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OPTIMALLY COMBINING CENSORED AND UNCENSORED DATASETS

PAUL J. DEVEREUX AND GAUTAM TRIPATHI

Abstract. We develop a simple semiparametric framework for combining censored and un-

censored samples so that the resulting estimators are consistent, asymptotically normal, and

use all information optimally. No nonparametric smoothing is required to implement our esti-

mators. To illustrate our results in an empirical setting, we show how to estimate the effect of

changes in compulsory schooling laws on age at first marriage, a variable that is censored for

younger individuals. Results from a small simulation experiment suggest that the estimator

proposed in this paper can work very well in finite samples.

1. Introduction

In applied research, economists often face situations in which they have access to two

datasets that they can use but one set of data suffers from censoring. In some cases, especially

if the censored sample is larger, researchers use it and attempt to deal with the problem of

partial observation in some manner.1 In other cases, they simply use the uncensored sample and

ignore the censored one so as to avoid biases. It is rare that researchers utilize both datasets.

Instead, they have to choose between the two mainly because they lack guidance about how to

combine them. In this paper, we develop a methodology based on the generalized method of

moments (GMM) that allows the censored and uncensored samples — henceforth referred to as

the “master” and “refreshment” samples, respectively — to be combined in a tractable manner

so that the resulting estimators are consistent, asymptotically normal, and use all information

optimally.2 In fact, we show that using the refreshment sample alone leads to estimators that

are asymptotically inefficient, revealing that there is information in censored samples that can

be exploited to enable more efficient estimation. The existence of refreshment samples should

not be regarded as being an overly restrictive requirement. As we show in Section 5, they can

often be constructed by creatively combining existing datasets.

Semiparametric inference with censored data thus far seems to have focused mainly on

linear regression models where only the response variable is censored. The present work ex-

tends the literature in a significant manner to include nonlinear models and multiple censored

Date: September 17, 2008.
1A comprehensive review of the econometric literature on censoring is beyond the scope of our paper; see,

e.g., the surveys by Amemiya (1984), Blundell and Smith (1993), and Powell (1994).
2In Appendix B we show that the GMM based results continue to hold for the empirical likelihood approach

that is rapidly gaining popularity in econometrics.
1
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variables. In particular, we demonstrate how efficiently combining two datasets allows stan-

dard moment based inference with censored data to go through without imposing parametric,

independence, symmetry, quantile, or “special regressor” restrictions as done in the existing

literature, and without doing any nonparametric smoothing.3 The biggest appeal is the sim-

plicity of our estimators. For instance, unlike quantile restriction models, there is no need

to restrict attention to applications where only scalar-valued continuously distributed random

variables are censored, or use any nonparametric smoothing procedures to estimate asymptotic

variances. Extension to the case where more than one random variable is censored is straight-

forward and the usual analogy principle that delivers standard errors for GMM works here

as well. The treatment here is general enough to handle censoring of some or all coordinates

of both endogenous and exogenous variables and our results are applicable to a large class of

models which nest linear regression as a special case; e.g., the ability to handle instrumental

variables (IV) models permits semiparametric inference in Box-Cox type models using censored

samples without imposing parametric or quantile restrictions. Access to the refreshment sample

also means that incompleteness of the data does not complicate identification conditions.

The paper is organized as follows. In Section 2 we set up the problem of censoring

of random vectors in a moment based framework. Section 3 models the data combination

process, and Section 4 shows how a censored sample can be combined with a refreshment

sample to do efficient semiparametric inference. Section 5 contains an interesting application

where refreshment samples are created by combining cohort information across census datasets,

and in Section 6 we describe the results of a small Monte-Carlo experiment to study the finite

sample properties of our estimator. We conclude by addressing some topics for future research.4

2. Censoring in a moment based framework

Let (Z∗, f ∗, µ∗) describe the “target” population, i.e., the population for which inference

is to be drawn, where Z∗ is a d× 1 random vector that denotes an observation from the target

population and f ∗ is the unknown density of Z∗ w.r.t some dominating measure µ∗ := ×d
i=1µ

∗
i ;

since Z∗ can have discrete components, the µ∗
i ’s need not all be Lebesgue measures. Similarly,

(Z, f, µ) represents the “realized” population, i.e., the observed data, with Z the resulting

observation and f its density w.r.t a dominating measure µ := ×d
i=1µi. In this paper, f is

different from f ∗ because some or all coordinates of Z∗ are censored.

3Although data combination has been explored earlier in other contexts, see, e.g., Angrist and Kreuger

(1992), Arellano and Meghir (1992), Hirano, Imbens, Ridder, and Rubin (2001), Hu and Ridder (2003),

Chen, Hong, and Tarozzi (2004), Chen, Hong, and Tamer (2005), Ichimura and Martinez-Sanchis (2005),

Ridder and Moffitt (2007), and the references therein, its use to facilitate efficient moment based inference

in overidentified models with censored data seems to be new to the literature.
4The previous version of the paper also contained results on optimally combining truncated and non-

truncated samples. These, however, have been removed to save space.
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The econometric models we consider can be expressed as moment conditions in the

target population.5 Let Θ be a subset of R
p such that

Ef∗{g(Z∗, θ∗)} = 0 (2.1)

for some θ∗ ∈ Θ, where g is a q × 1 vector of known functions with q ≥ p and Ef∗ denotes

expectation w.r.t f ∗. Well-known examples of (2.1) include linear and nonlinear regressions,

multivariate simultaneous equations models, and IV models derived from conditional moment

restrictions in the target population.

2.1. The censored sample. If Z∗ is fully observed, then (2.1) is easily handled. But in

many cases economists cannot fully observe Z∗. For instance, government agencies routinely

“top-code” income data before releasing it for public use or studies investigating the length of

unemployment spells can terminate prematurely due to financial constraints before all subjects

have found employment. So suppose that instead of observing Z∗ := (Z∗(1), . . . , Z∗(d))d×1 we

observe the random vector Z := (Z(1), . . . , Z(d))d×1, where

Z(i) :=

{

Z∗(i) if Z∗(i) < c(i)

c(i) otherwise,
i = 1, . . . , d, (2.2)

and c := (c(1), . . . , c(d))d×1 is a vector of known constants.6,7

We allow for the possibility that some components of Z∗ may not be censored. If, say,

the ith coordinate of Z∗ is not subject to censoring, simply set c(i) = ∞; if the ith and jth

coordinates of Z∗, denoted by Z∗(i,j), are not subject to censoring, then set c(i,j) = (∞,∞); etc..

Hence, in applications where the target variable Z∗ can be decomposed into endogenous and

5Since economic theory attributes outcomes at the micro level to optimizing behavior on the part of firms or

individuals, moment based models arise naturally in microeconometrics as solutions to the first order conditions

of the stochastic optimization problems that economic agents are assumed to solve. Hence, such models are

particularly important for structural estimation.
6A referee has pointed out that there seems to be some disagreement in the econometrics literature about

the terminology used to describe (2.2). For instance, when d = 1, Heckman (1985, p. 289) calls Z∗ a truncated

random variable whereas Hajivassiliou and Ruud (1994, p. 2387) say that it is a censored random variable. Both

papers, however, refer to the observed Z’s as a censored sample. The associate editor notes that for regression

models it is usual, see, e.g., Powell (1986, p. 1437), to apply the adjective “censored” if the regressors are always

observed (irrespective of the value taken by the dependent variable), and “truncated” if all information about

the regressors and the dependent variable is lost whenever the latter gets curtailed. Since we allow multiple

coordinates of the random vector Z∗ to be censored at the same time, we feel that it is less confusing to use

the Hajivassiliou and Ruud terminology and simply say that the coordinates of Z∗ are right censored and that

the collection of observed random vectors Z1, . . . , Zn is a censored sample.
7The results obtained in this paper continue to hold in a more general fixed censoring framework where the

censoring threshold is modeled as a random variable C with unknown distribution such that C is observed for

censored as well as uncensored observations; see, e.g., the application in Section 5.
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exogenous parts as (Y ∗, X∗), we can handle situations where only Y ∗ is censored (pure endoge-

nous censoring), or only X∗ is censored (pure exogenous censoring), or only some coordinates

of either variables are censored.

Left censoring of, say, the ith, jth, and kth coordinates can also be accommodated by

replacing Z∗(i,j,k) with −Z∗(i,j,k) and c(i,j,k) with −c(i,j,k); e.g., if Z∗(i) is left censored by c(i),

then simply redefine the corresponding realization to be −Z∗(i) if −Z∗(i) < −c(i), and −c(i)

otherwise. The case we do not cover in this paper is that of interval censoring where the same

coordinate is subject to left and right censoring simultaneously.8

Let S∗(c) := Prf∗(Z∗(1) > c(1), . . . , Z∗(d) > c(d)) denote the probability that all coordi-

nates of Z∗ are censored and δc be the Dirac measure at c, i.e., δc(A) := 1(c ∈ A), where 1 is

the indicator function. To keep matters simple, we assume that µ∗ does not place any mass at

c; consequently, applied researchers should not use this methodology when a censored variable

happens to be discrete and the censoring threshold lies in its support. This assumption, which

can be relaxed at the cost of greater mathematical complexity, is weaker than requiring µ∗ to

be a Lebesgue measure, the usual assumption made for censored regression models.

If d = 1, the density of Z w.r.t the dominating measure µ := µ∗ + δc is given by

f(z) := f ∗(z)1(z < c) + S∗(c)1(z = c). (2.3)

The density of Z when it is vector valued is also straightforward to derive but requires some

additional notation. So let Z∗−(i,j,k) denote coordinates of Z∗ that remain after the ith, jth, and

kth ones have been deleted, f ∗
−(i,j,k) the joint density of Z∗−(i,j,k), and f ∗

i,j,k|−(i,j,k) the conditional

density of Z∗(i,j,k) given Z∗−(i,j,k). Then, letting S∗
i,j,k|−(i,j,k)(c

(i,j,k)) denote the conditional prob-

ability that Z∗(i,j,k) are censored given Z∗−(i,j,k), it is easy to show that for d > 1 the density

of Z w.r.t µ := ×d
i=1µi, where µi := µ∗

i + δc(i), is given by

f(z) := f ∗(z)1(z
elt
< c)+

d−1
∑

r=1

d−r+1
∑

i1=1

d−r+2
∑

i2=i1+1

. . .
d

∑

ir=ir−1+1

S∗
i1,...,ir|−(i1,...,ir)(c

(i1,...,ir))f ∗
−(i1,...,ir)(z

−(i1,...,ir))

× 1(z(i1,...,ir) = c(i1,...,ir), z−(i1,...,ir) elt
< c−(i1,...,ir)) + S∗(c)1(z = c), (2.4)

where
elt
< denotes element-by-element strict inequality, i.e., 1(z

elt
< c) :=

∏d
i=1 1(z(i) < c(i)), and

z = c is element-by-element equality, i.e., 1(z = c) =
∏d

i=1 1(z(i) = c(i)). Note that the realized

density f has support (−∞, c(1)] × . . . × (−∞, c(d)] with a mass point at c.

2.2. Examples. We now look at some examples of censoring in a multivariate framework. The

primary aim is to illustrate the behavior of least squares estimators in linear regression models

when only the master sample is used for estimation and more than one variable is censored;

8This is because the density of Z under interval censoring is different from the densities in (2.3) and (2.4).
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example 2.2 is particularly instructive. Since no refreshment sample is used in this section, n

here is just the master sample size.

Example 2.1 (Censored mean). Suppose we want to estimate θ∗ := Ef∗{Z∗}, the mean of the

target population. Since Z∗ is censored from above, instead of a random sample Z∗
1 , . . . , Z

∗
n from

the target density f ∗ we have the master random sample Z1, . . . , Zn from the realized density

f defined in (2.3) or (2.4). Therefore, the naive estimator
∑n

j=1 Zj/n will not consistently

estimate θ∗ because
∑n

j=1 Zj/n
p
−→ Ef{Z} by the weak law of large numbers, but

Ef{Z} =







Ef∗{Z∗1(Z∗ < c)} + cS∗(c) if d = 1

Ef∗{Z∗1(Z∗
elt
< c)} +

∑d−1
r=1 Ef∗{Z∗

[r]} + cS∗(c) if d > 1,

where, for any function h, the symbol

h[r](Z
∗) :=

d−r+1
∑

i1=1

d−r+2
∑

i2=i1+1

. . .
d

∑

ir=ir−1+1

h(Z∗[i1, . . . , ir])1(Z∗(i1,...,ir) elt
> c(i1,...,ir), Z∗−(i1,...,ir) elt

< c−(i1,...,ir))

denotes h evaluated at exactly r censored coordinates, and Z∗[i1, . . . , ir] stands for Z∗ with its

i1, . . . , irth coordinates replaced by c(i1), . . . , c(ir), respectively, and the remaining coordinates

unchanged. Hence, Ef{Z} 6= Ef∗{Z∗}. �

Example 2.2 (Censored linear regression). Let Y ∗ = X∗′θ∗+ε∗, where Ef∗{X∗ε∗} = 0. There-

fore, θ∗ = (Ef∗X∗X∗′)−1(Ef∗X∗Y ∗). Suppose both Y ∗ and X∗ are censored. Hence, instead of

observing Z∗ := (Y ∗, X∗)(p+1)×1 from the target density f ∗, we observe Z := (Y, X) from the

realized density f defined in (2.4). If we ignore censoring and simply regress Y on X then θ∗ can-

not be consistently estimated by the least squares estimator θ̂M := (
∑n

j=1 XjX
′
j)

−1
∑n

j=1 XjYj.

To see this, observe that the probability limit of θ̂M is given by

(EfXX ′)−1(EfXY ) = (Ef∗{X∗X∗′1(Y ∗ < c(1), X∗ elt
< c−(1))+

d−1
∑

r=1

(X∗X∗′)[r]+c−(1)c−(1)′S∗(c)})−1

× Ef∗{X∗Y ∗1(Y ∗ < c(1), X∗ elt
< c−(1)) +

d−1
∑

r=1

(X∗Y ∗)[r] + c−(1)c(1)S∗(c)}, (2.5)

where d = p + 1. Hence, plim(θ̂M) 6= θ∗.

The special case of pure endogenous censoring, called the tobit or limited dependent vari-

able model in econometrics, is obtained by letting c−(1) = (∞, . . . ,∞) and using the convention

that 0 · ∞ = 0. Doing so, (2.5) implies that

plim(θ̂M ) = θ∗ − {Ef∗X∗X∗′}−1
Ef∗{X∗(Y ∗ − c(1))1(Y ∗ > c(1))} 6= θ∗,

as is well known from tobit theory.
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However, a result that does not seem to be as widely known is that the least squares

estimator remains inconsistent even if censoring is purely exogenous; see Rigobon and Stoker

(2003) for more on this. In particular, by letting c(1) = ∞ in (2.5), we can see that

plim(θ̂M) = {Ef∗ [X∗X∗′1(X∗ elt
< c−(1))+

d−1
∑

r=1

(X∗X∗′)[r]}
−1

Ef∗{X∗Y ∗1(X∗ elt
< c−(1))+

d−1
∑

r=1

(X∗Y ∗)[r]}.

Thus pure exogenous censoring cannot be ignored here. In fact, pure exogenous censoring may

not be ignorable even if Ef∗{X∗ε∗} = 0 is replaced by the stronger condition EY ∗|X∗{ε∗|X∗} = 0

w.p.1. To see this, consider the simple linear regression model Y ∗ = θ∗(1) + X∗θ∗(2) + ε∗, where

X∗ is scalar and EY ∗|X∗{ε∗|X∗} = 0 w.p.1. Since Y ∗ and the constant regressor are not

censored, c = (∞,∞, c(3))3×1. Hence, by (2.5),

plim(θ̂
(2)
M ) =

covf(Y, X)

varf(X)
=

covf∗(Y ∗, X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))

varf∗(X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))

=
covf∗(X∗, X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))

varf∗(X∗1(X∗ < c(3)) + c(3)1(X∗ > c(3)))
θ∗(2),

where the last equality follows because EY ∗|X∗{Y ∗|X∗} = θ∗(1) + X∗θ∗(2) w.p.1. Therefore, θ̂M

is inconsistent under pure exogenous censoring although ε∗ is mean independent of X∗. �

3. Data combination

As in Tripathi (2007), we model the data combination process as follows. Let Z denote

an observation from the combined sample. Along with Z we observe a dummy variable R that

indicates whether Z comes from the refreshment or the master sample; i.e., R = 1 if Z is from

the refreshment sample and R = 0 if Z belongs to the master sample. Hence, for r ∈ {0, 1},

the conditional density of Z|R = r is given by9

fZ|R=r(z) := f ∗(z)1(z
elt

6= c)r + f(z)(1 − r), (3.1)

where 1(z
elt

6= c) :=
∏d

i=1 1(z(i) 6= c(i)) and f is given by (2.3) or (2.4). Note that fZ|R=r is a

conditional density w.r.t µ and has a mass point at c.

Let R
d
∼ Bernoulli(K0), where K0 ∈ (0, 1) is an unknown nuisance parameter that will

be estimated along with the parameters of interest. Therefore, using (3.1), the joint density of

Z and R is given by

fe(z, r) := K0f
∗(z)1(z

elt

6= c)r + (1 − K0)f(z)(1 − r). (3.2)

Henceforth, let n denote the size of the “enriched” sample, i.e., the master and re-

freshment samples combined together. Observations (Z1, R1), . . . , (Zn, Rn) from the enriched

9Since the density f∗ is only identified up to sets of µ∗-measure zero, f∗(z)1(z
elt

6= c) is a µ∗-version of f∗.
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dataset are regarded as iid draws from fe — a density w.r.t µ × κ, where κ is the counting

measure on {0, 1} — and all limits are taken as n → ∞. In Section 4 we show how data from

this enriched density can be used to fully recover f ∗ and estimate and test (2.1).

A technical remark: Introducing the refreshment dummy R allows the combined sample

to be treated as a collection of iid draws from the enriched density fe, which greatly simpli-

fies the mathematical treatment (because an iid setting makes it easier to calculate efficiency

bounds, apply standard statistical arguments to prove our results, etc.) although it makes the

refreshment sample size
∑n

j=1 Rj a random variable. However, as shown later in Section 4,

inference about θ∗ is actually conditional on the observed value of
∑n

j=1 Rj because we esti-

mate θ∗ jointly and efficiently with K0. Therefore, our results coincide with those obtained in

a setting where the size of the refreshment sample is nonstochastic and observations from the

combined sample are regarded as being independent but not identically distributed.

4. Inference with censored data

The marginal density of Z in the enriched sample is, by (3.2),
∫

r∈{0,1}

fe(z, r) dκ = K0f
∗(z)1(z

elt

6= c) + (1 − K0)f(z).

Hence, letting a(z, K0) := K0 + (1 − K0)1(z
elt
< c), by (2.3) and (2.4) it follows that

f ∗(z)1(z
elt

6= c) =

∫

r∈{0,1}

fe(z, r)1(z
elt

6= c) dκ/a(z, K0). (4.1)

Therefore, since Ef∗{g(Z∗, θ∗)} = 0 if and only if Ef∗{g(Z∗, θ∗)1(Z∗
elt

6= c)} = 0, we can use

(4.1) to write (2.1) in terms of the enriched density as

Efe
{g(Z, θ∗)1(Z

elt

6= c)/a(Z, K0)} = 0. (4.2)

However, (4.1) also implies that10

Efe
{1(Z

elt

6= c)/a(Z, K0)} = 1 ⇐⇒ Efe
{1(Z

elt

6= c)1(Z
elt
< c)∼ − K01(Z

elt
< c)∼} = 0, (4.3)

10Since {1(Z
elt
< c)+1(Z

elt
< c)∼}/a(Z, K0) = 1(Z

elt
< c)+1(Z

elt
< c)∼/K0 and 1(Z

elt

6= c)1(Z
elt
< c) = 1(Z

elt
< c),

Efe
{1(Z

elt

6= c)/a(Z, K0)} = 1 ⇐⇒ Efe
{1(Z

elt

6= c)1(Z
elt
< c)} + Efe

{1(Z
elt

6= c)1(Z
elt
< c)∼}/K0 = 1

⇐⇒ Efe
{1(Z

elt

6= c)1(Z
elt
< c)∼} = K0Efe

{1(Z
elt
< c)∼}

⇐⇒ Efe
{1(Z

elt

6= c)1(Z
elt
< c)∼ − K01(Z

elt
< c)∼} = 0.
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where (Z
elt
< c)∼ denotes the set-complement of the event (Z

elt
< c). Furthermore, since

Efe
{R − K0} = 0, (4.4)

efficient estimation of θ∗ must account for this restriction as well.

For notational convenience, define β∗ := (θ∗, K0)(p+1)×1 and

ρ(Z, R, β) :=









g(Z, θ)1(Z
elt

6= c)/a(Z, K)1(Z
elt

6= c)1(Z
elt
< c)∼ − K1(Z

elt
< c)∼

R − K









:=







ρ1(Z, β)

ρ2(Z, K)

ρ3(R, K)







(q+2)×1

. (4.5)

The two-step optimal GMM estimator of β∗ is then given by β̃ := argminβ∈B ρ̂′(β)V̆ −1
ρ ρ̂(β),

where B := Θ× [0, 1], ρ̂(β) :=
∑n

j=1 ρ(Zj , Rj, β)/n, and V̆ρ :=
∑n

j=1 ρ(Zj , Rj, β̆)ρ′(Zj, Rj , β̆)/n

is an estimator of the optimal weighting matrix using a preliminary estimator β̆.

Let ‖·‖ denote the Euclidean norm. The following standard regularity conditions ensure

that GMM estimators are consistent and asymptotically normal.

Assumption 4.1. (i) β∗ ∈ B is the unique solution to Efe
{ρ(Z, R, β)} = 0; (ii) B is com-

pact; (iii) ρ(Z, R, β) is continuous at each β ∈ B w.p.1; (iv) Efe
{supβ∈B‖ρ(Z, R, β)‖2} < ∞;

(v) Efe
{ρ(Z, R, β∗)ρ′(Z, R, β∗)} is nonsingular; (vi) β∗ ∈ int(B); (vii) ρ(Z, R, β) is contin-

uously differentiable in a neighborhood N of β∗ and Efe
{supβ∈N ‖∂ρ(Z, R, β)/∂β‖} < ∞;

(viii) Efe
{∂ρ(Z, R, β∗)/∂β} is of full column rank.

(i)–(v) can be used to prove consistency and (vi)–(viii) to prove the asymptotic normality

of GMM estimators as in Newey and McFadden (1994). Note that the consistency of our

estimators does not depend upon the extent to which the data are censored.

Now let D := Efe
{∂ρ1(Z, β∗)/∂θ}, V1 := Efe

{ρ1(Z, β∗)ρ1(Z, β∗)′}, V2 := Efe
{ρ2

2(Z, K0)},

V3 := Efe
{ρ2

3(R, K0)}, Σ12 := Efe
{ρ1(Z, β∗)ρ2(Z, K0)}, Σ13 := Efe

{ρ1(Z, β∗)ρ3(R, K0)}, and

Ω := Efe
{εε′}, where ε := ρ1(Z, β∗) − Proj{ρ1(Z, β∗)

∣

∣1, ρ2(Z, K0), ρ3(R, K0)} is the residual

from the linear projection (under fe) of ρ1(Z, β∗) onto the span of 1, ρ2(Z, K0), and ρ3(R, K0).

The next result is shown in Appendix A.

Theorem 4.1. Let Assumption 4.1 hold with the moment function ρ(Z, R, β) defined in (4.5).

Then, letting 0k×1 denote the k × 1 vector of zeros and 0′k×1 its transpose,
[

n1/2(θ̃ − θ∗)

n1/2(K̃ − K0)

]

d
−→ N(0(p+1)×1,

[

(D′Ω−1D)−1 0p×1

0′p×1 K0(1 − K0)

]

).

In Theorem A.1 of Appendix A we show that (D′Ω−1D)−1 is the efficiency bound for

estimating θ∗; therefore, θ̃ is asymptotically efficient. Furthermore, Theorem 4.3 shows that

(D′Ω−1D)−1 is strictly smaller (in the positive definite sense) than the asymptotic variance of

the GMM estimator obtained by using the refreshment sample alone. Hence, efficiency gains
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from combining censored and uncensored datasets do not come from the latter alone and it

makes sense to use both the master and the refreshment samples for estimating θ∗.

There is a simpler version of (4.5) that still leads to an asymptotically efficient estimator

of θ∗; i.e., an estimator whose asymptotic variance is equal to (D′Ω−1D)−1. This is because

Proj{ρ1(Z, β∗)
∣

∣1, ρ2(Z, K0), ρ3(R, K0)}
Lemma A.1

= Proj{ρ1(Z, β∗)
∣

∣1, ρ2(Z, K0)}; (4.6)

i.e., ρ3(R, K0) is redundant once ρ2(Z, K0) is controlled for, suggesting that the asymptotic

variance of the GMM estimator of θ∗ given in Theorem 4.1 is not affected if only ρ1(Z, β∗) and

ρ2(Z, K0) are used for estimation, i.e., even if we ignore the information regarding whether Z

comes from the refreshment or the master sample. Therefore, for the remainder of Section 4

we assume that θ∗ and K0 are estimated using the moment function

ρ(Z, β) :=





g(Z, θ)1(Z
elt

6= c)/a(Z, K)1(Z
elt

6= c)1(Z
elt
< c)∼ − K1(Z

elt
< c)∼



 :=

[

ρ1(Z, β)

ρ2(Z, K)

]

(q+1)×1

. (4.7)

This leads to the following result.

Theorem 4.2. Let Assumption 4.1 hold with the moment function ρ(Z, β) defined in (4.7) and

let β̂ := (θ̂, K̂)(p+1)×1 denote the GMM estimator of β∗ using (4.7). Then,

[

n1/2(θ̂ − θ∗)

n1/2(K̂ − K0)

]

d
−→ N(0(p+1)×1,

[

(D′Ω−1D)−1 0p×1

0′p×1 K0(1 − K0)/[1 − F ∗(c)]

]

).

The asymptotic variance of θ̂ is still (D′Ω−1D)−1 although dropping ρ3(R, K0) increases

the asymptotic variance of K̂ as compared to K̃.11 This is not surprising since ρ3(R, K0)

provides information about K0 and does not matter in practice since K0 is a nuisance parameter.

Since (4.6) implies that ε is just the residual from projecting ρ1(Z, β∗) onto the span of 1 and

ρ2(Z, K0), it follows that Ω = V1 −Σ12Σ
′
12/V2. The asymptotic variance of θ̂ can be estimated

by replacing D and Ω with consistent estimators D̂ := n−1
∑n

j=1 ∂ρ1(Zj, β̂)/∂θ and Ω̂ :=

V̂1 − Σ̂12Σ̂
′
12/V̂2, where V̂1 :=

∑n
j=1 ρ1(Zj, β̂)ρ′

1(Zj, β̂)/n, Σ̂12 :=
∑n

j=1 ρ1(Zj, β̂)ρ2(Zj, K̂)/n,

and V̂2 :=
∑n

j=1 ρ2
2(Zj, K̂)/n; equivalently, Ω̂ =

∑n
j=1 ε̂j ε̂

′
j/n, where ε̂ is the residual from

regressing ρ1(Z, β̂) element-by-element on a constant and ρ2(Z, K̂).

11For the sake of completeness, note that if β̌ is the GMM estimator of β∗ based on ρ1(Z, β∗) and ρ3(R, K0),

then it is easy to show that asymptotically n1/2(θ̌ − θ∗) and n1/2(Ǩ − K0) are jointly normal with mean zero

and variance
[

(D′Γ−1D)−1 0p×1

0′

p×1
K0(1−K0)

]

, where Γ := V1 − Σ13Σ
′

13/V3. From Lemma A.2, (A.9), and (A.11), we

know that V2 = K0(1 − K0)[1 − F ∗(c)] and Σ13 = Σ12. Hence, since V3 = K0(1 − K0), it follows that Γ ≥ Ω.

Therefore, (D′Γ−1D)−1 ≥ (D′Ω−1D)−1 implying that asymptotically θ̂ is better than θ̌.
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To get some intuition about why transforming the moment condition works, note that

since K0
(4.3)
= Efe

{1(Z
elt

6= c)1(Z
elt
< c)∼}/Efe

{1(Z
elt
< c)∼}, we can decompose

Efe
{ρ1(Z, β∗)} = Efe

{g(Z, θ∗)|Z
elt
< c}Prfe

(Z
elt
< c)

+ Efe
{g(Z, θ∗)|(Z

elt

6= c) ∩ (Z
elt
< c)∼}Prfe

({Z
elt
< c}∼). (4.8)

Therefore, the moment function in (4.2) can be expressed as a weighted sum of the best predic-

tors of g(Z∗, θ∗)|(Z∗ is uncensored) and g(Z∗, θ∗)|(Z∗ is censored) with the weights being equal

to the probability that Z∗ is uncensored or censored, respectively. The estimators proposed in

Theorem 4.2 use the enriched sample to automatically replace g(Z∗, θ∗) with its best predic-

tor when observations are censored and then consistently and efficiently estimate these best

predictors and weights; see Example 4.1 for a nice illustration.

Efficiently estimating θ∗ jointly with K0 ensures that θ̂ and
∑n

j=1 Rj are asymptot-

ically independent. To see this, we can use the proof of Theorem 4.2 to show that θ̂ is

asymptotically linear with influence function −(D′Ω−1D)−1D′Ω−1ε; i.e., we can show that

n1/2(θ̂ − θ∗) = n−1/2
∑n

j=1 −(D′Ω−1D)−1D′Ω−1εj + op(1). But, by the Cramér-Wold device

and the central limit theorem, n1/2(θ̂− θ∗) and n−1/2
∑n

j=1(Rj −K0) are jointly asymptotically

normal. Therefore, since ε is orthogonal to ρ3(R, K0),
12 it follows that θ̂ and

∑n
j=1 Rj are

asymptotically independent. Consequently, as mentioned at the end of Section 3, inference

based on the asymptotic distribution of θ̂ is equivalent to inference based on the asymptotic

conditional distribution of θ̂ given
∑n

j=1 Rj.

Finally, let θ̂R denote the optimal GMM estimator of θ∗ obtained using only the refresh-

ment sample; i.e., θ̂R is based on the moment condition

Efe
{g(Z, θ∗)|R = 1} = 0 ⇐⇒ Efe

{g(Z, θ∗)R} = 0. (4.9)

The next result shows that θ̂R is asymptotically inefficient relative to θ̂. Therefore, as stressed

earlier, it makes sense to estimate θ∗ using the enriched sample.

Theorem 4.3. Let D∗ := Ef∗{∂g(Z∗, θ∗)/∂θ} and V∗ := Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)}. Then,

n1/2(θ̂R − θ∗)
d
−→ N(0p×1, (D

′
∗V

−1
∗ D∗)

−1/K0)

and asvar(θ̂R) > asvar(θ̂), where “asvar” is shorthand for “asymptotic variance”.

The inflation factor 1/K0 in the asymptotic variance of θ̂R is not surprising since θ̂R only

makes use of a fraction of the enriched sample. In Remark A.1 after the proof of Theorem 4.3,

we show that Ω is a decreasing (in the positive definite sense) function of K0. Hence, we can

expect the finite sample performance of θ̂ to improve as the refreshment sample gets larger.

12This follows immediately from (A.8) in the proof of Lemma A.1.
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Although θ̂R is asymptotically inefficient for estimating θ∗, it can be used in applied

work for specification testing. In particular, by contrasting components of θ̂R and θ̂ that

may be of particular empirical interest, or even θ̂R and θ̂ themselves, we can do a Hausman

test of the hypothesis that the master and refreshment samples are drawn from the same

population.13 So let B be a diagonal matrix of ones and zeroes that picks out the coordinates

of θ̂R and θ̂ to be contrasted (if B is the p × p identity matrix then θ̂R is compared with θ̂),

V̂Bθ̂ := B(D̂′Ω̂−1D̂)−1B′/n denote the estimated asymptotic variance of Bθ̂ and, following the

proof of Theorem 4.3, let V̂Bθ̂R
:= B(D̂′

RΩ̂−1
R D̂R)−1B′/n be the estimated asymptotic variance

of Bθ̂R, where D̂R := n−1
∑n

j=1 ∂g(Zj , θ̂R)Rj/∂θ and V̂R := n−1
∑n

j=1 g(Zj, θ̂R)g′(Zj, θ̂R)Rj . It

is then straightforward to show that the Hausman statistic n(Bθ̂R−Bθ̂)′(V̂Bθ̂R
− V̂Bθ̂)

−1(Bθ̂R−

Bθ̂) is asymptotically χ2
dim(Bθ∗) under the null hypothesis that the master and refreshment

samples come from the same population. Hence, it can be used to test this hypothesis; see the

application in Section 5.

Example 4.1 (Example 2.1 contd.). Here ρ1(Z, β) = (Z − θ)1(Z
elt

6= c)/a(Z, K) and no overi-

dentifying restrictions. Hence, (θ̂, K̂) solve
∑n

j=1 ρ1(Zj, β̂) = 0 and
∑n

j=1 ρ2(Zj , K̂) = 0; i.e.,

θ̂ = n−1
n

∑

j=1

Zj1(Zj

elt

6= c)

a(Zj , K̂)
and K̂ =

∑n
j=1 1(Zj

elt

6= c)1(Zj

elt
< c)∼

∑n
j=1 1(Zj

elt
< c)∼

. (4.10)

To gain further insight into θ̂, notice that for d = 1 we can express θ̂ as

θ̂ = n−1
n

∑

j=1

1(Zj < c) ×

∑n
j=1 Zj1(Zj < c)

∑n
j=1 1(Zj < c)

+ n−1
n

∑

j=1

1(Zj ≥ c) ×

∑n
j=1 Zj1(Zj > c)

∑n
j=1 1(Zj > c)

.

In light of (4.8), it comes as no surprise that θ̂ is a convex combination of the sample means

of uncensored and censored observations in the enriched dataset with the weights being the

fraction of uncensored and censored observations in the enriched sample. �

Example 4.2 (Example 2.2 contd.). Here ρ1(Z, β) = X(Y − X ′θ)1(Z
elt

6= c)/a(Z, K). Hence,

θ̂ = (
∑n

j=1 X̂jX
′
j)

−1(
∑n

j=1 X̂jYj), where X̂j := Xj1(Zj

elt

6= c)/a(Zj, K̂) and K̂ is given in (4.10);

i.e., θ̂ is the IV estimator with instruments X̂. If censoring is purely endogenous or purely

exogenous, then a(Z, K) = K + (1 − K)1(Yj < c(1)) or a(Z, K) = K + (1 − K)1(Xj

elt
< c−(1)),

respectively, and the expression for θ̂ simplifies accordingly. �

Example 4.3 (Endogenous censored regression). Let Y ∗ = X∗′θ∗ + ε∗ such that some or all

regressors are correlated with ε∗. Let W ∗ be the vector of instruments, i.e., Ef∗{W ∗ε∗} = 0.

13This is because θ̂R is consistent for θ∗ even if the master and refreshment samples are from different

populations — recall that θ̂R is based on the refreshment sample alone — whereas θ̂ is a consistent and efficient

estimator of θ∗ only when the master and refreshment samples are from the same population.
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Hence, g(Z∗, θ∗) = W ∗(Y ∗−X∗′θ∗) and ρ1(Z, β) = W (Y −X ′θ)1(Z
elt

6= c)/a(Z, K). Endogenous

tobit, where X∗ is endogenous and only Y ∗ is censored, is important for applications and follows

by letting ρ1(Z, β) = W (Y −X ′θ)1(Y 6= c(1))/a(Y, K), where a(Y, K) = K+(1−K)1(Y < c(1)).

The asymptotic distribution of θ̂ follows readily from Theorem 4.2. �

Example 4.4 (Simultaneous equations). Let Y ∗
1 = X∗

1
′θ∗1+ε∗1 and Y ∗

2 = X∗
2
′θ∗2+ε∗2, where ε∗1 and

ε∗2 are mean independent of X∗, the vector of instruments. Hence, Ef∗{A(X∗)
[

Y ∗

1 −X∗

1
′θ∗1

Y ∗

2 −X∗

2
′θ∗2

]

} = 0,

where A(X∗) is a matrix of instrumental variables and (4.7) can be used to estimate θ∗1 and θ∗2.

Although this model has been studied earlier, see, e.g., Blundell and Smith, our treatment is

more general because we do not assume that ε∗1 and ε∗2 are Gaussian and allow for the possibility

that other variables besides Y ∗
1 and Y ∗

2 may also be censored. Censoring of Y ∗ := (Y ∗
1 , Y ∗

2 )

alone implies that ρ1(Z, β) = A(X)
[

Y1−X1
′θ1

Y2−X2
′θ2

]1(Y1 6= c(1), Y2 6= c(2))/a(Y, K), where a(Y, K) =

K + (1 − K)1(Y1 < c(1), Y2 < c(2)). �

Example 4.5 (Auxiliary information). Sometimes we may possess information about a feature

of the target density; e.g., we may know beforehand that the mean of the target population

is zero. In general, suppose it is known a priori that Ef∗{m(Z∗)} = 0, where m is a vector of

known functions. Moment based auxiliary information about f ∗ can be easily incorporated in

our framework by stacking g(Z∗, θ∗) and m(Z∗). These types of models have been investigated

by Imbens and Lancaster (1994), Hellerstein and Imbens (1999), and Nevo (2003). However,

Imbens and Lancaster, as well as Hellerstein and Imbens, assume that Z∗ is fully observed.

Nevo allows Z∗ to be entirely missing (due to attrition) but not censored. He also restricts

attention to the case where the parameter of interest is just identified. In addition, he assumes

that the selection probability is known up to a finite dimensional parameter. By contrast, we

allow (2.1) to be overidentified and the censoring probabilities to be fully unknown. �

We end this section with a brief remark about hypothesis and specification tests. Sup-

pose we want to test the parametric restriction H(θ∗) = 0 against the alternative that it is false,

where H is a h×1 vector of twice continuously differentiable functions such that ∂H(θ∗)/∂θ has

rank h ≤ p. As described in Newey and McFadden (1994, Theorem 9.2), a variety of statistics

based on the moment function in (4.7) can be used to test this hypothesis. In each case, the test

statistic is asymptotically χ2
h under the null. Confidence regions can be obtained by inverting

these test statistics. Next, assume that q > p. Since inference based on the estimated θ∗ is

sensible only if (2.1) is true, it is important to test it against the alternative that it is false. The

standard approach is to use a criterion function based statistic usually called Hansen’s J-test:

GMM theory tells us that nρ̂′(β̂)V̆ −1
ρ ρ̂(β̂)

d
−→ χ2

q−p under the null hypothesis that (2.1) is true,

where ρ is the moment function in (4.7). Therefore, a test for overidentifying restrictions in

(2.1) can be based on this result.
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5. Application

Our application studies the effects of changes in compulsory schooling laws on age at

first marriage. While the primary purpose of the application is to demonstrate the methodology

developed in this paper, it is also a topic of some substantive importance.

There is a large recent literature on the impacts of changes in compulsory schooling

laws both in the United States and abroad and this is a topic of much interest to economists

and policy makers. Researchers have studied the effects of these laws on educational at-

tainment, probability of teenage childbearing, and a host of adult outcomes including earn-

ings, wealth, happiness, health, fertility, and mortality risk; see, e.g., Oreopoulos (2007),

Black, Devereux, and Salvanes (2008), and the references therein. Our application to the effects

of compulsory schooling laws on age at first marriage adds to this literature.

Understanding the determinants of age at first marriage is considered to be important

for several reasons. In recent years, age at first marriage has risen. Much literature suggests

that a rising age at first marriage may be socially undesirable because marriage may encourage

good behavior and outcomes. For example, Akerlof (1998) provides evidence that marriage has

a beneficial effect on male behavior, leading to a decrease in socially undesirable activities such

as alcoholism, drug abuse, and violence. Also, Korenman and Neumark (1991) find that, in

the cross-section, married men earn about 11% more than observationally equivalent unmarried

men. When they utilize panel data and estimate a fixed effects model, the marriage effect is

about 2/3rd the size of the cross-sectional estimate. Thus, it appears that there is a direct effect

of being married on male earnings. However, in other work, they find that marriage reduces

female participation and does not positively impact their wage rates (Korenman and Neumark,

1992). Second, there is a great deal of concern about the effects of out-of-wedlock childbearing

on single parents and their children. If rising age at first marriage is not accompanied by

postponed childbearing, this problem becomes more severe. Relatedly, it has long been known,

see, e.g., Coale (1971), that age at first marriage is an important determinant of fertility.

However, rising age at first marriage may also have socially beneficial effects (Goldin and Katz,

2002) because it has been linked to greater opportunities for young people, especially women,

to obtain education and develop a professional career.

Theoretically, the effects of increased years of compulsory schooling on age of marriage

are unclear. Koball (1998) describes the “economic provider” hypothesis that men are less

likely to marry until they are securely employed. Because more compulsory schooling leads to

higher earnings, it may lead to earlier marriage through this channel. The “adult transition”

hypothesis proposes that events that delay the transition to adulthood will also delay marriage.

More compulsory schooling will tend to delay marriage through this channel. Our goal is to

study whether compulsory schooling legislation encourages people to defer marriage. If so,

these factors should be considered when evaluating the benefits of this type of legislation.
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Our data are 1% samples from the Public Use Files of the U.S. Census of population for

the years 1960, 1970, and 1980 (Ruggles et al., 2004), and our sample is composed of men and

women born between 1925 and 1944. We choose this group of cohorts for two reasons. First,

many of the changes in compulsory schooling laws were enacted between 1939 and 1958 and so

had a major impact on this group. Secondly, the question on age at first marriage is not asked

in the Census prior to 1960 or after 1980 so we are limited in terms of which cohorts we can

study. We use variation in compulsory schooling laws across states and over time.

The empirical model can be written as

log(Y ∗
j ) = X∗

j
′θ∗ + ε∗j , (5.1)

where Y ∗
j denotes age at first marriage for the jth individual in the sample, X∗

j is a vector of

explanatory variables including a constant, compulsory schooling law variables, year of birth

dummies, state dummies, and a race dummy, and ε∗j an unobserved error term that is uncorre-

lated with the regressors. There are three included compulsory schooling law dummy variables

describing the level of compulsory schooling: one for 9 years of schooling, another for 10 years,

and the third for 11 or 12 years of schooling; the omitted category is 8 years or less of schooling.

We measure age and age at first marriage in units of a quarter of a year. Additional details

about the compulsory schooling variables and age variables are provided in Appendix C. Note

that (5.1) contains fixed cohort effects and state effects. The cohort effects are necessary to

allow for secular changes in age at first marriage that may be completely unrelated to compul-

sory schooling laws. The state effects allow for the fact that variation in the timing of the law

changes across states may not have been exogenous to the marriage market; e.g., states with

strict compulsory schooling laws may be states where people tend to marry late in any case.

Note that our research design is similar to other papers in the literature. It is standard

when studying the effects of U.S. compulsory schooling laws to include control variables for race

and a full set of cohort and state dummies. The assumption is that conditional on cohort and

state, the level of compulsory schooling is exogenous. The rationale is that changes in these

laws tend to occur for reasons unrelated to the marriage ages of people who happen to be in

the particular cohorts impacted in the particular state. Because we use the same specification

as other studies, our estimates are comparable to the literature and fit naturally within it.

The major problem in running this regression is that Y ∗ is censored for younger in-

dividuals because census records report age at first marriage for only those individuals who

married before the census interview took place; otherwise, they simply report the individuals

chronological age at the time of interview. Hence, for each person we can only observe

Yj :=

{

Y ∗
j if Y ∗

j < Cj

Cj otherwise,
(5.2)

where Cj denotes chronological age at the time of interview.
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There are two elements of the censoring problem: (i) people who do get married at some

point in their life but who have never been married at the time of interview, and (ii) people

who never get married. Our goal is to address the first problem.14 The usual approach to

dealing with (i) is to restrict the sample to older men and women; e.g., Bergstrom and Schoeni

(1996) restrict the sample to persons aged 40–60. This is obviously not a satisfactory solution

because it replaces the censoring problem with a truncation problem. In contrast, our approach

is to use both young and old persons, acknowledging that age at first marriage is significantly

censored for younger women and men. As discussed above we use the 1925–1944 cohorts and

these people are aged 16–35 in 1960 and 26–45 in 1970. Clearly, age at first marriage is censored

for many of these persons. To deal with this problem, we need a refreshment sample that is not

censored and is from the same population as our master sample (aged 16–35 in 1960 and 26–45

in 1970). We obtain this by using individuals from the same cohort: A 16 year old woman in

1960 is considered to be from the same population as a 26 year old woman in 1970, and a 36

year old in 1980. Hence, for women who were between 16–35 in 1960 and 26–45 in 1970, the

refreshment sample consists of women aged 36–55 in 1980.

For the group of people aged 36–55 in 1980 to be a suitable refreshment sample, it must

possess two characteristics. First, it must be a draw from the same population as the master

sample. We consider this to be a reasonable assumption in this case because: (a) they are from

the exact same birth cohorts as persons in the master sample; (b) we only use individuals born

in the U.S. so immigration is not a problem; (c) we do not include individuals aged more than

55 and these cohorts were not involved in World War 2 or Vietnam so mortality is not a major

consideration. We report descriptive statistics for our sample in Tables 1 and 2 for women and

men, respectively. Note that the percentage white, average year-of-birth, and the proportions

affected by each compulsory schooling law regime are very similar across census samples. This

is as we would expect given that we are tracking a population as they age. On the other hand,

the average values of age at first marriage differ greatly by census due to censoring.

To statistically corroborate that we are following samples from the same population, we

also carry out Hausman tests described in Section 4 to take advantage of the fact that GMM

with the enriched sample is more efficient than OLS on the refreshment sample alone. We

perform two variants of the Hausman test. The first, labeled “Hausman statistic” in Tables 4

and 5, restricts the test to the three compulsory schooling dummies that are of primary interest

in this application; the second, not reported here, tests the equality of all coefficients including

the compulsory schooling dummies, race dummy, cohort effects, and state dummies. In all

specifications, we pass the first test and fail the second. We are not surprised that we fail the

second test because we have over 400,000 observations in the combined samples. With sample

14We cannot solve the second problem as, by definition, it is impossible to construct a refreshment sample

for the group that will never marry.
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sizes this large, even tiny differences in coefficients can be statistically significant. We find the

fact that we pass the test for our coefficients of interest to be very reassuring. For visual support,

we also plot estimates of the cdf of Y ∗ using the refreshment and enriched samples; i.e., since

Prf∗(Y ∗ ≤ t) = Efe
{1(Y ≤ t)1(Y 6= c)/a(Y, K0)} for all t ∈ R by (4.1), which itself is based on

the assumption that the master and refreshment samples are from the same population, we plot

sample analogs of the left and right hand sides using the refreshment and enriched samples,

respectively, over a grid in R. As can be seen from Figure 1, estimates of Prf∗(Y ∗ ≤ t) from

the refreshment sample alone are virtually identical to those from the enriched sample over a

range of values for t. Therefore, the Hausman test and these plots provide strong statistical

and visual evidence that the observations in our master and refreshment samples indeed come

from the same population.

The second characteristic of a refreshment sample is that it should not have a censoring

problem. We examine this issue in Table 3. In this table, we track each birth cohort over time,

and list the percentage who have never been married. For women, we see that the proportion

never married flattens out as women reach their early 30’s and it appears that very few women

marry for the first time after age 35. Thus, it appears that the refreshment sample for women

is approximately free of censoring bias. Men tend to marry at later ages and so there does

appear to be some censoring in the refreshment sample for men. However, it impacts a very

small proportion of cases; it appears that about 6% of men never marry, and very few cohorts

in the refreshment sample have more than 6% of censored observations in 1980. Despite the

evidence that there may be some censoring in the 1980 sample, in estimation we treat it as a

refreshment sample that has no censored observations.

As mentioned above, we cannot address the second type of censoring (people who never

get married) using a refreshment sample approach. Instead, we have taken a few different ad

hoc approaches and verify that our results are not very sensitive to the exact method used.

The approaches we have tried are (i) impute age at first marriage as equal to current age for

never married individuals in the refreshment sample, and (ii) impute age at marriage for all

cases where individuals are not married by 35 (we have tried imputing the age to 55 and 65;

the results are displayed in Table 5). We find that our GMM estimates are reasonably robust

to the imputation method used and so in Table 4 we report the results using method (i).

We report the following GMM estimates of the coefficients of the compulsory schooling

variables and the white dummy in Table 4 (note that since θ∗ here is just identified, its GMM

and empirical likelihood estimators are identical): GMM60, obtained by combining the 1960

master sample with the 1980 refreshment sample to create the enriched dataset, and GMM70,

the GMM estimator when the 1970 and 1980 samples are combined. Estimates for men and

women are reported separately. Following the procedure described in Section 4, see Exam-

ple 4.2 for an illustration, both estimators were based on (4.7) and implemented in the GAUSS
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programming language. Since the consistency of our estimators does not depend upon the ex-

tent to which the data are censored, we expect GMM60 and GMM70 to give similar estimates

in finite samples even though censoring is less of a problem in 1970. This is a good check of

robustness and is borne out by the evidence summarized in Table 4.

An enriched dataset has to, by definition, contain some observations that are not subject

to the censoring mechanism. Since age at first marriage is censored from above by chronological

age in this application, an enriched dataset here must contain some observations for which age

at first marriage is greater than chronological age; i.e., loosely speaking, we must have some

counterfactual observations for whom we can “look into the future” at the time of interview and

see when they first get married. To construct such an enriched dataset by combining, say, the

1960 and 1980 samples, we first create a new variable C̃j = Cj1(j ∈ 1960)+(Cj−20)1(j ∈ 1980)

that represents the chronological age of the jth individual in 1960. The enriched observations

used to construct GMM60 are then obtained by replacing Cj in (5.2) with C̃j . GMM70 is

obtained similarly by combining the 1970 and 1980 datasets.

To contrast our GMM estimators with some competing estimators, we also report

OLS60, OLS70, TOBIT60, and TOBIT70, the OLS and tobit estimates for each year. An-

other estimator we consider is OLS80, obtained by doing least squares on just the 1980 sample.

It is consistent because the refreshment sample is not censored. Therefore, GMM70 and OLS80

both serve as consistency checks for GMM60. Incidentally, note that although age at first mar-

riage is a continuously distributed random variable, in the data it is recorded in discrete units

(quarters); therefore, we cannot do censored quantile regression in this application.

First, consider the compulsory schooling estimates for women. The GMM estimates

for both 1960 and 1970 are quite similar and suggest that moving from less than 9 years of

compulsory schooling to 9 years increases log age at first marriage by about 0.01, implying

age at first marriage increases by approximately 1%. The effects for 10 years of compulsory

schooling is about 1.3%, and the effects of 11 or more is about 2%. Not surprisingly, these

effects are about the same size as one obtains using just the refreshment sample (the 1980

data) because the refreshment sample does not suffer from censoring bias. Note, however,

that the GMM estimates are more precisely estimated than the OLS estimates from 1980, as

GMM is optimally using additional information from the 1960 and 1970 samples. The gain in

efficiency is bigger for GMM70 than for GMM60, presumably because the 1970 data has less

of a censoring problem and hence is more informative. The OLS estimates from 1960 and 1970

show signs of bias due to censoring. In particular, the 1960 estimates indicate very large effects

of the compulsory schooling laws on age at first marriage. The final two columns in Table 4

report tobit estimates. The tobit estimates of the compulsory schooling laws are typically lower

than that of the GMM estimators. Also, there is a substantial difference between the tobit

estimates for 1960 and the equivalent estimates for 1970, indicating that tobit is performing

poorly in this situation.
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The estimate of the white dummy for women is also in Table 4. The GMM estimates

both indicate that whites tend to marry at younger ages than non-whites – the point estimates

imply the difference is about 8%. Once again, OLS estimates for 1960 and 1970 are very

different, suggesting that censoring bias is serious for these samples. The two tobit estimates

are again very different from the GMM estimates.

The compulsory schooling and white estimates for men are also in Table 4. They differ

from the female results in that the GMM estimates predominantly suggest significant effects

of 10 years of required schooling (9 years is statistically significant for GMM70). In contrast,

the OLS estimates for 60 and 70 show strong significant effects of all the laws on age of

first marriage. As in the female sample, the GMM estimates of the white coefficient imply a

difference of about 8%. The OLS80 and tobit estimates are again very different, suggesting

that censoring bias is severe for the tobit estimates.

Cohort and state fixed effects were also included in the specification. The estimated

cohort effects show how the conditional mean of log(age at first marriage) varies by birth co-

hort. The oldest cohort (persons born in 1925) is the excluded dummy in the regression, so the

estimate for this group is normalized to zero. Rather than report the coefficients of the cohort

dummies, we plot them for women and men in Figures 2 and 3, respectively. Not surprisingly,

the cohort effects for OLS60 are radically different from the rest. The cohort effects for the

rest of the estimators are quite similar to each other.

In summary, we find positive effects of the compulsory schooling laws on age at first

marriage. However, the magnitude of the effects are much smaller than would be inferred from

ignoring the censoring problem in the 1960 and 1970 data. By contrast, we find large racial

differences that are largely obscured in the censored data. Taken together, these demonstrate

the importance in this application of using an approach that takes account of censoring. The

similarity of the GMM estimates from 1960 and 1970 to each other and to the OLS estimates

from 1980 also demonstrates our theoretical result that the proposed estimators are consistent

irrespective of the extent of censoring.

6. Simulation

In this section we describe the results of a small experiment to study the finite sample

properties of θ̂, our estimator for the target population mean θ∗ := Ef∗{Y ∗} when Y ∗ is

censored from the right by c. The simulations were done in MATLAB.15

Letting n := nM + nR, where nM and nR are the master and refreshment sample sizes,

we first generated Y ∗
i := θ∗ + ε∗i , i = 1, . . . , n, where each ε∗i is an equiprobable mixture of

N(µ1, σ
2
1) and N(µ2, σ

2
2) random variables. Next, for i = 1, . . . , nM , we created the master

15Data and programs used in the application and simulations are available on the authors web sites.
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sample Yi := Y ∗
i 1(Y ∗

i < c) + c1(Y ∗
i ≥ c), the refreshment sample (Y ∗

nM+1, . . . , Y
∗
n ), and the

enriched sample (Y1, . . . , YnM
, Y ∗

nM+1, . . . , Y
∗
n ).

Data was generated by letting (µ1, σ1) = (−2, 1) and (µ2, σ2) = (2, 1) so that Y ∗ has

a bimodal hence, non-normal, distribution centered at θ∗ (see Figure 4). Therefore, under

this specification, tobit is inconsistent for θ∗. We set θ∗ = 0, which simplifies presentation by

making the point estimate equal to the bias, and consider two specifications for c; one where c

is fixed and another where ci
d
∼ N(µc, 1) for each i. By letting c (resp. µc) take the value −2 or

2, we obtain master samples that are 75% or 25% censored. Finally, the number of observations

in the master sample nM ∈ {100, 500} and nR/nM is either 20% or 80%, leading to the sixteen

combinations of censoring probabilities, total sample sizes, and nR/mM ratios, in Tables 6–9.

Simulation results averaged across 10,000 replications are reported in these tables for

the following estimators: Ȳ , the mean of the master sample; “TOBIT”, the tobit estimator

of θ∗ using the master sample; θ̂R, the mean of the refreshment sample; and θ̂, the estimator

of θ∗ described in Example 4.1. Keep in mind that Ȳ and TOBIT are inconsistent, whereas

θ̂R is consistent but inefficient. Only θ̂ is both consistent and efficient. To make efficiency

comparisons easier to read, the last column in Tables 6–9 treats the mean squared error (MSE)

of θ̂ as the numeraire.

For the case where c is fixed, Tables 6 and 8 clearly show that Ȳ and TOBIT are

inconsistent since their point estimates basically stay the same as n increases. By contrast, θ̂R

and θ̂ are very close to the truth although θ̂ far outperforms θ̂R in terms of MSE even when the

refreshment sample is 80% of the master sample; note that these results hold whether censoring

is high (75%) or low (25%). Tables 7 and 9 indicate that essentially the same is true even when

the censoring threshold is random. In short, the performance of θ̂ appears to be remarkably

robust to various combinations of censoring probabilities and relative size of the refreshment

and master samples. Therefore, even for the simple design considered in this experiment, these

simulation results demonstrate very effectively the power of optimally combining the master

and refreshment samples and thus lend additional support to the empirical results obtained

earlier in Section 5.

7. Conclusion

The methods developed in this paper are relevant in many other applied contexts.16 For

example, an important potential application is to the estimation of unemployment durations

16Applications where refreshment samples are relatively straightforward to construct seem to be those where

censoring can in some sense be regarded as nuisance processes, i.e., where the underlying economic outcomes

are not restricted but their measured or recorded versions are. In contrast, it seems hard, at least to us, to non-

experimentally construct refreshment samples by combining datasets in applications where censoring is thought

of as being behavioral in origin, i.e., where there are fundamental constraints that bind economic behavior such

as those in models of female labor supply or household demand for durable goods.
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and re-employment wages subsequent to job displacement. U.S. analyses of the consequences of

job displacement have predominantly relied on the Displaced Worker Supplement (DWS) to the

Current Population Survey (CPS). However, serious problems arise because many individuals

have not become re-employed by the time of the CPS survey so that unemployment durations

are censored and re-employment wages are truncated. By using panel data sets such as the

Panel Study of Income Dynamics (PSID), one can augment the CPS with a sample that does

not have these censoring problems (as individuals are followed for years after displacement) and

consistently estimate parameters of interest. We intend to examine this application in future

research. The theory developed here can be extended to handle binary response, ordered

response, and models involving interval censored or missing data as well. Research on all these

topics is also in progress and will be presented in subsequent papers.
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Appendix A. Proofs of the results in section 4

Proof of Theorem 4.1. From standard GMM theory we know that n1/2(β̃ − β∗) is asymptotically

normal with mean zero and variance (D′
ρV

−1
ρ Dρ)

−1, where Dρ := Efe
{∂ρ(Z,R, β∗)/∂β} and Vρ :=

Efe
{ρ(Z,R, β∗)ρ′(Z,R, β∗)}. Letting Σ := [ Σ12 Σ13 ] and Σ23 := Efe

{ρ2(Z,K0)ρ3(R,K0)}, we can

write Vρ =
[

V1 Σ
Σ′ V−1

]

, where V−1 :=
[

V2 Σ23
Σ23 V3

]

. Hence, by the partitioned inverse formula,

V −1
ρ =

[

Ω−1 −Ω−1ΣV −1
−1

−V −1
−1 Σ′Ω−1 V −1

−1 + V −1
−1 Σ′Ω−1ΣV −1

−1

]

, (A.1)

where Ω = V1 − ΣV −1
−1 Σ′. Since ε is the residual from an orthogonal projection of ρ1(Z, β∗) onto the

linear span of {1, ρ2(Z,K0), ρ3(R,K0)}, it is immediate that Efe
{εε′} = Ω. Furthermore, since

V−1
Lemma A.2

=

[

K0(1 − K0)[1 − F ∗(c)] K0(1 − K0)[1 − F ∗(c)]

K0(1 − K0)[1 − F ∗(c)] K0(1 − K0)

]

, (A.2)

V −1
−1 is easily obtained. Next, observe that

Dρ =







D Efe
{∂ρ1(Z, β∗)/∂K}

0′p×1 −Efe
{1(Z

elt
< c)∼}

0′p×1 −1







Lemma A.3
=







D −Σ12/K0(1 − K0)

0′p×1 −[1 − F ∗(c)]

0′p×1 −1






. (A.3)
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Therefore, using (A.1)–(A.3), straightforward matrix multiplication shows that

D′
ρV

−1
ρ Dρ =

[

D′Ω−1D 0p×1

0′p×1 1/K0(1 − K0)

]

. (A.4)

The desired result follows. �

Proof of Theorem 4.2. Same as the proof of Theorem 4.1, the only difference being that since

estimation here is based on the moment function ρ(Z, β) defined in (4.7), we now have

Dρ =

[

D −Σ12/K0(1 − K0)

0′p×1 −[1 − F ∗(c)]

]

and Vρ =

[

V1 Σ12

Σ′
12 K0(1 − K0)[1 − F ∗(c)]

]

.

Therefore,

D′
ρV

−1
ρ Dρ =

[

D′Ω−1D 0p×1

0′p×1 [1 − F ∗(c)]/K0(1 − K0)

]

and the desired result follows. �

Proof of Theorem 4.3. Since θ̂R is the optimal GMM estimator based on Efe
{g(Z, θ∗)R} = 0, we

know that n1/2(θ̂R−θ∗) is asymptotically normal with mean zero and variance (D′
RV −1

R DR)−1, where

DR := Efe
{∂g(Z, θ∗)R/∂θ} and VR := Efe

{g(Z, θ∗)g′(Z, θ∗)R}. But,

DR = K0Efe
{∂g(Z, θ∗)/∂θ|R = 1}

(3.1)
= K0Ef∗{∂g(Z∗, θ∗)/∂θ} = K0D∗.

Similarly, we can show that VR = K0V∗. Hence, (D′
RV −1

R DR)−1 = (D′
∗V

−1
∗ D∗)

−1/K0. Next, observe

that D∗ = D by (4.1) and the fact that µ∗({c}) = 0. Hence, to prove asvar(θ̂R) > asvar(θ̂) it suffices

to show that V∗/K0 > Ω; i.e., V∗/K0 − Ω is positive definite. So, by (4.1), µ∗({c}) = 0, and the fact

{1(Z
elt
< c) + 1(Z

elt
< c)∼}/a(Z,K0) = 1(Z

elt
< c) + 1(Z

elt
< c)∼/K0, (A.5)

we can write V1 as

V1 = Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗ elt
< c)} + Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗ elt

< c)∼}/K0. (A.6)

Hence, we have that

Ω = V1 − Σ12Σ
′
12/V2

= V∗/K0 − [(1/K0 − 1)Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗ elt
< c)} + Σ12Σ

′
12/V2]. (A.7)

Therefore, V∗/K0 > Ω since K0 ∈ (0, 1). �

Remark A.1. For notational convenience, let ∆1 := varf∗{g(Z∗, θ∗)|(Z∗
elt
< c)∼} and

∆2 := Ef∗{g(Z∗, θ∗)g′(Z∗, θ∗)1(Z∗ elt
< c)}

+ Ef∗{g(Z∗, θ∗)1(Z∗ elt
< c)∼}Ef∗{g′(Z∗, θ∗)1(Z∗ elt

< c)∼}/(1 − F ∗(c)).

Then, using (A.6), (A.10), Lemma A.2(ii), and Lemma A.3(ii), a little algebra shows that

Ω = V1 − Σ12Σ
′
12/V2 = [(1 − F ∗(c))/K0]∆1 + ∆2.
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Therefore, since ∆1 and ∆2 do not depend upon K0, it follows that Ω is a decreasing (in the positive

definite sense) function of K0. Furthermore, by (A.10) and Lemma A.2(ii), we can write (A.7) as

V∗/K0 − Ω = [(1 − K0)/K0]∆2.

Since K0 7→ (1−K0)/K0 is monotonically decreasing on (0, 1), the gap V∗/K0 −Ω is also a decreasing

function of K0. �

Lemma A.1. Proj{ρ1(Z, β∗)
∣

∣1, ρ2(Z,K0), ρ3(R,K0)} = Proj{ρ1(Z, β∗)
∣

∣1, ρ2(Z,K0)}.

Proof of Lemma A.1. To prove this result, it suffices to show that

Efe
{[ρ1(Z, β∗) − Proj{ρ1(Z, β∗)|1, ρ2(Z,K0)}]ρ3(R,K0)} = 0. (A.8)

But Proj{ρ1(Z, β∗)|1, ρ2(Z,K0)} = Σ12ρ2(Z,K0)/V2. Hence, by Lemma A.2, we have that (A.8) holds

if and only if Σ13 = Σ12. Now, by (3.1),

Σ13 = K0Efe
{ρ1(Z, β∗)|R = 1} = K0Ef∗{ρ1(Z

∗, β∗)}.

Moreover, since µ∗({c}) = 0,

Ef∗{ρ1(Z
∗, β∗)} = Ef∗{g(Z∗, θ∗)[1(Z∗ elt

< c) + 1(Z∗ elt
< c)∼]/a(Z∗,K0)}.

Hence, using (A.5), we obtain that

Σ13 = −(1 − K0)Ef∗{g(Z∗, θ∗)1(Z∗ elt
< c)}. (A.9)

Next, observe that

Σ12 = (1 − K0)Efe
{g(Z, θ∗)1(Z

elt
6= c)1(Z

elt
< c)∼/a(Z,K0)}

= (1 − K0)Ef∗{g(Z∗, θ∗)1(Z∗ elt
< c)∼} (A.10)

= −(1 − K0)Ef∗{g(Z∗, θ∗)1(Z∗ elt
< c)}, (A.11)

where the second equality follows by (4.1) and the assumption that µ∗({c}) = 0. Therefore, the

desired result follows by (A.9) and (A.11). �

Lemma A.2. (i) Σ23 = K0(1 − K0)[1 − F ∗(c)] and (ii) V2 = K0(1 − K0)[1 − F ∗(c)].

Proof of Lemma A.2. Note that

Σ23 = Efe
{ρ2(Z,K0)R} = K0Efe

{ρ2(Z,K0)|R = 1}
(3.1)
= K0Ef∗{ρ2(Z

∗,K0)}.

Hence, (i) follows since

Ef∗{ρ2(Z
∗,K0)} = (1 − K0)Ef∗{1(Z∗ elt

< c)∼} = (1 − K0)[1 − F ∗(c)].

To show (ii), observe that

Efe
{ρ2

2(Z,K0)} = Efe
{1(Z

elt
6= c)1(Z

elt
< c)∼} + K2

0Efe
{1(Z

elt
< c)∼} − 2K0Efe

{1(Z
elt
6= c)1(Z

elt
< c)∼}.
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But using (4.1) and the assumption that µ∗({c}) = 0, it is easy to show that

Efe
{1(Z

elt
6= c)1(Z

elt
< c)∼} = K0[1 − F ∗(c)].

Therefore, (ii) follows by Lemma A.3(ii). �

Lemma A.3. (i) Efe
{∂ρ1(Z, β∗)/∂K} = −Σ12/K0(1 − K0) and (ii) Efe

{1(Z
elt
< c)∼} = 1 − F ∗(c).

Proof of Lemma A.3. First, note that

∂ρ1(Z, β∗)/∂K = −g(Z, θ∗)1(Z
elt
6= c)1(Z

elt
< c)∼/a2(Z,K0)

= −g(Z, θ∗)1(Z
elt
6= c)1(Z

elt
< c)∼/[a(Z,K0)K0],

where the second equality is due to (A.5). Hence, by (4.1) and µ∗({c}) = 0,

Efe
{∂ρ1(Z, β∗)/∂K} = Ef∗{g(Z∗, θ∗)1(Z∗ elt

< c)}/K0.

Therefore, (i) follows by (A.11). Next, since 1(Z
elt
< c) = 1(Z

elt
6= c)1(Z

elt
< c),

Efe
{1(Z

elt
< c)∼} = 1 − Efe

{1(Z
elt
< c)} = 1 − Efe

{1(Z
elt
6= c)1(Z

elt
< c)}

(4.1)
= 1 − Ef∗{1(Z∗

elt
6= c)1(Z∗ elt

< c)a(Z∗,K0)} = 1 − F ∗(c)

since µ∗({c}) = 0 by assumption. �

A.1. Efficiency bounds under censoring. We use the methodology of Severini and Tripathi (2001)

to calculate the efficiency bounds. Begin by writing the enriched density of Z and R as fe(z, r) =

φ2
0(z, r). This ensures that φ0 lies in L2(z, r), the set of real-valued functions on R

d × {0, 1} square-

integrable with respect to µ × κ. Now, suppose that we want to calculate the efficiency bound

for estimating η(φ0), a pathwise differentiable functional of φ0 (see Severini and Tripathi (2001) for

technical definitions and details). We proceed as follows. Let t 7→ φt be a curve from an interval

containing zero into the unit ball of L2(z, r) such that φt|t=0 = φ0. Since the observed loglikelihood

for t in this submodel is log φ2
t (z, r), the Fisher information for a single observation is given by

iF := 4
∫

Rd×{0,1} φ̇2(z, r) dµ dκ, where φ̇ denotes the tangent vector to φt at t = 0; i.e., φ̇ is an element

of the tangent space T := {φ̇ ∈ L2(z, r) :
∫

Rd×{0,1} φ0(z, r)φ̇(z, r) dµ dκ = 0}. Note that iF is induced

by the Fisher inner-product 〈φ̇1, φ̇2〉F := 4
∫

Rd×{0,1} φ̇1(z, r)φ̇2(z, r) dµ dκ. Thus iF = ‖φ̇‖2
F , where

‖ · ‖F denotes the norm generated by the Fisher inner-product.

Since (2.1) is equivalent to Efe
{g(Z, θ∗)1(Z

elt
6= c)/a(Z,K0)} = 0, we have to use the additional

information in (4.2) when calculating the efficiency bound for estimating η(φ0). So let t 7→ (θt,Kt)

denote a curve passing through (θ∗,K0) at t = 0 such that for all t in a neighborhood of zero

∫

Rd×{0,1}
g(z, θt)1(z

elt
6= c)φ2

t (z, r)/a(z,Kt) dµ dκ = 0, (A.12)
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where, by (4.3) and (4.4), Kt is defined via the moment conditions
∫

Rd×{0,1}
(1(z

elt
6= c)1(z

elt
< c)∼ − Kt1(z

elt
< c)∼)φ2

t (z, r) dµ dκ = 0,

∫

Rd×{0,1}
(r − Kt)φ

2
t (z, r) dµ dκ = 0.

(A.13)

By (A.12), the tangent vectors φ̇, θ̇, and K̇ must satisfy

Dθ̇ + 2

∫

Rd×{0,1}
ρ1(z, β∗)φ0(z, r)φ̇(z, r) dµ dκ + Efe

{∂ρ1(Z, β∗)/∂K}K̇ = 0 (A.14)

and from (A.13) we know that K̇ solves
[

−[1 − F ∗(c)]

−1

]

K̇ + 2

∫

Rd×{0,1}
ρ−1(z, r,K0)φ0(z, r)φ̇(z, r) dµ dκ = 0, (A.15)

where ρ−1(z, r,K0) := (ρ2(z,K0), ρ3(r,K0))2×1. Therefore, stacking (A.14) and (A.15), we have that

Dρβ̇ + 2

∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ = 0, (A.16)

where Dρ is given by (A.3) and β̇ := (θ̇, K̇)(p+1)×1.

Now let W be a (q + 2) × (q + 2) symmetric positive-definite non-stochastic matrix. Premul-

tiplying (A.16) by (D′
ρWDρ)

−1D′
ρW and solving for β̇, we obtain that

β̇ = −2(D′
ρWDρ)

−1D′
ρW

∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ. (A.17)

Finally, substituting (A.17) in (A.16), we get that

(I(q+2)×(q+2) − Dρ(D
′
ρWDρ)

−1D′
ρW )

∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ = 0. (A.18)

Since x 7→ Dρ(D
′
ρWDρ)

−1D′
ρWx is an orthogonal projection onto the column space of Dρ using the

weighted inner product 〈x1, x2〉W := x′
1Wx2, it follows that (A.18) is satisfied by only those tangent

vectors φ̇ for which
∫

Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ lies in the column space of Dρ.

Let TW denote the set of tangent vectors that satisfy (A.18). The efficiency bound for estimat-

ing η(φ0) is given by supW∈W‖∇η‖2
W , where W is the set of (q+2)×(q+2) symmetric positive-definite

matrices, ∇η denotes the pathwise derivative of η, and ‖∇η‖W := sup{φ̇∈TW :φ̇ 6=0} |∇η(φ̇)| is the oper-

ator norm of ∇η. To calculate the bound, we first employ a guess-and-verify strategy to find, for any

W ∈ W, a φ∗
W ∈ T satisfying

∇η(φ̇) = 〈φ̇, φ∗
W 〉F for all φ̇ ∈ TW . (A.19)

Next, we pick a W ∗ ∈ W so that
∫

Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ∗
W ∗(z, r) dµ dκ lies in the column space of

Dρ. This means that φ∗
W ∗ ∈ TW ∗ and we can use this fact to show that ‖∇η‖W ∗ = ‖φ∗

W ∗‖F .17 Since

17By (A.19), ∇η(φ̇) = 〈φ̇, φ∗

W∗〉F for all φ̇ ∈ TW∗ . Hence, ‖∇η‖W∗ ≤ ‖φ∗

W∗‖F by Cauchy-Schwarz. But

since φ∗

W∗ ∈ TW∗ , we also have ‖φ∗

W∗‖2
F = ∇η(φ∗

W∗) ≤ ‖∇η‖W∗ ‖φ∗

W∗‖F ; i.e., ‖∇η‖W∗ ≥ ‖φ∗

W∗‖F .
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W ∗ is determined uniquely up to scale, see, e.g., the proof of Theorem A.1, the efficiency bound for

estimating η(φ0) is therefore given by ‖φ∗
W ∗‖2

F .

We use this procedure in Theorem A.1 to obtain the efficiency bound for estimating an arbitrary

linear combination of θ∗ (so that the object of interest is a real valued functional). A comparison with

the asymptotic variance in Theorem 4.2 then reveals that θ̂ is asymptotically efficient.

Theorem A.1. The efficiency bound for estimating θ∗ is given by (D′Ω−1D)−1.

Proof of Theorem A.1. Let ξ ∈ R
p be arbitrary. To obtain the efficiency bound for estimating

η(φ0) := ξ′θ∗, the tangent vectors φ̇ and θ̇ must satisfy ∇η(φ̇) = ζ ′β̇, where ζ := (ξ, 0)(p+1)×1. Hence,

by (A.17), for any W ∈ W we have that

∇η(φ̇) = −2ζ ′(D′
ρWDρ)

−1D′
ρW

∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ̇(z, r) dµ dκ.

By (A.19), we have to find a φ∗
W ∈ T such that

∫

Rd×{0,1}
{φ∗

W (z, r) + 0.5ζ ′(D′
ρWDρ)

−1D′
ρWρ(z, r, β∗)φ0(z, r)}φ̇(z, r) dµ dκ = 0 (A.20)

for all φ̇ ∈ TW . We claim that

φ∗
W (z, r) = −0.5ζ ′(D′

ρWDρ)
−1D′

ρWρ(z, r, β∗)φ0(z, r).

It is easily verified that φ∗
W ∈ T and satisfies (A.20) for all φ̇ ∈ TW . Hence, we only have to determine

W ∗ such that
∫

Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ∗
W ∗(z, r) dµ dκ lies in the column space of Dρ. But since

∫

Rd×{0,1}
ρ(z, r, β∗)φ0(z, r)φ∗

W (z, r) dµ dκ = −0.5VρWDρ(D
′
ρWDρ)

−1ζ,

it follows that
∫

Rd×{0,1} ρ(z, r, β∗)φ0(z, r)φ∗
W ∗(z, r) dµ dκ lies in the column space of Dρ if and only if

VρW
∗ ∝ Iq×q. Hence,

φ∗
W ∗(z, r) = −0.5ζ ′(D′

ρV
−1
ρ Dρ)

−1D′
ρV

−1
ρ ρ(z, r, β∗)φ0(z, r)

and the efficiency bound for estimating ξ′θ∗ is given by

4

∫

Rd×{0,1}
{φ∗

W ∗(z, r)}2 dµ dκ = ζ ′(D′
ρV

−1
ρ Dρ)

−1ζ
(A.4)
= ξ′(D′Ω−1D)−1ξ.

The desired result follows since ξ was arbitrary. �

Appendix B. Empirical likelihood based inference with censored data

We now briefly describe how the GMM based results obtained in Sections 4 also hold for the

empirical likelihood (EL) approach that has lately begun to emerge as a serious contender to GMM;

see, e.g., Qin and Lawless (1994), Imbens (1997), Kitamura (1997, 2001, 2006), Smith (1997, 2005),

Imbens, Spady, and Johnson (1998), and Owen (2001). Although EL and GMM based inference is

asymptotically equivalent up to a first order analysis, recent research by Newey and Smith (2004) has

shown that under certain regularity conditions EL has better second order properties than GMM; e.g.,

unlike GMM, the second order bias of EL does not depend upon the number of moment conditions
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which makes it very attractive for estimating models with large q, such as panel data models with

long time dimension, where GMM is known to perform poorly in small samples.

As for GMM with censored data, we use the moment function defined in (4.7) to do EL based

estimation and testing. So let pj denote the probability mass placed at the jth observation by a

discrete distribution that has support on the realized observations. For a fixed β, concentrate out

the pj ’s by solving the nonparametric maximum likelihood problem maxp1,...,pn

∑n
j=1 log pj subject to

the constraints that the pj’s are nonnegative,
∑n

j=1 pj = 1, and
∑n

j=1 ρ(Zj , β)pj = 0. The solution

is given by p̂j(β) := n−1[1 + λ′(β)ρ(Zj , β)]−1, j = 1, . . . , n, where the Lagrange multiplier λ(β)

satisfies
∑n

j=1 ρ(Zj , β)/[1 + λ′(β)ρ(Zj , β)] = 0. We define the empirical likelihood estimator of β∗ as

β̂el := argmaxβ∈B EL(β), where EL(β) :=
∑n

j=1 log p̂j(β) = −
∑n

j=1 log{1 + λ′(β)ρ(Zj , β)} − n log n.

Under (i)–(v) of Assumption 4.1, consistency of β̂el follows from Newey and Smith (2004,

Theorem 3.1). Moreover, under (vi)–(viii) of Assumption 4.1, EL and GMM estimators have the

same asymptotic distribution; see Theorem 3.2 of Newey and Smith and related discussion on p. 673

of Guggenberger and Smith (2005). Hence, β̂el is also asymptotically efficient. Note that in finite

samples the GMM and EL estimators are generally different although the two coincide if θ∗ is just

identified because then the EL probabilities p̂j(β) = 1/n for each j and β.

Parametric restrictions of the form H(θ∗) = 0 can be tested by using the empirical likelihood

ratio test described in Qin and Lawless (1994, Theorem 2). An EL based specification test can also be

developed if θ∗ is overidentified. Besides being internally studentized and invariant to nonsingular and

algebraic transformations of the moment conditions, this test has been shown by Kitamura (2001)

to be optimal in terms of a large deviations criterion. So let β̂ denote n1/2-consistent preliminary

estimator of β∗; e.g., β̂ can be the GMM or EL estimator defined previously. The restricted, i.e., under

(2.1), empirical likelihood can be written as ELr :=
∑n

j=1 log p̂j(β̂). Next, consider the unrestricted

problem where the model is not imposed. It is well known that the nonparametric maximum likelihood

estimator of fe in the absence of any auxiliary information puts mass 1/n at each realized observation

and is zero elsewhere. Therefore, the unrestricted nonparametric likelihood is given by ELur :=

−n log n. Now let ELR := 2(ELur − ELr) = 2
∑n

j=1 log{1 + λ′(β̂)ρ(Zj , β̂)}. Then ELR can be

regarded as an analog of the usual parametric likelihood ratio test statistic; i.e., (2.1) is rejected if

ELR is large enough. By Qin and Lawless (1994, Corollary 4), ELR
d
−→ χ2

q−p under the null; hence,

critical values are easily obtained.

Appendix C. Data Appendix

Compulsory schooling law variables. Since the history of compulsory schooling laws in the U.S. is

by now well documented, see, in particular, Lleras-Muney (2002) and Goldin and Katz (2003), we will

not describe them in great detail here. Essentially, there were five possible restrictions on educational

attendance: (i) maximum age by which a child must be enrolled, (ii) minimum age at which a child

may drop out, (iii) minimum years of schooling before dropping out, (iv) minimum age for a work

permit, and (v) minimum schooling required for a work permit. In the years relevant to our sample,

1939 to 1958, states changed compulsory attendance laws many times, usually upwards but sometimes

downwards. Papers on the topic have used a variety of combinations of these restrictions as measures
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of compulsory schooling. We use required years of schooling, defined as the difference between the

minimum dropout age and the maximum enrollment age following Lleras-Muney and Goldin and Katz.

We follow Acemoglu and Angrist (2001) and Lochner and Moretti (2004) in assigning compulsory

attendance laws to people on the basis of state of birth and the year when the individual was 14

years old (with the exception that the enrollment age is assigned based on the laws in place when the

individual was 7 years old). We also follow them in creating four indicator variables, depending on

whether years of compulsory schooling are 8 or less, 9, 10, and 11 or more.

Age at first marriage. The Census dataset includes information on age in years and age at first

marriage in years. It also provides information on quarter of birth and quarter of first marriage. We

use these variables to calculate age and age at first marriage in quarters as follows. In 1960, 1970,

and 1980, the Census took place on April 1st, i.e., right at the beginning of the second quarter. We

assume that each individual’s birthday took place in the middle of the quarter of birth. Thus, we can

calculate age in quarters as being equal to

Age (in quarters) =



























age (in years) + 0.125 if birth quarter = 1

age (in years) + 0.375 if birth quarter = 4

age (in years) + 0.625 if birth quarter = 3

age (in years) + 0.875 if birth quarter = 2

Similarly, we use information on quarter of birth and quarter of first marriage to calculate

age at first marriage in quarters. If the marriage quarter is one quarter after the birth quarter, then

we calculate age at first marriage as being age at first marriage (in years) plus 0.25. If the marriage

quarter is two quarters after the birth quarter, then we calculate age at first marriage as being age at

first marriage (in years) plus 0.5. If the marriage quarter is three quarters after the birth quarter, then

we calculate age at first marriage as being age at first marriage (in years) plus 0.75. If the marriage

quarter and the birth quarter coincide, we cannot tell whether the marriage date is before or after

the birthday and so the detailed age at marriage could either be very close to the reported age at

marriage or very close to the next age. In this case, we simply calculate detailed age at first marriage

as being age at marriage plus 0.5.
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Appendix D. Tables and Figures

Table 1. Descriptive statistics for women by year

Mean Std. Dev. Min Max

1960 (220730 observations)

Birth Cohort 1934.62 5.98 1925 1944

Age 25.88 5.99 16.1 35.9

Age at First Marriage 20.18 3.59 14.3 35.9

Never Married 0.29 0.45 0 1

White 0.88 0.32 0 1

≤ 8 Years of Schooling Required 0.19 0.39 0 1

9 Years of Schooling Required 0.66 0.47 0 1

10 Years of Schooling Required 0.08 0.27 0 1

≥ 11 Years of Schooling Required 0.07 0.26 0 1

1970 (216036 observations)

Birth Cohort 1934.69 5.94 1925 1944

Age 35.81 5.94 26.1 45.9

Age at First Marriage 21.73 5.19 14.3 45.9

Never Married 0.07 0.25 0 1

White 0.88 0.32 0 1

≤ 8 Years of Schooling Required 0.19 0.39 0 1

9 Years of Schooling Required 0.66 0.47 0 1

10 Years of Schooling Required 0.08 0.27 0 1

≥ 11 Years of Schooling Required 0.07 0.26 0 1

1980 (223903 observations)

Birth Cohort 1934.73 5.95 1925 1944

Age 45.76 5.96 36.1 55.9

Age at First Marriage 22.57 7.01 12.3 55.9

Never Married 0.05 0.22 0 1

White 0.88 0.33 0 1

≤ 8 Years of Schooling Required 0.19 0.39 0 1

9 Years of Schooling Required 0.66 0.47 0 1

10 Years of Schooling Required 0.08 0.27 0 1

≥ 11 Years of Schooling Required 0.07 0.26 0 1
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Table 2. Descriptive statistics for men by year

Mean Std. Dev. Min Max

1960 (213184 observations)

Birth Cohort 1934.69 6.00 1925 1944

Age 25.81 6.00 16.1 35.9

Age at First Marriage 21.85 3.96 14.3 35.9

Never Married 0.42 0.49 0 1

White 0.89 0.31 0 1

≤ 8 Years of Schooling Required 0.19 0.39 0 1

9 Years of Schooling Required 0.66 0.47 0 1

10 Years of Schooling Required 0.08 0.27 0 1

≥ 11 Years of Schooling Required 0.07 0.26 0 1

1970 (207129 observations)

Birth Cohort 1934.71 5.94 1925 1944

Age 35.79 5.95 26.1 45.9

Age at First Marriage 24.32 5.25 14.3 45.9

Never Married 0.10 0.30 0 1

White 0.90 0.30 0 1

≤ 8 Years of Schooling Required 0.19 0.39 0 1

9 Years of Schooling Required 0.66 0.47 0 1

10 Years of Schooling Required 0.08 0.27 0 1

≥ 11 Years of Schooling Required 0.07 0.26 0 1

1980 (212244 observations)

Birth Cohort 1934.80 5.93 1925 1944

Age 45.70 5.93 36.1 55.9

Age at First Marriage 25.44 7.25 12.3 55.9

Never Married 0.07 0.25 0 1

White 0.89 0.31 0 1

≤ 8 Years of Schooling Required 0.19 0.39 0 1

9 Years of Schooling Required 0.66 0.47 0 1

10 Years of Schooling Required 0.08 0.27 0 1

≥ 11 Years of Schooling Required 0.07 0.26 0 1
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Table 3. Proportion censored by cohort and year

age in % of women censored % of men censored

1960 1960 1970 1980 1960 1970 1980

16 94 13 7 99 20 9

17 88 11 6 98 17 8

18 75 10 6 95 15 8

19 59 9 6 87 13 8

20 46 8 6 75 12 7

21 34 7 5 62 10 7

22 25 7 5 50 10 6

23 19 7 5 40 9 6

24 15 6 5 32 8 7

25 13 6 5 27 9 6

26 11 5 5 22 8 6

27 9 6 4 19 7 6

28 9 5 5 16 7 5

29 9 5 5 15 7 6

30 8 5 4 13 7 6

31 7 5 4 12 7 6

32 6 5 4 11 7 6

33 6 5 5 11 7 6

34 6 5 4 10 7 6

35 6 5 5 9 6 6

36 6 5 4 8 6 6

37 6 6 5 8 6 6

38 5 5 5 8 6 6

39 6 5 5 8 6 6

40 6 6 5 7 6 6
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Table 4. Effects of compulsory schooling laws and race on log of age at first

marriage. Also included in the specification, but not reported in this table, are

a constant, year-of-birth indicators, and state dummies.

Women OLS60 OLS70 OLS80 GMM60 GMM70 TOBIT60 TOBIT70

9 Years Schooling Reqd. .0155∗
(.0016)

.0078∗
(.0021)

.0094∗
(.0025)

.0092∗
(.0022)

.0090∗
(.0021)

.0031
(.0017)

.0076∗
(.0021)

10 Years Schooling Reqd. .0229∗
(.0020)

.0109∗
(.0029)

.0143∗
(.0034)

.0128∗
(.0030)

.0127∗
(.0029)

.0075∗
(.0026)

.0101∗
(.0030)

11+ Years Schooling Reqd. .0449∗
(.0037)

.0309∗
(.0051)

.0180∗
(.0060)

.0173∗
(.0053)

.0217∗
(.0050)

.0156∗
(.0048)

.0292∗
(.0056)

White −.0257∗
(.0012)

−.0467∗
(.0017)

−.0813∗
(.0021)

−.0828∗
(.0017)

−.0772∗
(.0017)

−.0386∗
(.0014)

−.0524∗
(.0016)

Hausman statistic – – – 1.2776
[0.7345]

3.8332
[0.2800]

– –

Men OLS60 OLS70 OLS80 GMM60 GMM70 TOBIT60 TOBIT70

9 Years Schooling Reqd. .0111∗
(.0015)

.0073∗
(.0021)

.0030
(.0025)

.0033
(.0022)

.0056∗
(.0021)

−.0028
(.0018)

.0062∗
(.0021)

10 Years Schooling Reqd. .0202∗
(.0018)

.0119∗
(.0028)

.0127∗
(.0034)

.0117∗
(.0030)

.0127∗
(.0028)

.0053
(.0028)

.0108∗
(.0030)

11+ Years Schooling Reqd. .0355∗
(.0034)

.0150∗
(.0052)

.0047
(.0062)

.0024
(.0055)

.0074
(.0051)

.0056
(.0052)

.0119∗
(.0056)

White −.0153∗
(.0010)

−.0435∗
(.0017)

−.0778∗
(.0021)

−.0753∗
(.0019)

−.0743∗
(.0018)

−.0295∗
(.0015)

−.0505∗
(.0017)

Hausman statistic – – – 1.6544
[0.6471]

6.2699
[0.0992]

– –

Standard errors are in parentheses and p-values are in square brackets. An asterisk denotes that the

effect is significant at 5% level of significance. The Hausman statistic tests the null hypothesis that

the three compulsory schooling law estimates are the same as those estimated by OLS80.
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Table 5. (Robustness check) Effects of compulsory schooling laws and race on

log of age at first marriage when age at first marriage for unmarried individuals

in the refreshment sample is imputed to be 55 or 65 years.

55 years 65 years

Women OLS80 GMM60 GMM70 OLS80 GMM60 GMM70

9 Years Schooling Reqd. .0099∗
(.0027)

.0097∗
(.0023)

.0095∗
(.0023)

.0105∗
(.0029)

.0103∗
(.0026)

.0101∗
(.0025)

10 Years Schooling Reqd. .0130∗
(.0038)

.0116∗
(.0034)

.0115∗
(.0033)

.0137∗
(.0042)

.0122∗
(.0037)

.0121∗
(.0036)

11+ Years Schooling Reqd. .0137∗
(.0065)

.0129∗
(.0058)

.0175∗
(.0055)

.0141∗
(.0071)

.0131∗
(.0063)

.0177∗
(.0061)

White −.0957∗
(.0024)

−.0969∗
(.0021)

−.0910∗
(.0020)

−.1056∗
(.0026)

−.1065∗
(.0024)

−.1004∗
(.0023)

Hausman statistic – 1.0152
[0.7976]

3.5848
[0.3099]

– 0.9352
[0.8169]

3.2461
[0.3552]

Men OLS80 GMM60 GMM70 OLS80 GMM60 GMM70

9 Years Schooling Reqd. .0017
(.0027)

.0019
(.0024)

.0045∗
(.0023)

.0018
(.0030)

.0021
(.0027)

.0047
(.0025)

10 Years Schooling Reqd. .0107∗
(.0038)

.0096∗
(.0034)

.0108∗
(.0032)

.0113∗
(.0042)

.0102∗
(.0039)

.0113∗
(.0036)

11+ Years Schooling Reqd. −.0018
(.0068)

−.0041
(.0061)

.0014
(.0058)

−.0026
(.0075)

−.0052
(.0068)

.0005
(.0064)

White −.0915∗
(.0024)

−.0885∗
(.0022)

−.0873∗
(.0021)

−.1016∗
(.0027)

−.0981∗
(.0025)

−.0968∗
(.0024)

Hausman statistic – 1.5428
[0.6724]

6.3554
[0.0955]

– 1.5533
[0.6700]

5.9269
[0.1152]

Standard errors are in parentheses and p-values are in square brackets. An asterisk denotes that the

effect is significant at 5% level of significance. The Hausman statistic tests the null hypothesis that

the three compulsory schooling law estimates are the same as those estimated by OLS80.
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Figure 1. Estimates of F ∗(t) := Prf∗(Y ∗ ≤ t) using the refreshment sample

alone are plotted using a dashed line and estimates using the enriched sample

are drawn with a solid line. However, they are virtually indistinguishable.
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Figure 2. Cohort effects for women.
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Figure 3. Cohort effects for men.
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Figure 4. The density of ε∗, an equiprobable mixture of N(−2, 1) and N(2, 1)

random variables, is represented by the solid line; the standard normal density,

drawn for reference, is the dashed line.
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Table 6. Simulation results when c is fixed and nR/nM = 20%.

Censoring n = 120 n = 600

High (75%) Bias Variance MSE MSE/MSE(θ̂) Bias Variance MSE MSE/MSE(θ̂)

Ȳ -2.1990 0.0021 4.8376 34.3925 -2.1996 0.0004 4.8387 176.4706

TOBIT -1.1195 0.0722 1.3255 9.4236 -1.1291 0.0134 1.2882 46.9820

θ̂R 0.0004 0.2504 0.2504 1.7805 0.0033 0.0503 0.0503 1.8335

θ̂ 0.0036 0.1406 0.1407 1.0000 0.0007 0.0274 0.0274 1.0000

Low (25%)

Ȳ -0.2014 0.0391 0.0796 1.7395 -0.2000 0.0078 0.0478 5.2541

TOBIT 0.1690 0.0752 0.1038 2.2673 0.1663 0.0147 0.0424 4.6587

θ̂R -0.0000 0.2461 0.2461 5.3759 0.0014 0.0494 0.0494 5.4256

θ̂ -0.0012 0.0458 0.0458 1.0000 -0.0003 0.0091 0.0091 1.0000

Table 7. Simulation results when c is random and nR/nM = 20%.

Censoring n = 120 n = 600

High (75%) Bias Variance MSE MSE/MSE(θ̂) Bias Variance MSE MSE/MSE(θ̂)

Ȳ -2.2841 0.0093 5.2262 34.1797 -2.2832 0.0019 5.2147 169.4479

TOBIT -0.7532 0.1084 0.6757 4.4188 -0.7654 0.0200 0.6058 19.6852

θ̂R 0.0015 0.2499 0.2499 1.6346 -0.0008 0.0507 0.0507 1.6464

θ̂ 0.0023 0.1529 0.1529 1.0000 -0.0019 0.0308 0.0308 1.0000

Low (25%)

Ȳ -0.2830 0.0379 0.1180 2.3276 -0.2829 0.0076 0.0877 8.7884

TOBIT 0.1110 0.0700 0.0823 1.6239 0.1077 0.0141 0.0257 2.5749

θ̂R -0.0024 0.2442 0.2442 4.8176 0.0023 0.0497 0.0497 4.9833

θ̂ -0.0025 0.0507 0.0507 1.0000 0.0005 0.0100 0.0100 1.0000
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Table 8. Simulation results when c is fixed and nR/nM = 80%.

Censoring n = 180 n = 900

High (75%) Bias Variance MSE MSE/MSE(θ̂) Bias Variance MSE MSE/MSE(θ̂)

Ȳ -2.1996 0.0021 4.8404 107.1511 -2.1996 0.0004 4.8388 558.0203

TOBIT -1.1229 0.0753 1.3362 29.5806 -1.1277 0.0133 1.2851 148.1967

θ̂R 0.0010 0.0638 0.0638 1.4133 -0.0004 0.0125 0.0125 1.4405

θ̂ -0.0003 0.0452 0.0452 1.0000 0.0005 0.0087 0.0087 1.0000

Low (25%)

Ȳ -0.1990 0.0392 0.0787 2.7364 -0.1998 0.0079 0.0478 8.4238

TOBIT 0.1704 0.0758 0.1049 3.6440 0.1668 0.0149 0.0427 7.5292

θ̂R -0.0008 0.0633 0.0633 2.2013 -0.0001 0.0124 0.0124 2.1857

θ̂ -0.0005 0.0288 0.0288 1.0000 -0.0002 0.0057 0.0057 1.0000

Table 9. Simulation results when c is random and nR/nM = 80%.

Censoring n = 180 n = 900

High (75%) Bias Variance MSE MSE/MSE(θ̂) Bias Variance MSE MSE/MSE(θ̂)

Ȳ -2.2827 0.0091 5.2199 111.0475 -2.2827 0.0018 5.2127 571.0471

TOBIT -0.7524 0.1140 0.6801 14.4692 -0.7618 0.0202 0.6005 65.7898

θ̂R 0.0021 0.0633 0.0633 1.3466 0.0005 0.0123 0.0123 1.3517

θ̂ 0.0005 0.0470 0.0470 1.0000 0.0007 0.0091 0.0091 1.0000

Low (25%)

Ȳ -0.2824 0.0382 0.1179 3.9918 -0.2837 0.0078 0.0883 15.1844

TOBIT 0.1107 0.0695 0.0817 2.7660 0.1067 0.0142 0.0256 4.4095

θ̂R -0.0005 0.0632 0.0632 2.1393 -0.0009 0.0124 0.0124 2.1379

θ̂ -0.0004 0.0295 0.0295 1.0000 -0.0013 0.0058 0.0058 1.0000



39

References

Acemoglu, D. and J. Angrist (2001): “How large are human capital externalities? Evidence from

compulsory schooling laws,” in NBER Macroeconomics Annual 2000, ed. by B. S. Bernanke and

K. Rogoff, MIT Press.

Akerlof, G. A. (1998): “Men without children,” Economic Journal, 108, 287–309.

Amemiya, T. (1984): “Tobit models: A survey,” Journal of Econometrics, 4, 3–61.

Angrist, J. D. and A. B. Kreuger (1992): “The effect of age at school entry on educational

attainment: An application of instrumental variables with moments from two samples,” Journal of

the American Statistical Association, 87, 328–336.

Arellano, M. and C. Meghir (1992): “Female labor supply and on-the-job search: An empirical

model estimated using complementary data sets,” Review of Economic Studies, 59, 537–557.

Bergstrom, T. and R. F. Schoeni (1996): “Income prospects and age-at-marriage,” Journal of

Population Economics, 9, 115–130.

Black, S. E., P. J. Devereux, and K. G. Salvanes (2008): “Staying in the classroom and out of

the maternity ward? The effect of compulsory schooling laws on teenage births,” Economic Journal,

118, 1025–1054.

Blundell, R. W. and R. J. Smith (1993): “Simultaneous microeconometric models with cen-

sored or qualitative dependent variables,” in Econometrics, Amsterdam: North-Holland, vol. 11 of

Handbook of Statistics, 117–143.

Chen, X., H. Hong, and E. Tamer (2005): “Measurement error models with auxiliary data,”

Review of Economic Studies, 72, 343–366.

Chen, X., H. Hong, and A. Tarozzi (2004): “Semiparametric efficiency in GMM models of

nonclassical measurement errors, missing data and treatment effects,” Manuscript.

Coale, A. (1971): “Age patterns of marriage,” Population Studies, 25, 193–214.

Goldin, C. and L. F. Katz (2002): “The power of the Pill: Oral contraceptives and womens career

and marriage decisions,” Journal of Political Economy, 110, 730–770.

——— (2003): “Mass secondary schooling and the State: The role of state compulsion in the high

school movement,” NBER Working Paper 10075.

Guggenberger, P. and R. J. Smith (2005): “Generalized empirical likelihood estimators and tests

under partial, weak, and strong identification,” Econometric Theory, 21, 667–709.

Hajivassiliou, V. A. and P. A. Ruud (1994): “Classical estimation methods for LDV models using

simulation,” in Handbook of Econometrics, vol. IV, ed. by R. Engle and D. McFadden, Elsevier

Science B.V., 2383–2441.

Heckman, J. J. (1985): “Selection bias and self-selection,” in The New Palgrave: A dictionary of

Economics, Stockton, New-York: MacMillan Press, 287–297.

Hellerstein, J. and G. W. Imbens (1999): “Imposing moment restrictions from auxiliary data by

weighting,” Review of Economics and Statistics, 81, 1–14.

Hirano, K., G. W. Imbens, G. Ridder, and D. B. Rubin (2001): “Combining panel data sets

with attrition and refreshment samples,” Econometrica, 69, 1645–1659.



40

Hu, Y. and G. Ridder (2003): “Estimation of nonlinear models with measurement error using

marginal information,” Manuscript.

Ichimura, H. and E. Martinez-Sanchis (2005): “Identification and estimation of GMM models

by a combination of two data sets,” Manuscript.

Imbens, G. W. (1997): “One-step estimators for over-identified generalized method of moments

models,” Review of Economic Studies, 64, 359–383.

Imbens, G. W. and T. Lancaster (1994): “Combining micro and macro data in microeconomic

models,” Review of Economic Studies, 61, 655–680.

Imbens, G. W., R. H. Spady, and P. Johnson (1998): “Information theoretic approaches to

inference in moment condition models,” Econometrica, 66, 333–357.

Kitamura, Y. (1997): “Empirical likelihood methods with weakly dependent processes,” Annals of

Statistics, 25, 2084–2102.

——— (2001): “Asymptotic optimality of empirical likelihood for testing moment restrictions,”

Econometrica, 69, 1661–1672.

——— (2006): “Empirical Likelihood Methods in Econometrics: Theory and Practice,” Invited sym-

posium on Weak Instruments and Empirical Likelihood at the 9th World Congress of the Econo-

metric Society.

Koball, H. (1998): “Have African American men become less committed to marriage? Explaining

the twentieth century racial cross-over in mens marriage timing,” Demography, 35, 251–258.

Korenman, S. and D. Neumark (1991): “Does marriage really make men more productive,”

Journal of Human Resources, 26, 282–307.

——— (1992): “Marriage, motherhood, and wages,” Journal of Human Resources, 27, 233–255.

Lleras-Muney, A. (2002): “Were compulsory attendance and child labor laws effective? An analysis

from 1915 to 1939,” Journal of Law and Economics, 45, 401–435.

Lochner, L. and E. Moretti (2004): “The effect of education on crime: Evidence from prison

inmates, arrests, and self-reports,” American Economic Review, 94, 155–189.

Nevo, A. (2003): “Using weights to adjust for sample selection when auxiliary information is avail-

able,” Journal of Business and Economic Statistics, 21, 43–52.

Newey, W. K. and D. McFadden (1994): “Large sample estimation and hypothesis testing,”

in Handbook of Econometrics, vol. IV, ed. by R. Engle and D. McFadden, Elsevier Science B.V.,

2111–2245.

Newey, W. K. and R. J. Smith (2004): “Higher order properties of GMM and generalized empirical

likelihood estimators,” Econometrica, 72, 219–255.

Oreopoulos, P. (2007): “Do dropouts drop out too soon? Wealth, health, and happiness from

compulsory schooling,” Journal of Public Economics, 91, 2213–2229.

Owen, A. (2001): Empirical likelihood, Chapman and Hall/CRC.

Powell, J. L. (1986): “Symmetrically trimmed least squares estimation for tobit models,” Econo-

metrica, 54, 1435–1460.

——— (1994): “Estimation of semiparametric models,” in Handbook of Econometrics, vol. IV, ed. by

R. Engle and D. McFadden, Elsevier Science B.V., 2443–2521.



41

Qin, J. and J. Lawless (1994): “Empirical likelihood and general estimating equations,” Annals of

Statistics, 22, 300–325.

Ridder, G. and R. Moffitt (2007): “The econometrics of data combination,” in Handbook of

Econometrics, vol. 6B, ed. by J. J. Heckman and E. E. Leamer, Elsevier Science B.V., 5469–5547.

Rigobon, R. and T. M. Stoker (2003): “Censored regressors and expansion bias,” Working paper

4451-03. MIT Sloan School of Management.

Ruggles, S., M. Sobek, T. Alexander, C. A. Fitch, R. Goeken, P. K. Hall, M. King, and

C. Ronnander (2004): Integrated Public Use Microdata Series: Version 3.0, Minnesota Population

Center, Minneapolis, MN.

Severini, T. A. and G. Tripathi (2001): “A simplified approach to computing efficiency bounds

in semiparametric models,” Journal of Econometrics, 102, 23–66.

Smith, R. J. (1997): “Alternative semi-parametric likelihood approaches to generalized method of

moments estimation,” Economic Journal, 107, 503–519.

——— (2005): “Weak Instruments and Empirical Likelihood: A Discussion of the Papers by D.W.K.

Andrews and J. H. Stock and Y. Kitamura,” Invited discussion of the symposium on Weak Instru-

ments and Empirical Likelihood at the 9th World Congress of the Econometric Society.

Tripathi, G. (2007): “Moment based inference with stratified data,” Accepted for publication in

Econometric Theory.

Department of Economics, University College Dublin, Dublin, Ireland.

E-mail address : devereux@ucd.ie

Department of Economics, University of Connecticut, Storrs, CT-06269, USA.

E-mail address : gautam.tripathi@uconn.edu


	combinedata-final.pdf
	combinedata-final.pdf
	1. Introduction
	2. Censoring in a moment based framework
	2.1. The censored sample
	2.2. Examples

	3. Data combination
	4. Inference with censored data
	5. Application
	6. Simulation
	7. Conclusion
	Acknowledgements
	Appendix A. Proofs of the results in section 4
	A.1. Efficiency bounds under censoring

	Appendix B. Empirical likelihood based inference with censored data
	Appendix C. Data Appendix
	Compulsory schooling law variables
	Age at first marriage

	Appendix D. Tables and Figures
	References



