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Germany

Abstract: We discuss inference for additive models with random scaling
factors. The additive effects are of the form (1 + γ)f (z) where f is a
nonlinear function of the continuous covariate z modeled by P(enalized)-
splines and 1 + γ is a random scaling factor. Additionally, monotonicity
constraints on the nonlinear functions are possible.

Our work is motivated by the situation of a retailer analyzing the impact
of price changes on a brand’s sales in its orange juice product category.
Relating sales to a brand’s own price as well as to the prices of competing
brands in the category, we estimate own- and cross-item price response
functions flexibly to represent nonlinearities and irregular pricing effects
in sales response. Monotonicity constraints are imposed so that a brand’s
own price is inversely related and the prices of competing brands are di-
rectly related to the number of items sold, as suggested by economic the-
ory. Unobserved store-specific heterogeneity is accounted for by allowing
the price response curves to vary between different stores.

Zusammenfassung: Wir behandeln additive Modelle mit zufälligen Skalierungs-
faktoren. Die additive Effekte haben die Form (1 + γ)f (z). f ist eine
nichtlineare Funktion der stetigen Kovariable z, modelliert mittels P(enalized)-
splines und 1 + γ ist ein zufälliger Skalierungsfaktor. Den nichtlinearen
Funktionen können zusätzlich Monotonierestriktionen auferlegt werden.

Den Ausgangspunkt unserer Arbeit bildet die Situation eines Einzelhändlers,
der den Einfluss von Preisänderungen auf den Absatz einer Orangensaft-
marke in seinem Sortiment analysieren möchte. Eine entsprechende Ab-
satzreaktionsfunktion lässt sich schätzen, indem der Absatz der betrachteten
Marke als nichtlineare Funktion des eigenen Preises sowie der Preise der
Konkurrenzmarken modelliert wird. Monotonierestriktionen für die Preis-
effekte gewährleisten darüber hinaus einen inversen Verlauf des Absatzes
bezüglich des eigenen Preises sowie eine direkte Beziehung des Absatzes
zu Konkurrenzpreisen, wie es in Anlehnung an die ökonomische Preis-
theorie zu erwarten ist. Unbeobachtete Heterogenität wird berücksichtigt,
indem die Preiseffekte über die einzelnen Geschäfte des Händlers zufällig
variieren können.

Keywords: P-splines, Monotonicity constraints, multiplicative random
effects, price response, own- and cross-item price effects.



1 Introduction

This paper is motivated by a frequently encountered application problem in marketing:
estimating price response from sales data. Specifically, we are interested in model-
ing the dependence of a brand’s unit sales from its own price and the prices of com-
peting brands. Most previous studies have employed strictly parametric functions to
represent nonlinearities in sales response to price changes (e.g., Blattberg and Wis-
niewski (1989), Montgomery (1999), van Heerde and Wittink (2002)). It is impor-
tant to note that all those parametric functional forms have been inherently monotonic,
i.e., decreasing for own-price effects and increasing for cross-price effects, which is
in accordance with economic theory (e.g., see Hanssens et al. (2001)). Kalyanam and
Shively (1998) and van Heerde and Wittink (2001) suggested stochastic spline regres-
sion respectively Kernel regression to explore the shape of price response curves more
flexibly, and both obtained superior performance for their models compared to strictly
parametric models. Recently, Brezger and Steiner (2007) demonstrated that impos-
ing monotonicity constraints on nonparametrically estimated own- and cross-price ef-
fects not only preserves a reasonable economic interpretation, but can also improve
the predictive validity of sales response functions considerably. However, all flexible
approaches mentioned above do not account for possible heterogeneity of price effects
across different stores of a retail chain. In this paper, we add to the body of knowledge
by addressing nonlinearity and heterogeneity in estimating price response. For illus-
tration, we use weekly store-level scanner data from Dominick’s Finer Foods, a major
supermarket chain in the Chicago metropolitan area.

Figure 1 shows the relationship between the unit sales of a certain orange juice
brand and its own price for two different stores of the retail chain. The figure exhibits
two characteristic features:

• The unit sales of the brand depend on the own price in a nonlinear way.

• The level and presumably also the scaling of the underlying price response func-
tion differ across stores.
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Figure 1: Scatterplot unit sales versus own price for a brand of orange juice in two
stores.



The purpose of the paper is to provide statistical methodology for modeling and
estimating those two features: nonlinearity and heterogeneity. Specifically, we pro-
pose additive models (Hastie and Tibshirani, 1990) with random scaling factors. The
additive effects are of the form (1 + γ)f (z) where f is a nonlinear function of the
continuous covariate z modeled by P(enalized)-splines and 1 + γ is a cluster specific
random scaling factor. With respect to our marketing application, z is the own price
of the brand, while the cluster variable refers to the outlet index. To ensure economi-
cally plausible results, additional monotonicity constraints on the nonlinear functions
are imposed, as discussed above.

P-splines have been introduced by Eilers and Marx (1996), see also Lang and
Brezger (2004) for a Bayesian version. Monotonicity constraints in the context of
P-spline modeling are discussed in Bollaerts et al. (2006) and Brezger and Steiner
(2007). An overview concerning additive models and extensions is given in Hastie
and Tibshirani (1990), Fahrmeir et al. (2007) and Wood (2006). Additive models with
random scaling factors are in the spirit of regression models for functional data, see,
e.g., Ramsay and Silverman (2005) and Ramsay and Silverman (2002). The basis for
statistical inference is a recent paper by Belitz and Lang (2007) that allows for simulta-
neous estimation of unknown regression and smoothing parameters as well as selection
of relevant model terms. The approach is also able to discriminate between linear and
nonlinear relationships.

The remainder of this article is structured as follows. In the next section, we in-
troduce additive models with random scaling factors and discuss algorithms for esti-
mation. In section 3, the results of some simulations are presented, followed by an
application to marketing data in section 4. The final section 5 concludes.

2 Methodology

2.1 Additive and varying coefficient models based on P-splines

Suppose that observations (yi, zi), i = 1, . . . , n, are given, where yi is a continuous
response variable and zi = (zi1, . . . , ziq)′ is a vector of continuous covariates to be
modeled nonlinearly. We assume an additive decomposition of the effects of z ij and
obtain the additive model

yi = f1(zi1) + . . . + fq(ziq) + εi, (1)

where f1 − fq are nonlinear functions of the covariates z ij . The errors εi are assumed
to be mutually independent Gaussian with mean 0 and variance σ 2, i.e. εi ∼ N(0, σ2).

The nonlinear functions fj are modeled by P(enalized)-splines introduced by Eilers
and Marx (1996). The approach assumes that a particular unknown function f of a
covariate z can be approximated by a polynomial spline of degree l and with equally
spaced knots

zmin = ζ0 < ζ1 < · · · < ζm−1 < ζm = zmax

over the domain of z. The spline can be written in terms of a linear combination of



K = m + l B-spline basis functions (De Boor, 2001)

f(z) =
K∑

k=1

βkBk(z).

Defining the n × K design matrix Z with elements Z[i, k] = Bk(zi) the vector f =
(f(z1), . . . , f(zn))′ of function evaluations can be written in matrix notation as f =
Zβ. Accordingly, for model (1) we obtain

y = η + ε = Z1β1 + . . . + Zqβq + ε, (2)

where y is the vector of observations, η is the additive predictor and ε is the error
vector.

The additive modeling framework can be easily extended to cover varying coeffi-
cients models as introduced in Hastie and Tibshirani (1993). Varying coefficient mod-
els contain terms of the form

yi = . . . + f(zi) · ui + . . . ,

where the effect of the additional covariate u varies smoothly over the course of the
continuous covariate z. Covariate z is called the effect modifier of u. Terms of this
type are incorporated into the structure of (2) through a modification of the design
matrix Z. The matrix of B-spline basis functions must be multiplied row-wise with the
observations ui of the additional covariate u. Hence, for a varying coefficients term the
elements of Z are given by Z[i, k] = uiBk(zi).

In a simple regression spline approach the unknown regression coefficients β j are
estimated using standard algorithms and software. The crucial point is the choice of
the number (and position) of knots. For a small number of knots, the resulting spline
may be not flexible enough to capture the variability of the data. For a large number
of knots, estimated curves tend to overfit the data and, as a result, too rough functions
are obtained. To overcome the difficulties involved with regression splines, Eilers and
Marx (1996) suggest a relatively large number of knots (usually between 20 to 40) to
ensure enough flexibility, and to introduce a roughness penalty on adjacent regression
coefficients based on squared r-th order differences, i.e.

λ

K∑
k=r+1

(Δrβk)2 = λβ′Kβ.

The penalty matrix is given by K = D′
rDr where Dr is a r-th order difference matrix.

Typically, second or third order differences are used.
The approach can be extended to impose monotonicity or more general shape con-

straints. We follow an approach proposed by Bollaerts et al. (2006). A sufficient con-
dition for a decreasing spline is given by βk ≤ βk−1, i.e. a parameter βk is less than
its predecessor βk−1. The simple but powerful idea of Bollaerts et al. (2006) is to
impose the required constraint by expanding the penalty by an additional term. More
specifically they propose the penalty

λβ′Kβ + μβ′Lβ,



where the additional penalty matrix L is a diagonal matrix with entries 1 whenever
the condition βk ≤ βk−1 fails and 0 otherwise. For increasing functions L has to be
adapted accordingly. The parameter μ is not estimated but set large enough to produce
monotonic functions.

2.2 Simultaneous selection of variables and smoothing parameters

A main building block of the estimation algorithms for additive and varying coefficients
models are smoothers of the form

S(y, λ) = Zβ̂ β̂ = (Z′Z + λK + μL)−1Z′y. (3)

Consecutively applying smoothers Sj corresponding to the j-th function f j in (1)
to the current partial residual reveals the well known backfitting algorithm to minimize
the overall PLS-criterion

PLS = (y − η)′ (y − η) +
q∑

j=1

(
λjβ

′
jKjβj + μjβ

′
jLjβj

)
.

The complexity of the fit may be determined by the equivalent degrees of freedom
df as a measure of the effective number of parameters. The equivalent degrees of free-
dom df are typically approximated by the sum of the degrees of freedom of individual
smoothers, i.e.

df =
q∑

j=1

dfj + p,

where dfj is computed as

dfj = trace(Zj

(
Z′

jZj + λjKj + μjLj

)−1
Z′

j) − 1. (4)

Now the approach for simultaneous selection of variables and smoothing parame-
ters works as follows:

1. Initialization
Define for every possible nonlinear term fj , j = 1, . . . , q, a discrete number Mj

of decreasing smoothing parameters λj1 > · · · > λjMj . To include a linear fit
λj1 = ∞ is always specified.

2. Start model
Choose a start model with current predictor

η̂ = f̂1 + . . . + f̂q.

where f̂j is the vector of function evaluations at the observations. Choose a
goodness of fit criteria C (e.g. AIC, BIC, Cross validation, etc.).

3. Iteration

For j = 1, . . . , q:



For m = 0, . . . , Mj :
Compute the fits

f̂jm :=
{

0 m = 0
Sj(y − η̂[j], λjm) m = 1, . . . , Mj

=
{

0 m = 0
(Z′

jZj + λjmKj + μjLj)−1Z′
j(y − η̂[j]) m = 1, . . . , Mj

and the corresponding predictors η̂jm := η̂[j] + f̂jm. Here, η̂[j] is the cur-

rent predictor with the j-th fit f̂j removed.

Compute the updated estimate

f̂j = argmin C(f̂jm),

i.e. among the fits f̂jm for the j-th component, choose the one that minimizes
the goodness of fit criteria C.

4. Termination
The iteration cycle in 3. is repeated until the model, regression and smoothing
parameters do not change anymore.

Note that when updating the function estimates f̂j the other terms in the model are
not re-estimated as in a backfitting procedure. However, the algorithm automatically
collapses to backfitting as soon as the variables and smoothing parameters included in
the model do not change anymore. Avoiding backfitting in step 2 dramatically reduces
computing time without loss of estimation accuracy. More details on the estimation
algorithm can be found in Belitz and Lang (2007).

2.3 Multiplicative random effects

As described in the introduction, the super market scanner data, that motivated our
work, are clustered in 81 stores. It is usually not justified to assume homogeneous price
response functions fj across stores. We therefore allow for cluster specific (random)
scaling factors for every nonlinear function f j as well as a cluster specific random
intercept. This leads to the model

yi = γ0ci + (1 + γ1ci) f1 (zi1) + . . . + (1 + γqci) fq (ziq) + εi, (5)

where ci ∈ {1, . . . , C} is the cluster index of the i-th observation and the γ jc, j =
0, . . . , q are normally distributed random effects with mean 0 and variance τ 2

j , i.e.

γjc = N
(
0, τ2

j

)
, c = 1, . . . , C.

The result of the multiplicative effects is the scaling up of the nonlinear function by
making it steeper if (1 + γjc) > 1 and scaling down by making it flatter if (1 + γjc) <
1.



In order to estimate the model we assume for the moment that the nonlinear func-
tions fj are known. Rearranging model terms yields

yi = γ0ci + γ1cif1(zi1) + . . . + γqcifq(ziq) + f1(zi1) + . . . + fq(ziq) + εi

= γ0ci + γ1cixi1 + . . . + γqcixiq + oi + εi.
(6)

For known functions fj equation (6) is a simple random effects model with random
intercept γ0c, random slopes γjc, j = 1, . . . , q of the pseudo or transformed covariates
xij := fj(zi) and with an additional offset

oi = f1(zi1) + . . . + fq(ziq).

Model (6) has formally the same structure as the additive or more precisely the varying
coefficient model described in section 2.1. The role of the effect modifier is taken by
the cluster index c and the interacting variables are the pseudo covariates x j = fj(zj).
In matrix notation we may write

y = Z̃0γ0 + Z̃1γ1 + . . . + Z̃qγq + o + ε

with design matrices Z̃0 = C and Z̃j = diag(x1j , . . . , xnj)C. The n × C matrix C
is a 0/1 incidence matrix whose entry in the i-th row and k-th columns is 1 if the i-th
observation belongs to the k-th cluster and 0 otherwise.

For given variance parameters τ 2
0 , . . . , τ2

q the random effects γjc, j = 0, . . . , q,
c = 1, . . . , C may be estimated by minimizing the following penalized least squares
criterion

PLS = (y − η)′ (y − η) +
q∑

j=0

λ̃jγ
′
jγj ,

where the ”smoothing parameters” are given by λ̃j = σ2/τ2
j and γj = (γj1, . . . , γjC)′

are vectors of random effects coefficients. The vectors γ j may be estimated via back-
fitting analogous to the parameters β j of the nonlinear functions fj in the preceding
subsection. The corresponding smoothers are given by

S̃j(y, λ̃) = Z̃j γ̂j γ̂j = (Z̃′Z̃ + λ̃jIj)−1Z̃′
jy.

Simultaneous selection of smoothing parameters and relevant random effects can be
done in the same way as described in subsection 2.2.

We are now prepared to describe estimation of our model (5). Estimation is carried
out in the following two steps which may be iterated:

1. In a first step we assume homogeneous functions f j in model (5), i.e. the random
effects coefficients γjc are assumed to be identical zero. Using the algorithms of
section 2.2 estimates f̂j of the nonlinear functions are obtained. Because of the
built in model selection some of the functions may be linear or identical to zero.

2. In the second step we estimate the random effects coefficients as described above
by keeping the estimated functions f̂j from the first stage fixed.



3 Simulation

3.1 Setup

The true model consists of three covariates, x1, x2 and x3, exerting a nonlinear influ-
ence, modified by multiplicative effects, on the response as given in equation (7).

y = (1 + γ1) f1 (x1) + (1 + γ2) f2 (x2) + (1 + γ3) f3 (x3) + ε (7)

f1 is the decreasing part of the sine-function in the interval [1.58; 4.71], f 2 is the
natural logarithm in the interval [5; 15], f3 is the value of the cumulative distribution
function of the standard normal distribution, evaluated in the interval [−2.5; 2.5] and
ε is the usual i.i.d. Gaussian error with some variance σ2. The γj are normally dis-
tributed and centered about 0, which means that the multiplicative effects (1 + γ j) are
centered about 1. We choose different levels of variance for γ j in order to assess the
behavior of the estimation technique for different strengths of the multiplicative ef-
fects. In particular, we set the variances equal 0.42, 0.22 and 0.12 for γ1, γ2 and γ3,
respectively:

γ1 ∼ N
(
0; 0.42

)
γ2 ∼ N

(
0; 0.22

)
γ3 ∼ N

(
0; 0.12

)
In the simulation setup, we use 100 clusters, each having 50 observations. The

effects (1 + γj) fj (Xj) are shown in figure 2.
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Figure 2: The three nonlinear functions, multiplied with their respective random ef-
fects.



Furthermore, we study the three different signal-to-noise ratios 3, 2 and 1. The
signal-to-noise ratio is computed as the ratio of the standard deviation of the predictor
η to the standard deviation of the error term ε:

SNR =
ση

σε

A ratio of 3 corresponds to a moderate signal, 2 means a weak signal and 1 implies
a very weak signal.

We calculate 250 replications of our model and carry out the estimation procedure
described in the previous section. In figure 3 the results are shown. From the 100
cluster-specific effects (1 + γj) fj (xj) three are picked for closer inspection. The first
is the cluster corresponding to the 5%-, the second to the 50%- and the third to the
95%-Quantile of the random effects γj . The arithmetic mean from the 250 replications
is computed and displayed in the graph (solid). In order to facilitate comparison, the
true effects are plotted, too (dashed). Clearly, the average from 250 estimates is more
biased for smaller signal-to-noise ratios. Furthermore, the estimate is more biased the
weaker the random effect is. These two characteristics are a well known feature of
random effects estimators, see for example Gelman and Hill (2007).
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Figure 3: The average estimates of 250 replications (solid) and the true effects (dashed)
(1 + γj) fj (Xj) for the signal-to-noise ratio 3, 2 and 1 in the first, second and third
row, respectively.

It remains to be investigated how many errors the estimation procedure has pro-
duced. This amounts to the question how often covariates have been eliminated al-
though they actually should have been included. In step one no errors have occurred,



Signal-to-noise ratio γ1 γ2 γ3

3:1 0 0 0
2:1 0 0 28
1:1 0 57 111

Table 1: Number of false exclusions for different signal-to-noise ratios.

regardless of the covariate and the signal-to-noise ratio. Contrary to that, errors have
appeared in the second step. Table 1 points out that the multiplicative effects of f 1 have
never been excluded. The weak multiplicative effect of f 3 is excluded most often, with
a signal-to-noise ratio of 1 nearly half of the time.

We redo the analysis using the same 250 replications of the model in equation 7,
but now we calculate the model using a fully Bayesian approach with MCMC tech-
niques (see Lang and Brezger (2004) and Brezger and Lang (2006) for details). This
approach, however, is not able to perform model selection. The results are optically
indistinguishable from those in figure 3 which is why we omit the depiction.

We can compare the two estimation procedures in terms of their efficiency. For this
reason we compute the mean squared error MSE = E (ŷ − y)2 for the 250 replications
of the three clusters considered in figure 3. The results are reported in figure 4. The
upper left panel depicts a boxplot of the MSE for a signal-to-noise ratio of 3, the upper
right of 2 and the lower of 1. We can see that generally the error increases the weaker
the signal is. Next to the MSE of the estimation procedure described in section 2
we also report the MSE of Bayesian techniques, indicated by MCMC. It does not,
however, differ to a notable extent.

Summing up it can be said that the estimation procedure performs reasonably well.
Even for a moderate strength of the signal the results are not too much biased. We have
seen, though, that there are limits. In particular, with a very low signal-to-noise ratio
of 1 there seems to be too much noise to estimate the effects precisely.

4 Application

We apply our methodology to data from ”Dominick’s Finer Foods”, a major super-
market chain operating in the Chicago metropolitan area. The data include weekly unit
sales and respective retail prices for different brands of orange juice (premium, national
and store brands) in 81 stores of the chain over a time span of 89 weeks. In the follow-
ing, we illustrate our methodology for one of the national brands, the brand ”Florida
Gold”.

To account for multicollinearity and for the fact that cross-item price effects are
usually much lower than own-item price effects (see, e.g., Hanssens et al. (2001)),
we capture cross-price effects at the tier level rather than the individual brand level:
we define price premiumit (price nationalit) as the minimum price for a premium
brand (national brand) in store i and week t, while (price dominicks it) denotes the
price of the only private label brand, Dominick’s store brand, in store i and week t. It is
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Figure 4: The MSE for a signal-to-noise ratio of 3 (upper left panel), 2 (upper right
panel) and 1 (lower panel). For each effect the MSE of the estimation procedure as
describes in section 2 as well as a Bayesian procedure (indicated MCMC) is reported.

important to note that price activities of the national brand Florida Gold are excluded
from the computation of price nationalit.

A scatter plot of log unit sales and the own-item price of the brand Florida Gold is
shown in the upper left panel of figure 5, indicating the expected inverse relationship
between unit sales and own-item price. The situation is less clear-cut for the impact of
competitive prices on the sales of Florida Gold: it is hard to discern the expected direct
relationships in the scatter plots since there is much noise in the data.

We apply the estimation procedure described in section 2 and estimate the model

ln qi,t = γ0i + (1 + γ1i) f1 + (1 + γ2i) f2 + (1 + γ3i) f3 + (1 + γ4i) f4 + εi,t, (8)

where qi,t denotes unit sales of Florida Gold in store i and week t, γ0i is a random
intercept accounting for heterogeneity in baseline sales of Florida Gold across different
stores, f1 is a nonlinear function of the price of ”Florida Gold”, f 2 - f4 are nonlinear
functions of the competitive prices w.r.t. the premium brand tier, the national brand tier
and the store brand, respectively, and ε i,t ∼ N

(
0, σ2

ε

)
is the usual i.i.d. Gaussian error

term. The nonlinear functions are modeled using P-splines with 20 knots and a second
order difference penalty. Note that for ease of notation we have omitted the arguments
of the nonlinear functions.

Selection of penalty parameters and relevant terms is carried out using the algo-
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Figure 5: Scatter plots between the log number of sold packages and the price of
”Florida Gold” (upper left panel) as well as prices of competitive products in three
quality tiers

rithm described in subsection 2.3. The algorithm deletes the random effect of the pre-
mium brand tier from the model, yet the fixed effect is still incorporated. The resulting
model therefore is

ln qi,t = γ0i + (1 + γ1i) f1 + f2 + (1 + γ3i) f3 + (1 + γ4i) f4 + εi,t, (9)

where f2 is homogeneous across outlets. The minimum and maximum random
marginal effects, holding all other covariates constant at the mean in the dataset and
after transforming log unit sales to unit sales, are shown in figure 6.

The estimated price effects exhibit a highly nonlinear behavior with steps and kinks
at certain price points indicating threshold and saturation effects. For example, unit
sales of Florida Gold do not increase until the own price falls below about 2.5 dollars.
The cross-price response curve with respect to the premium brands shows an inverse
L-shape and a strong kink at a price of about 2.25 dollars, below which the unit sales of
Florida Gold rapidly decrease. And, unit sales of Florida Gold rapidly increase if the
lowest price for one of the competing national brand exceeds 2.5 dollars. We further
observe strong heterogeneity across stores for the cross-price effect of Dominick’s own
orange juice brand.

We replicated the same analysis using MCMC techniques (Lang and Brezger (2004)
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Figure 6: Maximum and minimum random marginal price effects for the three price
variables that were selected. The price w.r.t. the premium brand tier (upper right
panel) was selected not to vary across outlets.

and Brezger and Lang (2006)). Figure 7 displays the estimation results. A comparison
with figure 6 reveals only minor differences between the estimation procedures regard-
ing the shapes of the price effects, except for the premium tier effect which is now
much smoother. Furthermore, since this approach is incapable of variable selection,
the random effect of price premium is included in addition to the fixed effect (though
revealing only little variation).

We compared the model performance in terms of predictive validity to the model

ln qi,t = γ0 + f1 + f2 + f3 + f4 + εi,t (10)

which contains no random effects at all, and to the model

ln qi,t = γ0i + f1 + f2 + f3 + f4 + εi,t (11)

which only includes the random intercept but not the random scaling factors.
In particular, we randomly split the data into five respectively ten equally-sized

subsets and performed five-fold and ten-fold cross-validation. The results displayed in
table 2 indicate a considerable improvement in predictive performance when allowing
the nonlinear functions to vary across stores.
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Figure 7: Maximum and minimum random marginal price effects for the four price
variables estimated using MCMC.

Model (8) (10) (11)
CV5 0.7243 0.8408 0.8201
CV10 0.7242 0.8406 0.8175

Table 2: Cross-validation criteria for different model specifications.

5 Conclusion

The paper provides inference for additive models with random scaling factors and
presents an empirical application concerning the estimation of own- and cross item
price effects from retail sales data.

Several directions for future research are conceivable. First, the methodology could
be extended to non-Gaussian responses. Second, we plan a fully Bayesian version
based on MCMC simulation techniques. Third, since the stores of the retail chain
exhibit a spatial structure, we plan to introduce spatially correlated random scaling
factors rather than uncorrelated factors, as employed in the current paper.
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