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Estimating Alternative Technology Sets in

Nonparametric Efficiency Analysis: Restriction

Tests for Panel and Clustered Data

Anne Neumann∗ Maria Nieswand† Torben Schubert‡

February 25, 2013

Abstract

Nonparametric efficiency analysis has become a widely applied tech-
nique to support industrial benchmarking as well as a variety of in-
centive-based regulation policies. In practice such exercises are often
plagued by incomplete knowledge about the correct specifications of
inputs and outputs. Simar and Wilson (2001) and Schubert and Simar
(2011) propose restriction tests to support such specification decisions
for cross-section data. However, the typical oligopolized market struc-
ture pertinent to regulation contexts often leads to low numbers of
cross-section observations, rendering reliable estimation based on these
tests practically unfeasible. This small-sample problem could often be
avoided with the use of panel data, which would in any case require
an extension of the cross-section restriction tests to handle panel data.
In this paper we derive these tests. We prove the consistency of the
proposed method and apply it to a sample of US natural gas transmis-
sion companies in 2003 through 2007. We find that the total quantity
of gas delivered and gas delivered in peak periods measure essentially
the same output. Therefore only one needs to be included. We also
show that the length of mains as a measure of transportation service
is non-redundant and therefore must be included.
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1 Introduction

Nonparametric efficiency analysis has become increasingly important for
sound decision-making in a variety of economic research fields. In addition to
industrial benchmarking, the regulation of network industries, among them
natural gas transmission, is a considerable field of application. Regulatory
decisions are often directly contingent on the results of such analyses, e.g.
in Norway, Germany, and Austria. Because the decisions have strong finan-
cial implications for both customers and firms, it is critical that the models
underlying the analyses are specified correctly. In the context of efficiency-
estimation this means that the correct inputs and outputs are accounted
for.

Restriction tests, proposed by Simar and Wilson (2001) and Schubert
and Simar (2011), allow for the testing of hypotheses regarding the inputs
and outputs. Nevertheless, the practical value of these tests is limited when
the cross-section sample size is small. This is typically the case in monopo-
lized and oligopolized producer markets. One way to solve this small sample
problem is to observe firms over time, that is, to use panel data. The regular
cross-section tests are then, however, not longer applicable, because of the
i.i.d. assumption. Therefore an extension is required that allows for corre-
lation across the time dimension. These tests are developed in the course of
this paper and proven to be consistent if the production frontier is constant
over time.

The paper is organized as follows: Section 2 provides an expository
overview of the role of efficiency measurement and benchmarking as a reg-
ulatory tool. We explain some of the benefits of nonparametric techniques
as well as major difficulties that arise from small cross-section sample sizes
rendering reliable estimation often impossible. We argue that restriction
tests for clustered data could help solving this problem in many contexts.
In Section 3 we describe the proposed test procedures. Section 4 describes
our data set and presents the results. Section 5 concludes.1

1We thank Luis Orea and the participants of the 5th International Workshop on
Empirical Methods in Energy Economics (EMEE), the annual meeting of the Verein
für Socialpolitik 2012, and the 10th Conference on Applied Infrastructure Research
(INFRADAY) for valuable comments and discussions.
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2 Efficiency Measurement as a Decision-Making
Tool

Data Envelopment Analysis (DEA) is a nonparametric method for efficiency
analysis and is closely related to the classical models of activity analysis.2 It
offers an alternative way to evaluate the performance of production entities.3

Unlike classical activity analysis, the concept of efficiency analysis intends
to express productive efficiency in a multiple-input-multiple-output frame-
work and thereby avoids the index number problem (Farrell, 1957; Cooper
et al., 2011). In efficiency analysis, the performance of a production unit
is determined by comparing it to a group of production entities that have
access to the same transformation process (technology) through which they
convert the same type of resources (inputs) into the same type of products
(outputs). From the observed input-output-combinations a best practice
(frontier) is constructed against which each entity is assessed individually.
The distance to that frontier reflects the production unit’s ability to trans-
form inputs into outputs, relative to what empirically is found and therefore
assumed to be feasible.

Hence, efficiency analysis provides a quantitative measure of the exist-
ing potential for improvement. As pointed out by Bogetoft and Otto (2011),
the scope of application of the DEA method is rich, since conceivable pro-
duction entities include firms, organizations, divisions, industries, projects,
decision-making units (DMUs), and individuals. Empirical analysis investi-
gates, for example, industrial entities such as warehouses (Schefczyk, 1993)
and coal mines (Thompson et al., 1995). As noted by Schefczyk (1993)
industrial benchmarking serves as a tool to generate measures by which
corporate decision-making can be brought in line with the corporate goal
of operating efficiently. DEA in combination with Malmquist indices is also
commonly applied to determine technical efficiency change, technical change,
total factor productivity change, see e.g. Jamasb et al. (2008), all of which
are useful tools to evaluate a particular sector and regulatory changes. In
addition, DEA is widely used in the regulation of network industries in or-
der to overcome disincentives and distortions related to monopolistic market
structures.

2For more details about the methodological linkages of activity and efficiency analysis
see Färe and Grosskopf (2005).

3Homburg (2001) gives detailed insights on how nonparametric efficiency analysis can
contribute to activity-based management.
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2.1 Benchmarking and DEA in Regulation

It is well known that the private sector draws on comparative analyses, such
as activity analysis, to improve its performance. Starting in the 1990s, regu-
latory authorities are making increasing use of benchmarking techniques in
order to facilitate incentive regulation of network utilities; see e.g., Jamasb
and Pollitt (2003). In particular, electricity and natural gas transmission and
distribution utilities are involved in regulatory activities; see e.g., Jamasb
et al. (2004); Cullmann (2012); Farsi et al. (2007); Sickles and Streitwieser
(1998); Hollas et al. (2002). Applying benchmarking methods allows the reg-
ulator to simulate competitive market structures (quasi-competition), thus
helping to pursue and implement regulatory objectives, e.g., reducing mo-
nopolistic power and promoting the efficient use of resources. Beside process
and activity analysis as well as parametric frontier models, e.g. Stochastic
Frontier Analysis (SFA), regulators frequently rely on DEA in order to es-
tablish benchmarks for target determination (Haney and Pollitt, 2009).

Due to the market structure in network industries, many regulatory
benchmarking applications rely on a small number of observations; see e.g.,
Jamasb et al. (2008). Larger sample sizes can generally be obtained two
ways: First, using cross-country analysis, and second, using cross-sectional
data across multiple time periods. When pooling observations across coun-
tries, simple cross-section tests can be used as long as we guarantee that
all countries have access to the same technology. However, when comparing
the same individuals across time, the additional problem emerges that a
firm’s present and past observations are generally not independent. So pure
cross-section methods will lead to false inference, even if the technology did
not change over the respective time period.

2.2 A Need for Specification Analyses

As a nonparametric method, DEA has, on the one hand, appealing char-
acteristics (Simar and Wilson, 2008); beside its great flexibility and easy
computability, it requires only few assumptions on the technology set and
its frontier. Particularly, it does neither assume a distribution for the in-
efficiency term nor does it impose a functional form to express the pro-
duction process generating the observed input-output-combinations (Haney
and Pollitt, 2009; Simar and Wilson, 2008). On the other hand, the DEA
estimator has drawbacks that are highly relevant for both regulatory and
industrial performance analysis. In addition to its outlier sensitivity, its
non-parametric nature dramatically reduces its asymptotic convergence rate
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when the dimensionality of the production possibility set is high. This is
particularly problematic when only a few number of observations are present
and, hence, some argue that DEA is not an ideal tool for regulatory purposes;
see e.g. Shuttleworth (2005). The critique also extends to cases where the
analysis of total factor productivity change in regulated and non-regulated
sectors is of primar interest.

Because the speed of convergence decreases with an increasing number of
inputs and outputs, specifying the model economically is even more impor-
tant than in parametric models. This means that we should exclude inputs
and outputs that do not contribute to the model. However, in most situa-
tions it is uncertain what is the correct specification of the technology set.
For example, uncertainty may occur as a result of information asymmetries,
when the analyst lacks full information about the precise production pro-
cess.4 Then statistical inference about alternative specifications is desirable
in order to make sound decisions about the reasonable choice of variables.

Simar and Wilson (2001, 2011) propose different restriction tests for non-
parametric efficiency analysis allowing to investigate whether certain vari-
ables can be excluded (exclusion restriction) or summed up (aggregation
restriction). Schubert and Simar (2011) extend these tests by introducing
a subsampling procedure (a special kind of bootstrap) that relaxes the ho-
mogeneity assumption5 and, therefore, allows for tests in input and output
directions within the same dataset. Although the benefits of restriction
tests on production process formulations are obvious, in the applied liter-
ature they receive only scant attention. Restriction tests notably improve
nonparametric benchmarking, because they increase the confidence in the
chosen representation of the production process by providing statistical in-
ference. The risk of overestimating the performance due to the ’curse of
dimensionality’ is reduced when variables are identified as irrelevant and
consequently are excluded from further investigation.6 Yet the existing im-

4The information asymmetries in regulation mainly result from adverse selection and
moral hazard problems (Joskow, 2006).

5The homogeneity assumption is comparable to the parametric homoscedasticity as-
sumption and means that the distribution of the inefficiencies does not depend on inputs
or the outputs. The problem is that it will not generally hold in both the input and the
output direction, prohibiting tests based on it in both directions.

6Alternatively, variables could be omitted or aggregated. Omitting variables based on
correlations should be avoided for translation invariant DEA models (Dyson et al., 2001)
and aggregating variables based on principal components might be inappropriate for radial
efficiency measurement (Simar and Wilson, 2001). However, the restriction tests proposed
by Simar and Wilson (2001) and Schubert and Simar (2011) provide statistical inference
procedures for the investigation of aggregates.
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plementations of the proposed tests are restricted to cross-sectional data
only and are therefore not applicable to (unbalanced) panel data.

We aim to present a test procedure that is able to account for correlation
likely being present when panel (respectively clustered data) is used.7 The
contribution of the paper at hand is twofold: First, we further develop the
theoretical underpinnings of the restriction tests in order to enhance their
applicability to (unbalanced) panel and clustered data in general. This re-
quires accounting for intra-observational dependencies. Second, we demon-
strate the relevance of the proposed test procedure for benchmarking by
applying the method to a data set of US natural gas transmission compa-
nies.8 Clearly, the main benefits of the proposed approach are improving
the efficiency estimation and overcoming lacks of information regarding the
production process. Although our demonstration relates to the regulatory
framework, it is straightforward to apply the technique to any other setting
where the mentioned problems arise.

3 Methodology

3.1 Technology Estimation using the DEA Estimator

We start by presenting the analytical framework. It introduces the concepts
necessary for the later proofs of consistency for the test statistics.

Let xi ∈ Rp+ and yi ∈ Rq+ denote the vectors of p inputs and q outputs.
The technology set Ψ represents the feasible input-output-combinations avail-
able to firm i (Bogetoft and Otto, 2011) and can be defined as

Ψ =
{

(x, y) ∈ Rp+q+ | x can produce y
}
. (1)

For Ψ we assume free disposability and convexity. The boundary of Ψ, de-
noted by Ψδ, describes the efficient production frontier, i.e. the technology,
and can be defined as

Ψδ =
{

(x, y) ∈ T |
(
γx, γ−1y

)
/∈ Ψ for any γ < 1

}
. (2)

According to Equation 2, a firm that employs a production plan that belongs
to Ψδ, is regarded as efficient and its input-output combination cannot be

7Note, that panel data is just one example of clustered data and that therefore, the
applicability of the proposed test is even more comprehensive.

8This industry is subject to analysis concerned with total factor productivity growth
and technical change in the light of changing regulation; see e.g. Sickles and Streitwieser
(1992, 1998); Jamasb et al. (2008).
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improved. Companies that operate at points in the interior of Ψ exhibit
inefficiencies (Simar and Wilson, 2001), which can be diminished by moving
toward the efficient frontier. Being able to handle multi-input and multi-
output settings, the Debreu-Farrell measure9 quantifies the respective firm-
individual degree of efficiency. For any particular coordinate (x0, y0) ∈ Ψ,
the Debreu-Farrell efficiency score is determined by the radial distance from
(x0, y0) to the efficient frontier Ψδ. It expresses the maximal proportional
contraction of all inputs x that allows to produce output level y for input-
orientation, and the maximum proportional expansion of all outputs y that
is feasible with the given inputs x, for output-orientation, respectively.

We restrict ourselves to the input-orientated firm-specific efficiency mea-
sure, which can formally be expressed as

θ (x0, y0) = inf {θ ≥ 0 | (θx0, y0) ∈ Ψ} . (3)

Hence, if θ (x0, y0) = 1, the company is efficient and operates along the
frontier Ψδ. If θ (x0, y0) ≤ 1, the company can improve its performance
by reducing its input quantities proportionally. Together with the imposed
assumptions, Equations 1 and 2 set up the true economic production model
and characterize the data generating process P (DGP).10 However, the true
technology set Ψ, and hence, the true efficient technology Ψδ against which
observations are compared to, are unknown and both need to be estimated
from the observed input-output-combinations.

To approximate Ψ, we apply the DEA estimator proposed by Banker
et al. (1984), which incorporates the assumptions of free disposability, con-
vexity and variable returns to scales. Thus, the linear program estimating
the unknown input-oriented efficiency score θ becomes:

θ̂ (x0, y0) = min
θ,λ1,...,λn

{θ > 0 | θx0 ≥
∑n

i=1 λ
ixik; k = 1, ..., p

y0 ≤
∑n

i=1 λ
iyil ; l = 1, ..., q∑n

i=1 λ
i = 1; λi ≥ 0 ∀ i = 1, ..., n}.

(4)

It is well known that the rate of convergence for nonparametric estimators,
such as DEA, is small compared to parametric estimators (Simar and Wil-
son, 2008). The consistency of this estimator is proven by Kneip et al.

9This measure is based on the work of Debreu (1951) and Farrell (1957). Alternatively,
the concept proposed by Shepard (1970) can be used.

10To comprehensively define the DGP, assumptions on the statistical model are neces-
sary. Due to space limitations, we omit the discussion and refer the reader to e.g., Simar
and Wilson (2001).
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(1998). But like most nonparametric estimators it suffers from the ’curse of
dimensionality’, which implies that the rate of convergence (i.e. the speed
by which the estimation errors are reduced in sample size) goes down as the
number of inputs and outputs increases. Additionally, the DEA estimates
are upward biased. This implies that the true efficiency is lower than the one
estimated in finite samples. The precision of the estimation results is signif-
icantly affected by the ratio of observations to the number of variables and a
considerable interest arises to test for the relevance of particular inputs and
outputs. Reducing the dimensionality of the technology set Ψ by possibly
irrelevant variables can offer substantial gains in estimation efficiency and
decrease finite sample biases.

3.2 Testing Restrictions

Having specified the estimation approach, we formulate the restrictions on
the technology set that we aim to test. It is our objective to test whether
particular outputs are relevant for modeling the technology set appropri-
ately. Although we focus on the relevance of outputs in this paper, we note
that the method is broader. Alternatively, the relevance of input variables
can be considered. Further, it can be tested whether inputs and outputs
are individually relevant contributors to production or if they can be aggre-
gated. We extend a test procedure suggested by Simar and Wilson (2001)
to panel data while, following Schubert and Simar (2011), using subsam-
pling procedures. The formalism of proofs of consistency in the appendix
is independent of whether restriction is due to an exclusion or due to an
aggregation restriction.

The basic idea of the original approach is to compare efficiency esti-
mates obtained from a technology set including all potential outputs with
efficiency estimates obtained from a restricted technology set that excludes
at least one output (or aggregates at least two outputs). The rationale be-
hind assigning a particular output as possibly irrelevant is the uncertainty
regarding its relationship to the considered input(s). An output is identified
as redundant if the difference between the estimates of both technology sets,
where the restricted is nested in the unrestricted, do not differ significantly.
Conceptionally this implies that the irrelevant output is not produced by
the firm or, putting it differently, the considered inputs do not contribute to
the output in question. The main benefit of this approach is twofold: First,
selecting outputs can be based on statistical tests improving the technology
specification’s quality. Second, when outputs can be excluded yielding fewer
dimensions, the estimation’s quality improves leading to an increase in the
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speed of convergence and a reduction in the finite sample upward bias.
To formalize this reasoning, we respecify the output vector y into two

subsets of outputs, i.e. y =
(
y1, y2

)
, where y1 ∈ Rq−r denotes the vector

of q − r outputs that are assumed to be relevant outputs of the production
process under consideration, and y2 ∈ Rr denotes the vector of r possibly
redundant outputs. The hypothesis then is that x influences the level of y1

but not of y2. The null and alternative hypothesis can therefore be written
as

H0:x influences the level of y1
(
y2 is redundant

)
H1:x influences the level of y1and y2

(
y2 is relevant

)
.

(5)

For any given input-output-combination (x, y) =
(
x, y1, y2

)
∈ Ψ, the corre-

sponding reformulated input-oriented Farrell efficiency scores in Equation 3
are:

θU (x, y) = inf
{
θ |
(
x, y1, y2

)
∈ Ψ

}
θR (x, y) = inf

{
θ |
(
x, y1

)
∈ Ψ

} (6)

where θU and θR represent the efficiency for the unrestricted and the re-
stricted technology set. If the outputs in y2 are truly redundant, θR equals
θU . If outputs in y2 contain relevant outputs, then θR would be smaller than
θU . From that we can derive the following inequalities:

if H0 is true: 1 ≥ θU (x, y) = θR (x, y) , for all (x, y) ∈ Ψ
if H1 is true: 1 ≥ θU (x, y) > θR (x, y) , for some (x, y) ∈ Ψ

(7)

According to Equation 4, θU and θR can be estimated from the sample,
denoted by Xn, as follows:

θ̂U (x, y) = min
θ,λ1,...,λn

{θ > 0 | θx ≥
∑n

i=1 λ
ixik; k = 1, ..., p

y1 ≤
∑n

i=1 λ
iy1,i
l ; l = 1, ..., (q − r)

y2 ≤
∑n

i=1 λ
iy2,i
l ; l = 1, ..., r∑n

i=1 λ
i = 1; λi ≥ 0 ∀ i = 1, ..., n}.

(8)

and

θ̂R (x, y) = min
θ,λ1,...,λn

{θ > 0 | θx ≥
∑n

i=1 λ
ixik; k = 1, ..., p;

y1 ≤
∑n

i=1 λ
iy1,i
l ; l = 1, ..., (q − r)∑n

i=1 λ
i = 1; λi ≥ 0 ∀ i = 1, ..., n}.

(9)
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where the relationship 1 ≥ θ̂U (x, y) ≥ θ̂R (x, y) holds by construction.
In order to test H0, we have to find a valid test statistic that appropri-

ately compares the estimated efficiencies under both technology sets. The
quantity depending on the generic DGP P that is proposed by the literature
(Simar and Wilson, 2001) is:

t (P) = E

(
θU (X,Y )

θR (X,Y )
− 1

)
. (10)

From Equation 7 we know that the ratio is equal to zero, i.e. t (P) = 0, if H0

is true, whereas it is strictly positive otherwise, i.e. t (P) > 0. Empirically,
the ratio can easily be obtained by the sample empirical mean that is a
consistent estimator (Simar and Wilson, 2001; Schubert and Simar, 2011).
Therefore, the empirical equivalent of t (P) is:

tn (Xn) =
1

n

n∑
i=1

(
θ̂U (Xi, Yi)

θ̂R (Xi, Yi)
− 1

)
. (11)

As mentioned before, by construction tn (Xn) ≥ 0. Thus, the important
question is how big it should be to be reasonably sure that H0 is not true,
i.e. y2 is likely to be a relevant output of x. The usual approach is to
use critical values corresponding to the distribution of the term in Equation
11. However, although this distribution can be shown to be non-degerate,
it is complicated and depends on local parameters. So far the only way
to determine critical values is by bootstrap-based simulation techniques. A
particularly comfortable as well as flexible way is to use the subsampling
approach, as suggested by Schubert and Simar (2011). This approach is
described and extended to clustered data in the next subsection.

To answer the question of how large the test ratio must be in order to
reject the null hypothesis, we need to compute a p-value or a critical value.
This requires the approximation of the unknown (asymptotic) sampling dis-
tribution of τn (tn (Xn)− t (P)), i.e. the convergence of the test statistic
tn (Xn) against the true population parameter t (P) at rate τn, where tn is
a function of the sample size. Note that tn (Xn) is the estimate of t (P) that
discriminates between the H0 and H1.

The subsampling approach is a special kind of bootstrap. It differs from
the normal procedure of generating pseudo samples of the original size n in
that the samples here are of size m < n such that m/n → 0 when n → ∞.
This easy adjustment makes the subsampling approach robust to deviations
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from the assumptions necessary for the consistency of the bootstrap. In
particular, with DEA and related estimators, the frontier problem occurs,
which renders bootstrapping inconsistent while the subsampling is not.

To derive an approximation of the sampling distribution of τntn (Xn),
we follow Schubert and Simar (2011) and use the algorithm based on sub-
sampling proposed by Politis et al. (2001).11 According to the algorithm,
a sufficiently large number of subsets b = 1, . . . , B, denoted by X ∗m,b, are

constructed,12 each producing a test statistic, tm,b

(
X ∗m,b

)
, as defined in

Equation 11. The large number of estimated test statistics approximate the
sampling distribution for which a critical value, t̂cm, can be derived. The
critical value depends on m and the (1− α) quantile. At the significance
level α, the test rejects H0 if and only if the observed value is greater than
the critical value, i.e. τntn (Xn) ≥ t̂cm (1− α), where τn equals

√
nn2/(p+q+1);

for details see Schubert and Simar (2011).
We further develop the work by Schubert and Simar (2011) in the sense

that we extend the applicability of the algorithm by Politis et al. (2001)
to clustered data, including panel data. The panel is allowed to be unbal-
anced, however year-wise missing observations are assumed to be completely
random. Thus, we assume away (non-random) panel selection, such as at-
trition. Let n be the total number of observations and np be the number
of different companies in the panel; comparably, m and mp are defined for
the subsample case. Obviously, then np ≤ n. Furthermore, for a balanced
panel, L is the time length of the panel, np = n/L. In an unbalanced panel,
the number of observations per company is a random integer, say Zi, such
that it has support on 0, 1, ...L. To distinguish between the overall sample
and the panel data cases, we use the subscript p whenever referring to the
latter.

For company i, the test statistic in Equation 11 is then expressed as the
intra-observational mean of the company-individual yearly estimates and

11Other bootstrap methods, e.g. the homogeneous bootstrap proposed by Simar and
Wilson (1998) and further developed by Simar and Wilson (2001) or the double smooth
bootstrap proposed by Kneip et al. (2008) are not applicable in our setting, because we
need a method that allows for heteroscedasticity and that is valid for all data points
considered simultaneously (Schubert and Simar, 2011). The aforementioned alternatives
are, therefore, excluded.

12A large number of subsets, and hence, of subsampling replications is required in order
to reconstruct the behavior of the unknown parameter. Usually, the number of replications
B is set to 2,000; see e.g., Daraio and Simar (2007) and Simar and Wilson (2000).
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can be rewritten as:13

tnp

(
Xnp , Z

)
=

1

np

np∑
i=1

L∑
t=1

(
θ̂U,it (Xi, Yi, Zi)

θ̂R,it (Xi, Yi, Zi)
− 1

)
. (12)

where a zero is added, if a cross-section unit is not observed in a particu-
lar year. Equation 12 differs from Equation 11 in two respects. First, the
subsampling has to account for the dependence among the observations, be-
cause observations belonging to the same unit are likely to be correlated.
This problem is is solved by clustering the companies across time and sub-
sampling them block-wise as suggested by Davison and Hinkley (1997). The
subsampled version of Equation 12 is then defined as

tmp,b

(
X ∗mp,b , Z

∗
)

=
1

mp

mp∑
i=1

L∑
t=1

(
θ̂U,it (Xi, Yi, Zi)

θ̂R,it (Xi, Yi, Zi)
− 1

)
. (13)

Second, an additional random variable that captures the random panel re-
sponse is introduced. The consistency requirement for the subsampling is
that τnptnp (Xn, Z) converges to a non-degenerated distribution (Schubert
and Simar, 2011). This proof is presented in the appendix of this paper.

Irrespective of the cross-sectional or panel data case, the test procedure is
sensitive to the choice of mp, which implies a trade-off between too small and
too large values. Too much information is lost if mp is too small; if mp is too
large, the subsample size almost corresponds to the sample size np inducing
additional biases due to inconsistency of the naive bootstrap (Daraio and
Simar, 2007). Therefore, an intermediate level of mp is supposed to balance
the costs of both extremes. We use the data-driven approach, by which
mp is chosen such that the volatility of the resulting measure of interest is
minimized. As volatility index we calculate the standard deviation of the
95 percent quantile of the test statistic on a running window from mp − 2
to mp + 2.14 Simar and Wilson (2011) show that this data-driven approach
allows for tests on mp and on desirable power properties, e.g. rejecting H0

with high probability when H0 does not hold (Schubert and Simar, 2011).
In order to evaluate the test statistic’s volatility with respect to the choice of
mp, a grid of values mp can reasonably take is defined. These values belong

13We could also normalize the inner sum by dividing by Zi, but this will have no
asymptotic effect.

14This corresponds to the selection rule proposed by Simar and Wilson (2008) that
selects a value of m for which the resulting sample distribution and some of its features,
e.g., relevant moments, are stable with respect to deviations from this particular value.
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to the interval [mp,min,mp,max]. For each of these values t̂cmp
(1− α) can

be calculated and investigated with respect to their volatility. Therefore,
a plot of the critical values t̂cmp

(1− α) against the possible values of mp

reveals a first impression of where the interval’s region exhibiting stable
results (smallest volatilities) lies.

3.3 Outlier Detection

Since the DEA estimator envelops all observed data points to construct the
frontier, it is not robust against extreme values and data errors, further
referred to as outliers; see e.g., Simar (2003); Simar and Wilson (2008).
Before testing the restrictions on the technology set, we perform an outlier
detection procedure, using the approach suggested by Pastor et al. (1999)
to identify suspicious observations. To evaluate the influence of a particular
observation (say DMUj) on the performance measure of other observations,
two steps are involved: In the first step, DMUj is removed from the sample
and the efficiency estimates for all other observations are obtained as usual.

For the second step, an artificial sample is constructed that contains the
observations identified as efficient in the first step plus the efficient projec-
tions of observations identified as inefficient in the first step. In the second
step, the efficiency measurement program is conducted using the artificial
sample and the DMUj that was excluded in the first step. If DMUj has
no impact on the performance measurement of the remaining observations,
the two efficiency estimates obtained for each of the remaining observations
in the first and second step are equivalent. If both estimates differ, the re-
maining observations (or their efficient projections) can reduce their inputs
(in the case of input-orientation) to the extent of the efficiency score ob-
tained in the second step. We use the standard test assumptions proposed
by Pastor et al. (1999), where DMUj is considered as influential if it makes
more than 5 percent of the remaining observations reduce their efficiency to
less than 95 percent. Based on these parameters, a p-value can be derived,
which indicates whether DMUj should be excluded from further analysis.

4 Application to US Natural Gas Transmission
Companies

4.1 Technology Specification and Variable Selection

The introduced method is applied to the sector of natural gas transmission,
which is frequently subjected to regulatory benchmarking activities world-
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wide. As pointed out by Jamasb et al. (2008), the regulation schemes vary
among countries, with the most obvious differences between European coun-
tries and the US. Regulating natural gas transmission traditionally relies
on cost-of-service or rate-of-return in the US; overviews of the implemented
scheme are given, e.g., by Sickles and Streitwieser (1992, 1998) and, more re-
cently, by O’Neill (2005). In contrast, the regulators in Europe increasingly
shift toward incentive regulation, an approach discussed by e.g. Vogelsang
(2002). Incentive regulation aims to introduce a company-inherent produc-
tion cost reducing behavior by delegating pricing decisions to them whilst
giving the opportunity to gain profits from additional cost reductions. For
this purpose, incentive-based regulation typically sets price or revenue caps
using the RPI-X formula (Littlechild, 1983; Beesley and Littlechild, 1989)
where X is the expected saving in efficiency. The extent of the expected
efficiency saving can be deduced from frontier analysis. As shown by Haney
and Pollitt (2009), European regulators frequently use DEA for incentive-
based regulation of the natural gas transmission companies. Although fron-
tier analysis is currently not used to regulate US natural gas transmission
companies, it is useful in this context to investigate, for instance, the total
factor productivity change and technical change of the industry, particu-
larly in the context of changing regulation; see e.g. Sickles and Streitwieser
(1992); Granderson (2000); Jamasb et al. (2008).

A crucial part of both regulatory benchmarking and the evaluation of to-
tal factor productivity, etc., is to specify the technology set. Consequently,
extensive attention is usually devoted to the choice of variables. In their
analysis on US natural gas transmission companies, Jamasb et al. (2008),
for example, select the relevant variables via a comprehensive econometric
cost-driver analysis. In real life applications, the conflict related to the choice
of variables arises from the uncertainty about the correct specification of the
technology and, in regulatory frameworks additionally, from the opposing in-
terests of regulating authorities and regulated firms: On the one hand, firms
seek to increase the number of the considered variables in order to make the
model as detailed as possible and, therefore, increase the dimensions of the
technology set. In the case of high dimensionality, nonparametric efficiency
analysis as an regulatory instrument is compromised because no meaningful
efficiency estimates can be obtained due to the ’curse of dimensionality’.
Regulators, on the other hand, focus on only a few variables that appropri-
ately model the technology set. We draw on discussions in the literature in
order to establish alternative specifications of the technology set that we use
to perform the proposed restriction test.

The primary task of natural gas transmission companies is to transfer
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natural gas from other upstream facilities15 to city gates, storage facilities
and some large industrial customers. From the city gates on, the commodity
is distributed to all other customers via local distribution systems that do
not belong to the transmission system. To accomplish this task, natural gas
transmission companies essentially employ pipelines, compressor stations,
natural gas as fuel, and personnel.

We first specify the variables representing the inputs involved in the
production process for natural gas transmission.16 Similar to other sectors,
the commonly considered input factors are i) labor; ii) “other inputs” such
as e.g., fuel, materials, and power (Coelli et al., 2003); and iii) capital.
The expenses on labor and “other inputs” basically constitute the operating
expenses, whereas investment spending relates to capital expenses. Since
compressor stations require a notable amount of fuel and maintenance, the
relative share of “other inputs” is large in natural gas transmission compared
to other technologies. The crucial contributors to the pipeline operating
costs are, therefore, the number of compressor stations and labor expenses
(IEA, 2003). With unknown factor prices, we use operating and maintenance
expenses (O&M ) as an aggregated input measure, which sufficiently covers
expenses for labor and “other inputs”. The aggregated measure implies that
factor prices are identical for all firms. Although this is a strong assumption,
it seems reasonable in our context but must be carefully considered in each
application. An advantage of the monetary aggregate is that it ensures to
account for all employed inputs. In addition, from an analyst’s perspective,
it overcomes information asymmetries; authorities find it difficult to obtain
accurate input factor prices and physical input quantities (Jamasb et al.,
2008).17

We do not consider capital for the following reasons: First, data on
capital costs or capital stock are often very limited or hardly comparable.
Second, regulators frequently rely on model specifications excluding capital
input related measures; see e.g., Haney and Pollitt (2009). Third, capital (or
infrastructure) could alternatively be considered as a factor that enters the
equation through determining the amount of labor input and “other inputs”
rather than being a separate input factor. This implies for our application

15These mainly include gas storage facilities, gas processing and treatment plants, as
well as liquefied natural gas storage and processing plants.

16For a general overview of commonly considered inputs and output of network indus-
tries, the reader is referred to Coelli et al. (2003); a comprehensive discussion on the
variable selection in the context of gas transmission is given by e.g., Jamasb et al. (2008).

17Note that the legitimacy of input (or output) aggregation should also be tested, e.g.
by means of restriction tests; however, this it outside the focus of the present work.
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that the pipeline networks’ characteristics determine how much personnel
and maintenance is required to run the business.18 Therefore, the pipeline
network does not necessarily constitute an individual input.

There is a broad consensus about the plurality of outputs in network
industries. The most obvious and frequently used measure to include is
the natural gas delivered (deliv) (Coelli et al., 2003). Additionally, we con-
sider the amount of natural gas delivered in peak times (peak) since the
difference across firms is relevant in particular when regional characteris-
tics vary. The provision of infrastructure (or the service supplied by using
this infrastructure) itself can be considered a distinct output. Unlike other
studies in which length of mains (length) is incorporated as some capital
measure, e.g., Jamasb et al. (2008), we use it as proxy for transportation
service. In addition, including length improves the comparability among
the investigated pipeline companies. Typically, larger (existing) networks
are associated with higher operational costs: Compressor stations, installed
to maintain the network pressure,19 determine a large part of personnel
expenditures and maintenance costs (including fuel consumption). Not con-
sidering this technical aspect leaves companies with high O&M due to large
networks at a disadvantage, per se. The network length appears to be a
suitable proxy for the number of installed compressor stations since they
occur at rather regular intervals of 150-200 km, corresponding to about 93-
124 miles (Natgas.info, 2011).20 Another frequently considered measure is
the number of customers supplied, which accounts for the multiplicity of
output. However, the number of connections seems to be of minor impor-
tance in natural gas transmission networks. We therefore exclude it from
consideration. Furthermore, pollution (as a bad output) is sometimes taken
into account (Coelli et al., 2003) but not considered here.

The above-mentioned discussion suggests that three potential candidates

18This approach however, requires additional methodological implementations that are
beyond the scope of this paper.

19The transport of natural gas is based on a pressure differential at the inlet and outlet.
20However, we are aware of the fact that the length of mains cannot fully explain the

differences of total operational costs of the compressor station since these also depend on
the engineering characteristics. Further, length of mains likely reflects the geographical
reach of services. An alternative view of its importance might result from the notion
that companies active in rural areas naturally need greater length to deliver the same
amount of gas than firms in metropolitan areas. This is simply because the customers
are more dispersed. In this interpretation length would be rather a conditioning variable
than an input or output. However, if length reflects an exogenous and monotonous cost
disadvantage, it can also be included as an additional output. Our results are consistent
with both qualifications of the variable length and corroborate its importance.
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Table 1: Test strategy

Test Input Outputs H0 H1 Description

I O&M deliv, peak deliv deliv, peak peak is redundant
II O&M deliv, peak peak deliv, peak deliv is redundant

III O&M deliv, length deliv deliv, length length is redundant
IV O&M peak, length peak peak, length length is redundant

for output variables to be analyzed: deliv, peak, and length. Given the input
variable O&M, we develop our model in terms of a stepwise enlarging set-up
as illustrated in Table 1. In Test I we test whether peak can be excluded
from the technology set when this already includes deliv. In Test II we also
test this, vice versa, i.e. whether deliv is redundant in the presence of peak.
We find that in each of the two tests, the additional variable is redundant,
but it is difficult to tell which. This finding also suggests that one measure of
the delivered natural gas should be included, but it is relatively unimportant
(at least empirically) which one. Given deliv as output variable, Test III
analyzes whether length is an additional relevant output variable. The same
is evaluated in Test IV, except for the fact that peak is the baseline output
variable. In both latter tests we consistently reject the Null hypothesis of
the possibility of exclusion.

4.2 Data

We employ data on US natural gas transmission companies provided by
the FERC. FERC Form No. 2 includes all natural gas companies whose
combined gas transported or stored for a fee exceed 50 mn Dth. Given we
assume that the technologies of onshore and offshore pipelines differ, we
consider companies operating onshore facilities only. Some missing values
and data irregularities are excluded from the data set. The remaining sample
contains information on 43 natural gas transmission pipeline companies that
are observed with unequal frequency over a five-year time period (2003-
2007).21 In total, the unbalanced panel includes 191 observations.

By using the cross-sections over multiple years, we assume that all obser-
vations have access to the same technology, meaning that technical change is
absent during the considered time span. We test this assumption using the
Malmquist approach proposed by Färe et al. (1992) and investigate whether
the component of technical change is neglectable. We find no empirical evi-

21Note that we want to empirically apply our proposed method and are, therefore, not
concerned about the exact period under consideration.
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dence for technical change at the 1 percent level of significance. Therefore,
the observations can be considered to have access to the same technology
in all years and pooling over time is valid in our case. Hence, changes in
productivity are driven by productivity and technical efficiency change.

Table 2 presents the characteristics of the data. All variables are related
to the companies’ transmission branch. In general, all variables exhibit
high standard deviations, indicating notable differences between the sample
companies. Median values are consistently below corresponding mean values
suggesting that the sample consists of relatively more small-size firms. For
O&M we use the reported sum of transmission expenses for operation and
maintenance. The monetary values are inflation adjusted to 2003 dollars for
comparability purposes. On average the pipeline companies spend 42 mn
USD on O&M. Deliv represents the account for the total quantity of natural
gas delivered by the respective company and ranges from about 20 mn to
3 bn Dth. In order to ensure comparability with peak period information,
we transformed this variable into Dth per day. The corresponding measure
of supplied quantity then has a minimum and maximum value of 0.06 to
8.6 mn Dth a day, respectively. For peak, we use the single day account
of the amount of natural gas delivered during system peak period. The
sample companies report peak deliveries between 0.1 and 7 mn Dth (per
day). Length represents the total length of transmission mains, which varies
widely between the companies. The smallest pipeline network has 80 miles
of pipeline and the largest has over 9,000 miles.

Table 2: Descriptive statistics for US natural gas transmission companies

Variable Min Mean Median Max Std.dev.

Opex (O&M) [thsd USDa] 268 42,421 20,593 244,284 50,632
Total deliveries (deliv) [thsd Dthb] 55 1,389 994 8,597 1,381

Peak deliveries (peak) [thsd Dth] 122 1,614 1,303 7,124 1,328
Length of mains (length) [miles] 80 2,379 1,402 9,627 2,505

Source: US FERC. Notes: observations=191, n=43, years=2003-2007, onshore
pipeline companies included only. a Yearly operating and maintenance expenses
are deflated to 2003. b Per day measures derived by dividing the total amount
of natural gas delivered by 365 days.
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4.3 Results

4.3.1 Outlier Detection

First, we present the results of outlier detection. The outlier detection rou-
tine is based on a technology set that incorporates all three potential outputs
simultaneously 22 and performed on a yearly base. The results are shown
in Table 3 where those companies are listed that cause a loss in efficiency
larger than 5 percent for at least one other company. Further, the respec-
tive number of influenced observations and the corresponding p-values are
given. If the p-value is less than 10 percent, we consider the candidate to
be an outlier and exclude it from further analysis. This is the case for 20
observations, thus reducing our sample for the subsequent analysis to 171
observations.

Table 3: Results of outlier detection

Year ID Influenced companies p-value Year ID Influenced companies p-value

2003 22 8 0.000 2005 175 15 0.000
2003 37 22 0.000 2006 11 4 0.061
2003 78 9 0.000 2006 22 12 0.000
2003 172 11 0.000 2006 24 13 0.000
2003 175 1 0.774 2006 48 1 0.785
2004 22 25 0.000 2006 53 3 0.188
2004 53 2 0.447 2006 78 13 0.000
2004 78 12 0.000 2006 175 9 0.000
2004 175 10 0.000 2007 11 1 0.708
2005 7 1 0.774 2007 22 4 0.030
2005 22 12 0.000 2007 24 4 0.030
2005 24 14 0.000 2007 37 1 0.708
2005 43 1 0.774 2007 76 2 0.339
2005 53 3 0.175 2007 97 7 0.000
2005 78 11 0.000 2007 175 18 0.000

4.3.2 Restriction Tests

Turning to the main interest of this paper, Figure 1 illustrates the results
of the restriction test for our sample based on subsampling for clustered
data. The horizontal dashed lines represent the respective, actually observed
values of tnp

(
Xnp , Z

)
obtained from Equation 12. The observed test statistic

is 0.3707 in Test I, 0.1907 in Test II, 2.3491 in Test III, and 2.0337 in Test IV.

22Calculations are conducted using the statistical software R with the additional package
“FEAR” version 1.12 by Wilson (2008).
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We reject the respective H0 if this statistic exceeds the determined critical
value.

To derive the empirical approximations of the sampling distributions and
the corresponding critical values t̂cmp

(1− α), we calculate 2,000 replications

of the test statistic tmp,b

(
X ∗m,b, Z∗

)
, for each of the four tests, using the

proposed subsampling procedure. Since the critical values depend on the
respective subsample sizes, the replications of the four test statistics are cal-
culated for different values of mp. The solid lines in the graphs illustrate the
obtained corresponding critical values at the preferred level of significance
(α =5 percent), as a function of the subsample size mp.

The vertical dashed lines indicate the respective optimal subsample size
determined by the smallest measured volatility index. This corresponds to
a region where the test statistic graphically appears to remain stable when
slightly deviating from the identified optimal value of mp. Note that in
our applied approach of subsampling for clustered data, mp, refers to the
number of cross-section covered by the subsample, not to the total number
of observations. As shown by the respective panels of Figure 1, the optimal
subsample sizes for our tests correspond to 39 (panel a), 36 (panel b), and
34 (panel c and d); they are the reference points where the observed values
of the test statistic are compared to the critical values in order to reach a
test decision.

As evident from panel (a) in Figure 1, the critical value clearly exceeds
the observed value of the test statistic obtained from Test I at the subsample
size of 39. Therefore, we do not reject the Null hypothesis that the variable
peak can be excluded from the technology set, given that deliv is an output
variable. The corresponding p-value (not depicted in the graph) of this test
is 46 percent, which is obviously larger than our preferred significance level
of 5 percent.

Likewise there is not enough empirical evidence to rejectH0, if we run the
test the other way around (Test II). At the subsample size of 36, panel (b)
of Figure 1 shows that the critical value is again larger than the observed
test statistic. Thus, given the output variable peak, the variable deliv is
redundant to define the technology set under consideration. The p-value of
Test II is slightly smaller (0.40), but roughly of the same magnitude. The
results of Tests I and II indicate that we can drop either peak or deliv, if we
control for the respective other one. However, the comparable significance
levels show that it is relatively unimportant which is dropped. For Test III,
we proceed with deliv, for Test IV with peak as the baseline output variable.

Test III compares the technology set deliv (H0) against deliv and length
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Figure 1: Results of restriction tests
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(b) Test II: Output redundancy of deliv
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(c) Test III: Output redundancy of
length given deliv
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(d) Test IV: Output redundancy of
length given peak
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Table 4: Test statistics for Tests I to IV

Test Optimal Test statistic p-value Test statistic p-value
subsample size (panel) (pooling)

I 39 0.3707 46 % 0.4049 2%
II 36 0.1907 40 % 0.2128 11%

III 34 2.3491 4% 2.5271 0%
IV 34 2.0337 7% 2.2247 0%

(H1). Indicated by panel (c) in Figure 1, we can indeed reject the Null
hypothesis at the significance level of 5 percent level. In Test IV the relevance
of length is marginally less pronounced at the 5 percent level. However, with
a calculated p-value of 7 percent (not visible in the graph) we can reject the
Null hypothesis of Test IV at the 10 percent significance level in favor of the
alternative. Therefore, length represents a further, relevant output for the
purpose of modeling the technology set of the considered companies.

Table 4 summarizes the presented results of the tests, i.e. the optimal
subsample sizes, the test statistic obtained by subsampling for panel data,
and the p-values. In addition, the last two columns of the table show an
interesting point of comparison, i.e. the test statistics and the p-values we
obtained for the presented tests, if we falsely assume that each observation
is independent of each other. In this case we ignore the panel structure of
the data and run the subsampling procedure without taking it into account.
Technically, dependence leads to a duplication of information, because one
observation already provides information about any other dependent obser-
vation. Consequently, ignoring dependence should generally overestimate
the informational content of a sample leading to underestimated p-values.
Indeed this is what we observe. Three out of the four tests (Tests I and
III) would now reject the Null hypothesis and the only one that does not
is very close to (with a p-value of 11 percent). If we based our decision on
these tests, we should not exclude any of the variables, eventually sticking
with the full model of deliv, peak and length. Note, that our results depend
on the sample and do not provide general evidence for the sector. With the
reduced set of outputs, we improve the efficiency estimation by reducing the
dimensionality and hence, the risk of overestimating the performance.

4.3.3 Differences in the Efficiency Estimates

In practical regulation settings the estimated efficiencies have important fi-
nancial implications for the companies. Each decrease in estimated efficiency

23



Table 5: Differences of efficiency estimates

Test Difference between Min Mean Median Max Std.dev.
specifications

I θ̂H1
− θ̂H0

0.0000 0.0575 0.0154 0.4405 0.0921

II θ̂H1 − θ̂H0 0.0000 0.0271 0.0000 0.2744 0.0531

III θ̂H1
− θ̂H0

0.0000 0.2417 0.1247 0.9469 0.2766

IV θ̂H1 − θ̂H0 0.0000 0.2180 0.1286 0.9642 0.2493

will potentially cost the companies large amounts of money. Therefore, it is
interesting to know which effects the proposed restrictions actually have on
the companies’s efficiency estimates.

Table 5 shows for each of the four tests how the company-individual ef-
ficiency scores respond to the difference in the technology set specification.
We estimate the performance of each company using Equations 8 and 9 and
calculate the differences of the achieved efficiency scores. The unrestricted
models, i.e. the efficiency estimation using the technology sets under H1,
by definition provide performance measures that are equal or greater than
their corresponding restricted models. For Tests I and II the technology set
under H1 is the same, i.e. involves both outputs deliv and peak. Whereas
the technology set under H0 incorporates only deliv in Test I and peak in
Test II. The minimum differences of zero in both tests can be explained
by the fact that there are some observations for which the efficiency score
is only determined by the variable that is not excluded in the alternative
technology set. Hence, excluding the other output measure does not change
their performance measure. However, for some of the companies, the effi-
ciency score changes considerably where the exclusion of output peak yield,
for example, to a maximum difference of 44 percentage points Test I. The
maximum difference in Test II is with 27 percentage points lower. The table
further shows that excluding the output peak has, on average, greater im-
pact than excluding the output deliv, i.e. the mean of the difference is 0.0575
compared to 0.0271. Given that the tests allow for the exclusion of either
deliv or peak, from the regulator’s perspective this provides a strong argu-
ment for excluding deliv instead of peak. In either way the discriminatory
power is increased.

As a reference point we also present the results for Tests III and IV.
However, we note that H0 is rejected in both cases. Therefore, any potentials
in higher discriminatory power are based on the fact that we falsely would
restrict the technology set.
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5 Conclusions

Industrial and regulatory benchmarking are commonly applied to all kinds
of industries in order to improve the companies performance. Conducting
such analyses requires the modeling the technology of the companies under
investigation, which in practice is often a mere guess. This paper devel-
ops an approach to support the model specification of technology sets in
nonparametric efficiency analysis based on statistical inference for clustered
data.

To reach a decision on alternative model specifications, we propose ap-
proximating the sampling distribution of the test statistic of interest, i.e.
the ratio of the efficiency estimates obtained from alternative technology
sets, using a block-wise subsampling procedure. This approach ensures that
the dependency between observations is properly accounted for. The cor-
responding critical value of the sampling distribution can subsequently be
used as the decision criteria. Due to the block-wise subsampling, the appli-
cability of restriction tests, previously only proposed for the cross-sectional
case, is extended to (unbalanced and balanced) panel data structures and
any other kind of dependent observations.

Panel data is, for example, particularly interesting when the relative
performance is measured for a small number of units. Due to monopolistic
market structures, this is the case with regulatory benchmarking of network
industries. Observing the units over multiple time periods can sufficiently
enlarge the sample size to obtain meaningful efficiency measures and to
apply restriction tests. In addition, regulatory benchmarking involves the
issue of uncertainty about the correct specification of the technology, which
requires objective modeling.

Therefore, we apply and demonstrate the proposed restriction test in a
regulatory framework where we consider the natural gas transmission sector.
Our consecutive analysis involves four alternative technology sets for this
sector, where the variable selection is based on the respective literature and
regulatory practice. All technology sets in question contain operating and
maintenance expenditures as input, while they differ in the output measures.
The analysis is undertaken using an unbalanced panel data set of US natural
gas transmission pipelines for the years 2003 - 2007.

First, we test whether the amount of natural gas delivered during peak
times is a redundant output measure, if the technology set already included
the total amount of natural gas delivered as an output. The second test deals
with the reverse case, i.e. it tests whether the total amount of natural gas de-
livered is redundant, if the amount of natural gas delivered during peak times
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is defined as output. The test results suggest that in each case the respective
additional output variable is dispensable, meaning that the technology set
is sufficiently determined by one of the output variables. Although, the test
is not designed to answer the question which of the alternative output vari-
ables is the correct one to choose, further analyses on discriminatory power
provide some tentative indication that peak deliverables rather than total
deliverables should be included. The efficiency estimates are more sensitive
toward omitting the peak amount of natural gas delivered than omitting the
total amount of natural gas delivered.

Based on the first two tests, the subsequent two tests both suggest not
excluding the length of mains as an output from the technology set if the
initial output variable was either given by the total amount of natural gas
delivered or the amount of natural gas delivered during peak times, respec-
tively. Deleting the length of mains affects the efficiency estimates strongest
indicating its importance for modeling the technology set.

For our sample, the test provides an objective tool to reduce the number
of variables, which prevents overestimating the performance of the compa-
nies by including redundant variables in the specification. In general, the
proposed test is a sound and reproducible method that helps removing the
information asymmetry between the analyst and the production entity de-
livering the data and possibly being subject to regulatory benchmarking.
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Färe, R., Grosskopf, S., Lindgren, B., and Roos, P. (1992). Productivity
changes in Swedish pharmacies 1980-1989: A non-parametric Malmquist
approach. Journal of Productivity Analysis, 3(1-2):85–101.

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of
the Royal Statistical Society. Series A (General), 120(3):253–290.

Farsi, M., Fetz, A., and Filippini, M. (2007). Benchmarking and regulation
in the electricity distribution sector. CEPE Working paper series 07-54,
CEPE Center for Energy Policy and Economics, ETH Zurich, Zurich.

Granderson, G. (2000). Regulation, open-access transportation, and pro-
ductive efficiency. Review of Industrial Organization, 16(3):251–266.

Haney, A. B. and Pollitt, M. G. (2009). Efficiency analysis of energy net-
works: An international survey of regulators. Energy Policy, 37(12):5814–
5830.

Hollas, D. R., Macloed, K. R., and Stansell, S. R. (2002). A Data En-
velopment Analysis of gas utilities’ efficiency. Journal of Economics and
Finance, 26(2):123–137.

Homburg, C. (2001). Using Data Envelopment Analysis to benchmark ac-
tivities. International Journal of Production Economics, 73(1):51 – 58.

IEA (2003). The challenges of future cost reductions for new supply options
(pipelines, LNG, GTL). 22nd World Gas Congress Tokyo, website.
http://www.dma.dk/themes/LNGinfrastructureproject/Documents/

Infrastructure/IEA-The\%20challenges\%20of\%20further\

%20cost\%20red\%20new\%20supply\%20options.pdf, retrieved 26
September 2011.

Jamasb, T., Nillesen, P., and Pollitt, M. (2004). Strategic behaviour under
regulatory benchmarking. Energy Economics, 26(5):825–843.

Jamasb, T. and Pollitt, M. G. (2003). International benchmarking and
yardstick regulation: An application to European electricity distribution
utilities. Energy Policy, 31(15):1609–1622.

Jamasb, T., Pollitt, M. G., and Triebs, T. (2008). Productivity and efficiency
of US gas transmission companies: A European regulatory perspective.
Energy Policy, 36(9):3398–3412.

28



Joskow, P. L. (2006). Incentive regulation in theory and practice: Electric-
ity distribution and transmission networks. Cambridge Working Papers
in Economics 0607, Cambridge University, Faculty of Economics, Cam-
bridge.

Kneip, A., Park, B. U., and Simar, L. (1998). A note on the convergence of
nonparametric DEA estimators for production efficiency scores. Econo-
metric Theory, 14(6):783–793.

Kneip, A., Simar, L., and Wilson, P. W. (2008). Asymptotics and con-
sistent bootstraps for DEA estimators in nonparametric frontier models.
Econometric Theory, 24(06):1663–1697.

Littlechild, S. C. (1983). Regulation of British telecommunications’ prof-
itability. Report to the Secretary of State, Department of Industry in
London, London.

Natgas.info (2011). Gas pipelines. Website. http://natgas.info/html/

gaspipelines.html, retrieved 26 September 2011.

O’Neill, R. P. (2005). Natural gas pipelines. In L.Moss, D., editor, Network
access, regulation and antitrust, pages 107–120. Routledge, London.

Pastor, J. T., Ruiz, J. L., and Sirvent, I. (1999). A statistical test for de-
tecting influential observations in DEA. European Journal of Operational
Research, 115(3):542–554.

Politis, D. N., Romano, J. P., and Wolf, M. (2001). On the asymptotic
theory of subsampling. Statistica Sinica, 11(4):1105 –1124.

Schefczyk, M. (1993). Industrial benchmarking: A case study of perfor-
mance analysis techniques. International Journal of Production Eco-
nomics, 32(1):1–11.

Schubert, T. and Simar, L. (2011). Innovation and export activities in the
German mechanical engineering sector: An application of testing restric-
tions in production analysis. Journal of Productivity Analysis, 36(1):55–
69.

Shepard, R. W. (1970). Theory of cost and production function. Princeton
University Press, Princeton.

Shuttleworth, G. (2005). Benchmarking of electricity networks: Practical
problems with its use for regulation. Utilities Policy, 13(4):310–317.

29



Sickles, R. C. and Streitwieser, M. L. (1992). Technical inefficiency and
productivity decline in the U.S. interstate natural gas pipeline industry
under the National Gas Policy Act. The Journal of Productivity Analysis,
3(1-2):119–133.

Sickles, R. C. and Streitwieser, M. L. (1998). An analysis of technology,
productivity, and regulatory distortion in the interstate natural gas trans-
mission industry: 1977-1985. Journal of Applied Econometrics, 13(4):377–
395.

Simar, L. (2003). Detecting outliers in frontier models: A simple approach.
Journal of Productivity Analysis, 20(3):391–424.

Simar, L. and Wilson, P. W. (1998). Sensitivity analysis of efficiency scores:
How to bootstrap in nonparametric frontier models. Management Science,
44(1):49–61.

Simar, L. and Wilson, P. W. (2000). Statistical inference in nonparametric
frontier models: The state of the art. Journal of Productivity Analysis,
13(1):49–78.

Simar, L. and Wilson, P. W. (2001). Testing restrictions in nonparametric
efficiency models. Communications in Statistic: Simulation and Compu-
tation, 30(1):159 – 184.

Simar, L. and Wilson, P. W. (2008). Statistical inference in nonparametric
frontier models: Recent developments and perspectives. In Fried, H. O.,
Lovell, C. K., and Schmidt, S. S., editors, The measurement of produc-
tive efficiency and productivity growth, pages 421–521. Oxford University
Press, Oxford.

Simar, L. and Wilson, P. W. (2011). Inference by the m out of n boot-
strap in nonparametric frontier models. Journal of Productivity Analysis,
36(1):33–53.

Thompson, R. G., Dharmapala, P. S., and Thrall, R. M. (1995). Linked-cone
DEA profit ratios and technical efficiency with application to Illinois coal
mines. International Journal of Production Economics, 39(1-2):99–115.

Vogelsang, I. (2002). Incentive regulation and competition in public util-
ity markets: A 20-year perspective. Journal of Regulatory Economics,
22(1):5–27.

30



Wilson, P. (2008). FEAR 1.0: A software package for frontier efficiency
analysis with R. Socio-Economic Planning Sciences, 42(4):247–254.

31



Appendix

A robust approach to obtain corrected standard errors with clustered
data is to sub-sample block-wise (Davison and Hinkley, 1997). This allows
for arbitrary dependence between the observations belonging to the same
cross-section unit.

We show that this procedure meets the essential consistency require-
ments set out in Politis et al. (2001). Let sample size np be defined by the
number of different cross-section observations. Although we used the more
easily interpretable Farrel-Debreu measure so far, for actual calculations it
is preferable to use the inverse λ = 1/θ because it is truncated only once.

Proposition: Let n (Z) =
∑np

i=1 Zi where iid random variables Zi give
the number of time observations per cross-section unit with distribution
function FZ defined on the support SZ = 1, . . . , L and expectation c ∈
[1, L], then for the test-statistic tnp (X,Y, Z) the asymptotic distribution of
√
npn

2/(p+q+1)
p tnp (X,Y, Z) is non-degenerate with expectation zero.

Proof: If we reformulate the time subscripts to take only consecutive
integers, we can use the following definition:

ti (X,Y |Z = z) =
∑zi

t=1

(
λ̂Uit

(Xi,Yi, |Zi=zi)

λ̂Rit
(Xi,Yi, |Zi=zi)

− 1

)
.

It follows from the results of Kneip et al. (2008) that

n2/(p+q+1)

(
λ̂Uit

(Xi,Yi, |Zi=zi)

λ̂Rit
(Xi,Yi, |Zi=zi)

− 1

)
d→ Hn

for any fixed zi, where Hn is a random variable with an asymptotic
distribution function Q that is non-degenerate and has mean 0 under H0.
Furthermore we can rewrite n = npc , where c is the expectation of Z.
Replacing and rearranging yields

n
2/(p+q+1)
p

(
λ̂Uit

(Xi,Yi, |Zi=zi)

λ̂Rit
(Xi,Yi, |Zi=zi)

− 1

)
d→ 1

c2/(p+q+1)Hn.

Since the right-hand-side is a scaled version of Hn, also

n
2/(p+q+1)
p

(
λ̂Uit

(Xi,Yi, |Zi=z)

λ̂Rit
(Xi,Yi, |Zi=z)

− 1

)
has a non-degenerate distribution. This implies that the conditional

distribution of n
2/(p+q+1)
p ti (X,Y |Z = z) is non-degenerate. Call this distri-

bution D(z).
Furthermore, we obtain the distribution of ti (X,Y, Z) by marginalizing

out Z: D(·) =
∫
z∈SZ

D(z)dFZ . Obviously, if D(z) is non-degenerate with a
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given scaling factor, then D(·) must be non-degenerate with the same scaling
factor. In order to complete the proof, since tnp (X,Y, Z) is an empirical
mean of the ti (X,Y, Z), it follows by using the redefinition n = npc that

τnptnp(X,Y,Z) with τnp =
√
npn

2/(p+q+1)
p is non-degenerate and additionally

has an asymptotic expectation equal to zero under H0, because the mean
associated with the asymptotic distribution Q is zero. As a consequence
of this result, the subsampling methods proposed by Politis et al. (2001)
are consistent, when subsampling is conducted block-wise along the cross-
section dimension. The sub-sampling size mp is as usually defined as the
integer part of nkp for 0 < k < 1. It should be noted that these results
include the case of ordinary cross-section data and a balanced panel setting.
In the former case zi = 1 and n = np yielding just the formulae in Schubert
and Simar (2011). In the latter case zi = L implying that zi cannot affect
the asymptotic distribution because it is non-random.
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