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Abstract

We develop econometric models of ascending (English) auctions which allow for both bid-

der asymmetries as well as common and/or private value components in bidders’ underlying

valuations. We show that the equilibrium inverse bid functions in each round of the auction

are implicitly defined (pointwise) by a system of nonlinear equations, so that conditions for

the existence and uniqueness of an increasing-strategy equilibrium are essentially identical to

those which ensure a unique and increasing solution to the system of equations. We exploit the

computational tractability of this characterization in order to develop an econometric model,

thus extending the literature on structural estimation of auction models. Finally, an empirical

example illustrates how equilibrium learning affects bidding during the course of the auction.

JEL: C51,D44, D82, L96

Keywords: Asymmetric auctions, Ascending (English) auctions, Simulation estimation

1 Introduction

We develop a framework for estimating structural models of asymmetric ascending (English) auc-
tions. In these auctions, the bidding process is modeled as a multi-stage game in which bidders
acquire more and more information during the course of the auctions as rivals drop out of the
bidding. Equilibrium learning is a feature of these dynamic games, in contrast to static (first- or
second-price) sealed-bid auctions which offer participants no opportunity to gain information during
the course of the auction. In a common-value setting, information acquisition reduces the effects of
the winner’s curse, thereby encouraging participants to bid more aggressively and raising expected
seller revenue relative to a sealed-bid auction. Many real-world auction mechanisms — from art and
collectible auctions to the Japanese “button” auction cited by Milgrom and Weber (1982) (pg. 1104)
∗Corresponding author: Han Hong. Address: Dept. of Economics, Fisher Hall, Princeton University, Princeton,

NJ 08544-1021. Tel.: (609) 258-6802. Fax: (609) 258-6419.
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— resemble the auctions we study, and perhaps these mechanisms arose to allow for the possibility
of information acquisition.

The theoretical literature on ascending auctions (including the paradigmatic model presented in
Milgrom and Weber (1982)) has focused primarily on symmetric models, in which the bidders’
signals about the value of the object are assumed to be generated from identical distributions.
However, recent applied research in auctions (eg. work by Hendricks and Porter (1988) on offshore
gas auctions, and by Klemperer (1998) on the PCS spectrum auctions) suggests that symmetry
may not be a realistic assumption for many real-world situations. For these reasons, we develop an
econometric framework for asymmetric ascending auctions which can be used in applied analyses.

We begin with a brief characterization of Bayesian-Nash equilibrium bidding behavior in asymmetric
ascending auctions. This complements recent work (Maskin and Riley (2000), Bulow, Huang, and
Klemperer (1999), Bajari (1998), Campo, Perrigne, and Vuong (1998), Froeb, Tschantz, and Crooke
(2000)) on asymmetric first-price auctions, and by Wilson (1998) and Maskin and Riley (2000) on
asymmetric ascending auctions.We find that the increasing-strategy equilibrium bid functions in each
round of an ascending auction exhibit an attractive analytic property: specifically, the inverse bid
functions are implicitly defined by a system of nonlinear equations, pointwise in the bids. Therefore,
conditions for the existence of an increasing-strategy equilibrium are essentially identical to those
which ensure an increasing solution to the system of equations, given primitive model assumptions
about the joint distribution of the bidders’ underlying valuations and private signals.

This attractive analytic property also facilitates numerical calculation of the equilibrium bidding
strategies, which makes the econometric implementation of these models feasible. This was recog-
nized by Wilson (1998), who analytically derives the equilibrium bid functions for a log-additive
log-normal asymmetric ascending auction model given a diffuse prior assumption on the distribu-
tion of the common value component. Following this cue, we develop an econometric model of the
asymmetric ascending auction for this log-additive case which differs from Wilson’s model in that
we do not assume a diffuse prior for the common value distribution.1 This extends the scope of the
literature on the structural estimation of auction models (eg. Paarsch (1992), Laffont, Ossard, and
Vuong (1995), Li, Perrigne, and Vuong (2000)) to asymmetric ascending auctions within the CV
paradigm. Perhaps the closest antecedents of this paper is work by Donald, Paarsch, and Robert
(1997) on bidding in simultaneous ascending auctions within the symmetric independent private val-
ues paradigm, and by Bajari and Hortacsu (1999) on bidding in symmetric common-value ascending
auctions.

We provide an empirical illustration of this model by estimating it using data from the PCS spectrum
auctions run by the U.S. Federal Communications Commission (FCC). While our model accommo-
dates the multiple-round aspect of these auctions, it does not include other essential details, such
as the simultaneous selling of multiple licenses, and the flexible eligibility rules. Therefore, we view

1Furthermore, we show that the log-additive log-normal information structure satisfies a diagonal domi-
nance condition which ensures the existence of an equilibrium in monotonic bidding strategies.
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the main purpose of this example as illustrating the econometric model and suggesting solutions
to problems which arise in implementing the estimation method in practice, rather than provid-
ing robust empirical findings concerning the FCC auctions.2 We present estimated bid functions
which illustrate how equilibrium learning affects bidding behavior during the course of an ascending
auction.

We start, in the next section, by a brief description of equilibrium bidding behavior in the asymmetric
ascending auction. In Section 3 we develop an econometric model based on a log-normal specification
of the auction model, and discuss estimation issues in Section 4. Section 5 contains the empirical
example, and Section 6 concludes.

2 Asymmetric ascending auctions

Consider an auction in which N bidders compete for the possession of a single object. Each bidder
i, i = 1, . . . , N , values the object at Vi, but does not observe his valuation directly. Rather, before
the auction begins, each bidder i observes a private and noisy signal Xi of his valuation Vi.

The auction format which we focus on in this paper is an asymmetric version of the “irrevocable
dropout” auction described in Milgrom and Weber (1982), pg. 1104. In this auction bidders drop
out one by one irrevocably as the auctioneer raises the price. By observing the dropout prices
in previous rounds, remaining bidders can infer the private information possessed by the bidders
who have dropped out. Any common value component in bidders’ valuations leads to correlation
among the bidders’ private signals which, in turn, makes bidder j’s signal Xj useful to bidder i in
estimating Vi, his valuation of the object.3 This equilibrium learning (i.e., losing bidders revealing
their private information to remaining bidders in equilibrium) is a distinctive feature of irrevocable
dropout common value English auctions.

2.1 Equilibrium bidding in the ascending auction

First we introduce the indexing convention we will follow in this paper. The ascending auction
proceeds in “rounds”, with a new round beginning whenever another bidder drops out. With N

bidders participating in the auction, there will be N − 1 rounds, indexed k = 0, . . . , N − 2. In
round 0, all N bidders are active, and in round k, only N − k bidders are active: each round ends
when a bidder drops out. Bidders are indexed by i = 1, . . . , N where, without loss of generality,
the ordering 1, . . . , N indicates the order of dropout, so that bidder N drops out in round 0, and
bidder 1 wins the auction. The dropout prices are indexed by rounds, i.e., P0, . . . , PN−2. To sum

2Recent empirical work on these auctions has been done by, among others, Cramton (1997), Ausubel,
Cramton, McAfee, and McMillan (1997), Moreton and Spiller (1998). The focus in most of these papers has
been on detecting the presence of cross-license complementarities.

3In the private values (PV) paradigm, in contrast, where each bidder has a private value for the object
(which he knows), the (undominated) equilibrium bidding strategy is independent of others’ valuations: a
bidder will bid (up to, in the ascending case) his private valuation of the object.
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up, bidder N − k drops out at the end of round k, at the price Pk.

A Bayesian-Nash equilibrium in the ascending auction game consists of bid functions βki (Xi; Ωk)
for each bidder i, and for each round k, k = 0, . . . , N − 2, i.e.,

{
β0
i (Xi; Ω0), . . . , βN−2

i (Xi; ΩN−2)
}

,
where Xi denotes bidder i’s private signal and Ωk the public information set at the beginning of
round k. The contents of Ωk will be described later, but in what follows we sometimes suppress the
dependence of the bid functions βki (· · · ) on Ωk, for notational simplicity. βki (Xi) tells bidder i which
price he should drop out at during round k. The collections of bid functions β0

i (Xi), . . . , βN−2
i (Xi)

for bidders i = 1, . . . , N are common knowledge.

Up to the beginning of round k, bidders N − k + 1, . . . , N have already dropped out, at prices
Pk−1, . . . , P0, respectively. Since the equilibrium bid functions are common knowledge, an active
bidder i can use this information to infer the private signals XN−k+1, . . . , XN observed by these
bidders by inverting their bid functions: i.e.,, Xj = (βN−jj )−1(PN−j), for j = N − k + 1, . . . , N .

In what follows, we focus on equilibria in increasing bidding strategies (i.e., βki (Xi) is increasing in
Xi, for k = 0, . . . , N − 2).4 The structure of the equilibrium strategies extends the construction
of the symmetric equilibrium strategies described in Milgrom and Weber (1982), pp. 1104ff, to the
asymmetric case.5

Next we state three assumptions which are sufficient to ensure the existence of an equilibrium in
monotonic bidding strategies. For any round k (0 ≤ k ≤ N−2) and for any permutation (i1, . . . , iN )
of (1, . . . , N), fix the realizations of XiN , . . . , XiN−k+1 (the private signals corresponding to the
bidders who have already dropped out prior to round k). The N − k conditional expectations for
the N − k bidders active in round k constitute a system of N − k equations with N − k unknowns

E
[
Vi1 |Xi1 , . . . ,XiN−k ;XiN−k+1 , . . . ,XiN

]
= P

. . .

E
[
ViN−k |Xi1 , . . . ,XiN−k ;XiN−k+1 , . . . ,XiN

]
= P

(2.1)

where Xi1 , . . . , XiN−k are the unknown variables and P is taken as a parameter. Furthermore, let
X and X denote the lower and upper bound of the support of a single signal.

A1 (Common support) For all pairs of bidders 1 ≤ i, j ≤ N , E [Vi|X, . . . ,X] = E [Vj |X, . . . ,X] ≡ V
and E

[
Vi|X, . . . ,X

]
= E

[
Vj |X, . . .X

]
≡ V. We refer to

[
V,V

]
as the common range of bids.

A2 The conditional expectation E[Vi | X1, . . . , XN ] is strictly increasing in Xi, for each bidder
i = 1, . . . , N .

4This rules out ad-hoc bidding rules such as “stay in no matter what”, where βi(Xi) = +∞ regardless of
the value of Xi.

5Bikhchandani, Haile, and Riley (2000) point out that, in fact, a continuum of symmetric equilibria exist
in these auctions. In this paper, we focus on one equilibrium very similar in structure to the equilibrium
described in Milgrom and Weber’s paper.
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A3 (Monotonic solution) The solution of the N−k unknown variables in equations (2.1) are unique
and strictly increasing in P for all P ∈

(
V,V

)
, for all permutations (i1, . . . , iN ) and all possible

realizations of XiN , . . . , XiN−k+1 .

Assumption A1 rules out extremely asymmetric cases where, ex ante, conditional on all possible
realizations of ~X ≡ (X1, . . . , XN ), Vj is almost surely lower than Vi (i.e., Prob

(
Vj < Vi| ~X

)
=

1). Assumption A2 is implied by strict affiliation but may also hold in the absence of affiliation.
Assumption A3 relates the existence of a monotonic equilibrium to the existence of a monotonic (in
the parameter P ) solution to the nonlinear system of equations (2.1). Conditions A1–A3 lead to an
equilibrium proposition for the English auction:

Proposition 1 Given assumptions A1, A2, and A3, the strategies in an increasing-strategy Bayesian-
Nash Equilibrium of the asymmetric English auction can be defined recursively. In round k:

βki (Xi) = E
[
Vi|Xi;Xj = (βkj )−1

(
βki (Xi)

)
, j = 1, . . . , N − k, j 6= i; Ωk

]
(2.2)

for the bidders i = 1, . . . , N −k remaining in round k, and where Ωk denotes the public information
set consisting of the signals observed by the bidders N − k+ 1, . . . , N who have dropped out prior to
round k, i.e.,

Ωk =
{
Xj =

(
βN−jj

)−1

(PN−j), j = N − k + 1, . . . , N
}
.

In other words, at each round k, we can solve for the set of inverse bid function for all remaining
bidders pointwise in P by solving the (N-k)-dimensional system of equations

P = E
[
Vi|Xi =

(
βki
)−1

(P );Xj =
(
βkj
)−1

(P ), j = 1, . . . , N − k, j 6= i; Ωk
]
. (2.3)

for the N − k unknowns
(
βki
)−1 (P ), i = 1, . . . , N − k.

Proof: in Appendix.

3 Log normal asymmetric ascending auction model

A structural econometric model of the ascending auction would use the equilibrium mapping between
unobserved signals and bids (2.2) as the basis for obtaining estimates of the underlying joint distribu-
tion of unobserved valuations and signals F (V1, . . . , VN , X1, . . . , XN ). In this paper we take a para-
metric approach by restricting attention to a family of joint distribution F (V1, . . . , VN , X1, . . . , XN ; θ)
parameterized by a finite-dimensional vector θ, and use the equilibrium mapping (2.2) to derive the
likelihood function for the observed dropout prices, which can subsequently be maximized with
respect to θ to obtain parameter estimates.

Difficulties arise in doing this because the updating process in the common-value ascending auction
introduces a large amount of recursivity into the definition of the bid function. For example, assume
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four bidders (A,B,C,D) and assume the first three drop out in rounds 0,1, and 2, respectively. After
bidder A drops out, the remaining bidders (B,C,D) invert the equilibrium bid function for bidder
A, in order to obtain his private signal XA. In round two, bidder C and D must invert bidder B’s
bid function during round one, which is her expected value of the object in round one, conditional
not only on her private signal but also on xA which she inferred by inverting bidder A’s conditional
expectation function from round zero. The recursive structure which results (involving conditional
expectations functions which have as arguments inversions of other conditional expectation func-
tions which are themselves inversions of other conditional expectation functions) quickly becomes
intractable if the conditional expectations derived during the updating process do not have analytic
solutions.

Therefore, the feasibility of structural estimation lies in choosing a parametric family of joint distri-
butions F (V1, . . . , VN , X1, . . . , XN ; θ) for the latent valuations and signals such that the resulting
conditional expectation functions have closed-form expressions which are easy to invert. Among the
limited choice of parameterizations which satisfy this criterion, we assume that the bidders’ valu-
ations are log-normally distributed. Previously, Wilson (1998) has derived closed-form equilibrium
bid functions for a log-additive log-normal information structure, but in this paper we differ from
Wilson in not assuming a diffuse prior for the common value distribution. In the rest of this section,
we discuss the derivation of the likelihood function for the sequence of dropout prices observed in
an ascending auction, under a log-additive log-normal information structure.6

Vi, the value of the object to bidder i is assumed to take a multiplicative form Vi = Ai × V , where
Ai is a bidder-specific private value for bidder i, and V is a common value component unknown to
all bidders. In other words, Vi is the product of a common value part and a private value part.

We assume that V and the Ai’s are independently log normally distributed. Letting v ≡ lnV , and
ai ≡ lnAi:7

v = m+εv ∼ N(m, r2
0)

ai = āi+εai ∼ N(āi, t2i ).

Each bidder is assumed to have a single noisy signal of the value of the object, Xi, which has the
form Xi = Ai×Ei. Here Ei is a noisy estimate of the common market value V . Ei = V × exp{siξi}
in which ξi is an (unobserved) error term that has a normal distribution with mean 0 and variance
1. If we let vi ≡ lnVi and xi ≡ lnXi, then conditional on vi, xi = vi + εei ∼ N(vi, s2

i ). Note that
bidder i observes Xi which, in equilibrium, is revealed to other bidders after bidder i drops out.
Finally, define ri ≡

√
t2i + s2

i and denote the variance for εv by r2
0.

6As pointed out by a referee, the assumptions of log normality help to avoid the high dimensional inte-
gration problem of computing bidders’ expected valuations conditional on other bidder’s drop out prices.
However, this approach does not generalize easily to other functional forms. The log normality assumption
plays an important simplifying role, but also represents a limitation the analysis.

7Here r2
0 represents the variance in bidders’ prior distributions on v. Wilson (1998) makes the diffuse

prior assumption that r2
0 =∞.



7

The joint distribution of (Vi, Xi, i = 1, . . . , N) = exp(vi, xi, i = 1, . . . , N) is fully characterized by
{m, ā, t, s, r0} where ā denotes the collection of āi’s, t denotes the collection of ti’s, and s denotes
the collection of si’s. These parameters are all common knowledge among the bidders.

3.1 Deriving the equilibrium bid functions

We show in this section that the log-normality assumption implies that the system of equations
(2.3) defining the inverse bidding strategies in each round of the auction is log-linear in the signals,
allowing us to derive the equilibrium bid functions for each round in closed form. We begin with the
system of equations which, following Proposition 1, defines the equilibrium inverse bidding strategies
for the N − k bidder active in round k, for any value of the bid P :

P = E[V1 | X1 = (βk1 )−1(P ), X2 = (βk2 )−1(P ), . . . , XN−k = (βkN−k)−1(P ), XN−k+1, . . . , XN ]

P = E[V2 | X1 = (βk1 )−1(P ), X2 = (βk2 )−1(P ), . . . , XN−k = (βkN−k)−1(P ), XN−k+1, . . . , XN ]

· · ·

P = E[VN−k | X1 = (βk1 )−1(P ), X2 = (βk2 )−1(P ), . . . , XN−k = (βkN−k)−1(P ), XN−k+1, . . . , XN ].

(3.4)

Given the log-normality assumption, the conditional expectation functions for Vi take the form:

E[Vi | X1, . . . , XN ] = exp
(
E(vi | x1, . . . , xN ) +

1
2
V ar(vi | x1, . . . , xN )

)
, i = 1, . . . , N. (3.5)

Furthermore, we denote the marginal mean-vector and variance-covariance matrix of (vi, x1, . . . , xN )

by µi ≡ (ui, µ∗) and Σi ≡

(
σ2
i σ∗i

′

σ∗i Σ∗

)
8. Then, using the conditional mean and variance of jointly

normal random variables:9

E(vi | x ≡ (x1, . . . , xN )′) =
(
ui − µ∗

′
Σ∗−1σ∗i

)
+ x′Σ∗−1σ∗i , and

V (vi | x) = σ2
i − σ∗i

′Σ∗−1σ∗i .
(3.6)

By plugging (3.6) into equation 3.5 above, and noting that the conditional variance expression is
not a function of x, we see that the conditional expectation function in (3.5) are log-linear in xi.

At round k, let xkd ≡ (xN−k+1, . . . , xN ) denote the vector of k valuations for the bidders who have
dropped out prior to round k, and xkr ≡ (x1, . . . , xN−k) denote the vector of (N − k) valuations
for the bidders who have not yet dropped out as of round k. Analogously, partition Σ∗−1 into
(Σ∗−1

k,1

′
,Σ∗−1

k,2

′
)′ where Σ∗−1

k,1 is a ((N − k) × N) matrix and Σ∗−1
k,2 is a (k × N) matrix. Then the

conditional mean function can be re-written as:

E(vi | x) =
(
ui − µ∗

′
Σ∗−1σ∗i

)
+ xkr

′
Σ∗−1
k,1 σ

∗
i + xkd

′
Σ∗−1
k,2 σ

∗
i . (3.7)

8Explicit formulas for the elements of the vector µi and the matrix Σi can be derived from the distribu-
tional assumptions made in the previous section.

9See, for example, Amemiya (1985), pg. 3.
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After substituting the conditional mean and variance formulas (3.7) and (3.6) into the equations in
(3.5) and taking the log of both sides, we get the following set of (N − k) linear equations for the
N − k bidders active in round k, for p = lnP :

p =
(
ui − µ∗

′
Σ∗−1σ∗i

)
+ σ∗i

′Σ∗−1
k,2

′
xkd + σ∗i

′Σ∗−1
k,1

′
xkr +

1
2
(
σ2
i − σ∗i

′Σ∗−1σ∗i
)

(3.8)

for i = 1, 2, · · · , N−k. This is analogous to the system of equations in (3.5) above for the log-normal
distribution.

If we let lk be the (N − k) × 1 vector of 1’s, µk = (u1, . . . , uN−k)′, Γk = (σ2
1 , . . . , σ

2
N−k)′, Λk =

(σ∗1 , . . . , σ
∗
N−k)′, then we could rewrite the above system of linear equations (3.8) as

p× lk =
1
2
(
Γk − diag(ΛkΣ∗−1Λ′k)

)
+ ΛkΣ∗−1

k,2

′
xkd + µk − ΛkΣ∗−1µ∗ + ΛkΣ∗−1

k,1

′
xkr . (3.9)

Next, let us define

Ak ≡
(

ΛkΣ∗−1
k,1

′
)−1

lk

Ck ≡1
2

(
ΛkΣ∗−1

k,1

′
)−1 (

Γk − diag(ΛkΣ∗−1Λ′k) + 2µk − 2ΛkΣ∗−1µ∗
)

Dk ≡
(

ΛkΣ∗−1
k,1

′
)−1 (

ΛkΣ∗−1
k,2

′
)
.

Solving out for the xkr , we obtain the set of (N − k) log-inverse bid functions at round k:

xkr = Ak × p−Dkxkd − Ck (3.10)

or, each equation singly:

xkr i = Aki × p−Dki xkd − Cki , (3.11)

for i = 1, . . . , N − k, where Aki and Cki denote the ith elements of the vectors Ak and Ck, and Dki
denotes the i-th row of Dk. The system of equations (3.11) can be inverted to obtain the (N − k)-
dimensional system of (log-)bidding strategies for the bidders active in round k, as a function of
each bidder’s signal and the public information set Ωk ≡ xkd:

bki
(
xi;xkd

)
≡ lnβki (exi ; Ωk) =

1
Aki

(
xi +Dki xkd + Cki

)
, i = 1, . . . , N − k, (3.12)

which are log-linear in the signals.

Existence of monotonic equilibrium in log-additive model We end this section by verifying
assumptions A1 to A3 for the log normal model. Assumption A1 is easily seen to be satisfied by the
log normal model. Furthermore, for the log-additive information structure, the joint distribution of
(V1, . . . , VN , X1, . . . , XN ) is strictly affiliated, thereby satisfying assumption A2 using theorem 5 of
Milgrom and Weber (1982). Finally, the following lemma directly verifies assumption A3.
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Lemma 1 Aki > 0, ∀k ∈ [0, N − 2], ∀i ∈ [1, N − k], for all permutations of the index i = 1, . . . , N
(i.e., all dropout orders).

Proof: in Appendix.

By proposition 1, therefore, an increasing-strategy equilibrium exists for the log-additive log-normal
information structure.

3.2 Deriving the likelihood function of the dropout price vector

The system of equations (3.12) describes the monotonic mapping from bidders’ unobserved signals
to their equilibrium dropout prices in round k. However, in round k, we only observe the dropout
price for bidder N − k, so that only the equation corresponding to this bidder will be used in
constructing the likelihood function. Although likelihood based estimation procedures are not used
in the empirical illustration presented later in this paper, we derive the likelihood function in this
section to understand the data generating process of the sequence of dropout prices.

Looping over all rounds 0 ≤ k ≤ N − 2, the equations relating the sequence of observed bids to the
latent signals in a given auction are, similar to equation (3.12) above, given by:

bkN−k
(
xN−k;xkd

)
=

1
AkN−k

(
xN−k +DkN−kxkd + CkN−k

)
, ∀k = 0, . . . , N − 2. (3.13)

If we introduce more shorthand notation:

F =

(
C0
N

A0
N

, . . . ,
CN−2

2

AN−2
2

)′
, Gi =

0, . . . , 0︸ ︷︷ ︸
N−i−2

,
1
AiN−i

,
DiN−i
AiN−i

 ,

and let G = (G′0, . . . ,G′N−2)′ then the system of equations describing the sequence of observed
dropout prices (3.13) can be very succinctly written as:

P = G × (x2, . . . , xN )′ + F . (3.14)

This describes the mapping from the unobserved log-signals x ≡ (x2, . . . , xN ) to the observed log-
bids P = (p0, . . . , pN−2). We denote the model parameters by θ. Note that both F and G will be
explicit functions of θ.

In each auction we observe (1) the vector P of dropout prices for bidders 2, . . . , N ; and (2) the
order in which the participating bidders drop out. Note that the observed dropout order restricts
the support of the log-signals x1, . . . , xN to a region T1(θ) ⊂ RN , for a fixed parameter vector θ. Let
Pr (T1(θ); θ) denote the probability that x1, . . . , xN ∈ T1(θ). Furthermore, for a given realization
of x2, . . . , xN , let T2(x2, . . . , xN ; θ) ⊂ R1 denote the support of the winner’s log-signal x1 which is
consistent with bidder 1’s winning the auction, again fixing θ. Both of these sets will be described
in more detail below.
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Given the distributional assumption that the log-signals x2, . . . , xN are unconditionally multivariate
normal, the mapping (3.14) implies that without conditioning on the event T1(θ) ⊂ RN , the distri-
bution of a log-bid vector P is also multivariate normal via a standard change of variables formula,
with (unconditional) mean and variance given by:

µp (θ) = F (θ) + G (θ)× µ∗2 (θ)

Σp (θ) = G (θ) Σ∗2 (θ)× G (θ)′
(3.15)

where µ∗2 is the N−1 subvector of µ∗ and Σ∗2 is the (N − 1)×(N − 1) submatrix of Σ∗ corresponding
to bidders 2, . . . , N . Let f(·; θ) denote the (N − 1)-variate normal distribution with mean and
variance given in (3.15) above:

f (P; θ) ≡ (2π)−
n
2 |Σp (θ) |− 1

2 exp
[
−1

2
(P − µp (θ))′ Σp (θ)−1 (P − µp (θ)) .

]
(3.16)

We can then write the likelihood function for a given auction as

L (P | θ) =
f (P; θ)Pr

(
T2

(
G−1 (P − F) ; θ

)
; θ
)

Pr (T1(θ); θ)
(3.17)

where G−1 (P − F) denotes the realization of x2, . . . , xN consistent with the observed dropout prices
P and the observed dropout order, and Pr

(
T2

(
G−1 (P − F) ; θ

)
; θ
)

is the probability of x1 ∈ T2

conditional on P. In what follows, we refer to Pr (T1(θ); θ) as the truncation probability, and we
completely characterize the regions T1 and T2

(
G−1 (P − F) ; θ

)
in the next section.

3.3 Truncation probability and equilibrium consistency conditions

3.3.1 Characterization of T1(θ)

As discussed in the previous section, for a fixed value of the parameter vector θ, the observed
dropout order restricts the signals x1, . . . , xN to a region T1(θ) ⊂ RN within which the signals
imply, in equilibrium, a dropout order corresponding to the observed order. For a fixed value
of θ, this region is defined by inequalities involving the log-signals x1, . . . , xN which we refer to
as equilibrium consistency conditions. These consistency considerations ensure that, in each
round of the auction, given the parameters θ, the targeted dropout prices of the remaining bidders
for that round are higher than the dropout price at that round.

More precisely, to ensure that the “correct” dropout order occurs, we need to impose that, at the
given parameter values, all remaining bidders i = 1, . . . , N − k− 1 have expected valuations greater
than bkN−k(xN−k;xkd, θ), the equilibrium dropout price for bidder N − k in round k

bki (xi;xkd, θ) > bkN−k(xN−k;xkd, θ) (3.18)

for all rounds k and all i = 1, . . . , N − k − 1, the bidders who remain in the auction after round k.
We can now define the truncation region:

T1(θ) = {x1, . . . , xN : (3.18) is satisfied; θ} . (3.19)
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At first glance, (3.18) consists of 1
2N (N − 1) inequalities; however, we will show that all of these

inequalities are implied by the smaller set of N − 1 inequalities:

bkN−k−1

(
xN−k−1;xkd, θ

)
> bkN−k

(
xN−k;xkd, θ

)
, k = 0, . . . , N − 2. (3.20)

In order to show this, we first introduce the following important lemma, which holds in the context
of the general model in proposition 1.

Lemma 2 Let φki
(
p;xkd, θ

)
denote the inverse function of bki

(
xi;xkd, θ

)
with respect to the xi argu-

ment. For all j > 0, j ≤ N − 2, and for all i ≤ N − j, at xjd ≡
(
φj−1
N−j+1

(
pj−1;xj−1

d , θ
)
, xj−1
d

)
:

φji

(
pj−1;xjd, θ

)
= φj−1

i

(
pj−1;xj−1

d , θ
)
. (3.21)

In other words, the log bid functions for rounds j and j−1, for each bidder i = 1, . . . , N−j, intersect
at the point

(
φj−1
i

(
pj−1;xj−1

d , θ
)
, pj−1

)
, since an equivalent statement of the above lemma is

bji

(
φji

(
pj−1;xjd, θ

)
;xjd, θ

)
= bj−1

i

(
φj−1
i

(
pj−1;xjd, θ

)
;xj−1
d , θ

)
= pj−1.

Proof (sketch): Let
(
φj−1
i (pj−1;xj−1

d , θ), i = 1, . . . , N − j + 1
)

denote the vector of signals which

solves the system (3.4) for round j−1 at pj−1. Since xjd =
(
φj−1
N−j+1

(
pj−1;xj−1

d , θ
)
, xj−1
d

)
, by careful

inspection of (3.4) and (3.8), the first N − j elements of the same vector(
φj−1
i (pj−1;xj−1

d , θ), i = 1, . . . , N − j
)

also solves the system (3.4) for round j at pj−1. A detailed proof is given in the Appendix.

Corollary 1 (3.20) =⇒ (3.18).

Proof: in Appendix.

3.3.2 Characterization of T2(G−1 (P − F) ; θ)

Unlike T1(θ), the set T2(G−1 (P − F) ; θ) describes equilibrium restrictions on x1, the log-signal for
the winning bidder, as a function of the observed price vector P as well as the parameter vector θ.

Let eNi be the (i−1)th column of a (N − 1)×(N − 1) identity matrix, and let ENk = (eNN−k+1, . . . , e
N
N )′.

Using this notation, the log-signals x2, . . . , xN of the losing bidders can be denoted x̄i = eNi
′G−1(P−

F) and x̄kd = ENk
′G−1(P−F), where the bars emphasize that these log-signals are explicitly functions

of the observed prices P and θ.

Then the set T2

(
G−1 (P − F) ; θ

)
consists of the following conditions

{x1 : bl1
(
x1; x̄ld, θ

)
> pl, l = 0, . . . , N − 2} (3.22)



12

At first look, (3.22) also involves N − 1 inequality constraints. However, we now show that the only
binding constraint will always be

bN−2
1

(
x1; x̄N−2

d , θ
)
≥ pN−2. (3.23)

Before proving this, we introduce another preliminary lemma which summarizes some important
restrictions on bidders’ log signals induced by the observed price vector P.10

Lemma 3 For any two rounds k, l ∈ {0, . . . , N − 2}, l < k; and for all bidders i ≥ N − k; for all
nondecreasing sequences p0, . . . , pN−2 and the corresponding signals (x̄2, . . . , x̄N ) solved at θ,

φki
(
pk; x̄kd, θ

)
≥ φli

(
pl; x̄ld, θ

)
.

Proof: in Appendix.

The desired result is a direct corollary of the above Lemma.

Corollary 2 (3.23) =⇒ (3.22).

Proof: Note that (3.23) is a special case of Lemma 3 for k = N − 2 and i = 1, since

(3.23)⇔ x1 > φN−2
1

(
pN−2; x̄N−2

d , θ
)
> φl1

(
pl; x̄ld, θ

)
=⇒ bl1

(
x1; x̄ld, θ

)
> bl1

(
φl1
(
pl; x̄ld, θ

)
; x̄ld, θ

)
= pl

where the last inequality in the first line uses Lemma 3. �

3.3.3 The likelihood function: log-normal specification

For the log-normal information structure, the regions T1 and T2 can be characterized by set of linear
inequalities, using (3.12). Specifically, T1 (θ) is described by this set of linear inequalities regarding
(3.20), for all k ∈ {0, . . . , N − 2}

1
AkN−k−1

(
xN−k−1 +DkN−k−1x

k
d + CkN−k−1

)
>

1
AkN−k

(
xN−k +DkN−kxkd + CkN−k

)
.

For T2(G−1 (P − F) ; θ), the condition (3.23) can be written as

x1 ≥
[
AN−2

1 eNN
′ −DN−2

1 ENN−2

′G−1
]
P − CN−2

1 +DN−2
1 ENN−2

′F . (3.24)

10This Lemma is also interesting in its own right from a theoretical point of view, since it is related to a
generalization of the “no regret” property in Milgrom (1981), for the symmetric ascending auction, to the
asymmetric case covered in this paper. It states that, and any dropout order, the bidder dropping out in
round k will never “regret” staying in the auction in any round l prior to round k and, analogously, will never
“regret” having dropped out in any round subsequent to round k. It also ensures a monotonic equilibrium
price path.
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Using (3.20) and (3.24), the likelihood function (3.17) can be written as

L (P; θ, z) =
f (P; θ, z)

Pr (T1 (θ) ; θ, z)
Φ

m+ ā1 −
[
AN−2

1 eNN
′ −DN−2

1 εNN−2
′G−1

]
P + CN−2

1 −DN−2
1 εNN−2

′F√
r2
0 + t21 + s2

1

 .

In the next section we discuss MLE, as well as alternative estimation methods, which may be
preferable from a computational perspective.

4 Estimation issues

4.1 Maximum Likelihood Estimation

Since T1(θ), the support of the log-signals x1, . . . , xN consistent with the observed dropout order,
depends explicitly on the parameter vector θ, one may be concerned that the set of dropout prices
generated from T1(θ), i.e.,

P(θ) ≡
{
bkN−k

(
xN−k;xkd, θ

)
, k = 0, . . . , N − 2 : x1, . . . , xN ∈ T1(θ)

}
also depends explicitly on θ. Any dependence of P(θ), the support of the dropout prices, on θ would
violate regularity conditions which are required to derive the usual asymptotic normality for the
MLE. However, an interesting corollary of Lemma 2 suggests that this will not be a problem. In
what follows, sometimes we suppress the explicit dependence of bki (·) and φki (·) on x̄kd for notational
convenience.

Corollary 3 For every θ, and every increasing sequence p0 < p1 < · · · < pN−2 of log-dropout prices,[
x1, φ

N−2
2 (pN−2; x̄N−2

d , θ), . . . , φ0
N (p0; θ)

]
∈ T1(θ)

for all x1 ∈ T2

(
φN−2

2 (pN−2; x̄N−2
d , θ), . . . , φ0

N (p0; θ); θ
)
.

Proof: We need to show that the vector of signals
[
x1, φ

N−2
2 (pN−2; θ), . . . , φ0

N (p0; θ)
]
, for all x1 ∈

T2(· · · ; θ), satisfies the conditions (3.20). Note that, for all rounds k = 0, . . . , N − 2,

bkN−k−1

(
φk+1
N−k−1 (pk+1; θ)

)
> bkN−k−1

(
φk+1
N−k−1 (pk; θ)

)
= pk = bkN−k

(
φkN−k (pk; θ)

)
,

thus satisfying (3.20), where the first equality follows from Lemma 2. Therefore, by corollary 1, the
statement holds. �

This corollary implies that, for every θ, every vector of nondecreasing dropout prices P has strictly
positive likelihood: the support of P does not depend on θ. Alternatively, even though T1(θ) depends
on θ, the set P(θ) is just the set of nondecreasing dropout price vectors:

∀θ : P(θ) =
{
p ≡ (p0, . . . , pN−2)′ ∈ RN−1 : p0 < p1 < · · · < pN−2

}
,
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which is just a “rectangular” region in RN−1 which does not depend on θ. Therefore the standard
asymptotics for MLE obtain. The derivation of the likelihood function for our model complements
the results of Donald and Paarsch (1996) for independent private value models.

The major difficulty in implementing the likelihood function is calculating the multivariate integral
P (T1 (θ) ; θ). These difficulties can be overcome using simulation techniques. Given the necessity of
evaluating this integral, estimation methods based on simulated moments of the underlying distribu-
tion are also attractive alternatives to maximum likelihood estimation. We discuss these alternatives
in the following sections.

4.2 Simulated Nonlinear Least Squares Estimation

We consider next a simulated nonlinear least squares (SNLS) estimator, based on the methodology
of Laffont, Ossard, and Vuong (1995). This estimator minimizes the usual nonlinear least squares
(NLS) objective function

QT (θ) =
1
T

T∑
t=1

Nt−2∑
k=0

(
ptk −mt

k (θ)
)2 (4.25)

where ptk is the kth observed log dropout price for auction t, and mt
k (θ) is its corresponding expec-

tation conditional on the covariates zt, taken with respect to its data generating process as given
in equation (3.17). Note that, generally speaking, the data generating process depends not only
on the parameters θ, but also on covariates zt which describe auction- as well as bidder-specific
characteristics. Therefore the expected bids mt

k (θ) should also depend on zt, but for notational
clarity we usually suppress this dependence on z in what follows.11

Becausemt
k (θ), the mean of a multivariate truncated distribution, is difficult to compute analytically,

we replace mt
k (θ) in equation 4.25 by a simulation estimator m̃t

k (θ) that is consistent as S, the
number of simulation draws, goes to infinity. The ensuing Simulated Nonlinear Least Squares (SNLS)
objective function

QS,T (θ) =
1
T

T∑
t=1

Nt−2∑
k=0

(
ptk − m̃t

k (θ)
)2 (4.26)

yields a consistent estimate of θ when S −→∞. In the rest of this section, we give complete details
on the simulation of the expected value of each bid m̃t

k (θ).
11In principle, efficiency considerations may lead to other weighted least squares or other method of

moments-based estimators. In addition, one could also exploit other conditional moments of ptk in the

nonlinear least squares estimation, by adding summations of terms of the form
(
φ
(
ptk
)
− m̄t,φ

k (θ)
)2

to

(4.25), where φ (·) is some transformation of ptk and m̄t,φ
k (θ) denotes the conditional expectation of φ

(
ptk
)

given z under (3.17).
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Simulating mt
k (θ) To be specific, we can write the first moment mt

k (θ) of the kth dropout price
ptk, for k = 0, . . . , Nt − 2, as

mt
k (θ) =

∫
~x

ptk (~x; θ) 1 (~x ∈ T1t (θ))
ft (~x; θ)

Pr (T1t (θ))
d~x. (4.27)

where ~x ≡ {x1, . . . , xNt} denotes the vector of the signals of bidders in the order of dropping out,
ptk (~x; θ) specifies the kth dropout price as a function of the parameters and realized vector of bidder
signals in (3.12), ft (~x; θ) denotes the multivariate normal density of ~x parameterized by θ. T1t (θ)
denotes the event that the observed order of dropping out is realized for the t-th auction. The
integration is over the Nt-dimensional vector of bidder signals.

An ”acceptance/rejection” algorithm can be used to simulate mk
t (θ). Using this algorithm, for

each fixed value of the parameter vector, we draw a normal random vector of the bidders’ private
signals (the ~x’s) for each auction, using the estimated mean and variance-covariance of the bidders’
private signals, and calculate all the targeted dropout prices at all rounds. Then we check all of
the truncation inequalities in T1t (θ), and we average the targeted dropout prices over the subset of
simulations for which the truncation conditions in T1t (θ) are all satisfied. In short, mt

k(θ) can be
simulated by

1
S

S∑
s=1

[
ptk (~xs; θ) 1 (~xs ∈ T1t (θ))

]
�

[
1
S

S∑
s=1

1 (~xs ∈ T1t (θ))

]
, (4.28)

where the denominator is a simulated approximation of the truncation probability Pr (T1t(θ)).

Bias correction in SNLS estimation The SNLS procedure we have described so far requires
the number of simulations S → ∞ to obtain consistency, due to the bias introduced by simulating
the denominator probability Pr (T1t(θ)). We could remove this denominator bias by multiplying
each summand in (4.25) by the truncation probability Pr (T1t (θ)):12

Q̄T (θ) =
1

T

T∑
t=1

Nt−2∑
k=0

[
Pr (T1t (θ)) ∗

(
ptk −mt

k (θ)
)]2

. (4.29)

A simulated version of this would be

Q̄S,T (θ) =
1

T

T∑
t=1

Nt−2∑
k=0

(
P̄T1t (θ) ptk − Π̄k

t (θ)
)2

(4.30)

where

P̄T1t (θ) ≡ 1
S

S∑
s=1

[1 (~xs ∈ T1t (θ))] ,

Π̄k
t (θ) ≡ 1

S

S∑
s=1

[
ptk (~xs; θ) 1 (~xs ∈ T1t (θ))

] (4.31)

12We are grateful to the associate editor for pointing this out to us.
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are unbiased acceptance/rejection simulators for Pr (T1t (θ)) and mt
k (θ)Pr (T1t (θ)), respectively.

As shown in Laffont, Ossard, and Vuong (1995), pg. 959, for every finite S, as T →∞,

plimQ̄S,T (θ) = Q̄T (θ) +
1

T

T∑
t=1

Nt−2∑
k=0

V arS
(
P̄T1t (θ) ptk − Π̄k

t (θ)
)
6= Q̄T (θ). (4.32)

The second term in the probability limit of Q̄S,T (θ) is a bias terms consisting of conditional variances
(across simulation draws) of the simulated difference P̄T1t (θ) ptk − Π̄k

t (θ) for the round k dropout
price in auction t. The bias term in this probability limit can be corrected, however, using an
unbiased estimate of V arS (· · ·), yielding a modified NLS objective function

Q̃S,T (θ) ≡Q̄S,T (θ)− 1

T

T∑
t=1

Nt−2∑
k=0

1

S (S − 1)

S∑
s=1

(
1 (~xs ∈ T1t (θ)) ptk

−
[
ptk (~xs; θ) 1 (~xs ∈ T1t (θ))

]
−
(
P̄T1t (θ) ptk − Π̄k

t (θ)
))2

(4.33)

Then for finite S, θ̃ ≡ argmin Q̃S,T (θ)
p−→ θ0, because Q̃S,T (θ)

p−→ EQ̄T (θ).13

In principle, therefore, minimization of the modified objective functions (4.33) yields an estimate of
the parameter vector θ which is consistent even when the number of simulation draws S remains
fixed while the number of auctions T → ∞. In practice, however, this modified objective function
is ill-behaved due to the non-smoothness in θ (for any fixed S) of the indicator functions in the
simulators P̄T1t (θ) and Π̄k

t (θ). We overcome this problem by employing an independent probit
kernel-smoother14 for these indicator functions. In particular, we estimate mt

k (θ) by

m̃t
k (θ) =

 1

S

S∑
s=1

ptk(~xs; θ)

Nt−2∏
k′=0

Nt−k′−1∏
j=1

Φ

(
ptk′,j(~xs; θ)− ptk′(~xs; θ)

h

)�
 1

S

S∑
s=1

Nt−2∏
k′=0

Nt−k′−1∏
j=1

Φ

(
ptk′,j(~xs; θ)− ptk′,Nt−k′(~xs; θ)

h

)
(4.34)

where ptk,j is the targeted dropout price for bidder j in round k, for auction t, as a function of ~xs and
θ, Φ(·) is the standard normal CDF, and h is a bandwidth. Therefore in the empirical illustration
we use the following SNLS objective function:

˜̃QS,T (θ) ≡ 1
T

T∑
t=1

Nt−2∑
0

(
P̃T1t (θ) ptk − Π̃t

k (θ)
)

(4.35)

where Π̃t
k (θ) = m̃t

k (θ) P̃T1t (θ) and P̃T1t (θ) denotes the denominator in (4.34).15

13Unlike Laffont, Ossard, and Vuong (1995), the objective function Q̃S,T (θ) is not smooth and differen-
tiable; however, the tools in Pakes and Pollard (1989) could be used to derive the asymptotic distribution
of θ̃.

14See, for example, McFadden (1996) for more details.
15Alternatively, one could estimate θ via the Simulated Method of Moments, As noted in McFadden (1989),

the SMM estimator also achieves consistency with fixed S, as T →∞. However, as with the bias-corrected
SNLS estimator, if we employ smooth simulators to make the objective function better-bahaved in θ, the
fixed-S consistency result may not obtain without additional assumptions.
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Asymptotic distribution While m̄t
k(θ) is smooth in θ, it is a biased estimator for mt

k(θ), for fixed
h and S. While it may be possible to extend the bias correction to maintain consistency as S is fixed
but h shrinks to zero, we do not pursue this here. Instead, we derive the asymptotic distribution for
the minimizer of ˜̃QS,T (θ) assuming that S diverges to infinity.

Following standard arguments in the literature on simulation estimation (cf. Pakes and Pollard
(1989), Gourieroux and Monfort (1996)) as T →∞, S →∞, and S/T →∞, h→ 0, the asymptotic
distribution of θ̂ ≡ argmin ˜̃QS,T (θ) is given by:

Σ̂−1/2
√
T
(
θ̂ − θ0

)
d−→ N (0, I) (4.36)

where Σ̂ = Ĵ−1ĤĴ−1, and for ε̃kt (θ) ≡
(
P̃T1t (θ) ptk − Π̃t

k (θ)
)

:

Ĵ =
1

T

T∑
t=1

Nt−2∑
k=0

∂

∂θ

(P̃T1t (θ̂) ptk − Π̃t
k

(
θ̂
))∂P̃T1t

(
θ̂
)

∂θ
ptk −

∂Π̃t
k

(
θ̂
)

∂θ



Ĥ =
1

T

T∑
t=1


Nt−2∑
k=0

ε̃kt

(
θ̂
)∂P̃T1t

(
θ̂
)

∂θ
ptk −

∂Π̃t
k

(
θ̂
)

∂θ

Nt−2∑
k=0

ε̃kt

(
θ̂
)∂P̃T1t

(
θ̂
)

∂θ
ptk −

∂Π̃t
k

(
θ̂
)

∂θ

′
 .

where T denotes the total number of auctions in the dataset, and Nt the number of bidders in
auction t. Both Σ̂ and Ĥ can be evaluated using numerical derivatives.

For our empirical illustration below, however,we compute standard errors using a parametric boot-
strap resampling method.

4.3 Identification

While we pursue a parametric approach in this paper, nonparametric identification of the joint
distribution (V1, . . . , VN , X1, . . . , XN ) in common value (or, more generally, affiliated values) models
have been an important issue in the structural auction literature ever since the insightful result of
Laffont and Vuong (1996) that, most generally, bids from a dataset of first-price auctions could be
equally well rationalized by a common value as well as an affiliated private values model. While
an ascending auction is a strategically richer model than the first-price auction in the presence of
common values, and therefore imposes more restrictions on the data-generating process for the bids,
it appears difficult to derive a direct proof that the joint distribution of (V1, . . . , VN , X1, . . . , XN )
is nonparametrically identified.

On the other hand, it is possible to formulate nonparametric tests for the presence of common value
components by exploiting exogenous variation in the number of bidders (see, for example, Athey
and Haile (2000)). Under the hypothesis of no common value components (and even allowing for
affiliation between bidders’ private values), bidders should drop out at their private value regard-
less of the number of competitors. In the symmetric framework of the Milgrom-Weber irrevocable
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dropout auction, one could formulate nonparametric tests of the private value hypothesis by testing
whether the empirical marginal distributions of dropout prices are identical across auctions with
different number of bidders. Furthermore, this testing approach could accommodate asymmetries
if we observed the identities of the bidders and a given bidder participating in a large number of
auctions. If we strengthen the assumption of exogeneity in the number of bidders to an assumption
that a given bidder’s marginal PV distribution remains constant across all auctions in which he
participates, then the PV hypothesis would imply that a given bidder’s empirical marginal distri-
bution of dropout prices is identical across auctions with different numbers as well as identities of
participants.

Obviously the ability to test nonparametrically for the existence of common value elements does not
imply nonparametric identification of the entire joint distribution. In this paper we restrict ourselves
to the log-normal parametric specification. It appears that the parameters of this specification
are parametrically identifiable from variation in our dataset. The coefficients on bidder-specific
covariates are identified off of across-bidder variation. The coefficients on auction-specific covariates
are identified off across-auction variation. Both the distribution of bids and the distribution of the
covariates, as well as the parametric assumptions, are useful for identifying the variance parameters
of the information structure (s, t, r0).

5 Empirical illustration

In this section we illustrate the use of the econometric model and estimator described above using
data from the FCC’s recent auctions of licenses for PCS (Personal Communications Services) spec-
tra. PCS spectra are suitable for transmitting signals for digital wireless communications services,
including paging and cellular telephony. This digital technology was considered a marked improve-
ment over the older analog wireless technology, most notably in terms of sound quality. Indeed,
digital wireless services — many of them provided by the winners in these spectrum auctions —
have become the dominant wireless medium across most of the United States today.

The licenses were allocated using a simultaneous multiple round auction. The main features of this
auction format are multiple rounds and simultaneity. The multiple-round format, as explained above,
“allows the bidders to react to information revealed in prior rounds, [thus] enabling the bidders to
bid more aggressively” (Cramton (1997), p. 497). Simultaneous auctioning of many objects allows
bidders to realize cross license synergies, if any exist.

While the econometric model accommodates the multiple-round aspect of the FCC auctions, it does
not include the simultaneity aspect. Furthermore, the eligibility rules in these auctions were more
flexible than the irrevocable dropout assumptions made in the ascending auction model above. For
these reasons we would like to emphasize here that the main purpose of this example is to illustrate
and suggest solutions to problems which arise in estimating this model in practice, rather than to
provide robust empirical findings concerning equilibrium bidding behavior in the FCC auctions.
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Each license covers a particular slice of the radio spectrum over a particular geographic area. Licenses
were offered both at the MTA and BTA level (respectively, major trading area and basic trading
area; the designations are from Rand McNally). The data used in this paper comes from the most
important spectrum auction, the MTA broadband PCS auction, which began on December 5,
1994 and ended on March 13, 1995, after 112 rounds of bidding. 99 MTA licenses were offered– two
30 MHz licenses in most of the 51 MTAs which comprise the US and its territories abroad. In this
paper, we analyze the auctions of 91 of these licenses.16 30 firms participated in this auction, and
19 of them eventually won licenses, yielding over $7 billion in government revenue. See Appendix B
for details on data sources and variable definitions.

5.1 Monte Carlo experiments

Before presenting our estimation results, we consider findings from a series of Monte Carlo exper-
iments which gauge the sensitivity of the estimation results to S (the number of draws used in
simulating the truncation probability Pr (T1t(θ))) and h (the bandwidth which we employ in the
kernel-smoother for the indicator functions 1(~x ∈ T1t(θ)) which characterize the truncation region).
Summary results for these Monte Carlo experiments are given in table 1 and 2.

For each experiment, we simulated 100 datasets of bids from 91 auctions, which is the same number of
observations contained in our actual estimation dataset. Furthermore, in constructing the simulated
datasets, we maintained the same firm identities and covariates as in our estimation dataset. The
four experiments reported in Tables 1 and 2 differ in the values of S and h used to estimate the
parameter values. Each entry in the table reports the 25-th, 50-th (median), and 75-th quantile of
the empirical distribution (across the 100 replications of each experiment) of the absolute deviation
ADi ≡ |β̂i − β0| of each estimated parameter from its true value, where β̂i denotes the estimated
parameter for the i-th simulated dataset, and β0 denotes the true value of the parameter.

Encouragingly, the AD’s are small for both the MLE as well as SNLS experiments, which indicate
that the parameter estimates are quite stable, and not very sensitive to changes in the number
of simulation draws and the smoothing bandwidth. However, notice that the AD’s are uniformly
smaller for the NLS experiments (in Table 2) than the MLE experiments (in Table 1). For this
reason, we employ the simulated NLS estimator in our empirical illustration using actual data from
the FCC auctions.

5.2 Estimation results

Table 3 shows the results for two specifications of the full model, estimated using the simulated non-
linear least squares (SNLS) methodology described above. Section B.0.2 in the Appendix discusses
the parameterization choices that we made. Models A and B in table 3 differ in the extent to which
log s — the log of the variance on the bidders’ priors about the common value component — is
parameterized.

16We did not analyze the auctions for the licenses for Samoa, Guam, Puerto Rico, and Alaska.
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The bootstrapped standard errors indicate that the estimates are generally statistically significant
from zero. The coefficients on POP and POP CHANGE are positive (1.4942 and 0.0475 for the
Model A results): as expected, a larger population and higher growth rates increase a license’s
value. The magnitudes of the estimates for log s, log t and log r0 indicate that the largest source of
variation in bidders’ signals is in their private value components.

Finally, the coefficient on CEL PRES (0.0707, with standard error 0.0201, for Model A), while
small in magnitude, indicates some weak complementarities between offering PCS service in a given
region, and existing cellular presence in another nearby region.17 Note that, in these specifications,
asymmetries across the bidders are captured only by the CEL PRES covariate in ā, the mean
of the distribution from which bidders’ private values are drawn. The small estimated coefficient
indicates that bidders are largely symmetric given this specifications and our results. This finding
has implications on how the equilibrium bid functions for a given bidder changed during the course of
the auction. Next, we explore the implications of our estimates on the equilibrium bidding strategies.

5.3 Estimated bid functions

Figure 1 shows plots of the estimated (log) bid functions for the winning bidder (“bidder 1”, using
the indexing scheme employed earlier), in each of the rounds of four selected auctions. Her log
signal x1 is plotted on the x-axis, while bk1(x1), her log bid functions for rounds k = 0, . . . , N − 2,
are plotted on the y-axis. The units on the y-axis are log($mills).

First note that the log bid functions are linear in the signals; this results from the log-normality
assumption (cf. equation (3.12) above). Second, note that the bid functions decrease in slope as the
auction progresses, implying that for any given valuation x1 in the range in which bidder 1 would
have won the auction, the targeted dropout price falls as bidders drop out. For example, for auction
#30 (New Orleans block A, the lower-left hand corner graph), if x1 = 4, then we can read off the
graph that bidder 1’s targeted log dropout price falls from around $4 million in the opening round
0, to about $3.4 million in the final round.

This monotonic change in the slope of the bid functions is characteristic of symmetric ascending
auctions. As noted above, the small point estimate of the CEL PRES coefficient suggests that
that bidders are essentially symmetric. Changes in the slope of the bid function occur because the
conditioning events change as the auction progresses, as bidder 1 learns the private signals of the
bidders who have dropped out.

In a symmetric ascending auction, where no differences exist among his competitors, bidder 1’s
expected valuation for the object is either increasing or decreasing in each and every one of her
competitors’ private signals. Furthermore, when bidder j remains in the auction, bidder 1 assumes
in equilibrium that bidder j’s private signal is equal to x1.18 Once bidder j drops out, bidder 1 learn

17This confirms previous results in Moreton and Spiller (1998), which also detected the existence of PCS-
Cellular complementarities in these auctions in reduced-form bid regressions.

18This is because, in equilibrium, bidder 1 bids a log-price b1(x1) in which her expected log-revenue from
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xj and, given symmetry, xj < x1. Essentially, bidder 1 “plugs” a smaller number xj into her bid
function. This is true for every bidder j 6= 1, since bidder 1 wins the auction.

This process of “plugging-in” smaller numbers (the xj ’s, j 6= 1) in place of larger numbers (x1) causes
the slopes of the successive bid functions to change monotonically as the auction progresses. This
change will be monotonically decreasing if bidder 1’s expected valuation for the object is increasing
in all her competitors’ private signals. This is true for our additive log-normal model with a common
value component, which induces positive correlation among all the bidders’ signals.

For the asymmetric case, this monotonicity need not hold, even assuming, as in the log-normal
model, that bidder 1’s expected valuation is increasing in each and every private signal. This is
because in every round, bidder 1 not only learns the private signal of the dropout bidder during that
round, but also revises her beliefs about the remaining bidders’ signals knowing that these bidders
are also revising their beliefs upon observing dropout behavior. While the coefficients on all the
private signals in bidder 1’s expected valuation of the object are still positive, it is not clear whether
the new values for the signals “plugged in” during each round are larger or smaller than the old
values; therefore, it is unclear how this change in information affects the slope of her bid function.

In conclusion, therefore, while the log-linearity of the estimated bid functions results from the log-
normality assumption, the monotonic decrease in slopes as the auction proceeds arises from our
finding that the bidders were largely symmetric.

6 Conclusions

We have characterized increasing-strategy Bayesian Nash equilibria in asymmetric ascending (En-
glish) auctions. We showed that the equilibrium (inverse) bidding strategies in each round of the
auction are defined implicitly via systems of nonlinear equations. This formed the basis of an al-
gorithm we devised to calculate the likelihood function for an observed vector of bids. In the case
that bidders’ private signals are drawn from non-identical log-normal distributions, we show that
the vector of log dropout prices observed in a given ascending auction is distributed as truncated
multivariate truncated normal. We illustrated the use of this model with data from the FCC spec-
trum auctions, and estimated examples of bid functions to demonstrate how equilibrium learning
affects bidding behavior in ascending auctions.

An important extension to our current model is to relax the irrevocable dropout assumption. How-
ever, the result may be an “open call” auction which, as noted by Vickrey (1961), is strategically
equivalent to a sealed bid second-price auction (since, essentially, without the irrevocable dropout
requirement, no information can be credibly revealed during the course of the auction).

Nonetheless, there has been very little work to date on the structural estimation of sealed bid second-

winning is just equal to b1(x1). If she in fact wins at the log-price b1(x1), this must mean that bidder j has
dropped out at that price, implying that bidder j’s private log-signal xj = b−1

j (b1(x1)). For the symmetric

case, bj(·) = b(·), ∀ j, so that xj = b−1
j (b1(x1)) = x1.
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price auction models accommodating both common values and asymmetries.19 This may be due
in part to the difficulties involved in calculating equilibrium bidding strategies in these auctions.
However, the empirical framework developed in this paper can be directly generalized to other
auction formats, including the first- and second-price sealed bid auctions. The common element in
all these auction models is that the equilibrium bid functions are described by systems of equations,
which facilitates the numerical or computational algorithms required for empirical implementation
of these models. We discuss these issues in more detail in Hong and Shum (1999), and we plan to
apply this methodology to first- and second-price auction settings in future research.
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A Proofs

Proof of Proposition 1 Mimicking the proof of Theorem 10 in Milgrom and Weber (1982), we
show that if all bidders j 6= i follow their equilibrium strategies βkj (·), bidder i’s best response is to
play βki (·) because this guarantees that bidder i will win the auction if and only if his expected net
payoff is positive conditional on winning.

By construction, for any price P , (2.3) holds. If bidder i wins the auction in round k when all
remaining bidders simultaneously exit a price of P , his ex-post valuation is:

E
[
Vi|Xi;Xj =

(
βkj
)−1

(P ), j = 1, . . . , n− k, j 6= i; Ωk
]
. (A.37)

Since this conditional expectation is increasing in Xi (from assumption A2), bidder i makes a positive
expected profit from winning in round k by staying active in the auction at a price of P if and only if
Xi ≥

(
βki
)−1 (P )⇔ βki (Xi) ≥ P (here we use monotonicity of equilibrium bid strategies). In other

words, βki (Xi) specifies the price below which bidder i makes a positive expected profit by staying
in the auction and above which bidder i makes a negative expected profit by staying in the auction.
Therefore, for every realization of Xi, βki (Xi) specifies a best-response dropout price for bidder i in
round k.20 �

Proof of Lemma 1 Since Ak ≡
(

ΛkΣ∗−1′

k,1

)−1

lk, the lemma states that each row of
(

ΛkΣ∗−1′

k,1

)−1

sums to a positive number. Note that
(

ΛkΣ∗−1′

k,1

)
is equal to the (N − k) × (N − k) principal

submatrix of Λ0Σ∗−1, indexed by 1, . . . , N − k. Since vi = ai + v, we can write

Λ0 = Cov (l0 × v, x) + Cov (a, x) = l0 × Cov (v, x) + Cov (a, x)

where we denote a ≡ (a1, . . . , aN ). Hence
(

ΛkΣ∗−1′

k,1

)
can be written as lky′ + D∗, where y′ is the

first N−k elements of Cov (v, x) Σ∗−1 (which are strictly positive due to the strict affiliation between
v and x), and D∗ is the first (N − k) principal matrix of D = Cov (a, x) Σ∗−1. As shown by Sarkar

20For the symmetric model of Milgrom and Weber (1982), Bikhchandani, Haile, and Riley (2000) described
additional equilibria taking the form of

βki (Xi) = ζ ∗ E
[
Vi|Xi;Xj = (βkj )−1

(
βki (Xi)

)
, j = 1, . . . , n− k, j 6= i; Ωk

]
for the bidders i = 1, . . . , k remaining in round k, and for k = 0, . . . , N − 3 (i.e., for all rounds except the
last one), and for ζ ∈ (0, 1]. We focus on the “maximum” equilibrium discussed in Bikhchandani, Haile, and
Riley (2000), which coincides with the construction of Milgrom and Weber (1982).



25

(1969), strict affiliation of x implies that Σ∗−1 is a matrix with a dominant diagonal, as defined in
McKenzie (1959), theorem 4. Since Cov (a, x) is a diagonal matrix, D also has a dominant diagonal
because the property of diagonal dominance is preserved under multiplication by a diagonal matrix.
The property of diagonal dominance is also perserved by any principal submatrix of D, including
D∗. Next we write (using, for example, Dhrymes (1984), pg. 39)

(lky′ +D∗)−1 =D∗−1 − 1
1 + y′D∗−1lk

D∗−1lky
′D∗−1

=D∗−1

(
I − 1

1 + y′D∗−1lk
lky
′D∗−1

) (A.38)

Since D∗−1 is a positive matrix (theorem 4, McKenzie (1959)), y∗
′

= y′D∗−1 is a nonnegative vector.
Next 1+y′D∗−1lk = 1+

∑n−k
i=1 y∗

′

i , and each row of lky′D∗−1 is just the row vector y∗
′
. Therefore the

sum of each row of the second matrix in the last expression in (A.38) is
[
1/
(

1 +
∑n−k
i=1 y∗

′

i

)]
> 0.

Since D∗−1’s elements are also nonnegative, it follows that the row sums of (A.38) must also be
positive.

Alternatively, one could calculate
(

ΛkΣ∗−1′

k,1

)−1

explicitly using the information structure of the log

normal model, as we did in a previous version of this paper. This would show that
(

ΛkΣ∗−1′

k,1

)−1

can in fact be written in the form of (lky′′ +D∗∗)−1, for some positive y′′ and a positive diagonal
matrix D∗∗. Then the same argument of (A.38) applies. �

Proof of Lemma 2 Consider the round j and round j−1 system of equations, evaluated at Pj−1,
the dropout price for round j − 1. For round j − 1:

Pj−1 = E[Vi | φj−1
1 (Pj−1), φj−1

2 (Pj−1), . . . , φj−1
N−j+1(Pj−1);φkN−k(Pk), k = 0, . . . , j − 2] (A.39)

for i = 1, . . . , N − j + 1. Let ~φj−1(Pj−1) ≡
(
φj−1

1 (Pj−1), φj−1
2 (Pj−1), . . . , φj−1

N−j+1(Pj−1)
)′

denote
the vector of inverse bid functions which solve this system of equations at the price Pj−1. Note that
the (j − 1)-th element of this (that corresponding to bidder N − j + 1) is XN−j+1, which is this
bidder’s actual signal.

Let Ωj−1 denote
{
φkN−k(Pk), k = 0, . . . , j − 2

}
, the information set in round j − 1.

Using this notation, we can write the round j system of equations as:

Pj−1 = E[V1 | φj1(Pj−1), φj2(Pj−1), . . . , φjN−j(Pj−1), φj−1
N−j+1(Pj−1),Ωj−1]

Pj−1 = E[V2 | φj1(Pj−1), φj2(Pj−1), . . . , φjN−j(Pj−1), φj−1
N−j+1(Pj−1),Ωj−1]

· · ·

Pj−1 = E[VN−j | φj1(Pj−1), φj2(Pj−1), . . . , φjN−j(Pj−1), φj−1
N−j+1(Pj−1),Ωj−1].

(A.40)
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If we substitute in the first (N − j) elements of ~φj−1(Pj−1) into the round j system, we get:

Pj−1 = E[V1 | φj−1
1 (Pj−1), φj−1

2 (Pj−1), . . . , φj−1
N−j(Pj−1);φj−1

N−j+1(Pj−1),Ωj−1]

Pj−1 = E[V2 | φj−1
1 (Pj−1), φj−1

2 (Pj−1), . . . , φj−1
N−j(Pj−1);φj−1

N−j+1(Pj−1),Ωj−1]

· · ·

Pj−1 = E[VN−j | φj−1
1 (Pj−1), φj−1

2 (Pj−1), . . . , φj−1
N−j(Pj−1);φj−1

N−j+1(Pj−1),Ωj−1].

(A.41)

Note that equations (A.41) exactly resembles the first (N − j) equations in the round j − 1 system
(A.39): this immediately implies that ~φj−1(Pj−1) solves both the round j and j − 1 systems of
equations, at the price Pj−1. In other words, the bid functions for rounds j and j− 1 must intersect
at the point

(
~φj−1(Pj−1), Pj−1

)
. �

Proof of Corollary 1 We break the proof into two steps. Throughout, we omit the conditioning
arguments xkd and θ for brevity. First we show that (3.20) implies

bk+1
N−k−1 (xN−k−1) > bkN−k (xN−k) ,∀k = 0, . . . , N − 3 : (A.42)

namely, that the constructed sequence of dropout prices are increasing. To see this, note that (3.20)
implies

xN−k−1 > φkN−k−1

(
bkN−k (xN−k)

)
⇒bk+1

N−k−1 (xN−k−1) > bk+1
N−k−1

(
φkN−k−1

(
bkN−k (xN−k)

))
= bkN−k (xN−k) ,

where the inequality in the first line arises from (3.20), and the equality in the second line arises
from Lemma 2. Clearly, this argument holds for all k = 0, . . . , N − 3.

Second, we use (3.20) and (A.42) to show (3.19). For a given round k, and bidder i ≤ N − k − 1:

xi >φ
N−i−1
i

(
bN−i−1
i+1 (xi+1)

)
>φN−i−1

i

(
bN−i−2
i+2 (xi+2)

)
= φN−i−2

i

(
bN−i−2
i+2 (xi+2)

)
>φN−i−2

i

(
bN−i−3
i+3 (xi+3)

)
= φN−i−3

i

(
bN−i−3
i+3 (xi+3)

)
> · · ·

>φki
(
bkN−k (xN−k)

)
where the inequality in the first line arises from (3.20), the inequality in the second line arises from
(A.42), and the equality in the second line arises from Lemma 2. Applying the bki (· · · ) transformation
to the first and last terms in the above inequality yields bki (xi) > bkN−k (xN−k). This argument
applies ∀k = 0, . . . , N − 2, ∀i ≤ N − k − 1. �
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Proof of Lemma 3 Note that

bli
(
φki (pk)

)
=bli

(
φl+1
i

(
bl+1
i

(
· · ·φk−1

i

(
bk−1
i

(
φki (pk)

)))))
>bli

(
φl+1
i

(
bl+1
i

(
· · ·φk−1

i

(
bk−1
i

(
φki (pk−1)

)))))
= bli

(
φl+1
i

(
bl+1
i

(
· · ·φk−1

i (pk−1)
)))

>bli
(
φl+1
i

(
bl+1
i

(
· · ·φk−1

i (pk−2)
)))

= bli
(
φl+1
i

(
bl+1
i

(
· · ·φk−2

i (pk−2)
)))

> · · · = bli
(
φl+1
i (pl+1)

)
>bli

(
φl+1
i (pl)

)
= pl

where the equality in the second and third lines use Lemma 2, and all the inequalities use the fact
that the sequence of dropout prices p0, . . . , pN−2 is nondecreasing. �

B Data description

The data on the auction results from the MTA broadband auction is taken from the FCC’s web
site (http://www.fcc.gov). This data gives us information on the participants and the bids that
they submitted during each round on the various licenses. We supplemented this data with market
characteristics at the MTA level from the Rand-McNally guide. The cellular presence data came from
the Cellular Telephone Industry Association’s Wireless Market Book (Cellular Telephone Industry
of America (1996)). We discuss how we created the dependent variable and the regressors in turn.

B.0.1 The dropout prices

In order to fit the model to the FCC data, we impose some assumptions about bidders’ beliefs
concerning the dropout behavior of the other bidders. We assign a “dropout price” to bidder j
which is the last price at which he was “active” (in a sense to be clarified below). We assume that
all remaining bidders also believe this assigned price to be bidder j’s dropout price.

Next we define how we classify a bidder as “active”. The following example will be useful: suppose
that there are four bidders (A, B, C, D) and we observe that the last submitted bids for A, B, and
C were 10, 20, and 30, respectively. If the price goes up by increments of 5, then, D will win the
object at a price of 35 (assuming that his valuation is greater than that).

One simple way would be to assign to each bidder a dropout price equal to his last submitted bid,
and assume that the winner’s dropout price was greater than or equal to the winning price, i.e.,
PA = 10, PB = 20, PC = 30, PD ≥ 35. This method is inconsistent, because of the gap between
the the second-highest dropout price PC and the lower bound on the highest dropout price PD.
As Milgrom and Weber (1982) note, their formulation of the ascending model model reduces to a
second-price auction when there are only two bidders left– in this case, these would be C and D.
One problem with the above assignment of dropout prices is that the winner – D – doesn’t win the
object at the “second-price”, which is C’s dropout price.

To address this problem, we assign a dropout price to a given bidder equal to the last submitted
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bid of the next bidder who drops out. In the example above: PA = 20, PB = 30, PC = 35, PD ≥ 35.
The reason this problem occurs is that the Milgrom and Weber (1982) (and Wilson (1998)) model
assume continuously rising prices and instantaneous dropouts, whereas in the FCC auctions (and
probably in most real-life situations) the price ascends by discrete intervals.

B.0.2 Specification details

Here we describe how the exogenous covariates enter the empirical model. First, m (the mean of the
log common value distribution for a given license) should be a function of MTA-level demographic
variables which capture the across-license variation in values. We use POP (population) and POP
CHANGE (population change).

Second, āi (the publicly-known mean of the private value component of Vi) is a function of firm-
and-object specific covariates. We only use CEL PRES, an indicator of cellular presence in the
surrounding area. More precisely, this regressor is a tally of the total number of the BTA’s sur-
rounding21 a particular MTA in which a given firm has cellular presence.22

Finally, (s, t, r0) (the standard deviations for the noisiness of the signal, the private value compo-
nent, and the common value component, respectively) are parameterized differently across the two
specifications we estimated (Models A and B in table 3). Both specifications restrict these quantities
to be the same over all bidders; Model B, however, allows s to vary over objects as a function of
POP and INCOME.

Table 4 presents summary statistics for all the variables we use in the analysis.

21Firms with substantial cellular coverage in a given market were barred from bidding for PCS spectra in
that market.

22We are grateful to P. Moreton for providing “neighboring county” tables which facilitated the construc-
tion of the CEL PRES variable for each (firm-MTA) combination.
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Table 1: Maximum Likelihood Estimation: Results from Monte Carlo Experiments
Each column contains the empirical median, 25-th percentile, and 75-th percentile absolute deviation for an experiment.

Each of the four experiments consisted of 100 re-estimations on bids simulated for a 91-auction sample of auctions.

Coefficienta Exp. 1: Exp. 2: Exp. 3: Exp. 4:
S=100, h=0.01 S=100, h=0.1 S=50, h=0.01 S=50, h=0.1

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Components of log s:
Constant 0.0179 0.1717 0.2374 0.0108 0.1419 0.2715 0.0128 0.1694 0.2562 0.0111 0.1939 0.2552

Components of log t:
Constant 0.0373 0.1756 0.2605 0.0379 0.1752 0.2690 0.0265 0.1575 0.2520 0.0470 0.1889 0.2656

Components of m:
Constant 0.0507 0.1576 0.2451 0.0308 0.1991 0.3029 0.0186 0.1454 0.2590 0.0397 0.1784 0.2510
POP (mills) 0.0896 0.2334 0.2824 0.0746 0.2114 0.3007 0.0211 0.1773 0.2544 0.0493 0.1947 0.2705
POP CHANGE (%) 0.0037 0.0153 0.0237 0.0028 0.0166 0.0279 0.0029 0.0145 0.0258 0.0063 0.0180 0.0255

Components of ā:

Constantb

CEL PRES 0.0125 0.1617 0.2536 0.0107 0.1743 0.2660 0.0147 0.1528 0.2463 0.0126 0.1831 0.2569

aThe true values underlying the simulated were, respectively: 0.1, 0.2, 1.0, 1.5, 0.05, 0.1.
bNot separately identified from constant in m
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Table 2: Simulated Nonlinear Least Squares Estimator: Results from Monte Carlo Experiments
Each column contains the empirical median, 25-th percentile, and 75-th percentile absolute deviation for an experiment.

Each of the four experiments consisted of 100 re-estimations on bids simulated for a 91-auction sample of auctions.

Coefficienta Exp. 1: Exp. 2: Exp. 3: Exp. 4:
S=100, h=0.01 S=100, h=0.1 S=50, h=0.01 S=50, h=0.1

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Components of log s:
Constant 0.0164 0.0588 0.1194 0.0127 0.0628 0.1398 0.0098 0.0340 0.1127 0.0161 0.0465 0.1194

Components of log t:
Constant 0.0102 0.0474 0.1746 0.0112 0.0627 0.1660 0.0062 0.0312 0.1198 0.00083 0.0446 0.1343

Components of m:
Constant 0.0040 0.0174 0.1465 0.0054 0.0281 0.1247 0.0028 0.0258 0.1403 0.0023 0.0155 0.1204
POP (mills) 0.0023 0.0289 0.1350 0.0032 0.0255 0.1300 0.0019 0.0133 0.1500 0.0021 0.0149 0.1284
POP CHANGE (%) 0.0006 0.0051 0.0195 0.0011 0.0057 0.0181 0.0003 0.0024 0.0116 0.0005 0.0040 0.0113

Components of ā:

Constantb

CEL PRES 0.0180 0.0786 0.1928 0.0246 0.0926 0.1636 0.0134 0.0463 0.1278 0.0260 0.0637 0.1300

aThe true values underlying the simulated were, respectively: 0.1, 0.2, 1.0, 1.5, 0.05, 0.1.
bNot separately identified from constant in m
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Table 3: Simulated Nonlinear Least-Squares Estimates
S (number of simulation draws): 100; h (bandwidth)=0.01

Model A Model B
Coefficient Estimate Std. Errora Estimate Std. Error
Components of log s:
Constant 0.0665 0.0380 0.0643 0.0147
POP (mills) -0.0023 0.0016
INCOME (per cap.,$’000) -0.0228 0.0146

Components of log t:
Constant 0.1627 0.3686 0.2146 0.1720

log r0
b:

Constant -0.0136 0.0248 -0.0189 0.0150

Components of m:
Constant 0.9676 0.3652 0.9557 0.1468
POP (mills) 1.4942 0.4015 1.4856 0.1757
POP CHANGE (%) 0.0475 0.0359 0.0449 0.0147

Components of ā:
Constantc

CEL PRES 0.0707 0.0201 0.0693 0.0128

# auctions (T ) 91 91

aBootstrapped standard error, computed from empirical distribution of parameter estimates from 100
parametric bootstrap resamples.

bvariance of the prior distribution on common value component
cNot separately identified from constant in m
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Figure 1: Estimated bid functions: Using Model A results
x-axis: log-signals; y-axis: log-bid

MTA 31, Block B: Indianapolis MTA 41, Block A: Oklahoma City

MTA 17, Block A: New Orleans/B. Rouge MTA 17, Block B: New Orleans/B. Rouge
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Table 4: Summary statistics for data variables
Variable N mean StdDev min max
Winning
prices ($mill) 911 75.87 89.71 4.39 493.5
Population
(millions) 91 5.15 4.14 1.15 26.78
Pop’n change
(1990-95, %) 91 6.00 3.53 0.40 12.80
Per capita
income (’000) 91 15.86 3.71 11.96 20.70
Dropout
prices ($mill) 423 53.18 69.28 0.89 493.5
Cell. pres 423 0.61 1.28 0 8

1: We omitted the observations for: Puerto Rico, Guam, Samoa, and Alaska


