misspecification. For this purpose, we use an aggregate measure

of pricing errors, which is often defined as a quadratic form of the pricing errors

QW = min
λ

e(λ)′We(λ), (3)

where W is a positive definite weighting matrix. Specification tests of asset pricing models are

typically sample versions of QW . Note that unless the model is correct, QW depends on the choice

of W . So for model comparison it makes sense to use the same W across models. While there are

many choices of W that can be used, the one suggested by Hansen and Jagannathan (1997) has

emerged as the most popular choice in the literature.
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Hansen and Jagannathan (1997) suggest using W = U−1 as the weighting matrix, where U =

E[rr′] is the second moment matrix of the excess returns. The resulting measure of misspecification

is commonly known as the HJ-distance, defined as

δHJ = Q
1
2

U−1 =
[
min

λ
e(λ)′U−1e(λ)

]1
2

. (4)

Hansen and Jagannathan (1997) provide two nice interpretations of the HJ-distance. The first is

that the HJ-distance measures the minimum distance between the proposed SDF and the set of

correct SDFs (M),

δHJ = min
m∈M

‖m − y‖, (5)

where ‖X‖ = E[X2]
1
2 is the standard L2 norm. The second is that it represents the maximum

pricing error of a portfolio of r that has a unit second moment. Define ξ as the random payoff of a

portfolio. Hansen and Jagannathan (1997) show that

δHJ = max
‖ξ‖=1

|π(ξ)− πy(ξ)|, (6)

where π(ξ) and πy(ξ) are the prices of ξ assigned by the true and the proposed SDF, respectively.

When only excess returns are used to measure model misspecification, one has to be careful

with the specification of the proposed SDF. In particular, one cannot specify y in a way such that

it can be zero for some values of λ. For example, the popular class of linear factor asset pricing

models suggests that y is a linear function of K systematic factors f . However, when only excess

returns are used, one cannot specify y as

y(λ0, λ) = λ0 − f ′λ. (7)

This is because when λ0 = 0 and λ = 0K , we have QW = 0 regardless of the validity of the model.

When only excess returns are used, it is not possible to identify the mean of the SDF and some

normalization of y becomes necessary. It is generally believed that the choice of normalization is

entirely one of convenience and that it does not matter which one is used.1 For the linear factor

models, a popular choice of normalization is to set λ0 = 1 and specify y as2

y(λ) = 1 − f ′λ. (8)
1See Cochrane (2005, pp.256–9) for a discussion of this view.
2See Jagannathan and Wang (1996), Kan and Zhou (1999, 2001), Kan and Zhang (1999a,b), Cochrane (2005,

pp.256–9), Jagannathan and Wang (2002), Wang (2003), Skoulakis (2005) and Brandt and Chapman (2005) among
others.
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If the model is correct, QW = 0 for any choice of λ0. However, when the model is incorrect, the

value of QW generally depends on the choice of λ0. Nevertheless, it can be shown that the pricing

errors, the p-value of the specification test as well as the relative rankings of competing models do

not depend on the choice of λ0 (as long as the competing linear factor models all use the same λ0).

As a result, researchers often consider the choice of normalization to be rather innocuous.

However, there is a serious problem with imposing λ0 = 1 (or any other constant). With such

a choice, the misspecification measure QW as well as the relative rankings of competing models

are sensitive to affine transformations of the factors. This is problematic because under the linear

factor asset pricing models, factors are only unique up to an affine transformation. If one can

change the relative rankings of competing models by simply performing an affine transformation

on some of the factors, then it is rather difficult to make sense of the misspecification measure.

To prepare for our analysis of this problem, we define Y = [f ′, r′]′ and its mean and covariance

matrix as

µ = E[Y ] ≡

[
µ1

µ2

]
, (9)

V = Var[Y ] ≡

[
V11 V12

V21 V22

]
. (10)

Under the linear SDF of y = 1 − f ′λ, the pricing errors of the N assets are given by

e(λ) = E[ry] = E[r(1− f ′λ)] = µ2 − Bλ, (11)

where B = E[rf ′] = V21 + µ2µ
′
1. It follows that

QW = min
λ

(µ2 − Bλ)′W (µ2 − Bλ) = µ′
2Wµ2 − µ′

2WB(B′WB)−1B′Wµ2. (12)

Throughout the paper, we assume that V21 is of full column rank (which implies that B is also of

full column rank). So there exists a unique λ that minimizes e(λ)′We(λ), which we denote as

λW = (B′WB)−1(B′Wµ2). (13)

Note that unless the model is correctly specified, λW depends on the choice of W .

The following Proposition shows that when the asset pricing model is misspecified, QW depends

on the mean of the factors (µ1). As a consequence, one can easily alter the relative ranking of a

specific model by performing an affine transformation of the factors.
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Proposition 1: Suppose the model is misspecified, i.e., µ2 is not in the span of the column space

of B. The µ1 that maximizes QW is µ1 = −V12Wµ2(µ′
2Wµ2)−1 and the µ1 that minimizes QW is

µ1 → ±∞. In addition, we have

max
µ1

QW = µ′
2Wµ2, (14)

inf
µ1

QW = 0. (15)

Although we state this proposition in terms of population moments, a similar result holds for

the sample version of QW . Intuitively, if we choose µ1 to make W
1
2 B orthogonal to W

1
2 µ2 (i.e.,

B′Wµ2 = 0K), we get the maximum possible QW and the model appears to be very poor. On

the other hand, if µ1 is very large in absolute value, then B = V21 + µ2µ
′
1 is dominated by the

term µ2µ
′
1, and B can explain the expected excess returns (µ2) very well regardless of how poor

the covariances (V21) or betas are in explaining the expected excess returns. Proposition 1 has

serious implications because it suggests that when using the linear SDF in (8), one can manipulate

the outcome of a specification test by simply adding a constant to the original factors. Although

the factors are suggested by theory in most empirical applications, they are only unique up to a

linear transformation. So one could easily justify using any rescaling of the proposed factors. For

example, under the CAPM, one can choose to write the SDF as a linear function of excess returns,

raw returns, or gross returns on the market portfolio, and there is no strong reason to believe that

one particular choice is superior to the others. However, the misspecification measure QW will be

different across these three plausible specifications of the CAPM.

Although not central to this paper, we should remark that the optimal GMM specification test

is also in general not invariant to an affine transformation of the factors. Both the two-step and

the iterative GMM specification tests are affected by an affine transformation of the factors. The

only optimal GMM specification test that is not plagued by this problem is the one that uses the

continuous-updating estimator of Hansen, Heaton, and Yaron (1996).3

3Surprisingly, the specification test statistic of the continuous updating GMM does not depend on whether we use
the linear factor SDF here or the linear de-meaned factor SDF in the next subsection. Proof of this result is available
upon request.
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B. An Alternative Specification of the Linear SDF

For a misspecification measure to make sense, we would like it to be invariant to an affine transfor-

mation of the factors. For the case of a linear SDF, there indeed exists an alternative specification

that has this nice property. Under this alternative specification, we write the SDF as a linear

function of the de-meaned factors4

y(λ) = 1− (f − E[f ])′λ. (16)

By comparing (16) with (7), one may think that this alternative specification is simply the original

linear SDF model with a normalization of λ0 = 1+E[f ]′λ. One might further conjecture that since

the choice of λ0 does not affect the pricing errors or the p-value of the specification test, using this

alternative specification of the linear SDF model would not make any real difference. However, there

are some subtle differences between the two specifications that could lead to very different results.

The first difference is that in the de-meaned version of the linear SDF, λ0 is not a fixed constant but

a function of λ. As it turns out, when the model is misspecified, the λ that minimizes the quadratic

form of the pricing errors is not the same across the raw and de-meaned specifications of the linear

SDF model. Therefore, the pricing errors and the p-values of the specification tests are not identical

under these two specifications. Another difference is that when it comes to model comparison, the

de-meaned specification imposes the constraint that E[y] = 1 across models whereas the original

specification does not.5 The advantage of this alternative specification is that the pricing errors

and QW are invariant to affine transformations of the factors. To see this, write the pricing errors

of the N assets under the de-meaned version of the linear SDF as

e(λ) = E[ry] = E[r]− E[r(f − µ1)′]λ = µ2 − V21λ. (17)

It follows that the misspecification measure of the model is given by

QW = min
λ

(µ2 − V21λ)′W (µ2 − V21λ) = µ′
2Wµ2 − µ′

2WV21(V12WV21)−1V12Wµ2, (18)

which is independent of the choice of µ1.
4See, for example, Balduzzi and Kallal (1997), Kirby (1998), Cochrane (2005, p.257), Balduzzi and Robotti (2005).

Note that even when the model is correctly specified, the value of λ in (16) is not the same as the value of λ in (8)
unless µ1 = 0K .

5Another way to normalize the SDF to have unit mean is to define y∗ = y/E[y]. For the case of the linear SDF,
this alternative specification gives us a normalized SDF y∗(λ) = (1 − f ′λ)/(1 − µ′

1λ). It can be shown that this
alternative normalization gives us the same misspecification measure as the de-meaned factor specification.
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Note that in (16), we restrict the candidate and admissible SDFs to have unit mean. Such an

assumption is innocuous. We can instead restrict the candidate and admissible SDFs to have mean

c, where c is an arbitrary nonzero constant. The only effect this has is that the resulting QW will

be |c| times the QW with unit mean. It will not change any statistical inference or the relative

rankings of competing models.

Despite the nice property of being invariant to affine transformations of the factors, the de-

meaned version of the linear SDF has not been very popular in the empirical literature. We

suspect that researchers stay away from the de-meaned version because it requires the estimation

of the mean of the factors which, in turn, adds some complications to statistical inference.

C. The Modified HJ-Distance

Although so far we have focused on linear SDFs, the problem that we discuss also applies to

nonlinear SDFs. Namely, the misspecification measure and relative rankings of models are generally

not invariant to the rescaling of the factors. When only zero-cost portfolios are used as test assets,

it makes sense to restrict all the SDFs to have a unit (or a common constant) mean in order to

have a fair comparison between models. This constraint amounts to requiring all competing SDFs

to assign the same price to the risk-free asset, so that we only compare their performances based

on their pricing errors on excess returns. An added benefit of this restriction is that it allows us to

interpret the pricing errors as expected return errors. This is because when y has unit mean, the

pricing errors are given by

E[ry] = E[r(1 + y − E[y])] = E[r] + Cov[r, y], (19)

and we can interpret −Cov[r, y] as the expected excess returns based on the proposed asset pricing

model y.

Once we restrict the candidate SDF, y, to have unit mean, we should no longer use the traditional

HJ-distance to measure model misspecification since the set of admissible SDFs, M, contains

many admissible stochastic factors that do not have unit mean. Therefore, we need to modify the

definition of the HJ-distance. Our proposed modified HJ-distance is defined as

δm = min
m∈M,E[m]=1

‖m − y‖, (20)
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and it is a measure of how far y is from an admissible SDF that has unit mean.

For the original HJ-distance δHJ , δ2
HJ can be interpreted as a misspecification measure QW with

W = U−1, where U = E[rr′] is the second moment matrix of the excess returns. For our modified

HJ-distance, we have a similar interpretation, but we need to replace U−1 by V −1
22 , where V22 is

the covariance matrix of the excess returns. Such a modification was first suggested by Balduzzi

and Yao (2006) and the following Proposition summarizes this result.

Proposition 2: When all the elements of r are payoffs of zero-cost portfolios, the modified HJ-

distance for a stochastic discount factor y with E[y] = 1 is given by

δm = (e′V −1
22 e)

1
2 , (21)

where V22 = Var[r] and e = E[ry] is the vector of pricing errors.

In many cases, the proposed SDF, y, involves some unknown parameters λ. For these cases, it

makes sense to define the modified HJ-distance as

δm =
[
min

λ
e(λ)′V −1

22 e(λ)
]1

2

, (22)

where e(λ) = E[ry(λ)]. For example, under the de-meaned version of the linear SDF in (16), the

pricing errors are given by e(λ) = µ2−V21λ and the squared modified HJ-distance can be expressed

as

δ2
m = min

λ
(µ2 − V21λ)′V −1

22 (µ2 − V21λ) = µ′
2V

−1
22 µ2 − µ′

2V
−1
22 V21(V12V

−1
22 V21)−1V12V

−1
22 µ2. (23)

It is interesting to note that for a linear SDF, using a nonsingular W = (V22 + V21CV12)−1 as

the weighting matrix (where C is a K × K matrix) produces the same results as using V −1
22 as

the weighting matrix.6 For example, we can use Σ−1 as the weighting matrix, where Σ = V22 −

V21V
−1
11 V12 is the covariance matrix of the residuals from regressing r on [1, f ′]′. However, we

cannot use U−1 as the weighting matrix, where U = E[rr′] = V22 + µ2µ
′
2 is the second moment

matrix of the excess returns. Unless the model is correct, µ2 is not spanned by the column space

of V21, so using U−1 as the weighting matrix will give a δHJ that is different from the δm that uses

V −1
22 or Σ−1 as the weighting matrix. Since U −V22 = µ2µ

′
2 is a positive semidefinite matrix, δHJ is

in general smaller than δm. Although δHJ is not the same as δm, the following lemma shows that

δHJ is just a monotonic transformation of δm for the case of de-meaned version of linear SDF.
6This result can be proved using the matrix identities in the Appendix of Kan and Zhou (2004).
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Lemma 1 For the de-meaned version of the linear SDF, y(λ) = 1 − (f − E[f ])′λ, the squared

HJ-distance and the squared modified HJ-distance are monotonic transformations of each other,

and the relations are given by

δ2
HJ =

δ2
m

1 + δ2
m

, δ2
m =

δ2
HJ

1 − δ2
HJ

. (24)

In addition, we have

λHJ =
λm

1 + δ2
m

, λm =
λHJ

1 − δ2
HJ

, (25)

where7

λHJ = argminλ(µ2 − V21λ)′U−1(µ2 − V21λ) = (V12U
−1V21)−1(V12U

−1µ2), (26)

λm = argminλ(µ2 − V21λ)′V −1
22 (µ2 − V21λ) = (V12V

−1
22 V21)−1(V12V

−1
22 µ2). (27)

Note that Lemma 1 also holds for the sample counterparts of δ2
HJ , δ2

m, λHJ and λm. Therefore,

ranking models by δ̂HJ is the same as ranking models by δ̂m. In addition, once the asymptotic

distribution of δ̂2
m is established, we can use Lemma 1 and the delta method to obtain the asymptotic

distribution of δ̂2
HJ . Another point to note is that Lemma 1 suggests that δ2

HJ (and also δ̂2
HJ ) is

bounded above by one. In computing the p-value of δ̂2
HJ under the correctly specified model, one

often uses the asymptotic distribution of a linear combination of χ2
1 random variables. The fact

that δ̂2
HJ has a bounded distribution suggests that the asymptotic distribution may have problems

with approximating the right tail of the distribution of δ̂2
HJ .

Since using V −1
22 or Σ−1 as the weighting matrix does not affect the modified HJ-distance for a

linear factor model, we can provide an alternative expression of the squared modified HJ-distance

for the de-meaned linear SDF model as

δ2
m = µ′

2[Σ
−1 − Σ−1V21(V12Σ−1V21)−1V12Σ−1]µ2

= µ′
2[Σ

−1 − Σ−1β(β′Σ−1β)−1β′Σ−1]µ2

= min
γ

(µ2 − βγ)′Σ−1(µ2 − βγ), (28)

where β = V21V
−1
11 are the regression slope coefficients from regressing r on f (and an intercept).

Note that the last expression is analogous to the cross-sectional regression test of Shanken (1985),
7Besides being the quantity that minimizes δ2

m, λm also has a nice economic interpretation. Let f? = V12V
−1
22 r be

the mimicking portfolios of the K factors. Then, we can write λm = Var[f?]−1E[f?]. For the case of K = 1, λm is
simply the risk premium of the factor mimicking portfolio over its variance.
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which is simply an aggregate measure of the pricing errors from the GLS cross-sectional regression

of µ2 on β.

Before we move on, it is instructive to provide a comparison of the squared modified HJ-distance

δ2
m with the popular Gibbons-Ross-Shanken (1989, GRS hereafter) test. The GRS test focuses on

the sample version of α′Σ−1α. Note that α′Σ−1α is always greater than δ2
m in (28). The difference

is due to two reasons: (1) In the GRS test, the factors f are excess returns on K benchmark assets,

whereas in the case of the modified HJ-distance, some of the factors can be general macroeconomic

factors, and (2) even though the factors are excess returns on benchmark assets, δ2
m does not impose

the constraint of λ = V −1
11 µ1, which forces the asset pricing model to price the benchmark assets

correctly, but rather chooses the λ to minimize the aggregate pricing errors. If we impose the

constraint that λ = V −1
11 µ1, the pricing errors become

e = µ2 − V21λ = µ2 − βµ1 = α, (29)

and the squared modified HJ-distance is given by

δ2
m = α′V −1

22 α. (30)

Note that δ2
m is still not equal to α′Σ−1α even under the constraint of λ = V −1

11 µ1. In order for

δ2
m to be the same as α′Σ−1α, we need to augment the test assets with the factors and compute

the modified HJ-distance based on Y = [f ′, r′]′. Since the factors f are the excess returns of

the benchmark assets, they are priced without errors and we have αY = [0′K , α′]′. The modified

squared HJ-distance for Y is then given by

δ2
m = α′

Y V −1αY = α′Σ−1α, (31)

where the last equality is obtained by using the partitioned matrix inverse formula. With all these

steps, we can see that the GRS test is a special version of the squared modified HJ-distance that is

computed using both the test assets and the benchmark assets as well as imposing the restriction

that benchmark assets are priced without errors (i.e., λ = V −1
11 µ1).

D. An Alternative Interpretation of the Modified HJ-Distance

When a risk-free asset is available, Farnsworth, Ferson, Jackson, and Todd (2002) suggest that we

should add the risk-free asset to the set of test assets to improve the performance of asset pricing

11



models. It turns out that, once we augment the excess returns on the N portfolios with the gross

return on the risk-free asset, the traditional HJ-distance on these augmented returns is closely

related to our modified HJ-distance on excess returns. To understand this relation, we define R0

as the gross return on the risk-free asset. Suppose that we want to evaluate a linear asset pricing

model using both R0 and r.8 Since we have a positive investment asset, we can now write the SDF

as

y(λ0, λ) = λ0 − f ′λ. (32)

With this asset pricing model, the pricing errors of the N + 1 assets are given by

e(λ0, λ) = E

[
R0y(λ0, λ)− 1

ry(λ0, λ)

]
=

[
R0 −R0µ

′
1

µ2 −(V21 + µ2µ
′
1)

][
λ0

λ

]
−

[
1

0N

]
. (33)

The traditional squared HJ-distance computed using the N + 1 assets is given by

δ̃2
HJ = min

λ0,λ
e(λ0, λ)′Ũ−1e(λ0, λ), (34)

where Ũ is the second moment matrix of [R0, r′]′ and it is given by

Ũ =

[
R2

0 R0µ
′
2

R0µ2 V22 + µ2µ
′
2

]
(35)

The following lemma shows that there is a one-to-one correspondence between the traditional HJ-

distance δ̃HJ that is computed on the N+1 assets and the modified HJ-distance δm that is computed

on just the excess returns of the N risky assets.

Lemma 2 The traditional HJ-distance (δ̃HJ) based on the excess returns on N risky portfolios

and the gross return on the risk-free asset using the model y(λ0, λ) = λ0 − f ′λ is related to the

modified HJ-distance (δm) based on just the excess returns on the N risky portfolios using the

model y(λ) = 1− (f − E[f ])′λ as follows

δ̃HJ =
δm

R0
, (36)

where R0 is the gross risk-free rate.

8We can also evaluate the asset pricing model using all gross returns, i.e., R0 and r + R01N . The results are
identical.
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Lemma 2 suggests that once the risk-free asset is available, there is no difference in ranking

models by δ̃HJ or by δm. To force δm to be identical to δ̃HJ , we just need to write the SDF for the

excess returns as

y(λ) =
1

R0
− (f − E[f ])′λ. (37)

This way, we have E[y] = 1/R0 and the SDF will price the risk-free asset correctly.

As a population measure, we can use either δ̃HJ or δm to rank models. However, the risk-free

rate is not constant over time and, as a result, the sample counterparts of δ̃HJ and δm do not

always give us the same rankings across models. In reality, the risk-free rate is typically much

less volatile than the excess returns on the risky assets. For statistical reasons, we tend to choose

the parameters of the SDF to price the risk-free asset well. Therefore, once the risk-free asset is

included as a test asset, the means of the competing SDFs tend to be very close to each other and

model comparison using the traditional HJ-distance becomes more meaningful.

Some asset pricing models, such as the zero-beta CAPM of Black (1972), are not designed to

price the risk-free asset correctly. This is because the return on a risk-free asset, like the T-bill, is

considered to be the risk-free lending rate, and it should be below the zero-beta rate. For those

models, it would be unreasonable to force their SDFs to price the risk-free asset correctly. Our

modified HJ-distance only imposes the constraint that all competing models have the same zero-

beta rate. Therefore, it is still applicable even when the asset pricing model does not hold for the

risk-free asset.

II. Sample Measures of Model Misspecification

A. Asymptotic Analysis under Correctly Specified Models

In practice, the population misspecification measure QW of a model is unobservable and has to

be estimated. In this subsection, we discuss the asymptotic distribution of the sample measure of

QW for the case of linear factor models. We assume that the SDF at time t is a linear function

of ft, which is a vector of K systematic factors. There are two ways to write the linear SDF, one

is yt = 1 − f ′
tλ and the other is the de-meaned version yt = 1 − (ft − E[f ])′λ. Since the first

specification is not invariant to an affine transformation of the factors, we will focus our discussion

on the sample misspecification measure based on the second specification.

13



We assume that the model is estimated using excess returns on N (N > K) test assets. Let

Yt = [f ′
t, r′t]

′, where rt is a vector of the excess returns of N test assets at time t. Suppose that we

have T observations of Yt and denote the sample moments of Yt as

µ̂ =

[
µ̂1

µ̂2

]
=

1
T

T∑

t=1

Yt, (38)

V̂ =

[
V̂11 V̂12

V̂21 V̂22

]
=

1
T

T∑

t=1

(Yt − µ̂)(Yt − µ̂)′. (39)

Let WT be a symmetric positive definite weighting matrix on the pricing errors with WT
a.s.−→ W ,

where W is a symmetric positive definite matrix. The sample version of the model misspecification

measure in (18) is given by

Q̂W = min
λ

(µ̂2 − V̂21λ)′WT (µ̂2 − V̂21λ) = µ̂′
2WT µ̂2 − µ̂′

2WT V̂21(V̂12WT V̂21)−1V̂12WT µ̂2. (40)

In this subsection, we first present the asymptotic distribution of Q̂W under the correctly specified

model. Although most of the results under the correctly specified model are well known, we present

them here to set the stage for the comparison with our new results later in the paper. In order to

obtain the distribution of Q̂W , we employ the Generalized Method of Moments (GMM) of Hansen

(1982). Under the correctly specified model, we have the following population moment conditions

E[gt(θ)] = E

[
ft − µ1

rt[1− (ft − µ1)′λ]

]
= 0N+K , (41)

where θ = [µ′
1, λ′]′. The sample moment conditions are then given by

ḡT (θ) =
[

ḡ1T (µ1)
ḡ2T (µ1, λ)

]
=

[
1
T

∑T
t=1(ft − µ1)

1
T

∑T
t=1 rt[1 − (ft − µ1)′λ]

]
. (42)

It is straightforward to verify that

Q̂W = ḡ2T (θ̂)′WT ḡ2T (θ̂), (43)

where θ̂ = [µ̂′
1, λ̂′]′ with

λ̂ = (V̂12WT V̂21)−1(V̂12WT µ̂2). (44)

In order to derive the asymptotic distribution of Q̂W , we need to understand the asymptotic

distribution of ḡ2T (θ̂).
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Cochrane (2005) suggests that θ̂ can be written as the solution to the following conditions

AT ḡT (θ) = 0N+K, (45)

where

AT =

[
IK OK×N

OK×K V̂12WT

]
a.s.−→

[
IK OK×N

OK×K V12W

]
≡ A. (46)

We define the derivative of the sample moment conditions with respect to the parameters as

DT (θ) =
∂ḡT (θ)

∂θ′
=

[
−IK OK×K

µ̂2λ
′ − 1

T

∑T
t=1 rt(ft − µ1)′

]
a.s.−→

[
−IK OK×K

µ2λ
′ −V21

]
≡ D. (47)

Note that under the correctly specified model, µ2 = V21λ, so D can be simplified to

D =

[
−IK OK×K

V21λλ′ −V21

]
. (48)

Under joint stationarity and ergodicity assumptions on Yt and assuming that its fourth moments

exist, the asymptotic distribution of θ̂ is then given by

√
T (θ̂ − θ) A∼ N(02K, (AD)−1ASA′(D′A′)−1), (49)

where

S =

[
S11 S12

S21 S22

]
=

∞∑

j=−∞
E[gt(θ)gt+j(θ)′], (50)

and the asymptotic distribution of ḡT (θ̂) is given by

√
T ḡT (θ̂) ∼ N(0N+K, [IN+K − D(AD)−1A]S[IN+K − D(AD)−1A]′). (51)

Under the correctly specified model, we have

(AD)−1A =

[
−IK OK×N

−(V12WV21)−1V12Wµ2λ
′ −(V12WV21)−1V12W

]

=

[
−IK OK×N

−λλ′ −(V12WV21)−1V12W

]
, (52)

IN+K − D(AD)−1A =

[
OK×K OK×N

ON×K IN − V21(V12WV21)−1V12W

]
. (53)

Then, the asymptotic distribution of ḡ2T (θ̂) is

√
T ḡ2T (θ̂) ∼ N(0N , [IN − V21(V12WV21)−1V12W ]S22[IN − V21(V12WV21)−1V12W ]′). (54)
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Therefore, the asymptotic distribution of TQ̂W under the correctly specified model is a linear

combination of N − K independent chi-squared random variables with one degree of freedom

TQ̂W
A∼

N−K∑

i=1

ξiχ
2
1, (55)

where ξi are the N − K nonzero eigenvalues of

W
1
2 [IN − V21(V12WV21)−1V12W ]S22[IN − V21(V12WV21)−1V12W ]′W

1
2

= [IN − W
1
2 V21(V12WV21)−1V12W

1
2 ]W

1
2 S22W

1
2 [IN − W

1
2 V21(V12WV21)−1V12W

1
2 ], (56)

or equivalently the eigenvalues of P ′W
1
2 S22W

1
2 P , where P is an N × (N −K) orthonormal matrix

with its columns orthogonal to W
1
2 V21. Note that when the model is correctly specified, the

asymptotic distribution of Q̂W only depends on S22, but not on S11 and S12. This implies that the

asymptotic distribution of Q̂W does not depend on whether we know µ1 or not. In addition, when

the model is correctly specified, the asymptotic distribution of Q̂W does not depend on whether we

use W or its consistent estimate WT as the weighting matrix.

In order to obtain an explicit expression of S22, we need to make further assumptions on the

return generating process. A popular assumption is to assume a linear factor model on the returns:

rt = α + βft + εt, (57)

where β = V21V
−1
11 , α = µ2 − βµ1, E[εt] = 0N and E[εt|ft] = 0N . When the model is correctly

specified, we have µ2 = V21λ and α = V21(λ − V −1
11 µ1). Hence, the return generating process can

be written as

rt = V21[λ + V −1
11 (ft − µ1)] + εt. (58)

Denote yt = 1 − λ′(ft − µ1) and ht = λ + V −1
11 (ft − µ1), we can write g2t(θ) as

g2t(θ) = [1 − (ft − µ1)′λ]rt = yt(V21ht + εt). (59)

If we further assume that g2t(θ) is uncorrelated over time, then we have

S22 = E[g2t(θ)g2t(θ)′] = V21E[y2
t hth

′
t]V12 + E[y2

t εtε
′
t]. (60)

With this expression of S22 and the fact that P ′W
1
2 V21 = O(N−K)×K , we have

P ′W
1
2 S22W

1
2 P = P ′W

1
2 E[y2

t εtε
′
t]W

1
2 P. (61)
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Under some popular assumptions, E[y2
t εtε

′
t] can be further simplified. The following lemma sum-

marizes some special cases that were given in Kan and Zhou (2004).

Lemma 3 When Var[εt|ft] = Σ ≡ V22 − V21V
−1
11 V12 (i.e., conditional homoskedasticity), we have

E[y2
t εtε

′
t] = (1 + λ′V11λ)Σ. (62)

When Yt = [r′t, f ′
t ]
′ is multivariate elliptically distributed, we have

E[y2
t εtε

′
t] = [1 + (1 + κ)λ′V11λ]Σ, (63)

where

κ =
E[((Yt − µ)′V −1(Yt − µ))2]

(N + K)(N + K + 2)
− 1 (64)

is the multivariate kurtosis parameter, which is the same as the univariate kurtosis parameter for

the case of multivariate elliptical distribution.

Under these two cases, we have

P ′W
1
2 S22W

1
2 P = (1 + λ′V11λ)P ′W

1
2 ΣW

1
2 P (65)

or

P ′W
1
2 S22W

1
2 P = [1 + (1 + κ)λ′V11λ]P ′W

1
2 ΣW

1
2 P. (66)

When the weighting matrix takes the form W = (Σ + V21CV12)−1 for some symmetric matrix C

and W is nonsingular, we have

P ′W
1
2 (W−1 − V21CV12)W

1
2 P = P ′P = IN−K . (67)

Examples of this kind of W include Σ−1, V −1
22 = (Σ + V21V

−1
11 V12)−1 and U−1 = (V22 + µ2µ

′
2)

−1 =

(Σ + V21(V −1
11 + λλ′)V12)−1. With these choices of W , we can greatly simplify the asymptotic

distribution of Q̂W under the correctly specified model. The results are summarized in the following

proposition.

Proposition 3: Suppose that returns follow the linear factor model in (57) and that Yt is uncor-

related over time. Then under the correctly specified model and a nonsingular weighting matrix

W = (Σ + V21CV12)−1, where C is a symmetric matrix, we have

TQ̂W
A∼ (1 + λ′V11λ)χ2

N−K , (68)
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when returns exhibit conditional homoskedasticity, i.e., Var[rt|ft] = Σ and it is independent of ft.

Alternatively, if the factors and returns are multivariate elliptically distributed, we have

TQ̂W
A∼ [1 + (1 + κ)λ′V11λ]χ2

N−K, (69)

where κ is the kurtosis parameter of Yt.

Proposition 3 suggests that under some popular assumptions used in the empirical literature, the

asymptotic distribution of the sample misspecification measure is in fact proportional to a χ2
N−K

distribution for some weighting matrices that are model independent. For these cases, there is no

need to estimate the eigenvalues ξi and compute the distribution of a linear combination of χ2
1

random variables in order to conduct statistical inferences using Q̂W .

B. Asymptotic Analysis under Misspecified Models

For the de-meaned version of the linear SDF, the traditional sample HJ-distance is defined as

δ̂HJ =
[
µ̂′

2Û
−1µ̂2 − µ̂′

2Û
−1V̂21(V̂12Û

−1V̂21)−1V̂12Û
−1µ̂2

] 1
2
, (70)

where Û = V̂22 + µ̂2µ̂2 is the sample second moment matrix of the excess returns. Similarly, we

define the sample modified HJ-distance as the sample counterpart of (23)

δ̂m =
[
µ̂′

2V̂
−1
22 µ̂2 − µ̂′

2V̂
−1
22 V̂21(V̂12V̂

−1
22 V̂21)−1V̂12V̂

−1
22 µ̂2

] 1
2
. (71)

The squared modified HJ-distance is simply Q̂W with WT = V̂ −1
22 . In the previous subsection, we

have already derived the asymptotic distribution of Q̂W under the correctly specified model. It

naturally follows that T δ̂2
m has a similar asymptotic distribution

T δ̂2
m

A∼
N−K∑

i=1

ξiχ
2
1, (72)

where ξi are the eigenvalues of P ′V
− 1

2
22 S22V

− 1
2

22 P , and P is an N × (N − K) orthonormal matrix

with its columns orthogonal to V
− 1

2
22 V21. Under the additional assumptions of Proposition 3, we can

simplify the asymptotic distribution to be proportional to a χ2
N−K distribution. The asymptotic

distribution of δ̂2
HJ under the correctly specified model can be similarly obtained by setting W =

U−1.

18



However, in order to have a good understanding of the behavior of a sample misspecification

measure, we also need to obtain the asymptotic distribution of δ̂m and δ̂HJ under the misspecified

models. Our approach to solving this problem is the delta method. We note that δ̂2
m is just a

complicated but smooth function of µ̂ and V̂ . Therefore, once we have the asymptotic distribution

of µ̂ and V̂ , we can use the delta method to obtain the asymptotic distributions of δ̂2
m and δ̂m. Let

φ =

[
µ

vec(V )

]
, φ̂ =

[
µ̂

vec(V̂ )

]
. (73)

and under some standard regularity conditions, we can assume9

√
T (φ̂ − φ) A∼ N(0(N+K)×(N+K+1), S0). (74)

Then using the delta method, the asymptotic distributions of δ̂2
m and δ̂m under the misspecified

model are given by

√
T (δ̂2

m − δ2
m) A∼ N(0, d′S0d), (75)

√
T (δ̂m − δm) A∼ N

(
0,

d′S0d

4δ2
m

)
, (76)

where d = ∂δ2
m/∂φ. In addition, since there is a monotonic transformation between δHJ and δm as

given in Lemma 1, we can also use the delta method to obtain the asymptotic distribution of δ̂2
HJ

and δ̂HJ under the misspecified model as

√
T (δ̂2

HJ − δ2
HJ) A∼ N(0, (1− δ2

HJ)4d′S0d), (77)
√

T (δ̂HJ − δHJ) A∼ N

(
0,

(1 − δ2
HJ)4d′S0d

4δ2
HJ

)
. (78)

One may think that Proposition 2.2 of Hansen, Heaton, and Luttmer (1995) (see also equation

(44) of Hansen and Jagannathan (1997)) has already presented the asymptotic distribution of δ̂2
HJ

under misspecified models and that our equation (78) is simply a restatement of their results. Our

results are actually different from the results of Hansen, Heaton, and Luttmer (1995) because their

results are only applicable when the mean of the SDF is unconstrained. When the competing SDFs

are restricted to have the same mean as in our case, we need to take into account this constraint

in deriving the asymptotic standard error of δ̂2
HJ . Simply using the results of Hansen, Heaton and

Luttmer (1995) would give us the wrong asymptotic standard error for δ̂2
HJ .

9Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in φ̂. We could have written
φ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.
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In order to apply the delta method, we need to obtain the analytical expression of the derivative

vector d. We derive and present this expression in the following lemma.

Lemma 4 Let λm = (V12V
−1
22 V21)−1V12V

−1
22 µ2 and em = µ2 − V21λm, we have

d =
∂δ2

m

∂φ
=




2

−2λm

−V −1
22 em


⊗

[
0K

V −1
22 em

]
. (79)

With the analytical expression of d available, we proceed to simplify the asymptotic variance of δ̂2
m.

We first note that µ̂ and V̂ can be written as the GMM estimator that uses the moment conditions

E[ht(φ)] = 0(N+K)(N+K+1), where

ht(φ) =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (80)

Since this is an exactly identified system of moment conditions, it is straightforward to verify that

the asymptotic variance of φ̂ is given by

S0 =
∞∑

j=−∞
E[ht(φ)ht+j(φ)′]. (81)

It follows that

Avar[δ̂2
m] = d′S0d =

∞∑

j=−∞
E[qt(φ)qt+j(φ)], (82)

where

qt(φ) = d′ht(φ)

= 2e′mV −1
22 (rt − µ2) −

([
2λm

V −1
22 em

]′
⊗

[
0K

V −1
22 em

]′)
vec((Yt − µ)(Yt − µ)′ − V )

= 2e′mV −1
22 (rt − µ2) − vec

([
0K

V −1
22 em

]′
((Yt − µ)(Yt − µ)′ − V )

[
2λm

V −1
22 em

])

= 2e′mV −1
22 (rt − µ2) − e′mV −1

22 (rt − µ2)
[
2λ′

m(ft − µ1) + e′mV −1
22 (rt − µ2)

]
+ e′mV −1

22 em

= 2ut(1− vt)− u2
t + δ2

m, (83)

by denoting ut = e′mV −1
22 (rt − µ2) and vt = λ′

m(ft − µ1).10

10Note that equation (83) is for a de-meaned linear SDF. For a general nonlinear SDF yt that is normalized to
have unit mean, qt in (83) has to be replaced by qt = y2

t − (yt − λ′
1rt − λ2)

2 − 2λ2 − δ2
m, where λ1 = V −1

22 E[rtyt] and
λ2 = −λ′

1µ2. Proof of this result is available upon request.
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In conducting statistical tests, we need a consistent estimate of Avar[δ̂2
m]. This can be accom-

plished by replacing qt(φ) with

qt(φ̂) = 2ût(1 − v̂t) − û2
t + δ̂2

m, (84)

where ût = ê′mV̂ −1
22 (rt − µ̂2), v̂t = λ̂′

m(ft − µ̂1), with λ̂m = (V̂12V̂
−1
22 V̂21)−1V̂12V̂

−1
22 µ̂2 and êm =

µ̂2 − V̂21λ̂m. For example, if qt(φ) is uncorrelated over time, then we have Avar[δ̂2
m] = E[q2

t (φ)], so

its consistent estimator is given by

Âvar[δ̂2
m] =

1
T

T∑

t=1

q2
t (φ̂), (85)

which is extremely convenient to compute.

When qt(φ) is autocorrelated, one can use the Newey and West’s (1987) method to obtain a

consistent estimator of Avar[δ̂2
m]. For example, if qt(φ) has an MA(m) structure, then a consistent

estimator of Avar[δ̂2
m] is given by

Âvar[δ̂2
m] =

1
T

T∑

t=1

q2
t (φ̂) +

2
T

m∑

k=1

(
1 − k

m + 1

) T−k∑

t=1

qt(φ̂)qt+k(φ̂). (86)

With additional assumptions, we can further simplify the expressions of Avar[δ̂2
m] and Avar[δ̂2

HJ ].

In the following proposition, we present the asymptotic variances of δ̂2
m, δ̂m, δ̂2

HJ and δ̂HJ under

the misspecified model when Yt is i.i.d. multivariate elliptically distributed.

Proposition 4: When Yt = [ft, r′t]
′ is i.i.d. multivariate elliptically distributed with finite fourth

moments and δ2
m 6= 0, we have

Avar[δ̂2
m] = 4[1 + (1 + κ)λ′

mV11λm]δ2
m + (2 + 3κ)δ4

m, (87)

Avar[δ̂m] = 1 + (1 + κ)λ′
mV11λm +

(2 + 3κ)δ2
m

4
, (88)

Avar[δ̂2
HJ ] = δ2

HJ(1 − δ2
HJ)

(
4(1 + κ)λ′

HJV11λHJ + (1 − δ2
HJ )[4 + (3κ − 2)δ2

HJ ]
)
, (89)

Avar[δ̂HJ ] = (1− δ2
HJ)(1 + κ)λ′

HJV11λHJ + (1 − δ2
HJ)2

[
1 +

(3κ− 2)δ2
HJ

4

]
, (90)

where κ is the kurtosis parameter of Yt.

The results in Proposition 4 show that the asymptotic variances of δ̂2
m and δ̂m increase with δ2

m.

However, for δ̂2
HJ and δ̂HJ , the asymptotic variances are not monotonic functions of δ2

HJ . In either
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case, it is not entirely clear that the sample HJ-distance has more power to reject a bad model

than a good one. In addition, Proposition 4 shows that the asymptotic variances of the sample

HJ-distances increase with the kurtosis parameter κ. This is hardly surprising since the fatter the

tails of the returns, the more likely it is that we will get outliers in the sample covariance matrix

which cause the sample HJ-distance to become more volatile.

C. Asymptotic Analysis of the Estimates of the SDF Parameters Under Poten-
tially Misspecified Models

In the previous subsections, we focused on the asymptotic distributions of δ̂HJ and δ̂m. In many

empirical studies, there is also substantial interest in the point estimates of λ. A significant λ̂

associated with a given factor is often interpreted as evidence that the factor is priced. However,

in computing the standard error of λ̂, researchers typically rely on the asymptotic distribution

under the assumption that the model is correctly specified. This practice is somewhat difficult to

justify, especially when the model is rejected by the data. In those cases, it is hard to interpret

the reported t-ratios and p-values for λ̂. In order to deal with this problem, we present an analysis

of the asymptotic distribution of λ̂ under potentially misspecified models. A similar asymptotic

analysis was presented in Hall and Inoue (2003), Kimmel (2003), and Shanken and Zhou (2006).

Kimmel (2003) and Shanken and Zhou (2006) derive misspecification robust standard errors for

the two-pass cross-sectional regressions estimators under multivariate normality assumptions. Hall

and Inoue (2003) derive misspecification robust standard errors for GMM estimators under fairly

general assumptions. Our methodology is similar to the one proposed by Hall and Inoue (2003)

in the sense that it is free of distributional assumptions and can be seen as a special case of their

Theorem II. However, our analysis provides explicit expression of the asymptotic variance for the

multivariate elliptical case which allows us to show that when one uses the linear de-meaned SDFs

and V −1
22 as the weighting matrix, the misspecification robust standard errors are always bigger

than the traditional ones. We explain in detail what determines this difference and provide an

empirical example to illustrate the importance of our results.

It is important to emphasize that when a model is misspecified (i.e., µ2 is not in the span of

the column space of V21), λ is no longer unique but it is determined by the choice of the weighting
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matrix. As a result, we need to identify the weighting matrix when we refer to λ. We use

λm = (V12V
−1
22 V21)−1(V12V

−1
22 µ2) (91)

to denote the λ that minimizes the modified HJ-distance, and

λHJ = (V12U
−1V21)−1(V12U

−1µ2) (92)

to denote the λ that minimizes the traditional HJ-distance. It is often the case that the weighting

matrix is clear from the context. In this case, we simply use λ̂ to denote the sample estimates of

λm or λHJ . However, when we need to refer to both sample estimates, then we will use λ̂m and

λ̂HJ to differentiate the two sample estimates.

While more complicated, the general method of obtaining the asymptotic distribution of λ̂m

and λ̂HJ is the same delta method that we use to obtain the asymptotic distribution of δ̂m and

δ̂HJ . Because λ̂m and λ̂HJ are just functions of µ̂ and V̂ , we can use the delta method to obtain

√
T (λ̂m − λm) A∼ N

(
0K ,

[
∂λm

∂φ′

]
S0

[
∂λm

∂φ′

]′)
, (93)

√
T(λ̂HJ − λHJ) A∼ N

(
0K ,

[
∂λHJ

∂φ′

]
S0

[
∂λHJ

∂φ′

]′)
, (94)

where S0 = Avar[φ̂] and φ̂ = [µ̂′, vec(V̂ )′]′.

The difficulty, once again, is in obtaining the partial derivatives, which are presented in the

following lemma.

Lemma 5 Let em = µ2 − V21λm and H = (V12V
−1
22 V21)−1, we have

∂λm

∂φ′ = [1, −λ′
m, 0′N ] ⊗ [OK×K , HV12V

−1
22 ] + [0′K+1, e′mV −1

22 ] ⊗ [H, −HV12V
−1
22 ], (95)

∂λHJ

∂φ′ =
∂λm
∂φ′ − λHJ

∂δ2
m

∂φ′

1 + δ2
m

= (1 − δ2
HJ )

(
∂λm

∂φ′ − λHJ
∂δ2

m

∂φ′

)
, (96)

where ∂δ2
m/∂φ′ is given in Lemma 4.

With this lemma and (81), we can simplify the asymptotic variance of λ̂m and λ̂HJ to

Avar[λ̂m] =
∞∑

j=−∞
E[qm

t (φ)qm
t+j(φ)′], (97)

Avar[λ̂HJ ] =
∞∑

j=−∞
E[qHJ

t (φ)qHJ
t+j(φ)′], (98)
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where

qm
t (φ) =

∂λm

∂φ′ ht(φ)

= HV12V
−1
22 (rt − µ2)(1− ut − vt) + H(ft − µ1)ut + λm, (99)

qHJ
t (φ) =

∂λHJ

∂φ′ ht(φ)

= (1− δ2
HJ)

(
HV12V

−1
22 (rt − µ2)(1− ut − vt) + H(ft − µ1)ut

+ λHJ [1− 2ut(1− vt) + u2
t ]
)
, (100)

with ut = e′mV −1
22 (rt − µ2) and vt = λ′

m(ft − µ1). Note that when the model is correctly specified,

we have λm = λHJ = λ, δ2
HJ = 0, em = 0N and ut = 0. In this case, we have

qm
t (φ) = qHJ

t (φ) = HV12V
−1
22 (rt − µ2)(1− vt) + λ (101)

and both λ̂m and λ̂HJ have the same asymptotic distribution. However, when the model is misspec-

ified, the asymptotic distributions of λ̂m and λ̂HJ are not the same. When estimating the standard

errors of λ̂m and λ̂HJ , it is advisable to use the sample counterparts of (99) and (100) instead of

the sample counterpart of (101). This is because the latter is only valid when the model is correctly

specified whereas the former are valid for both correctly specified and misspecified models.

With additional assumptions, we can further simplify the expressions of Avar[λ̂m] and Avar[λ̂HJ ].

In the following proposition, we present the asymptotic variances of λ̂m and λ̂HJ when Yt is

i.i.d. multivariate elliptically distributed.

Proposition 5: When Yt = [ft, r′t]
′ is i.i.d. multivariate elliptically distributed with finite fourth

moments, we have

Avar[λ̂m] = [1 + (1 + κ)λ′
mV11λm]H + (1 + 2κ)λmλ′

m + (1 + κ)δ2
mH(V11 − V12V

−1
22 V21)H,(102)

Avar[λ̂HJ ] = (1 − δ2
HJ)2(Avar[λ̂m] + Avar[δ̂2

m]λHJλ′
HJ)

− 2(2 + 3κ)δ2
HJλHJλ′

HJ + 2(1 + κ)δ2
HJ(HV11λHJλ′

HJ + λHJλ′
HJV11H), (103)

where H = (V12V
−1
22 V21)−1, κ is the kurtosis parameter of Yt and Avar[δ̂2

m] is given in Proposition 4.

When the model is correctly specified, we have δ2
m = δ2

HJ = 0 and λm = λHJ = λ, and λ̂m and

λ̂HJ have the same asymptotic variance

Avar[λ̂m] = Avar[λ̂HJ ] = [1 + (1 + κ)λ′V11λ]H + (1 + 2κ)λλ′. (104)
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By comparing (102) with (104), we can see that our asymptotic variance of λ̂m is larger than the

traditional one by the following positive definite matrix

(1 + κ)δ2
mH(V11 − V12V

−1
22 V21)H, (105)

and we call this term the misspecification adjustment. Note that this adjustment is determined

by δ2
m, κ, H and V11 − V12V

−1
22 V21. As expected, the adjustment is positively related to the

squared modified HJ-distance δ2
m, so the degree of model misspecification plays an important role in

determining the magnitude of this adjustment. The adjustment is also positively related to κ which

suggests that the fatter the tails of the returns, the larger the adjustment. The final determinant

of the adjustment is related to H and V11 − V12V
−1
22 V21. To understand what these two matrices

are about, consider a projection of the factors on the returns (and a constant term) and denote the

factor mimicking portfolio as f? = V12V
−1
22 r. It follows that H = (V12V

−1
22 V21)−1 = Var[f?]−1 and

V11−V12V
−1
22 V21 = Var[f ]−Var[f?], so these two matrices are both measures of how well the factors

can be explained by the excess returns. When the factors are portfolio returns, we can expect these

two terms to be small and the misspecification adjustment to be relatively unimportant. However,

when the factors are macroeconomic factors, they may have very low correlations with excess

returns and Var[f?] may be very small. In those cases, the magnitude of this bias can be huge

and model misspecification can have a serious impact on the standard error of λ̂m. Ignoring model

misspecification and using the traditional way of computing standard errors (i.e. assuming the

model is correct), one can mistakenly conclude that a factor is priced. An extreme case of this is

the useless factor model studied by Kan and Zhang (1999a,b), where they find that when using the

traditional method of computing standard errors, a useless factor is priced with probability one as

T goes to infinity. This is because in the useless factor case, we have V12 = OK×N . The matrix

H = (V12V
−1
22 V21)−1 explodes and Avar[λ̂m] → ∞. As a result, λ̂m does not converge to a constant

value.

The impact of misspecification on the asymptotic variance of λ̂HJ is less clear. The difference

between the two matrices in (103) and (104) is not a positive definite matrix, so it is possible that

for some elements of λ̂HJ , the asymptotic variance increases with misspecification whereas for other

elements the asymptotic variance can decrease with misspecification.
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III. An Empirical Example

An empirical example may help to illustrate the relevance of our results. In Jagannathan and Wang

(1996, JW hereafter), the authors propose a conditional CAPM that helps to explain the size and

the book-to-market effect. In their Table V, they test their model using the following moment

conditions

E[rt(1− λvwRvw
t − λpremRprem

t−1 − λlaborR
labor
t )] = 0N , (106)

where rt are the excess returns on 100 size and beta ranked portfolios, Rvw
t is the return on the

value-weighted market portfolio, Rprem
t−1 is the yield spread between high and low grade corporate

bonds, and Rlabor
t is the growth rate of per capita income. In Panel A of Table I, we present the λ

estimates and the sample HJ-distances using the same data.11 The results are largely identical to

the ones reported in Table V of JW. In particular, we find that the sample HJ-distance of the JW

model has a very low value of 0.1442 and a p-value of 0.9652. In the same table, JW also test the

Fama-French (1993, FF hereafter) three factor model using the following moment conditions

E[rt(1 − λvwrvw
t − λsmbr

smb
t − λhmlr

hml
t )] = 0N , (107)

where rvw
t is the excess return on the value-weighted market portfolio, rsmb

t is the return difference

between portfolios of small and large stocks, and rhml
t is the return difference between portfolios of

high and low book-to-market ratios. In Panel A of Table I, we also present the estimation results

of (107).12 While the results are not identical to the ones reported in JW’s Table V, they are

qualitatively the same. In particular, we find that the FF three factor model has a high sample

HJ-distance of 0.5494 and a p-value of 0.2635. Based on the HJ-distance alone, one would obviously

prefer the JW model.

Table I about here

The huge difference in HJ-distances between the JW and FF models is at odds with other

evidence in JW, which for the most part shows similar performance between the two models. As it
11We thank Ravi Jagannathan and Zhenyu Wang for providing their data to us. JW actually use the positive sign

rather than the negative sign in front of the λ. Except for the difference in the sign of the λ̂s, all the test statistics
are the same whether we use positive or negative signs.

12The data for the SML and HMB factors are downloaded from Ken French’s website. We are grateful to him for
making his data available.
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turns out, the huge difference in HJ-distances is due to the fact that the SDFs in the two models

have very different means. When the means of the factors are nonzero, imposing the same intercept

on the linear SDFs across models actually forces the means of the SDFs to be very different. In

Panel A of Table I, we report the estimated mean of the SDF for the two models, computed using

the sample mean of the factors and the estimated λs. We can now clearly see that the SDF of the

JW model has an estimated mean of 0.1228 whereas the SDF of the FF model has an estimated

mean of 0.9478. As we showed in Proposition 1, the results of the linear SDF can be manipulated

by adding and subtracting a constant to the factors. Suppose that we subtract 0.017 from Rvw
t ,

0.0121 from R
prem
t−1 and 0.059 from Rlab

t in the JW model, and we add one to the three factors of the

FF model. In Panel B, we report the estimation results of the two models using those transformed

factors. We now see a dramatic reversal of the HJ-distance comparison. The sample HJ-distance of

the JW model is now 0.5832 and none of the three factors are statistically significant. In contrast,

the sample HJ-distance of the FF model is only 0.0105 with all factors significantly priced. Of

course, this does not mean that the FF model performs better than the JW model. These results,

just like the results in Panel A, are simply unreliable because the mean of the SDFs across the two

models are vastly different. Another point to note is that the p-value for testing H0 : δHJ = 0 is

also not invariant to affine transformations of the factors and is subject to manipulation just like

the sample HJ-distance.

Before we proceed, we should emphasize that the objective of the paper is not to discredit JW’s

results or to suggest that their conclusions are invalid. JW’s conclusions are not just based on their

results in Table V but on many other careful analyses. Our objective is to point out that results

based on linear SDFs are unreliable when only excess returns are used to estimate the model. More

importantly, we propose solutions to help researchers deal with this issue.

Knowing that the results of the linear SDF are not invariant to affine transformations of the

factors, we now present the estimation results that use the de-meaned version of the linear SDF.

In Panel A of Table II, we present the estimation results of the two models, JW and FF, using the

de-meaned version of the linear SDF. These results have the advantage of being invariant to affine

transformations of the factors and both SDFs have the same unit mean. In computing the standard

error of λ̂ and the p-value of δ̂HJ , we rely on the asymptotic results in (49) and (55) with W = U−1,

where U = E[rr′]. In our implementation, we replace the population parameters by their sample
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estimates, and in computing the consistent estimate of S, we assume gt(θ) is uncorrelated over

time. Using the de-meaned version of the SDF, the sample HJ-distances of the two models no

longer differ by a large amount as in Panel A of Table I. While the JW model still has a slightly

smaller sample HJ-distance (0.5624 vs. 0.5726) than the FF model, the t-ratios of the coefficient

estimates of the model are dramatically lower than the corresponding ones in Panel A of Table I.

This is also true for the FF model. Except for λ̂prem, none of the coefficients of the two models are

significantly different from zero. Overall, there is no strong evidence that suggests the JW model

significantly outperforms the FF model once we require the SDFs of the two models to have the

same mean.

Table II about here

The traditional HJ-distance is a measure of how far away the candidate SDF is from the set of all

admissible SDFs. As we argue in Section II, when we use only excess returns to estimate the model

and force the SDFs to have unit mean, it makes sense to also restrict the set of admissible SDFs

to have unit mean. The resulting distance measure that we derive, the modified HJ-distance, uses

the inverse of the covariance matrix (instead of the second moment matrix) of excess returns as the

weighting matrix. In Panel B of Table II, we report the estimation results of the two models using

the de-meaned version of the linear SDF and the inverse of the covariance matrix of excess returns

as the weighting matrix. By construction, the modified HJ-distance is larger than the traditional

HJ-distance, which is what we observe when we compare δ̂HJ in Panel A with δ̂m in Panel B.

Similar to Panel A, the sample modified HJ-distances for the JW and the FF models are very close,

suggesting that the two models have similar performance. However, the p-values of δ̂m show that

both the JW and FF models are rejected by the data, contrary to the results in Panel A that rely

on the traditional sample HJ-distance. Since δ̂HJ and δ̂m are just monotonic transformations of

each other, an exact test should give us the same p-value regardless of whether we use δ̂HJ or δ̂m

to test the model. The fact that we obtain vastly different test outcomes is an indication of serious

problems with using the asymptotic tests.13 Although asymptotically both δ̂2
HJ and δ̂2

m have the

same distribution under the correctly specified model, the fact that δ̂HJ < δ̂m suggests that in
13In the statistics literature, it is quite common to find that equivalent asymptotic tests can lead to vastly different

outcomes. For example, in testing the uniform linear hypothesis in multivariate regressions, Berndt and Savin (1977)
show that the Wald test statistic must be greater than the likelihood ratio test statistic, which in turn is greater than
the Lagrange multiplier test statistic, even though all three tests have the same asymptotic distribution.
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finite samples, the test that uses δ̂m will favor rejection whereas the test that uses δ̂HJ will favor

acceptance. A similar problem also exists in λ̂m and λ̂HJ , but in the opposite direction. Using the

same proof as in Lemma 1, we can easily establish that λ̂HJ = λ̂m/(1 + δ̂2
m), which suggests that

λ̂HJ and λ̂m must have the same sign but the absolute value of λ̂HJ is always smaller than the

absolute value of λ̂m. Although under the correctly specified model, both λ̂HJ and λ̂m have the

same asymptotic distribution, the fact that λ̂m dominates λ̂HJ in every sample suggests that we

are more likely to find λ̂m to have greater statistical significance than λ̂HJ . When we compare the

t-ratios of λ̂HJ in Panel A with the t-ratios of λ̂m in Panel B, we find exactly this relation. This is

an indication that either the models are incorrect or that the asymptotic distributions that we use

to compute the standard errors of λ̂s are inappropriate.

As in all the existing studies, the standard errors (and p-values) of the λ̂s in Tables I and II are

computed under the assumption that the model is correctly specified. This assumption is probably

hard to justify and using these standard errors to test whether a particular factor is priced can

be misleading. Having derived the asymptotic distribution of λ̂ under a potentially misspecified

model in Section II, it is of interest to see how the inferences are altered with our method of

computing standard errors. In Table III, we report the same estimation results of Table II, except

that the standard errors for λ̂ are robust to model misspecification. In Section II.C, we suggest that

misspecification increases the asymptotic variance of λ̂m. Therefore, when we account for potential

misspecification in the model, the standard error of λ̂m should go up and its t-ratio should be

smaller. This is exactly what we observe when we compare the results in Panel B of Tables II and

III. Going from Table II to Table III, we see uniformly smaller t-ratios for the two models. For

example, the t-ratio of λ̂lab goes down from 2.29 to 1.53, suggesting that the growth rate of per

capita income is no longer significantly priced.

Table III about here

Unlike the standard errors of λ̂m, the standard errors of λ̂HJ do not uniformly go up after we

account for model misspecification. Some t-ratios in Panel A end up being higher while some being

lower. Interestingly, once we take into account potential misspecification, both Panels in Table III

produce roughly the same t-ratios for λ̂, regardless of whether we use the inverse of the second

moment matrix or the covariance matrix as the weighting matrix. This is in sharp contrast with
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the results in Table II which show quite a bit of difference in the t-ratios of λ̂HJ and λ̂m. This

suggests that computing the t-ratios under the assumption that the model is correctly specified is

probably the reason why we have far less robust results in Table II.

In Table III, we also report the t-ratios for δ̂HJ and δ̂m, which are computed using asymptotic

standard errors that are valid under misspecified models. Note that since these standard errors are

invalid under the correctly specified model, we cannot use the t-ratios of δ̂HJ and δ̂m to test the

validity of the model (i.e., the null hypothesis of H0 : δ = 0), so we do not present their p-values.

Instead, it is more appropriate to use the standard errors to construct confidence intervals for δHJ

and δm. In Table III, we report the 95% confidence intervals of δHJ and δm for both models.

These confidence intervals indicate that δHJ and δm are very far away from zero. In addition,

the confidence intervals of δHJ (or δm) for the two models significantly overlap with each other.

Therefore, after accounting for sampling variability, we cannot find material difference in terms of

the performance of the two models as measured by δHJ or δm.

IV. Conclusion

This paper studies specification tests of asset pricing models that are performed using excess returns.

We find that the popular specification that writes the SDF as a linear function of the factors is

problematic because the outcome of the specification test can be affected by an affine transformation

of the factors. In contrast, a less popular version of the linear SDF which writes the SDF as a

linear function of the de-meaned factors is free from this problem. We also point out that the

traditional HJ-distance is inappropriate when only excess returns are used in the test, and we

propose a modified HJ-distance that is more suited for this purpose. The only difference between

the modified HJ-distance and the traditional HJ-distance is that we use the inverse of the covariance

matrix rather than the second moment matrix of the excess returns as the weighting matrix. These

two HJ-distances have the same asymptotic distribution when the model is correctly specified, but

their asymptotic distributions are not the same under misspecified models.

For statistical inference, we provide the asymptotic distributions for both the modified HJ-

distance and the traditional HJ-distance based on the de-meaned SDF as well as for the estimates

of the SDF parameters. We derive the asymptotic distributions not just for the case of correctly
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specified models, but also for the case of misspecified models. Another contribution of the paper is

to propose a simple method to compute standard errors on the estimates of the SDF parameters

that are robust to model misspecification.

Using Jagannathan and Wang (1996) as an example, we illustrate the importance of using the

de-meaned version of the linear SDF and demonstrate the substantial differences that one can get

by using the modified HJ-distance instead of the traditional HJ-distance. We also show that the

misspecification adjustment term in the standard error of the estimate can make a substantial

difference in determining whether a factor is priced or not. Unless we are certain that a model

is correct, we should not ignore the effect of model misspecification. Failure to take this into

account can understate the standard errors of the estimates of the SDF parameters and lead us to

erroneously conclude that certain factors are priced.
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Appendix

Proof of Proposition 1: To simplify this problem, we denote

a = V12Wµ2(µ′
2Wµ2)−1, (A1)

E = V21 − µ2a
′ = V21 − µ2(µ′

2Wµ2)−1µ′
2WV21. (A2)

Note that when the model is misspecified, E is of full column rank because µ2 is not in the span of

the column space of V21. It is straightforward to show that

E ′Wµ2 = (V21 − µ2a
′)′Wµ2 = V12Wµ2 − V12Wµ2 = 0K . (A3)

Therefore, we have

B′Wµ2 = [E + µ2(a + µ1)′]′Wµ2 = (µ′
2Wµ2)(a + µ1), (A4)

B′WB = [E + µ2(a + µ1)′]′W [E + µ2(a + µ1)′] = E ′WE + (µ′
2Wµ2)(a + µ1)(a + µ1)′.(A5)

Writing F = E ′WE, b = a + µ1, η = µ′
2Wµ2 and using the identity

(F + ηbb′)−1 = F−1 − F−1bb′F−1

b′F−1b + η−1
, (A6)

the objective function (12) can be written as

QW = η − η2b′
(

F−1 − F−1bb′F−1

b′F−1b + η−1

)
b = η − η2

[
b′F−1b

1 + η(b′F−1b)

]
=

η

1 + η(b′F−1b)
. (A7)

Therefore, maximizing/minimizing QW by choosing µ1 is the same as minimizing/maximizing

b′F−1b by choosing b. This is accomplished by choosing b = 0K (i.e., µ1 = −a) and b → ±∞

(i.e., µ1 → ±∞), respectively. This completes the proof.

Proof of Proposition 2: The optimization problem in (20) is

δ2
m = min

m
E[(y − m)2]

s.t. E[rm] = 0N ,

E[m] = 1.

Define λ1 and λ2 as the Lagrange multipliers of the two equality constraints, we investigate the

saddle point problem:

δ2
m = min

m
sup
λ1,λ2

E[(y − m)2] + 2λ′
1E[rm] + 2λ2(E[m]− 1)

= max
λ1,λ2

min
m

E[(y − m)2] + 2λ′
1E[rm] + 2λ2(E[m]− 1). (A8)
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Using the fact that E[y] = 1, we can write

E[(y − m)2] + 2λ′
1E[rm] + 2λ2(E[m]− 1)

= E[(y − λ′
1r − λ2 − m)2] + 2λ′

1E[ry] + 2λ2E[y]− λ′
1E[rr′]λ1 − 2λ′

1E[r]λ2 − λ2
2 − 2λ2

= E[(y − λ′
1r − λ2 − m)2] + 2λ′

1E[ry]− λ′
1E[rr′]λ1 − 2λ′

1E[r]λ2 − λ2
2 (A9)

and only the first term in this expression involves m, so for any λ1 and λ2, the inner minimization

problem can be solved by choosing

m∗ = y − λ′
1r − λ2, (A10)

and we are left with a simple maximization problem of

δ2
m = max

λ1,λ2

2λ′
1E[ry]− λ′

1E[rr′]λ1 − 2λ′
1E[r]λ2 − λ2

2. (A11)

The first order conditions of the maximization problem are

E[ry]− E[rr′]λ1 − E[r]λ2 = 0N , (A12)

E[r]′λ1 + λ2 = 0. (A13)

It follows that λ2 = −E[r]′λ1 and λ1 = (E[rr′] − E[r]E[r]′)−1E[ry] = V −1
22 E[ry]. With these

optimal λ1 and λ2, the optimal choice of m is

m∗ = y − λ′
1(r − E[r]) = y − E[ry]′V −1

22 (r − E[r]). (A14)

The squared modified HJ-distance is therefore

δ2
m = E[(y − m∗)2] = E[ry]′V −1

22 E[ry] = e′V −1
22 e. (A15)

This completes the proof.

Proof of Lemma 1: Using the identity (A6), we have

U−1 = (V22 + µ2µ
′
2)

−1 = V −1
22 − V −1

22 µ2µ
′
2V

−1
22

1 + µ′
2V

−1
22 µ2

. (A16)

Using (A16) and denoting c = µ′
2V

−1
22 µ2 and H = (V12V

−1
22 V21)−1, we have

µ′
2U

−1µ2 =
c

1 + c
, (A17)

V12U
−1µ2 =

V12V
−1
22 µ2

1 + c
, (A18)

(V12U
−1V21)−1 = H +

H(V12V
−1
22 µ2)(µ′

2V
−1
22 V21)H

1 + δ2
m

. (A19)
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It follows that

δ2
HJ = µ′

2U
−1µ2 − µ′

2U
−1V21(V12U

−1V21)−1V12U
−1µ2

=
c

1 + c
−

µ′
2V

−1
22 V21

[
H + H(V12V −1

22 µ2)(µ′
2V −1

22 V21)H

1+δ2
m

]
V12V

−1
22 µ2

(1 + c)2

=
c

1 + c
−

(c− δ2
m) + (c−δ2

m)2

1+δ2
m

(1 + c)2

=
c

1 + c
−

(c− δ2
m) 1+c

1+δ2
m

(1 + c)2

=
δ2
m

1 + δ2
m

, (A20)

where the third equality uses the fact that δ2
m = c− µ′

2V
−1
22 V21HV12V

−1
22 µ2. Similarly,

λHJ =
[
H +

H(V12V
−1
22 µ2)(µ′

2V
−1
22 V21)H

1 + δ2
m

]
V12V

−1
22 µ2

1 + c

=
λm

1 + c
+

λm(c− δ2
m)

1 + δ2
m

=
λm

1 + δ2
m

. (A21)

This completes the proof.

Proof of Lemma 2: Defining e1 = [1, 0′K ]′ and

A =

[
R0 −R0µ

′
1

µ2 −(V21 + µ2µ
′
1)

]
, (A22)

we can write the squared HJ-distance based on the N + 1 assets as

δ̃2
HJ = e′1[Ũ

−1 − Ũ−1A(A′Ũ−1A)−1A′Ũ−1]e1. (A23)

Using the partitioned matrix inverse formula, we have

Ũ−1 =




1+µ′
2V −1

22 µ2

R2
0

−µ′
2V −1

22
R0

−V −1
22 µ2

R0
V −1

22


 (A24)

and it follows that

A′Ũ−1A =

[
1 −µ′

1

−µ1 V12V
−1
22 V21 + µ1µ

′
1

]
. (A25)

Using the partitioned matrix inverse formula again, we have

(A′Ũ−1A)−1 =

[
1 + µ′

1Hµ1 µ′
1H

Hµ1 H

]
, (A26)
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where H = (V12V
−1
22 V21)−1. Since e′1Ũ

−1A = [1/R0, (µ′
2V

−1
22 V21 − µ′

1)/R0], we have

δ̃2
HJ

=
1 + µ′

2V
−1
22 µ2

R2
0

− 1 + µ′
1Hµ1 + 2µ′

1H(V12V
−1
22 µ2 − µ1) + (V12V

−1
22 µ2 − µ1)′H(V12V

−1
22 µ2 − µ1)

R2
0

=
µ′

2V
−1
22 µ2 − µ′

2V
−1
22 V21HV12V

−1
22 µ2

R2
0

=
δ2
m

R2
0

. (A27)

This completes the proof.

Proof of Lemma 4: It is straightforward to show that

∂δ2
m

∂µ1
= 0K , (A28)

∂δ2
m

∂µ2
= 2[V −1

22 − V −1
22 V21(V12V

−1
22 V21)−1V12V

−1
22 ]µ2 = 2V −1

22 em. (A29)

For the derivative of δ2
m with respect to vec(V ), we write δ2

m = e′mV −1
22 em and use the product rule

to obtain
∂δ2

m

∂vec(V )′
=

∂e′mV −1
22 em

∂vec(V )′
= 2e′mV −1

22

∂em

∂vec(V )′
+ (e′m ⊗ e′m)

∂vec(V −1
22 )

∂vec(V )′
. (A30)

For the first term, we use the product rule and the fact that V12V
−1
22 em = 0K to obtain

2e′mV −1
22

∂em

∂vec(V )′
= −2e′mV −1

22

∂V21λ

∂vec(V )′

= −2e′mV −1
22

[
(λ′ ⊗ IN)

∂vec(V21)
∂vec(V )′

+ V21
∂λ

∂vec(V )′

]

= −2(λ′ ⊗ e′mV −1
22 )

∂vec(V21)
∂vec(V )′

. (A31)

Writing V21 = [ON×K , IN ]V [IK , OK×N ]′, we can simplify the first term to

2e′mV −1
22

∂em

∂vec(V )′
= −2(λ′ ⊗ e′mV −1

22 )
∂([IK, OK×N ] ⊗ [ON×K , IN ])vec(V )

∂vec(V )′

= −2([λ′, 0′N ]⊗ [0′K, e′mV −1
22 ]). (A32)

For the second term, we use the fact that for a nonsingular matrix A, we have ∂vec(A−1)/∂vec(A)′ =

−(A−1 ⊗ A−1′). Using this identity and the chain rule, we have

(e′m ⊗ e′m)
∂vec(V −1

22 )
∂vec(V )′

= (e′m ⊗ e′m)
∂vec(V −1

22 )
∂vec(V22)′

∂vec(V22)
∂vec(V )′

= −(e′m ⊗ e′m)(V −1
22 ⊗ V −1

22 )([ON×K , IN ] ⊗ [ON×K , IN ])

= −[0′K , e′mV −1
22 ] ⊗ [0′K , e′mV −1

22 ]. (A33)
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Combining these two terms, we have

∂δ2
m

∂vec(V )
=

[
−2λ

−V −1
22 em

]
⊗

[
0K

V −1
22 em

]
. (A34)

This completes the proof.

Proof of Proposition 4: Since Yt is multivariate elliptically distributed, ut and vt are bivariate

elliptically distributed because both of them are linear combinations of the elements of Yt. Using

the properties of multivariate elliptical distribution (see Muirhead (1982, p.41)), we have E[ut] = 0,

E[u2
t ] = e′mV −1

22 em = δ2
m, E[u3

t ] = 0, E[u4
t ] = 3(1+κ)E[u2

t ]
2 = 3(1+κ)δ4

m, E[v2
t ] = λ′V11λ, where κ is

the kurtosis parameter of the elliptical distribution. In addition, using the identity V12V
−1
22 em = 0K ,

we have

E[utvt] = E[e′mV −1
22 (rt − µ2)(ft − µ1)′λm] = e′mV −1

22 V21λm = 0, (A35)

so ut and vt are uncorrelated. It follows that E[u2
tv

2
t ] = (1 + κ)E[u2

t ]E[v2
t ] = (1 + κ)δ2

mλ′V11λ,

E[u2
tvt] = 0 and E[u3

tvt] = 0. Using these moments of ut and vt, we have

E[q2
t (φ)] = 4E[u2

t (1− vt)2] + E[u4
t ] + δ4

m − 4E[u3
t(1 − vt)]− 4E[ut(1 − vt)]δ2

m − 2E[u2
t ]δ

2
m

= 4[1 + (1 + κ)λ′V11λ]δ2
m + (2 + 3κ)δ4

m. (A36)

With the expression of Avar[δ̂2
m], the asymptotic variance of δ̂m follows directly from (76). The

asymptotic variances of δ̂2
HJ and δ̂HJ are then obtained using (77)–(78) and the identities in

Lemma 1. This completes the proof.

Proof of Lemma 5: It is straightforward to show that

∂λm

∂µ′
1

= OK×K , (A37)

∂λm

∂µ′
2

= HV12V
−1
22 . (A38)

For the derivative of λm with respect to vec(V ), we use the product rule to obtain

∂λm

∂vec(V )′
= (µ′

2V
−1
22 V21 ⊗ IK)

∂vec(H)
∂vec(V )′

+ (µ′
2V

−1
22 ⊗H)

∂vec(V12)
∂vec(V )′

+ (µ′
2 ⊗HV12)

∂vec(V −1
22 )

∂vec(V )′
. (A39)

The last two terms were already derived in the proof of Lemma 4 and they are given by

(µ′
2V

−1
22 ⊗ H)

∂vec(V12)
∂vec(V )′

= [0′K, µ′
2V

−1
22 ] ⊗ [H, OK×N ], (A40)

(µ′
2 ⊗ HV12)

∂vec(V −1
22 )

∂vec(V )′
= −[0′K , µ′

2V
−1
22 ] ⊗ [OK×K , HV12V

−1
22 ]. (A41)
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For the first term, we use the chain rule to obtain

(µ′
2V

−1
22 V21 ⊗ IK)

∂vec(H)
∂vec(V )′

= (µ′
2V

−1
22 V21 ⊗ IK)

∂vec((V12V
−1
22 V21)−1)

∂vec(V12V
−1
22 V21)′

∂vec(V12V
−1
22 V21)

∂vec(V )′

= −(µ′
2V

−1
22 V21 ⊗ IK)(H ⊗ H)

[
(V12V

−1
22 ⊗ IK)

∂vec(V12)
∂vec(V )′

+ (V12 ⊗ V12)
∂vec(V −1

22 )
∂vec(V )′

+ (IK ⊗ V12V
−1
22 )

∂vec(V21)
∂vec(V )′

]

= −(λ′
m ⊗ H)

[
[OK×K , V12V

−1
22 ] ⊗ [IK , OK×N ]

− [OK×K , V12V
−1
22 ]⊗ [OK×K , V12V

−1
22 ] + [IK , OK×N ] ⊗ [OK×K , V12V

−1
22 ]
]

= −[0′K , λ′
mV12V

−1
22 ] ⊗ [H, OK×N ] + [0′K , λ′

mV12V
−1
22 ] ⊗ [OK×K , HV12V

−1
22 ]

− [λ′
m, 0′N ] ⊗ [OK×K , HV12V

−1
22 ]. (A42)

Combining the three terms and using the identity em = µ2 − V21λm, we have

∂λm

∂vec(V )′
= [−λ′

m, 0′N ]⊗ [OK×K , HV12V
−1
22 ] + [0′K, e′mV −1

22 ] ⊗ [H, −HV12V
−1
22 ]. (A43)

Finally, (96) is obtained by using the relation λHJ = λm/(1+δ2
m) given in Lemma 1. This completes

the proof.

Proof of Proposition 5: From Muirhead (1982, p.42, p.49), we know that when Yt follows a multi-

variate elliptical distribution with finite fourth moments, we have

Acov[V̂ij , V̂kl] = κVijVkl + (1 + κ)(VikVjl + VilVjk). (A44)

Using this and the symmetric property of multivariate elliptical distribution, we can write S0 =

Avar[φ̂] compactly as

S0 =

[
V Op×p2

Op2×p (1 + κ)(Ip2 + Kp)(V ⊗ V ) + κvec(V )vec(V )′

]
, (A45)

where p = N + K and Kp is a p2 × p2 commutation matrix such that Kpvec(A) = vec(A′) for

a p × p matrix A. Denoting A1 = [−λ′
m, 0′N ] ⊗ [OK×K , HV12V

−1
22 ] and A2 = [0′K, e′mV −1

22 ] ⊗

[H, −HV12V
−1
22 ] and using the identity V12V

−1
22 em = 0K , it is easy to verify the following identities

(A1 + A2)(V ⊗ V )(A1 + A2)′ = (λ′
mV11λm)H + δ2

mH(V11 − V12V
−1
22 V21)H, (A46)

(A1 + A2)Kp(V ⊗ V )(A1 + A2)′ = λmλ′
m, (A47)

(A1 + A2)vec(V ) = −λm. (A48)
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It follows that

∂λm

∂φ′ S0

[
∂λm

∂φ′

]′

= [OK×K , HV12V
−1
22 ]V [OK×K , HV12V

−1
22 ]′

+ (A1 + A2)[(1 + κ)(Ip2 + Kp)(V ⊗ V ) + κvec(V )vec(V )′](A1 + A2)′

= H + (1 + κ)[(A1 + A2)(V ⊗ V )(A1 + A2)′ + (A1 + A2)Kp(V ⊗ V )(A1 + A2)′]

+ κ(A1 + A2)vec(V )vec(V )′(A1 + A2)′

= H + (1 + κ)[(λ′
mV11λm)H + δ2

mH(V11 − V12V
−1
22 V21)H + λmλ′

m] + κλmλ′
m

= [1 + (1 + κ)λ′
mV11λm]H + (1 + 2κ)λmλ′

m + (1 + κ)δ2
mH(V11 − V12V

−1
22 V21)H. (A49)

Using (96), Avar[λ̂HJ ] is given by

(1 − δ2
HJ )2

(
Avar[λ̂m] + Avar[δ̂2

m]λHJλ′
HJ − ∂λm

∂φ′ S0
∂δ2

m

∂φ
λ′

HJ − λHJ
∂δ2

m

∂φ′ S0

[
∂λm

∂φ′

]′)
. (A50)

The only term that we need to obtain is (∂λm/∂φ′)S0(∂δ2
m/∂φ). Let A3 = [−2λ′

m, −e′mV −1
22 ] ⊗

[0′K , e′mV −1
22 ], it is easy to verify the following identities

(A1 + A2)(V ⊗ V )A′
3 = 0K , (A51)

(A1 + A2)Kp(V ⊗ V )A′
3 = 2δ2

mλm − 2δ2
mHV11λm, (A52)

A3vec(V ) = −δ2
m. (A53)

It follows that

∂λm

∂φ′ S0
∂δ2

m

∂φ
= [OK×K , HV12V

−1
22 ]V [0′K , 2e′mV −1

22 ]′

+ (A1 + A2)[(1 + κ)(Ip2 + Kp)(V ⊗ V ) + κvec(V )vec(V )′]A′
3

= OK×K + (1 + κ)[(A1 + A2)(V ⊗ V )A′
3 + (A1 + A2)Kp(V ⊗ V )A′

3]

+ κ(A1 + A2)vec(V )vec(V )′A′
3

= (2 + 3κ)δ2
mλm − 2(1 + κ)δ2

mHV11λm

=
(2 + 3κ)δ2

HJλHJ − 2(1 + κ)δ2
HJHV11λHJ

(1 − δ2
HJ)2

. (A54)

Substituting this into (A50), we obtain our expression of Avar[λ̂HJ ]. This completes the proof.

38



References

Balduzzi, Pierluigi, and Hedi Kallal, 1997, Risk premia and variance bounds, Journal of Finance

52, 1913–1949.

Balduzzi, Pierluigi, and Cesare Robotti, 2005, Asset pricing models and economic risk premia: A

decomposition, working paper, Boston College and Federal Reserve Bank of Atlanta.

Balduzzi, Pierluigi, and Tong Yao, 2006, Testing heterogeneous-agent models: An alternative

aggregation approach, Journal of Monetary Economics, forthcoming.

Berndt, Ernst R., and N. Eugene Savin, 1977, Conflict among criteria for testing hypotheses in

the multivariate linear regression model, Econometrica 45, 1263–1278.

Black, Fischer, 1972, Capital market equilibrium with restricted borrowing, Journal of Business

45, 444–454.

Brandt, Michael W., and David A. Chapman, 2005, Linear approximation and tests of conditional

pricing models, working paper, Duke University and Boston College.

Campbell, John Y., and John H. Cochrane, 2000, Explaining the poor performance of consumption-

based asset pricing models, Journal of Finance 55, 2863–2878.

Cochrane, John H., 2005, Asset pricing, Princeton University Press.

Dittmar, Robert F., 2002, Nonlinear pricing kernels, kurtosis preference, and evidence from the

cross section of equity returns, Journal of Finance 57, 369–403.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on bonds

and stocks, Journal of Financial Economics 33, 3–56.

Farnsworth, Heber, Wayne E. Ferson, David Jackson, and Steven Todd, 2002, Performance eval-

uation with stochastic discount factors, Journal of Business 75, 473–503.

Gibbons, Michael R., Stephen A. Ross, and Jay Shanken, 1989, A test of the efficiency of a given

portfolio, Econometrica 57, 1121–1152.

39



Hall, Alastair R., and Atsushi Inoue, 2003, The large sample behaviour of the generalized method

of moments estimator in misspecified models, Journal of Econometrics 114, 361–394.

Hansen, Lars Peter, 1982, Large sample properties of generalized method of moments estimators,

Econometrica 50, 1029–1054.

Hansen, Lars Peter, John Heaton, and Erzo G. J. Luttmer, 1995, Econometric evaluation of asset

pricing models, Review of Financial Studies 8, 237–274.

Hansen, Lars Peter, John Heaton, and Amir Yaron, 1996, Finite-sample properties of some alter-

native GMM estimators, Journal of Business and Economic Statistics 14, 262–280.

Hansen, Lars Peter, and Ravi Jagannathan, 1997, Assessing specification errors in stochastic

discount factor model, Journal of Finance 52, 557–590.

Hodrick, Robert J., and Xiaoyan Zhang, 2001, Evaluating the specification errors of asset pricing

models, Journal of Financial Economics 62, 327–376.

Jagannathan, Ravi, Keiichi Kubota, and Hitoshi Takehara, 1998, Relationship between labor-

income risk and average return: empirical evidence from the Japanese stock market, Journal

of Business 71, 319–348.

Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional CAPM and the cross-section of

expected returns, Journal of Finance 51, 3–53.

Jagannathan, Ravi, and Zhenyu Wang, 2002, Empirical evaluation of asset pricing models: A

comparison of the SDF and beta methods, Journal of Finance 57, 2337–2367.

Kan, Raymond, and Chu Zhang, 1999a, GMM tests of stochastic discount factor models with

useless factors, Journal of Financial Economics 54, 103–127.

Kan, Raymond, and Chu Zhang, 1999b, Two-pass tests of asset pricing models with useless factors,

Journal of Finance 54, 204–235.

Kan, Raymond, and Guofu Zhou, 1999, A critique of the stochastic discount factor methodology,

Journal of Finance 54, 1221–1248.

40



Kan, Raymond, and Guofu Zhou, 2001, Empirical asset pricing: The beta method versus the

stochastic discount factor method, working paper, University of Toronto and Washington

University in St. Louis.

Kan, Raymond, and Guofu Zhou, 2004, Hansen-Jagannathan distance: Geometry and exact dis-

tribution, working paper, University of Toronto and Washington University in St. Louis.

Kimmel, Robert L., 2003, Risk premia in linear factor models: Theoretical and econometric issues,

working paper, Princeton University.

Kirby, Chris, 1998, The restrictions on predictability implied by rational asset pricing models,

Review of Financial Studies 11, 343–382.

Lettau, Martin, and Sidney Ludvigson, 2001, Resurrecting the (C)CAPM: A cross-section test

when risk premia are time-varying, Journal of Political Economy 109, 1238–1287.

Muirhead, Robb J., 1982, Aspects of Multivariate Statistical Theory (Wiley, New York).

Newey, Whitney, and Kenneth West, 1987, A simple positive definite heteroskedasticity and au-

tocorrelation consistent covariance matrix, Econometrica 55, 703–708.

Shanken, Jay, 1985, Multivariate tests of the zero-beta CAPM, Journal of Financial Economics

14, 327–348.

Shanken, Jay, and Guofu Zhou, 2006, Estimating and testing beta pricing models: Alternative

methods and their performance in simulations, Journal of Financial Economics, forthcoming.

Skoulakis, Georgios, 2005, Assessment of asset-pricing models using cross-sectional regressions,

working paper, Northwestern University.

Wang, Kevin, 2003, Asset pricing with conditioning information: A new test, Journal of Finance

58, 161–196.

41



Table I
A Comparison of the Performance of Jagannathan and Wang (1996) and Fama
and French (1993) Models on 100 Size-Beta Sorted Portfolios Using a Linear

Specification of the Stochastic Discount Factor
The table presents the estimation results of two asset pricing models. The first model (JW) is from Jagan-
nathan and Wang (1996), which assumes that the stochastic discount factor is

yt = 1 − λvwRvw
t − λpremRprem

t−1 − λlabR
lab
t ,

where Rvw
t is the return on the CRSP value-weighted index, Rprem

t−1 is the yield spread between low and
high-grade corporate bonds, and Rlab

t is the growth rate in per capita income. The second model (FF) is
from Fama and French (1993), which assumes that the stochastic discount factor is

yt = 1 − λvwrvw
t − λsmbr

smb
t − λhmlr

hml
t ,

where rvw
t is the excess return (in excess of 1-month T-bill rate) on the CRSP value-weighted index, rsmb

t is
the return difference between portfolios of small and large stocks, and rhml

t is the return difference between
portfolios of high and low book-to-market ratios. The models are estimated using monthly excess returns
on 100 size and beta sorted portfolios of the NYSE and AMEX over the period 1963/7–1990/12. Panel A
reports the estimates of the λ and the HJ-distances (δHJ ) for the two models. In addition, it reports the
estimated means of the two stochastic discount factors. Panel B reports the estimation results of the two
models after performing an affine transformation of the original factors. For the JW model, we subtract
0.0171, 0.0121, and 0.0059 from Rvw

t , Rprem
t−1 and Rlab

t , respectively. For the FF model, we add one to all
three factors.

Panel A: Original Factors

JW Model FF Model

λ̂vw λ̂prem λ̂lab δ̂HJ λ̂vw λ̂smb λ̂hml δ̂HJ

Estimate 0.09 48.18 59.92 0.1442 3.31 1.02 8.96 0.5494
t-ratio 0.25 13.11 9.25 2.31 0.51 3.19
p-value 0.805 0.000 0.000 0.965 0.021 0.614 0.001 0.264

Estimate of E[y] 0.1228 0.9478

Panel B: Transformed Factors

JW Model FF Model

λ̂vw λ̂prem λ̂lab δ̂HJ λ̂vw λ̂smb λ̂hml δ̂HJ

Estimate 0.03 −0.24 2.70 0.5832 0.20 0.14 0.65 0.0136
t-ratio 0.02 −0.01 0.09 7.05 3.37 18.09
p-value 0.984 0.991 0.931 0.140 0.000 0.008 0.000 0.011

Estimate of E[y] 1.0005 0.0050
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Table II
A Comparison of the Performance of Jagannathan and Wang (1996) and Fama
and French (1993) Models on 100 Size-Beta Sorted Portfolios Using a Linear

De-Meaned Specification of the Stochastic Discount Factor
The table presents the estimation results of two asset pricing models. The first model (JW) is from Jagan-
nathan and Wang (1996), which assumes that the stochastic discount factor is

yt = 1 − λvw(Rvw
t − E[Rvw

t ]) − λprem(Rprem
t−1 − E[Rprem

t−1 ]) − λlab(Rlab
t − E[Rlab

t ]),

where Rvw
t is the return on the CRSP value-weighted index, Rprem

t−1 is the yield spread between low and
high-grade corporate bonds, and Rlab

t is the growth rate in per capita income. The second model (FF) is
from Fama and French (1993), which that assumes the stochastic discount factor is

yt = 1− λvw(rvw
t − E[rvw

t ]) − λsmb(rsmb
t − E[rsmb

t ]) − λhml(rhml
t − E[rhml

t ]),

where rvw
t is the excess return (in excess of 1-month T-bill rate) on the CRSP value-weighted index, rsmb

t is
the return difference between portfolios of small and large stocks, and rhml

t is the return difference between
portfolios of high and low book-to-market ratios. The models are estimated using monthly excess returns
on 100 size and beta sorted portfolios of the NYSE and AMEX over the period 1963/7–1990/12. Panel A
reports the estimates of the λ and the traditional HJ-distance (δHJ ) for the two models using the inverse of
the second moment matrix of excess returns as the weighting matrix. Panel B reports the estimation results
of the λ and the modified HJ-distance (δm) for the two models using the inverse of the covariance matrix of
excess returns as the weighting matrix.

Panel A: Traditional HJ-Distance

JW Model FF Model

λ̂vw λ̂prem λ̂lab δ̂HJ λ̂vw λ̂smb λ̂hml δ̂HJ

Estimate 1.07 50.77 51.74 0.5624 2.00 1.01 4.75 0.5726
t-ratio 0.82 2.46 1.63 1.33 0.48 1.57
p-value 0.410 0.014 0.103 0.441 0.184 0.630 0.117 0.225

Panel B: Modified HJ-Distance

JW Model FF Model

λ̂vw λ̂prem λ̂lab δ̂m λ̂vw λ̂smb λ̂hml δ̂m

Estimate 1.56 74.26 75.68 0.6802 2.98 1.51 7.06 0.6984
t-ratio 1.16 3.53 2.29 1.93 0.71 2.30
p-value 0.246 0.000 0.022 0.016 0.054 0.475 0.022 0.000
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Table III
A Comparison of the Performance of Jagannathan and Wang (1996) and Fama
and French (1993) Models on 100 Size-Beta Sorted Portfolios Using a Linear

De-Meaned Specification of the Stochastic Discount Factor and
Misspecification Robust Standard Errors

The table presents the estimation results of two asset pricing models. The first model (JW) is from Jagan-
nathan and Wang (1996), which assumes that the stochastic discount factor is

yt = 1 − λvw(Rvw
t − E[Rvw

t ]) − λprem(Rprem
t−1 − E[Rprem

t−1 ]) − λlab(Rlab
t − E[Rlab

t ]),

where Rvw
t is the return on the CRSP value-weighted index, Rprem

t−1 is the yield spread between low and
high-grade corporate bonds, and Rlab

t is the growth rate in per capita income. The second model (FF) is
from Fama and French (1993), which assumes the stochastic discount factor is

yt = 1− λvw(rvw
t − E[rvw

t ]) − λsmb(rsmb
t − E[rsmb

t ]) − λhml(rhml
t − E[rhml

t ]),

where rvw
t is the excess return (in excess of 1-month T-bill rate) on the CRSP value-weighted index, rsmb

t is
the return difference between portfolios of small and large stocks, and rhml

t is the return difference between
portfolios of high and low book-to-market ratios. The models are estimated using monthly excess returns
on 100 size and beta sorted portfolios of the NYSE and AMEX over the period 1963/7–1990/12. Panel A
reports the estimates of the λ and the traditional HJ-distance (δHJ ) for the two models using the inverse
of the second moment matrix of excess returns as the weighting matrix. Panel B reports the estimation
results of the λ and the modified HJ-distance (δm) for the two models using the inverse of the covariance
matrix of excess returns as the weighting matrix. The reported t-ratios and p-values are robust to model
misspecification. The p-values for λ̂ are two-tailed p-values.

Panel A: Traditional HJ-Distance

JW Model FF Model

λ̂vw λ̂prem λ̂lab δ̂HJ λ̂vw λ̂smb λ̂hml δ̂HJ

Estimate 1.07 50.77 51.74 0.5624 2.00 1.01 4.75 0.5726
t-ratio 1.12 2.22 1.50 14.92 1.84 0.69 2.04 16.14
p-value 0.261 0.026 0.134 0.066 0.490 0.042

95% conf. interval of δHJ (0.4885, 0.6363) (0.5030, 0.6421)

Panel B: Modified HJ-Distance

JW Model FF Model

λ̂vw λ̂prem λ̂lab δ̂m λ̂vw λ̂smb λ̂hml δ̂m

Estimate 1.56 74.26 75.68 0.6802 2.98 1.51 7.06 0.6984
t-ratio 1.12 2.32 1.53 10.20 1.85 0.69 2.07 10.85
p-value 0.263 0.021 0.127 0.064 0.492 0.039

95% conf. interval of δm (0.5495, 0.8109) (0.5722, 0.8246)
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