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Signaling in First-Price Auctions

Thomas Rieck∗

September 27, 2010

Abstract

It is commonly assumed in private value auctions that bidders have no information

about the realization of the other bidders’ valuations. Nevertheless, an informative

public signal about the realization may be released by a bidder while he learns

his own valuation. Using a simple discrete asymmetric first-price auction setting,

we show that a bidder may indeed benefit from the presence of an informative

signal about his own valuation. We characterize the optimal signal and show that a

signal is not beneficial if it is too precise. The latter result carries over to a general

continuous asymmetric first-price auction model. Finally, we use a specific signaling

structure with uniform distributions to show that signaling need not be beneficial

for any precision of the signal.

JEL: D44, D82

Keywords: asymmetric auction, first-price auction, signaling

1 Introduction

Can it be beneficial to reveal some information about one’s own valuation to another

bidder in a first-price auction with private values? On the first glance, the answer seems

to be an obvious no: one bidder receives additional information while the revealing bidder’s

information level stays the same. In principle, the informed bidder should be able to use

this information to his own advantage and take away part of the profit of the revealing

bidder. On the second glance however, things are not so clear: a bidder wants to appear

weak in the eyes of his opponent, such that the opponent tries to profit from this weakness

by reducing his bid. This increases the chances of winning for the bidder who reveals to be

weak. Of course, there is also an opposing effect if a bidder appears strong. It is the goal

of this paper to characterize circumstances under which it is profitable (or not profitable)

to release an informative public signal while learning one’s valuation.

∗Bonn Graduate School of Economics (BGSE), Kaiserstraße 1, 53113 Bonn, Germany, +49-228-

7362173, rieck@uni-bonn.de. I thank Deniz Dizdar, Eric Maskin, Konrad Mierendorff, Benny Moldovanu

and Marzena Rostek for valuable comments and discussions.



Signaling in First-Price Auctions 2

A typical situation where an informative signal could emerge can be found in the context

of procurement auctions. Consider a manufacturer who wants to compete in a first-price

procurement auction1 to sell a new product. Before he takes part in the auction he has to

acquire information about his production costs and about the quality of the new product.

Costs and quality depend on the production technology and the costs for buying the neces-

sary components. If the competitors in the auction are able to observe which components

the manufacturer buys for which price, they update their beliefs about quality and price

of the manufacturer’s product. Nevertheless, the manufacturer is the only one who knows

his production technology, while the competitors observe only an informative signal. How

a signal is perceived by the competitors and how their updating works depends very much

on the context, the possible production technologies and the competitor’s beliefs about

these things. If the manufacturer buys the components secretly, no signal is released. Usu-

ally, the manufacturer has the power to decide whether he uses a secret buying process

or whether he makes its results public. For example, if he uses a request for quotation to

acquire the components, the manufacturer provides public information about the specifi-

cations of the components he intends to use. Alternatively, he would be free to secretly

approach possible suppliers and get their offers without revealing any public information.

In our model, two bidders take part in a first-price auction with private values. One of the

two bidders has the option to release a signal about his valuation while he learns it. Thus,

he has to commit to releasing the signal before he knows his valuation. In case a signal

is released, the receiving bidder updates his beliefs about the valuation of the sending

bidder. As a consequence, the two bidders bid as in an asymmetric auction. Furthermore,

for each signal realization the resulting beliefs differ and thus do the distributions of the

players’ valuations in the auction. This is the major difficulty of this paper: to derive

the expected profit of using these signals, an expectation over the bidders’ payoffs of

different asymmetric auctions has to be calculated. A closed-form solution for the bidders’

equilibrium strategies is necessary to do this explicitly. Unfortunately, a general closed-

form solution for asymmetric first-price auctions is not known.

A crucial element for the success of signaling is the structure of the signals. The results

of this paper show that a very precise signal is not favorable from the sender’s point

of view. Nevertheless, we provide a signaling structure for which signaling is favorable:

such a structure contains some information about the valuation, but is not too precise.

However, in general a signaling precision guaranteeing the success of signaling does not

need to exist: for a different structure, we show that signaling is never favorable for the

sender, no matter what the precision is. In particular, one setting where signaling may

be favorable is a simple discrete first-price auction setting. Each bidder’s valuation and

1We think of a multi-attribute auction where bids are price-quality combinations evaluated by a scoring

rule. This auction is essentially strategically equivalent to a standard first-price auction (see Asker and

Cantillon (2008)). It is thus safe to transfer the results of this paper, which are obtained for standard

first-price auctions, to procurement auctions.
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the signal may be either high, medium, or low. The signal is informative in the sense

that it will take the true value with a larger probability than the other two values, and

the remaining two values are taken with equal probability. We show that releasing such

a signal is beneficial for a bidder, as long as the signal is not too precise (the probability

of revealing the true valuation is not close to one). Additionally, we derive the optimal

probability of revealing the true valuation from the sending bidder’s perspective.

Our other results are obtained in a continuous environment: the valuations of the two

bidders are drawn from the same interval. Signals may realize in an interval around the

true valuation. This interval is shifted for different realizations. The signal precision is

given by the length of this interval – the shorter the interval, the more precise the signal.

Using only mild assumptions on the signal distributions we give an explicit length of the

interval such that signaling is not beneficial if the signals stem from an interval at most as

long as this length. In our final setting, we assume all distributions to be uniform. This is

the only continuous environment where a general explicit solution is known (Kaplan and

Zamir (2007)) – in particular, a solution is needed that allows for different supports of the

distributions of the bidders’ valuations. With this signaling structure it is not beneficial

for a bidder to release a signal about his realized valuation, irrespective of the signal

precision.

This problem has not been addressed in the literature so far. The most related paper is

Hoerner and Sahuguet (2007). They explain bluffing and jump bidding in a model with two

bidders and an initial stage. In this initial stage, one of the two bidders makes an opening

bid and the other bidder has to match it to start the actual auction following this stage.

A similar feature to our model is the fact that the beliefs of the bidders change depending

on the opening bid and thus an asymmetric auction is played afterward. However, the

opening bid has to be paid in any case. Thus, the signaling happening in the initial stage

has a direct influence on the payoff. Hoerner and Sahuguet (2007) concentrate mostly

on an all-pay auction for the second stage, but also briefly discuss a discrete first-price

auction related to the one we look at in parts of this paper. In a similar framework, Ye

(2007) looks at the concept of indicative bidding. Potential bidders submit non-binding

bids in a stage before the actual auction starts, which is related to the signals in our

model. However, these bids are used to select the participants for the auction and thus

have a direct influence on the payoffs. Furthermore, bidders only learn the highest rejected

non-binding bid, such that the following auction is a symmetric one – and not asymmetric,

as in our case.

Another related line of research is dealing with information acquisition in auctions. Berge-

mann and Valimaki (2002) study efficiency in a general mechanism design problem where

agents do not know their type but may acquire a signal about it. More precise signals

are more expensive. In contrast to our model, agents do not learn anything about the

other agents, but only about themselves. Persico (2000) shows that agents acquire more

information about their types in a first-price auction compared to a second-price auction.
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Compte and Jehiel (2007) compare sealed-bid and dynamic formats, where some bidders

are informed and others are uninformed. In their model, more information is acquired in

the dynamic format, which goes along with a higher revenue for the seller.

Furthermore, our paper is connected to the literature on information disclosure by the

seller. Milgrom and Weber (1982) show that a seller wants to disclose public information

which is affiliated with the buyers’ types. Eso and Szentes (2007) give a similar result

when information is given to the bidders privately by the seller. Board (2009) studies the

English auction where the seller may be worse off in some cases when releasing information.

Looking for the optimal auction, in Bergemann and Pesendorfer (2007) the seller has full

control how the buyers learn their types. Finally, Kaplan and Zamir (2000) explore the

role of commitment.

The main difficulty of this paper lies in solving an asymmetric auction. We use the explicit

solution for two bidders with uniform distributions and a general support by Kaplan and

Zamir (2007). Plum (1992) provides the differential equations characterizing a general

solution when the support of both bidders’ distributions has the same lower bound. He

also provides an explicit solution for power distributions. Numerical solutions are provided

by Gayle and Richard (2008) and the general questions of uniqueness and existence are

examined by Maskin and Riley (2000a, 2000b, 2003) and Lebrun (1999, 2006).

This paper is organized as follows: in Section 2 we introduce signaling in a discrete first-

price auction. The general model with continuous typespaces is studied in Section 3 and

a special case of this model with uniform distributions is given in Section 4. We conclude

in Section 5. We derive the equilibrium for a discrete asymmetric auction in Appendix A

and proofs are given in Appendix B.

2 Signaling in a Discrete Environment

We consider a first-price auction with two bidders, i = 1, 2, and discrete valuations vi ∈
V := {0, 1, 2}. The valuations are independently distributed and private information of

the bidders. fi(vi) is the probability that valuation vi is realized for bidder i. Bidder 1 may

send a signal s ∈ S := {0, 1, 2} = V about his realized valuation. The signal is common

knowledge to both agents. The decision whether to send a signal or not is made before

he knows his valuation. For a given v1 ∈ V , we denote the probability of sending a signal

value of s by h(s|v1). As the signaling should reveal some information about the true

realization, we assume that h(v1|v1) > f1(v1) and for s 6= v1 we assume h(s|v1) < f1(v1).

Consequently, bidder 2 updates his beliefs about bidder 1’s true valuation to the posteriors

g(v1|s) according to

g(v1|s) =
h(s|v1) · f1(v1)

∑2
j=0 h(s|j) · f1(j)

. (1)

As a result, an asymmetric auction is played. To be able to study the consequences of

signaling in a first-price auction, we need to know some properties of the equilibrium
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in this asymmetric auction. By Proposition 2 in Maskin and Riley (2000b) we know

that a monotonic equilibrium exists in this setting if a Vickrey tie-breaking rule is used.

According to this rule, ties are broken by performing a Vickrey auction among the bidders

with the same bid. The resulting payment of the Vickrey tie-breaking auction has to be

paid on top of the winning bid of the actual first-price auction. Ties in the Vickrey auction

are broken by randomizing with equal probability. This kind of tie-breaking rule ensures

that in equilibrium a bidder with a higher valuation may submit the same bid as another

bidder with a lower valuation and still win the auction with probability one (while two

bidders with the same valuation and the same bid win with equal probability). We assume

a Vickrey tie-breaking rule in the following and concentrate on monotonic equilibria. The

detailed derivation of the equilibrium, which is in mixed strategies, is given in Appendix

A.

For concreteness, when studying signaling we assume that the a priori-distribution of

both bidders’ valuations is uniform, fi(vi) = 1
3

for i = 1, 2 and vi ∈ V . Furthermore, we

assume that signaling is of the following form: both signal realizations not meeting the true

valuation are equally likely, h(s|v1) = h(s′|v1) < h(v1|v1) for s 6= s′ 6= v1 6= s. Additionally,

the probability of sending a signal containing the true valuation, the signal precision r, is

assumed to be the same irrespective of the valuation. Hence, for all v1, v
′

1 ∈ V it holds that

r := h(v1|v1) = h(v′

1|v′

1). Consequently, the posterior in (1) becomes g(v1|s) = h(s|v1), as
∑2

j=0 h(s|j) = 1.

With the help of Proposition 16 in Appendix A we are able to calculate the expected

revenue of using signals with precision r, πs
1(r). For each possible signal realization, differ-

ent posteriors arise, and hence essentially a different asymmetric auction is played. The

detailed profit of the bidders is derived in Appendix B, the overall profit is summarized

in the following lemma.

Lemma 1 Bidder 1’s expected profit in this auction setting when he uses signals with

precision r is given by

πs
1(r) =

7

36
+

1

6
r+

1

18
r
√

13 − 12r− 1

12
r2 +

1 − r

12
· 3 + 32r − 3r2 + (1 + r)

√
9 + 78r + 9r2

3 − 3r +
√

9 + 78r + 9r2
.

Next, we derive the optimal signal precision r from bidder 1’s perspective. This is done

by maximizing bidder 1’s expected profit as given in Lemma 1. We use the short notation

a :=
√

9 + 78r + 9r2 and b :=
√

13 − 12r. Then, the first order condition amounts to

(54 + 18b)r4 + (375 − 6ab + 105b − 18a)r3 − (9ab + 47a + 713 + 519b)r2

ab(−3 + 3r − a)2

+
(76

3
a + 107b − 12ab + 245)r + 13a + 11ab + 33b + 39

ab(−3 + 3r − a)2
= 0 (2)

and we can state the following theorem:
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Theorem 2 The optimal signaling precision r∗ in the discrete auction model is given by

the solution to (2), with r∗ ≈ 0.5462. Signaling is beneficial for all r fulfilling 1
3

< r < r′

with r′ being the larger solution of πs
1(r

′) − 4
9

= 0. This yields r′ ≈ 0.7572.

Proof r∗ ≈ 0.5462 is the unique solution to the first order condition (2). We furthermore

need to show that it is in fact associated with a maximum: by continuity of the left hand

side of (2) the uniqueness of the solution yields that a local maximum is a global maximum

as well. Furthermore, a numerical calculation as in Figure 1 shows that there are r-values

above and below r∗ leading to a lower profit than r∗. Because of the continuity this is

sufficient to show that r∗ is a local maximum, and hence a global maximum.

To show the second part of the theorem, we note that the profit of using no signals (or

signaling with a precision of r = 1
3
) yields an expected profit of 4

9
for bidder 1. By our

analysis of the first order condition we have essentially seen that πs
1(r) is monotonically

increasing on
(

1
3
, r∗
)

and monotonically decreasing on (r∗, 1). Hence, the zeros of πs
1(r)− 4

9

describe the boundaries of the interval for which signaling is beneficial. πs
1(r)− 4

9
has two

zeros, the lower one being 1
3

and the larger one being r′ ≈ 0.7572. �

Figure 1: Expected profit of bidder 1 depending on the signaling precision.

As illustrated by Figure 1, the expected revenue of the signaling bidder is increasing as

soon as informative signaling is introduced. There is a unique optimal signaling precision

given the signaling structure we use. Furthermore, a general pattern of signaling is already

visible here: if signaling gets too precise, it is not beneficial any more. Particularly, if

the precision is very high, the revenue decrease is substantial. Nevertheless, as shown in

Theorem 2, signaling is beneficial for quite a wide range of parameters.

If we increase the number of possible valuations in the set V , this basic insight does not

change. In principle, the same analysis can be repeated for any number of valuations.

In the natural extension of our example, the ex ante distribution of types is uniform,

the average value stays the same and the signaling structure does not change: the signal

takes the true value with a high probability and the remaining values with a smaller
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probability, which is equal across all remaining types. However, a general statement is

difficult to make, as we do not have an explicit general characterization of the equilibrium

with n discrete types. We thus limit the explicit analysis to this small example and omit

the detailed characterization of signaling with other numbers of types. Qualitatively, a

basic analysis shows that the revenue without signaling is decreasing in the number of

types, and it suggests that the interval of precisions for which signaling is profitable gets

shorter in absolute and relative terms. The same is true for the maximum gain of signaling,

which is achieved by using the optimal signaling precision. However, it is not clear how the

profitability of signaling will develop in the limit for a large number of discrete types. Note

that the shape of the signaling distribution becomes flatter with an increasing number

of types – it is likely that a more peak-shaped form of the signals, like in the original

three-type example, keeps up the profitability of signaling. Nevertheless, for the reasons

mentioned above, we cannot prove this type of general statements for larger numbers of

types.

3 Signaling in a Continuous Environment

We now introduce signaling when the agents have continuous type spaces. Valuations

vi are independently drawn from an interval V = [v, v̄] and are private information of

the bidders. Fi(vi) is the cumulative distribution function of bidder i’s valuation with

associated strictly positive density fi(vi). Bidder 1 may send a signal s ∈ S = [v1−d, v1+d]

about his realized valuation, with d ∈ R+. The signal is common knowledge to both agents.

We call d the precision of the signal. As in the discrete case, the decision whether to send

a signal or not is made before the bidder learns his valuation. Given that a valuation

v1 is realized, the conditional distribution of the signal s with precision d is denoted by

Hd(s|v1) and the corresponding density by hd(s|v1). Note that the signals may be up to

d higher (respectively lower) than the actual maximal (minimal) possible valuation.

After receiving s, bidder 2 correctly updates his beliefs that bidder 1’s valuation is dis-

tributed on [max{v, s − d}, min{v̄, s + d}] =: [s(s, d), s̄(s, d)] according to a cumulative

posterior distribution function Gd(v1|s) with strictly positive density gd(v1|s). We write s

and s̄ in short for s(s, d) and s̄(s, d) where the reference to s and d is clear. The overall

expected profit of using signals is denoted by πs, if no signals are used the expected profit

is π. The expected profit of bidder 1, when he has valuation v1 and a signal s has realized,

is denoted by πd(v1|s). As lower signal realizations lead to lower beliefs of bidder 2 and

thus lower equilibrium bids with a higher profit of bidder 1, we concentrate on signaling

structures fulfilling the following assumption, which is true for example for the uniform

signaling presented in Section 4 (see Proposition 11).

Assumption 1 Lower signal realizations increase the profit: πd(v1|s) is weakly decreasing

in s given fixed values of v1 and d.
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Note that in the current section we do not further restrict the signal to take a specific form.

Its informativeness comes from the fact that the true valuation of bidder 1 is determined

by the signal with a precision of d.

Maskin and Riley (2000b) showed that in such a setting a pure-strategy equilibrium of

the first-price auction with monotonic bid functions exists. We denote the monotonic

equilibrium bidding strategy of agent i in case no signal is revealed by βi(vi). In case

the signal realization is s and the signal precision is d, we denote the strategy of agent i

by βi(vi|s, d). We focus on undominated equilibrium strategies and thus make use of the

following assumption, similar to Maskin and Riley (2003):

Assumption 2 Bidder i never bids more than his type vi in equilibrium.

Adapting a lemma of Maskin and Riley (2003) to our context, we can characterize the

bid of the lowest possible type of bidder 1. Note that this lowest possible type depends

on the signal realization.

Lemma 3 If Assumption 2 holds, for any d ∈ R and any possible signal realization s,

the lowest possible type s(s, d) of bidder 1 has an equilibrium bid of

b∗(s(s, d)) = β1(s(s, d)|s, d) = max arg max
b

F2(b)(s(s, d) − b).

Note that in case s(s, d) = v, b∗(s(s, d)) = v holds. The following simple lemma shows

that the highest possible type of bidder 1 always wins the auction:

Lemma 4 The highest type s̄ wins the auction with probability 1 in equilibrium.

We now come to our main result of this section:

Theorem 5 Assume

d ≤ 1

2
·
∫ v̄

v

[
F2

(
β−1

2 (b∗(v1))
)
− F2 (b∗(v1))

]
· (v1 − b∗(v1)) f1(v1) d v1,

then it is more profitable for bidder 1 not to reveal additional information about his valu-

ation than revealing a signal s with precision d.

Proof Consider the lowest possible valuation of bidder 1, s, with an equilibrium profit of

πd(s|s). Furthermore, recall from Lemma 4 that the highest type wins the auction with

probability 1. In equilibrium, it is not profitable for s to imitate the bidding behavior of

the highest type. Hence, it holds that

πd(s|s) ≥ s − β1(s̄|s, d).

We now compare the profit of the lowest and the highest type:

πd(s̄|s) − πd(s|s) ≤ (s + d − β1(s̄|s, d)) − (s − d − β1(s̄|s, d))

= 2d. (3)
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For a signal s, any type v1 ∈ [s, s̄] makes a profit

πd(v1|s) ≤ πd(v1|v1 − d) (4)

≤ πd(s(v1 − d, d)|v1 − d) + 2d (5)

≤ πd(v1|v1 + d) + 2d. (6)

Here, (4) holds by Assumption 1 and (5) holds by using (3) as v1 = s̄(v1 − d, d). Finally,

(6) follows directly from Lemma 3: the profit of the lowest type given there is obviously

increasing in the value of the lowest type. Clearly, this increase in profit applies here as

v1 = s(v1 + d, d) ≥ s(v1 − d, d).

As a consequence, we can derive a bound on the expected profit bidder 1 makes in case

the signal is sent. We can write the expected profit in case bidder 1 uses signals in the

following way:

πs =

∫ v̄

v

∫ v̄+d

v−d

πd(v1|s)hd(s|v1)f1(v1) ds dv1

=

∫ v̄

v

f1(v1)

∫ v̄+d

v−d

πd(v1|s)hd(s|v1) ds dv1

≤
∫ v̄

v

f1(v1)

∫ v̄+d

v−d

(πd(v1|v1 + d) + 2d) hd(s|v1) ds dv1

=

∫ v̄

v

f1(v1) (πd(v1|v1 + d) + 2d)

∫ v̄+d

v−d

hd(s|v1) ds dv1

=

∫ v̄

v

f1(v1) (πd(v1|v1 + d) + 2d) · 1 dv1

=

∫ v̄

v

f1(v1)πd(v1|v1 + d) dv1 + 2d

=

∫ v̄

v

f1(v1)F2(b∗(v1))(v1 − b∗(v1)) dv1 + 2d. (7)

The last line holds by Lemma 3, as v1 is the lowest possible type given a signal v1 +d and

wins exactly against all opponent’s types that are lower than his bid.

Now suppose to the contrary that revealing a signal s with precision d is more profitable

than not revealing such a signal. Given that no signal is revealed, consider the following

strategy β+
1 of bidder 1: if his type realization is v1 ∈ [v, v̄], he plays as if a signal v1 + d

was realized such that v1 is the lowest possible type given this signal. By Lemma 3 we

therefore get β+
1 (v1) = b∗(v1). Our proof now proceeds as follows: we show that β+

1 would

be a profitable deviation for bidder 1 in comparison to his equilibrium strategy without

signal realization, β1.

We first calculate the profit π+ of deviating to β+
1 :

π+ =

∫ v̄

v

F2

(
β−1

2

(
β+

1 (v1)
)) (

v1 − β+
1 (v1)

)
f1(v1) dv1

=

∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))

− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1
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+

∫ v̄

v

f1(v1)F2

(
β+

1 (v1)
)
(v1 − β+

1 (v1)) dv1

(7)

≥
∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))

− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1 + πs − 2d

≥
∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))

− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1 + π − 2d. (8)

The last line holds because by assumption, the expected profit given no signaling takes

place, π, is smaller than the expected profit with signaling, πs ≥ π. If we rearrange (8)

we get the following:

π+ − π ≥
∫ v̄

v

[
F2

(
β−1

2

(
β+

1 (v1)
))

− F2

(
β+

1 (v1)
)] (

v1 − β+
1 (v1)

)
f1(v1) dv1 − 2d.

Here, as β+
1 (v1) = b∗(v1), we can see that the deviation to β+

1 is profitable if

∫ v̄

v

[
F2

(
β−1

2 (b∗(v1))
)
− F2 (b∗(v1))

]
(v1 − b∗(v1)) f1(v1) dv1 ≥ 2d, (9)

leading to π+ − π ≥ 0. In these cases, we get a contradiction to the fact that β1 is an

equilibrium strategy. Thus, our initial assumption that revealing a signal with a precision

d as in (9) must have been false and bidder 1 prefers not to reveal a signal. �

The theorem shows that a bidder never likes to use a signal that is too precise in the

sense of d being very small. This bound on d we derived is independent of the precise

distribution used for signaling (as long as Assumption 1 is fulfilled). However, it depends

on the original distributions of the bidder’s valuations. Note that the result does not say

whether signaling is profitable or not for higher values of d. In the following example, we

calculate the size of the bound for a uniform distribution.

Example 6 Suppose valuations are drawn from a uniform distribution on [v, v̄] = [0, 1],

hence Fi(vi) = vi and fi(vi) = 1. It is commonly known that equilibrium bids in a

first-price auction are then given by βi(vi) = vi

2
. Furthermore, by Lemma 3 we know

b∗(v1) = max arg maxb F2(b)(v1−b) = b(v1−b) = v1

2
. This fixes the bound on the precision

d according to Theorem 5:

d ≤ 1

2
·
∫ 1

0

[

2 · v1

2
− v1

2

]

·
(

v1 −
v1

2

)

· 1 dv1 =
1

2
·
∫ 1

0

v2
1

4
=

1

24
.

Thus, for a signaling interval length smaller than 2d = 1
12

it is not profitable to make use

of the signals.

4 Signaling via Uniform Distributions

We now consider the only class of distributions for which a complete characterization of

equilibrium strategies in the asymmetric auction exists: the uniform distribution. This is
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a special case of the general continuous environment in Section 3. The aim of this section

is to analyze the profitability of signaling for all possible signal precisions d. Ex ante, the

valuations for both bidders are identically and independently distributed according to a

uniform distribution on [v, v̄]. Accordingly, the cumulative distribution function F is given

by F (v) = v−v

v̄−v
and its density by f(v) = 1

v̄−v
. Bidder 1 has the option to ex ante commit

to sending a signal s with a precision d after his valuation v1 is realized. Specifically,

the signal s is distributed uniformly on [v1 − d, v1 + d]. The corresponding cumulative

distribution function is given by Hd(s|v1) = s−(v1−d)
2d

and its density by hd(s|v1) = 1
2d

.

Hence, from an ex ante-perspective, we can derive the density hd(s) for a realization of

signal s by the law of total probability:

hd(s) =

∫ s̄(s,d)

s(s,d)

f(v1)hd(s|v1) dv1 =

∫ s̄(s,d)

s(s,d)

1

v̄ − v
· 1

2d
dv1 =

s̄(s, d) − s(s, d)

(v̄ − v)2d
(10)

After observing a signal s, bidder 2 updates his belief to the posterior probability dis-

tribution Gd(v1|s) with density gd(v1|s), which can be derived as follows, using Bayes’

law:

gd(v1|s) =
hd(s|v1)f(v1)

hd(s)
=

1
2d

· 1
v̄−v

s̄(s,d)−s(s,d)
(v̄−v)2d

=
1

s̄(s, d) − s(s, d)
.

Thus, the posterior is distributed uniformly on [s(s, d), s̄(s, d)]. Given a signal realization

s, the two bidders face the situation of an asymmetric auction with uniform distributions.

The two bidders play as if bidder 1’s value had been drawn uniformly from [s(s, d), s̄(s, d)]

and bidder 2’s value from [v, v̄]. We denote the expected profit of bidder 1 in this auction

by π1(s, d). The general inverse bidding strategies for this asymmetric auction have been

derived by Kaplan and Zamir (2007) and can be found in Appendix B. Again, we denote

the bidding strategy of bidder i by βi(vi|s, d) as the bid depends on the realized valuation

vi, the realized signal s and the precision of the signal d. For notational simplicity, we

write βi(vi) whenever s and d are fixed. The expected profit is given as follows, using the

substitution (β1)
−1 (b) = v1 with boundaries b(s, d) = β1(s(s, d)) and b̄(s, d) = β1(s̄(s, d)):

π1(s, d) =

∫ s̄(s,d)

s(s,d)

(v1 − β1(v1)) · F
(
β−1

2 (β1(v1))
)
gd(v1|s) dv1

=

∫ b̄(s,d)

b(s,d)

(β−1
1 (b) − b) · F

(
β−1

2 (b)
) (

β−1
1

)
′

(b)
1

s̄(s, d) − s(s, d)
db

=

∫ b̄(s,d)

b(s,d)

(β−1
1 (b) − b) · β−1

2 (b) − v

v̄ − v
·

(
β−1

1

)
′

(b)

s̄(s, d) − s(s, d)
db. (11)

The ex ante expected profit of bidder 1 from using signals with a precision d, πs
1, can be

expressed as

πs
1(v, v̄, d) =

∫ v̄+d

v−d

hd(s)π1(s, d) ds. (12)

Our main goal is to analyze whether signaling is profitable. To simplify the analysis, we

first formulate a series of lemmas enabling us to restrict attention on F being uniform on
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[0, 1]. We formulate these lemmas in the general framework with bidders having valuations

distributed on [vi, v̄i]. The proofs for all lemmas are given in Appendix B.

Lemma 7 Suppose the supports of the valuations [vi, v̄i] are transformed to [v+
i , v̄+

i ] =

[αvi + k, αv̄i + k] with α, k ∈ R+. Then, the inverse bidding strategies are transformed

accordingly: b+ = αb + k, b̄+ = αb̄ + k and for all αb + k =: b+ ∈ [b+, b̄+] it holds that
(
β+

i

)
−1

(b+) = αβ−1
i (b) + k.

Making use of this result, we can make a statement about a bidder’s payoffs depending

on the distribution parameters. Denote bidder i’s payoff by πi(v1, v̄1, v2, v̄2).

Lemma 8 Given the situation of Lemma 7, the expected profit changes according to

πi(v
+
1 , v̄+

1 , v+
2 , v̄+

2 ) = πi(αv1 + k, αv̄1 + k, αv2 + k, αv̄2 + k) = απi(v1, v̄1, v2, v̄2).

Transforming [v, v̄] to [v+, v̄+] := [αv+k, αv̄+k] and the signal precision d to d+ := αd, it

is immediate to see that the bounds for valuations possibly generating a signal s+ = αs+k

change according to s+(s+, d+) = αs(s, d) + k and s̄+(s+, d+) = αs̄ + k. We can apply

this to get the last lemma:

Lemma 9 The expected profit from using signals changes according to

πs
1(v

+, v̄+, d+) = πs
1(αv + k, αv̄ + k, αd) = απs

1(v, v̄, d).

We can summarize our findings to state the following proposition:

Proposition 10 Signaling is not profitable for valuations drawn from [v, v̄] if and only if

it is not profitable for valuations drawn from [0, 1],

πs
1(v, v̄, (v̄ − v)d) < π1(v, v̄, v, v̄) ⇐⇒ πs

1(0, 1, d) < π1(0, 1, 0, 1).

Proof We use Lemmas 8 and 9 with α = v̄ − v and k = v to conclude

πs
1(0, 1, d) < π1(0, 1, 0, 1)

⇐⇒ (v̄ − v)πs
1(0, 1, d) < (v̄ − v)π1(0, 1, 0, 1)

⇐⇒ πs
1(v, v̄, (v̄ − v)d) < π1(v, v̄, v, v̄). �

The following proposition shows that a better (lower) signal realization leads to higher

profits and thus Assumption 1 made in Section 3 holds in this signaling structure.

Proposition 11 Suppose bidder 1 has a valuation v1 drawn from a uniform distribution

on the support [v1, v̄1] with v1 ≥ 0 and bidder 2’s valuation is drawn uniformly from [0, 1].

Then, the profit of bidder 1 with valuation v1 is weakly lower if v1 is a realization from a

uniform distribution on [v+
1 , v̄+

1 ] with v+
1 ≥ v1 and v̄+

1 ≥ v̄1 with one of the two inequalities

being strict.
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The following theorem leads to the main result of this section.

Theorem 12 For d ≥ v̄−v

2
, the expected profit πs

1(v, v̄, d) is monotonically increasing in

d with

lim
d→∞

πs
1(v, v̄, d) = π1(v, v̄, v, v̄).

Proof By Proposition 10 it is sufficient to show the results for [v, v̄] = [0, 1]. The expected

profit of signaling for d ≥ 0.5 is given as follows:

πs
1(0, 1, d)

(12)
=

∫ 1+d

−d

hd(s)π1(s, d) ds

(10)
=

∫ 1+d

−d

s̄(s, d) − s(s, d)

2d
π1(s(s, d), s̄(s, d), 0, 1) ds

=

∫ 1−d

−d

s + d

2d
π1(0, s + d, 0, 1) ds +

∫ d

1−d

1

2d
π1(0, 1, 0, 1) ds

+

∫ 1+d

d

1 − (s − d)

2d
π1(s − d, 1, 0, 1) ds

=
1

2d

(∫ 1

0

tπ1(0, t, 0, 1) dt + (d − (1 − d))π1(0, 1, 0, 1) +

∫ 1

0

(1 − t)π1(t, 1, 0, 1) dt

)

= π1(0, 1, 0, 1) +
1

2d

(∫ 1

0

tπ1(0, t, 0, 1) dt − π1(0, 1, 0, 1) +

∫ 1

0

(1 − t)π1(t, 1, 0, 1) dt

)

︸ ︷︷ ︸

=:c̃

c̃ is constant, and thus limd→∞ πs
1(v, v̄, d) = π1(v, v̄, v, v̄). A calculation of c̃ shows c̃ ≈

−0.03 < 0. Hence, πs
1(0, 1, d) is increasing. �

This theorem already proofs part of our main result:

Result 13 For any precision of signals d > 0, signaling is less profitable:

πs
1(v, v̄, d) < π1(v, v̄, v, v̄).

This result is a generalization of Theorem 12 (for the case d ≥ v̄−v

2
) and Example 6 as

an application of Theorem 5 (for the case d ≤ v̄−v

24
). For the remaining parameter values,

we give a proof in Appendix B. The proof uses the assertion that an increase in the

upper or lower end point of the support of bidder 1’s uniform distribution also increases

his expected profit. We do not provide a formal proof of this assertion. Nevertheless, a

numerical calculation shows directly that the profit is increasing in d for all values in d

and the result thus holds.

5 Conclusion

We showed that a bidder in a first-price auction might voluntarily commit to revealing an

informative signal about his valuation. However, whether he does so or not depends on
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several parameters, particularly the distribution and precision of the signals. As a general

pattern, bidders have no incentive to reveal an informative signal if it is very precise. In a

setting with only three possible valuations – high, medium or low – we derived the optimal

signal and the range of precision for which signaling is beneficial. The analysis relies on a

closed-form solution of the equilibrium strategies. Such an analysis is in principle feasible

for other discrete sets of valuations and other shapes of signaling distributions as well.

However, general statements for higher numbers of valuations are difficult to make without

an explicit general characterization of discrete asymmetric equilibria. Nevertheless, the

key insight can already be gleaned from the small example with three valuations: the

voluntary release of an informative signal about one’s own valuation can be beneficial.

It is likely that a similar shaped distribution of signals as in the discrete case would also

make signaling profitable in the continuous setting. The distributions in such a family

should be single-peaked on the same interval, differing in the position of the peak. Un-

fortunately, the explicit equilibrium strategies for a family of signals having that peaked

shape is not known so far – and without knowledge of the explicit strategies it is difficult

to estimate the expected revenue, as the auctions played differ with each signal realiza-

tion. Hence, we chose to introduce informativeness of the signals by altering the support

of the possible signals depending on the realized valuation. This enables us to get both,

a result for a general class of distributions on a restricted set of signal precisions and a

result for all signal precisions using uniform distributions. In these settings, signaling is

not profitable for a bidder.
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A Appendix: Equilibrium of a Discrete Asymmetric

Auction

We derive the necessary equilibrium properties of the asymmetric auction used in Section

2: a first-price auction with two bidders, i = 1, 2, with private values v1, v2 ∈ V =

{0, 1, 2}, independently drawn according to the probabilities pv1 and qv2 respectively, using

a Vickrey tie-breaking rule. Note that compared to Section 2, we change the notation of

the probabilities. This is to avoid confusion: depending on the specific probabilities in the

asymmetric auction, bidder 1 in Section 2 may take the role of either bidder 1 or bidder

2 in this appendix and a different notation minimizes the risk of mixing them up.
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To start with the equilibrium analysis, first note that the equilibrium is in mixed strategies:

Lemma 14 In this discrete first-price auction with Vickrey tie-breaking rule no pure-

strategy equilibrium exists.

Proof Consider two bidders with valuation 2 and suppose there is a (monotonic) pure-

strategy equilibrium in which they bid differently. Then, the bidder submitting the strictly

higher bid has an incentive to undercut his own bid such that he decreases his payment

but still wins for sure. This cannot happen in equilibrium. In the same way, if both bidders

submit the same highest bid, both of them have an incentive to slightly overcut the other

bidder – the additional payment can be made arbitrary low, while the winning probability

will make a fixed jump upwards (with the new bid, the bidder will always win the auction

while he lost with positive probability before). �

A mixed equilibrium has the following structure:

Lemma 15 In a mixed equilibrium of this discrete first-price auction with Vickrey tie-

breaking rule

1. both bidders submit the same maximum bid b∗;

2. there cannot be an interval (b′, b′′) with 0 < b′ < b′′ < b∗ in which any of the two

bidders does not submit a bid;

3. bidders do not use atoms in (0, b∗].

Proof To prove the first part, we use the fact that for a given valuation bidders have to

be indifferent between all bids they possibly submit. Hence, the maximum bid b∗ has to

be the same for both bidders – otherwise, the bidder with the higher one could profitably

deviate from his maximum bid by slightly undercutting. For the second part, suppose

that such an interval (b′, b′′) in which bidder i does not submit a bid would exist. Then,

bidder j would not submit bids on this interval either and hence no bids at all would be

submitted on this interval. Suppose bidder j does not place an atom on b′′. Then, bidder

i had a profitable deviation from his bid b′′ by deviating to a bid in the interval (b′, b′′),

lowering the price to pay in case of winning without losing any winning probability. If

bidder j has an atom on b′′, then either bidder i has no atom, and the argument above

applies for bidder j – or bidder i has an atom as well. In this case, both bidders necessarily

have a positive winning probability with their bid b′′ and make profit using it2 (otherwise,

they would have a profitable deviation in the interval (b′, b′′)). However, as a consequence

they have a profitable deviation by slightly increasing their bid, making a jump upwards

in the winning probability on the expense of an arbitrarily low increase in payment. This

cannot be the case in equilibrium. Finally, we note that bidders do not use atoms in (0, b∗]:

2Note that there is a positive mass of bidders with valuation 0 who always submit a bid of 0.
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as already shown above, it is not possible that both bidders place an atom on the same

bid in equilibrium. Similarly, if only bidder i places an atom on some b′ ∈ (0, b∗], bidder

j has an incentive to bid slightly above b′ instead of bidding in an interval (b′ − ε, b′) for

ε small enough. This increases the winning probability by at least the mass of the atom,

while the payment is only increased by at most ε. Consequently, this atom cannot be part

of an equilibrium in case vj > b′. However, vj = b′ cannot be part of an equilibrium as

well, as bidder j would earn a profit arbitrarily close to 0 with the bid b′ − ε, while he

could get a fixed positive amount by simply bidding 0. We can thus conclude that bidders

possibly only use atoms when bidding 0. �

Hence, we look for equilibria with bids on the whole interval [0, b∗]. Additionally, we

assume w.l.o.g. that bidder 1 has a higher probability of having valuation 2, p2 ≥ q2.

The lowest possible equilibrium bid of bidder i with valuation vi is denoted by bi(vi), and

bidder 1’s winning probability with his bid b1(2) is q′. Similarly, his winning probability

with a bid b1(1) = 0 is given by q′′ ≥ q0. p′′ ≥ p0 is the respective probability for bidder 2.

We are now ready to derive some necessary equilibrium conditions. A bidder with val-

uation 2 has the opportunity to win against all others for sure by submitting a bid of

b∗. Then, he makes a profit of 2 − b∗. All other bids submitted with valuation 2 have to

generate the same profit. Consequently, in equilibrium both bidders mix symmetrically

on [max{b1(2), b2(2)}, b∗]. Hence, as we assumed that p2 ≥ q2, it holds that b1(2) ≤ b2(2)

and the first equilibrium condition is given by

2 − b∗ = (1 − q2)(2 − b2(2)), (13)

as bidder 1 wins the auction with a bid of b2(2) exactly against all bidder 2 types with a

valuation of 1 or 0. If p2 is strictly larger than q2, bidder 1’s lowest bid fulfills b1(2) < b2(2),

and bidder 1 with valuation 2 sometimes loses against bidder 2 who has valuation 1. We

get a second condition involving bidder 1’s winning probability with his bid b1(2), q′:

2 − b∗ = q′(2 − b1(2)). (14)

Similarly, bidder 2 with valuation 1 has to be indifferent between submitting a bid of b2(2)

and b1(2) according to

(1 − q2)(1 − b2(2)) = (1 − p2)(1 − b1(2)). (15)

Additionally, he gets the same profit by submitting a bid of b2(1) = 0, having a winning

probability of p′′ ≥ p0:

(1 − p2)(1 − b1(2)) = p′′(1 − 0). (16)

Bidder 1 with valuation 1 is indifferent between submitting a bid of b1(2) or b1(1) = 0,

winning with probability q′′ ≥ q0 in the latter case:

q′(1 − b1(2)) = q′′(1 − 0). (17)
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Note that due to the Vickrey tie-breaking rule, a bidder with valuation 1 wins against

all opponents with valuation 0 in case he submits a bid of 0. Furthermore, at least one

of p′′ = p0 and q′′ = q0 is always true: it cannot be the case that both bidders bid 0

with a positive probability when having valuation 1 – facing a bidder with the same

valuation, tie-breaking will let them win only in half of the cases. Increasing the bid

slightly would hence be a profitable deviation. Given these additional conditions, we have

a linear equation system with five equations and five unknowns, pinning down the bidding

intervals for the different valuations as stated in the following proposition:

Proposition 16 In this discrete asymmetric auction setting with p2 ≥ q2, bidder i’s

equilibrium bids have the following properties:

1. With valuation 2, bidder i mixes his bids on [bi(2), b∗];

2. with valuation 1, bidder i mixes his bids on [0, bi(2)], with possibly a mass point on

0;

3. with valuation 0, bidder i bids 0.

The boundaries of the bidding intervals and the probability of bidding 0 are given as follows:

1. In case p′′ = p0

b∗ = 1 − p0 + q2

b1(2) = 1 − p0

1 − p2

b2(2) = 1 − p0

1 − q2

q′′ = p0 · 1 + p0 − q2

1 − p2 + p0
.

2. In case q′′ = q0

b∗ = 2 − q0 − q′

b1(2) = 1 − q0

q′

b2(2) = 2 − q0 + q′

1 − q2

p′′ = (1 − p2) · q0

q′

with q′ = q1

2
+

√
(

q1

2

)2

+ (1 − p2)q0.
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Proof We start with the case p′′ = p0. It follows directly from (16) that

b1(2) = 1 − p0

1 − p2
.

Plugging this into (15), we get

b2(2) = 1 − p0

1 − q2
.

Then, (13) yields

b∗ = 2 − (1 − q2)

(

1 +
p0

1 − q2

)

= 1 − p0 + q2.

The winning probabilities follow from (14) (for q′) and (17) (for q′′):

q′ =
1 + p0 − q2

1 + p0

1−p2

=
(1 + p0 − q2)(1 − p2)

1 − p2 + p0

q′′ = p0 · 1 + p0 − q2

1 − p2 + p0
.

Next, we focus on the case q′′ = q0. Starting with (17), we get

b1(2) = 1 − q0

q′
. (18)

Combining (13) and (14) we can write

b2(2) = 2 − q′

1 − q2
·
(

1 +
q0

q′

)

= 2 − q′ + q0

1 − q2
. (19)

The probability q′ can be calculated by plugging (18) and (19) into (15):

(1 − q2)

(
q′ + q0

1 − q2
− 1

)

= (1 − p2) · q0

q′

⇐⇒ (q′)2 − q1 · q′ − (1 − p2)q0 = 0

=⇒ q′ =
q1

2
+

√
(

q1

2

)2

+ (1 − p2)q0.

Plugging q′ in (18) and (19) yields the expressions stated in the proposition. (13) fixes b∗

according to

b∗ = 2 − (1 − q2) · q′ + q0

1 − q2
= 2 − q0 − q′.

Finally, according to (16) we get

p′′ = (1 − p2) · q0

q′
. �
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Particularly, the proposition allows us to pin down the equilibrium profit of the bidders,

which is all we need for calculating the profit of signaling. Hence, there is no need for a

full characterization of equilibrium strategies in this place.

Finally, we give a characterization which of the cases p′′ = p0 or q′′ = q0 in Proposition 16

is the relevant one for some specific probability distributions. This lemma will be useful

in the next section.

Lemma 17 In Proposition 16, the case p′′ = p0 is relevant if p0 > q0. Furthermore, the

case q′′ = q0 is relevant if either p2 > 1/3, p1 = p0 = 1−p2

2
, q2 = q1 = q0 = 1

3
or if

p2 = p1 = p0 = 1
3
, q0 > 1

3
, q1 = q2 = 1−q0

2
.

Proof First note that 1 − p2 ≤ q′: substituting the left-hand side of (14) with the right-

hand side of (13) and dividing (15) by the resulting equation yields

1 − p2

q′
· 1 − b1(2)

2 − b1(2)
=

1 − b2(2)

2 − b2(2)
⇐⇒ 1 − p2

q′
=

2 − b1(2) − 2b2(2) + b1(2)b2(2)

2 − 2b1(2) − b2(2) + b1(2)b2(2)
.

As

2 − b1(2) − 2b2(2) + b1(2)b2(2) ≤ 2 − 2b1(2) − b2(2) + b1(2)b2(2) ⇐⇒ b1(2) ≤ b2(2),

we know that 1 − p2 ≤ q′ ⇐⇒ b1(2) ≤ b2(2), while the latter is true by our initial as-

sumption p2 ≥ q2. Consequently, by comparing (16) and (17) we get the general condition

p′′ ≤ q′′. Hence, if p0 > q0 is fulfilled, it can never be the case that q′′ = q0 because it

would yield the contradiction q′′ = q0 < p0 ≤ p′′.

In the case p2 > 1/3, p1 = p0 = 1−p2

2
, q2 = q1 = q0 = 1

3
the above argumentation cannot

be applied as q0 > p0. We thus take a different approach and show that if p′′ = p0 were

true, q′′ ≥ q0 = 1
3

would be violated. According to Proposition 16, q′′ is given by

q′′ =
1 − p2

2
· 1 + 1−p2

2
− 1

3

1 − p2 + 1−p2

2

=
1

3
·
(

3

2
− p2

2
− 1

3

)

.

We get the contradiction q′′ < q0 = 1
3

in case

1

3
·
(

3

2
− p2

2
− 1

3

)

<
1

3
⇐⇒ 1

3
< p2,

which is true by our assumption.

Similarly, the case p2 = p1 = p0 = 1
3
, q0 > 1

3
, q1 = q2 = 1−q0

2
can be analyzed. Here, we

have

q′′ =
1

3
· 1 + 1

3
− 1−q0

2

1 − 1
3

+ 1
3

=
5

18
+

q0

6
.

Again, the contradiction q′′ < q0 is given iff

5

18
+

q0

6
< q0 ⇐⇒ 1

3
< q0,

which is true in the case we are analyzing. �
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B Appendix: Proofs

Proof of Lemma 1

First note that each signal realizes with probability 1
3
. We will thus proceed by calculating

the expected profit given a signal realization s ∈ S, denoted by π1(s, r), and then take the

average of these profits. Suppose that a signal s = 2 is received. Then, g(2|2) = r > 1
3

=

f2(2) and bidder 1 is associated with the p-probabilities in Proposition 16, while bidder

2 is associated with the q’s. Hence, the two bidders are playing an asymmetric auction

with posterior probabilities p2 = r, p1 = p0 = 1−r
2

and q0 = q1 = q2 = 1
3
. As we assumed

r > 1
3
, Lemma 17 tells us that q′′ = q0 has to hold in Proposition 16. The expected profit

can be calculated according to

π1(2, r) = p2 (2 − b∗) + p1q0 (1 − 0) = r




1

3
+

1

6
+

√
(

1

6

)2

+
1

3
(1 − r)



+
1 − r

2
· 1

3

=
1

3
r +

1

6
r
√

13 − 12r +
1

6
.

If the signal realizes to s = 1, posteriors are given by g(2|1) = g(0|1) = 1−r
2

, g(1|1) = r

and f2(0) = f2(1) = f2(2) = 1
3
. Hence, g(2|1) < f2(2) and in the language of Proposition

16 bidder 1 and bidder 2 switch roles. Consequently, to get π1(1, r) we have to calculate

the profit of the bidder 2-role in Proposition 16 in an asymmetric auction with p0 = p1 =

p2 = 1
3

and q2 = q0 = 1−r
2

, q1 = r. As q0 = 1−r
2

< 1
3

= p0, by Lemma 17 p′′ = p0 holds in

Proposition 16. Thus, we get

π1(1, r) = q2 (2 − b∗) + q1p0 =
1 − r

2

(

1 +
1

3
− 1 − r

2

)

+
1

3
r

=
1

6
r +

5

12
− 1

4
r2.

The last possible signal realization is s = 0. Then, posteriors are g(2|0) = g(1|0) = 1−r
2

,

g(0|0) = r and f2(0) = f2(1) = f2(2) = 1
3
. Again, g(2|0) < f2(2) and bidder 1 takes

the role of bidder 2 when we apply Proposition 16. The according probabilities in the

asymmetric auction are thus given by p0 = p1 = p2 = 1
3

and q2 = q1 = 1−r
2

, q0 = r. Hence,

q′′ = q0 holds and the expected profit in this case amounts to

π1(0, r) = q2 (2 − b∗) + q1p′′

=
1 − r

2



r +
1 − r

4
+

√
(

1 − r

4

)2

+
2

3
r



+
1 − r

2
· 2

3
· r

1−r
4

+
√
(

1−r
4

)2
+ 2

3
r

=
1 − r

4
· 3 + 32r − 3r2 + (1 + r)

√
9 + 78r + 9r2

3 − 3r +
√

9 + 78r + 9r2
.

Calculating

πs
1(r) =

1

3
(π1(0, r) + π1(1, r) + π1(2, r))

and simplifying yields the result. �
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Proof of Lemma 4

Suppose s̄ wins with a probability less than 1 in equilibrium. Then, a set of types of the

opponent with a positive mass must submit the same bid as s̄ – their bid cannot be higher,

as they had a profitable deviation to a lower bid in this continuous setting otherwise. As

s̄ makes positive profits (this e.g. follows from Lemma 3), he than would have a profitable

deviation by slightly increasing his bid and win with probability 1. This deviation will

increase his profit if the bid increase is chosen small enough, such that the gain in winning

probability makes up for the loss coming from a higher bid. As this profitable deviation

cannot exist in equilibrium, s̄ must win with probability 1. �

Inverse bidding strategies according to Kaplan and Zamir (2007), Proposition 1. We

assume that bidder i’s valuation is uniformly distributed on [vi, v̄i] with v2 < v1 and v1 <

2v̄2 − v2.
3 Without the latter regularity assumption, bidder 2 always loses in equilibrium

and the analysis is trivial. Hence, in equilibrium, both bidders have a positive chance of

winning on the same interval, [b, b̄]. These boundaries are given according to

b =
v1 + v2

2
and b̄ =

v̄1 · v̄2 −
(

v1+v2

2
.
)2

v̄1 − v1 + v̄2 − v2

(20)

If bidder 2 has a value v2 < b we assume that he bids truthfully. For all b ∈ [b, b̄], the

inverse bid functions β−1
i (b) are given by

β−1
1 (b) = v1 +

(v2 − v1)
2

(v1 + v2 − 2b)c1e
v2−v1

v1+v2−2b + 4(v2 − b)
(21)

β−1
2 (b) = v2 +

(v2 − v1)
2

(v1 + v2 − 2b)c2e
v1−v2

v1+v2−2b + 4(v1 − b)
(22)

with constants

c1 =

(v2−v1)2

v̄1−v1
+ 4(b̄ − v2)

−2(b̄ − b)
e

v2−v1
2(b̄−b) and c2 =

(v2−v1)2

v̄2−v2
+ 4(b̄ − v1)

−2(b̄ − b)
e

v1−v2
2(b̄−b) . (23)

This solution does not cover the case v1 = v2 = v, which was already solved by Griesmer

et al. (1967) in the context of reverse auctions. A generalization is given by Plum (1992)

for the class of power distributions. The inverse bid functions can be written as follows,

for b ∈ [b, b̄] as in (20):

β−1
1 (b) = v +

2(b − v)

1 + b2c − 2bcv + cv2
(24)

β−1
2 (b) = v +

2(b − v)

1 − b2c + 2bcv − cv2
. (25)

The constant c is defined by

c =
1

(v̄1 − v)2
− 1

(v̄2 − v)2
. (26)

3Note that the roles of bidder 1 and 2 are exchanged compared to Kaplan and Zamir (2007) for

consistency reasons with the rest of this paper.
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Proof of Lemma 7

We first calculate b+ and b̄+ using (20):

b+ =
αv1 + k + αv2 + k

2
= α

v1 + v2

2
+ k = αb + k

b̄+ =
(αv̄1 + k) · (αv̄2 + k) −

(
αv1+k+αv2+k

2

)

αv̄1 + k − αv1 − k + αv̄2 + k − αv2 − k
= α

v̄1 · v̄2 −
(

v1+v2

2

)

v̄1 − v1 + v̄2 − v2

+ k = αb̄ + k.

Now consider the case v1 < v2. First note, using (23), that the constants c1 and c2 are

invariant with respect to the transformation:

c+
1 =

(αv2+k−αv1−k)2

αv̄1+k−αv1−k
+ 4(αb̄ + k − αv2 − k)

−2(αb̄ + k − αb − k)
e

αv2+k−αv1−k

2(αb̄+k−αb−k) =

(v2−v1)2

v̄1−v1
+ 4(b̄ − v2)

−2(b̄ − b)
e

v2−v1
2(b̄−b) = c1.

A similar calculation is true for c2. Hence, we can calculate the inverse bidding function

for bidder 1 according to (21):

(
β+

1

)
−1

(b+)

= αv1 + k +
(αv2 + k − αv1 − k)2

(αv1 + k + αv2 + k − 2(αb + k))c1e
αv2+k−αv1−k

αv1+k+αv2+k−2(αb+k) + 4(αv2 + k − αb − k)

= α

(

v1 +
(v2 − v1)

2

(v1 + v2 − 2b)c1e
v2−v1

v1+v2−2b + 4(v2 − b)

)

+ k

= αβ−1
1 (b) + k.

Again, the calculation for bidder 2, using (22), is similar.

Finally, consider the case v1 = v2 = v. We first calculate the constant c+ according to

(26):

c+ =
1

(αv̄1 + k − αv − k)2
− 1

(αv̄2 + k − αv − k)2
=

1

α2

(
1

(v̄1 − v)2
− 1

(v̄2 − v)2

)

=
c

α2
.

Hence, with (24) the inverse bidding strategy for bidder 1 can be written as

(
β+

1

)
−1

(b+) = αv + k +
2(αb + k − αv − k)

1 + (αb + k)2 c
α2 − 2(αb + k) c

α2 (αv + k) + c
α2 (αv + k)2

= α

(

v +
2(b − v)

1 + b2c − 2bcv + cv2

)

+ k

= αβ−1
1 (b) + k.

The inverse bidding strategy for bidder 2 can be derived in the same way using (25). �

Proof of Lemma 8
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Using (11), the profit of bidder 1 for the transformed support can be written as

π1(v
+
1 , v̄+

1 , v+
2 , v̄+

2 ) =

∫ b̄+

b+

((
β+

1

)
−1

(b+) − b+
)

·
(
β+

2

)
−1

(b+) − v+
2

v̄+
2 − v+

2

·

((
β+

1

)
−1
)
′

(b+)

v̄+
1 − v+

1

db+

=

∫ b̄

b

((
β+

1

)
−1

(αb + k) − αb − k
)

·
(
β+

2

)
−1

(αb + k) − αv2 − k

αv̄2 + k − αv2 − k
·

((
β+

1

)
−1
)
′

(αb + k)

αv̄1 + k − αv1 − k
· α db

(27)

=

∫ b̄

b

(αβ−1
1 (b) − αb) · αβ−1

2 (b) − αv2

αv̄2 − αv2

·
(
β−1

1

)
′

(
(αb+k)−k

α

)

αv̄1 − αv1

· α db (28)

= α

∫ b̄

b

(β−1
1 (b) − b) · β−1

2 (b) − v2

v̄2 − v2

·
(
β−1

1

)
′

(b)

v̄1 − v1

db

= απ1(v1, v̄1, v2, v̄2).

(27) holds by using the substitution b+ = αb + k. (28) follows from Lemma 7 and

((
β+

1

)
−1
)
′

(b+) =
d
(
αβ−1

1 (b) + k
)

db+
= α

dβ−1
1 (b)

db

db

db+
= α·

(
β−1

1

)
′

(b)· 1
α

=
(
β−1

1

)
′

(
b+ − k

α

)

applied to b+ = αb + k. A similar calculation with changed indices gives the result for

bidder 2. �

Proof of Lemma 9

Using (12) and (10), the expected profit after the transformation can be written as

πs
1(v

+, v̄+, d+) =

∫ v̄++d+

v+−d+

s̄+(s+, d+) − s+(s+, d+)

(v̄+ − v+)2d+
π1(s

+(s+, d+), s̄+(s+, d+), v+, v̄+) ds+

=

∫ v̄+d

v−d

s̄+(αs + k, αd) − s+(αs + k, αd)

(αv̄ + k − αv − k)2αd
π1(s

+(αs + k, αd), s̄+(αs + k, αd), αv + k, αv̄ + k) · α ds

(29)

=

∫ v̄+d

v−d

αs̄(s, d) − αs(s, d)

α(v̄ − v)2αd
π1(αs(s, d) + k, αs̄(s, d) + k, αv + k, αv̄ + k) · α ds

= α

∫ v̄+d

v−d

s̄(s, d) − s(s, d)

(v̄ − v)2d
π1(s(s, d), s̄(s, d), v, v̄) ds (30)

= απs
1(v, v̄, d).

(29) follows from the substitution s+ = αs + k, (30) from Lemma 8. �

Proof of Proposition 11

The proof proceeds in several steps.

First step: the maximum bid increases, b̄+ > b̄.
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We use (20) to calculate the difference b̄+ − b̄:

b̄+ − b̄ =
v̄+

1 · 1 −
(

v+
1 +0

2

)2

v̄+
1 − v+

1 + 1 − 0
−

v̄1 · 1 −
(

v1+0

2

)2

v̄1 − v1 + 1 − 0

=

(v̄1 − v1 + 1)

(

v̄+
1 −

(
v+
1

2

)2
)

−
(
v̄+

1 − v+
1 + 1

) (

v̄1 −
(

v1

2

)2
)

(
v̄+

1 − v+
1 + 1

)

︸ ︷︷ ︸

>0

(v̄1 − v1 + 1)
︸ ︷︷ ︸

>0

.

As the denominator is positive, we only need to calculate the sign of the numerator to see

whether b̄+ > b̄ or not:

(v̄1 − v1 + 1)

(

v̄+
1 −

(
v+

1

2

)2
)

−
(
v̄+

1 − v+
1 + 1

)
(

v̄1 −
(v1

2

)2
)

= v̄+
1

(

1 − 1

2
v1

)2

+
(
v+

1 − v1

) v+
1 v1

4
− 1

4

(
(v+

1 )2 − v2
1

)
− v̄1

(

1 − 1

2
v+

1

)2

≥ v̄1

(

1 − 1

2
v1

)2

+
(
v+

1 − v1

) v+
1 v1

4
− 1

4

(
(v+

1 )2 − v2
1

)
− v̄1

(

1 − 1

2
v+

1

)2

=
(
v+

1 − v1

)
(

v̄1 +
v+

1 v1

4
− 1

4

(
v+

1 + v1

)
(1 + v̄1)

)

≥
(
v+

1 − v1

)
(

v̄1 −
1

2
v̄1 (1 + v̄1)

)

=
(
v+

1 − v1

)
(

1

2
v̄1 (1 − v̄1)

)

≥ 0.

The first inequality is strict if v̄+
1 > v̄1, the second inequality is strict if v+

1 > v1. As at

least one of these two statements is true by assumption, we get b̄+ − b̄ > 0.

Second step: the bids of bidder 2 increase: for all b ∈ [b+, b̄] it holds that
(
β+

2

)
−1

(b) ≤
β−1

2 (b).

First note that β−1
2 (b̄) = 1 and

(
β+

2

)
−1

(b) < 1 as b̄ < b̄+ by the first step. Hence, the

assertion is true at the top. Now assume that the assertion fails for some lower b. Then,

by continuity of the bid functions, there is a largest b∗ in the interior of the interval where

the two inverse bid functions cross,

b∗ := max
b∈(b+,b̄)

{b|
(
β+

2

)
−1

(b) = β−1
2 (b)}.

To come to a contradiction, we look at two different cases regarding the inverse bid

function of bidder 1. The first case is
(
β+

1

)
−1

(b∗) < β−1
1 (b∗).

By the first-order conditions of the maximization problems of the two bidders, we get

directly the following differential equations4:
(
β−1

1

)
′

(b)
(
β−1

2 (b) − b
)

= β−1
1 (b) − v1

(
β−1

2

)
′

(b)
(
β−1

1 (b) − b
)

= β−1
2 (b) − v2.

4see e.g. Kaplan and Zamir (2007), equation (2)
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Applying this to our setting, as v2 = 0 the following equation holds at b∗:

((
β+

2

)
−1
)
′

(b∗)
((

β+
1

)
−1

(b∗) − b∗
)

=
(
β+

2

)
−1

(b∗) = β−1
2 (b∗) =

(
β−1

2

)
′

(b∗)
(
β−1

1 (b∗) − b∗
)
.

(31)

By assumption, we have
(
β+

1

)
−1

(b∗) < β−1
1 (b∗). For (31) to hold, it is thus necessary

that
((

β+
2

)
−1
)
′

(b∗) >
(
β−1

2

)
′

(b∗). This leads to a contradiction: by construction of b∗

we know that for all b̃ > b∗ the inequality
(
β+

2

)
−1
(

b̃
)

< β−1
2

(

b̃
)

is true. Thus, at b∗,

with
(
β+

2

)
−1

(b∗) = β−1
2 (b∗), we get that β−1

2 is at least as steep as
(
β+

2

)
−1

. Consequently,
((

β+
2

)
−1
)
′

(b∗) ≤
(
β−1

2

)
′

(b∗) holds, which contradicts the conclusion from above.

Thus, only the remaining case
(
β+

1

)
−1

(b∗) ≥ β−1
1 (b∗) is possible. However, we will come

to a contradiction in this case as well. We make use of an equilibrium condition derived

by Kaplan and Zamir (2007) from the differential equations. This is equation (6) in their

paper:

β−1
1 (b) =

bβ−1
2 (b) − (v1 + v2)b +

(v1+v2)2

4

β−1
2 (b) − b

. (32)

We apply this equation to our setting and conclude that at b∗

b∗β−1
2 (b∗) − v1b

∗ +
v2
1

4

β−1
2 (b∗) − b∗

= β−1
1 (b∗) ≤

(
β+

1

)
−1

(b∗) =
b∗
(
β+

2

)
−1

(b∗) − v+
1 b∗ +

(v+
1 )

2

4
(
β+

2

)
−1

(b∗) − b∗
.

As by assumption
(
β+

2

)
−1

(b∗) = β−1
2 (b∗), this reduces to

−v1b
∗ +

v2
1

4
≤ −v+

1 b∗ +

(
v+

1

)2

4
⇐⇒ b∗

(
v+

1 − v1

)
≤ 1

4

(
v+

1 − v1

) (
v+

1 + v1

)
.

In case the lower end of the interval strictly increases, v+
1 > v1, we conclude

b∗ ≤ 1

4

(
v+

1 + v1

)
<

v+
1

2
.

This is a contradiction to the fact that b∗ > b+ =
v+
1

2
. In case the lower end of the interval

stays the same, v+
1 = v1, by (32) we can directly see that

(
β+

1

)
−1

(b∗) = β−1
1 (b∗) needs

to hold. We look at the explicit solution of the equilibrium bid functions, (21) and (22)

or, in case v+
1 = v1 = 0, (24) and (25). Using the fact that b∗ > b+, it follows from

(
β+

1

)
−1

(b∗) = β−1
1 (b∗) that respectively c1 = c+

1 and c2 = c+
2 or c = c+ need to hold. But

this is not consistent with the true values of these constants – it would e.g. follow that

the bid functions are the same for both intervals. We thus arrived at a contradiction and

finished the proof of the second step.

Third step: the profit of bidder 1 with valuation v1 is weakly decreasing.

Suppose to the contrary that the expected profit of bidder 1 with valuation v1 is higher

after the shift of the interval. Furthermore, assume b and b+ are such that β−1
1 (b) = v1 =
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(
β+

1

)
−1

(b+). By the second step5, we know that
(
β+

2

)
−1

(b+) ≤ β−1
2 (b+). Hence, as bidder

2’s valuation is distributed uniformly on [0, 1], we conclude that

(v1 − b)β−1
2 (b) < (v1 − b+)

(
β+

2

)
−1

(b+) ≤ (v1 − b+)β−1
2 (b+).

This would be a profitable deviation for bidder 1 to b+ in the case with the unshifted inter-

val, a contradiction, as bidding b is equilibrium behavior by assumption. This concludes

the proof. �

Proof of Result 13

For the second case, d < 0.5, we rewrite the expected profit with signaling as follows:

πs
1(0, 1, d)

(12)
=

∫ 1+d

−d

hd(s)π1(s, d) ds

(10)
=

∫ 1+d

−d

s̄(s, d) − s(s, d)

2d
π1(s(s, d), s̄(s, d), 0, 1) ds

=

∫ d

−d

s + d

2d
π1(0, s + d, 0, 1) ds +

∫ 1−d

d

1 · π1(s − d, s + d, 0, 1) ds

+

∫ 1+d

1−d

1 − (s − d)

2d
π1(s − d, 1, 0, 1) ds

=
1

2d

∫ 2d

0

tπ1(0, t, 0, 1) dt +

∫ 1−2d

0

π1(t, t + 2d, 0, 1) dt +
1

2d

∫ 1

1−2d

(1 − t)π1(t, 1, 0, 1) dt.

We now check for all three summands whether they are increasing or decreasing in d by

using Leibniz’ rule and the assertion that an increase in the upper or lower end point of

the support of bidder 1’s uniform distribution also increases his expected profit. We start

with the first one:

d

dd

1

2d

∫ 2d

0

tπ1(0, t, 0, 1) dt =
−1

2d2

∫ 2d

0

tπ1(0, t, 0, 1) dt +
1

2d
· d

dd

∫ 2d

0

tπ1(0, t, 0, 1) dt

≥ −1

2d2
π1(0, 2d, 0, 1)

∫ 2d

0

t dt +
1

2d
·
(∫ 2d

0

d

dd
tπ1(0, t, 0, 1) dt + 2dπ1(0, 2d, 0, 1) · 2

)

= π1(0, 2d, 0, 1)

> 0.

The first summand is thus increasing. The second summand is decreasing:

d

dd

∫ 1−2d

0

π1(t, t + 2d, 0, 1) dt =
d

dd

∫ 1−2d

0

π1(1 − 2d − t, 1 − t, 0, 1) dt

=

∫ 1−2d

0

d

dd
π1(1 − 2d − t, 1 − t, 0, 1)

︸ ︷︷ ︸

<0

dt + π1(0, 2d, 0, 1) · (−2)

< 0.

5Technically, we did not show b+ ≤ b̄, and in case b+ > b̄ the inverse β−1

2 (b+) is not well defined – no

type of bidder 2 will bid so high. However, a bid of b+ will win with probability 1, and it is thus sufficient

to identify β−1

2 (b+) with the highest possible valuation of bidder 2, which is 1. The inequality is thus

trivially fulfilled in this case.
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The third summand is increasing:

d

dd

1

2d

∫ 1

1−2d

(1 − t)π1(t, 1, 0, 1) dt =
−1

2d2

∫ 1

1−2d

(1 − t)π1(t, 1, 0, 1) dt

+
1

2d

(∫ 1

1−2d

d

dd
(1 − t)π1(t, 1, 0, 1) dt − 2dπ1(1 − 2d, 1, 0, 1) · (−2)

)

≥ −1

2d2
π1(1, 1, 0, 1)

∫ 1

1−2d

(1 − t) dt + 2π1(1 − 2d, 1, 0, 1)

≥ −π1(1, 1, 0, 1) + 2π1(0, 1, 0, 1) = −0.25 +
1

3

> 0.

To show that πs
1(0, 1, d) < π1(0, 1, 0, 1) = 1

6
, we calculate the summands for different d

values and use the results from above for the values in between. The following table gives

simple (rounded) upper bounds for the values of the summands.

d summand 1 summand 2 summand 3

0.00 0 0.09 0

0.26 0.01 0.06 0.06

0.36 0.02 0.04 0.075

0.44 0.035 0.02 0.09

0.5 0.05 0 0.095

Given the fact that summands one and three are increasing, and summand 2 is decreasing,

we can thus estimate:

• For d ≤ 0.26: πs
1(0, 1, d) < 0.01 + 0.09 + 0.06 < 1

6

• For 0.26 ≤ d ≤ 0.36: πs
1(0, 1, d) < 0.02 + 0.06 + 0.075 < 1

6

• For 0.36 ≤ d ≤ 0.44: πs
1(0, 1, d) < 0.035 + 0.04 + 0.09 < 1

6

• For 0.44 ≤ d ≤ 0.50: πs
1(0, 1, d) < 0.05 + 0.02 + 0.095 < 1

6
. �
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