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On the Non-Existence of Reputation E®ects in Two-Person

In¯nitely-Repeated Games

Jimmy Chan¤

Department of Economics
Johns Hopkins University
chan@jhunix.hcf.jhu.edu

Abstract

Consider a two-person in¯nitely-repeated game in which one player is either a normal \ra-
tional" type or a \commitment" type that automatically plays a ¯xed repeated-game strategy.
When her true type is private information, a rational type may want to develop a reputation as
a commitment type by mimicking the commitment type's actions. But, the uninformed player,
anticipating the behavior of the rational type, may try to \screen out" the rational type by
choosing an action which gives the rational type a low payo® when she mimics the commitment
type. My main result shows that for \comparably" patient players, if the prior probability that
the player is a commitment type is su±ciently small, the \screening" process may take so long
that the rational type does not bene¯t from developing a reputation. In the case of equally
patient players, I show that the folk theorem holds even when both players possess a small
amount of private information. Schmidt (1994) and Cripps, Schmidt and Thomas (1993) argue
that reputation e®ects can rule out outcomes permitted by the folk theorem, regardless of how
small the prior probability that the player is a commitment type. My results show that this
argument only applies when one player is \in¯nitely" more patient than the other.

¤I would like to thank Bob Anderson, Dan Covitz, Eddie Dekel, John Giles, Erik Heit¯eld, Rika Onishi Mortimer,
Peter Norman, Wolfgang Pesendorfer, Bob Powell, Chris Shannon, Ilya Segal, Clara Wang, and seminar participants
at , Berkeley, Johns Hopkins, Northwestern, and \Summer in Tel Aviv 97" for helpful comments, and I am grateful
to Matthew Rabin for his invaluable advice and Erik Eyster for his detailed comments on a draft of this paper.
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1 Introduction

In this essay, I study the e®ects of reputation in a class of incomplete-information, two-person,

in¯nitely-repeated games. They di®er from standard perfect-information repeated games in that

one of the players possesses private information as to whether she is a rational or \commitment"

type who plays a ¯xed repeated-game strategy. Because he does not know the true type of the

informed player, the uninformed player can only form a belief about the informed player's type

based on her past actions. As a result, a rational informed player can try to develop a \reputation"

as a commitment type by mimicking her behavior. The goal is to study whether the possession of

a small amount of private information allows the informed player to obtain a higher payo® than in

the case of perfect information.

Most previous work in the literature consider the case where the uninformed player's discount

factor is ¯xed as the informed player's approaches one. As the informed player's discount factor

increases, she would become relatively, and in the limit in¯nitely, more patient than the uninformed

player. Fudenberg and Levine (1989) show that in a game in which a long-run player plays against

a sequence of short-run players, if the long-run player is patient enough, she will obtain a payo®

close to or better than her Stackelberg payo®, which generally is strictly higher than her minmax

payo®. Cripps, Schmidt and Thomas (1993) extend the results of Fudenberg and Levine (1989)

to the case of two long-run players. They show that, in general, as the informed player becomes

su±ciently more patient than her opponent, she can guarantee herself a payo® strictly higher

than her minmax payo®. Under some conditions, she can guarantee herself a payo® close to her

Stackelberg payo® (Schmidt 1993), and in some others, close to her highest repeated-game payo®

(Celentani, Fudenberg, Levine, and Pesendorfer 1993).

The condition of in¯nite relative patience is obviously highly restrictive. Many economic rela-

tionships, for example, repeated oligopolistic competition, involve parties that are equally or, at

least, comparably patient. In this paper, I study reputation e®ects when the informed player is

only ¯nitely more patient than the uninformed player in the limit, or, put di®erently, where the

players are equally or comparably patient. My main result shows that in any two-person, in¯nitely-

repeated game, except for two special classes speci¯ed below, if the two players are equally and

su±ciently patient, the commitment strategy is history-independent, and the prior probability of

that the informed player is a commitment type is su±ciently small, then any strictly individually

rational payo® pro¯le can be supported by a perfect Bayesian equilibrium. Under slightly stronger

conditions, the same result applies even when the commitment strategy is history-dependent, the
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players are comparably (but not equally) patient, and both players possess private information.

In other words, the minimum equilibrium payo®s that the informed player may receive with or

without private information are the same. In conclusion, reputation e®ects do not exist when the

players are comparably patient, and the prior probability that the informed player is a commitment

type is su±ciently small.

Compared to previous results, my results suggest that the strength of reputation e®ects critically

depends on the players' relative patience. For any ¯xed prior probability that a player is a

commitment type, reputation e®ects become stronger as the informed player becomes more patient

than her opponent. But, when the relative patience between players is ¯xed, reputation e®ects

deminish as the prior probability that the player is a commitment type decreases. Call the informed

player Player 1 and the uninformed player Player 2. While Player 2 is uncertain about Player 1's

type, in equilibrium, he should expect that a rational Player 1 will mimic the commitment type

and, hence, will not quickly conclude that his opponent is a commitment type after observing her

choosing the commitment strategy. Instead, Player 2 may choose an action which will give the

rational type of Player 1 a low payo® when she chooses the commitment strategy so as to \screen

out" the rational type. \Screening" is rational for Player 2 if he believes that the rational type

of Player 1 may reveal her type in the future, and if in this case he will obtain a higher payo® in

the continuation game. Suppose T is the maximum number of screening periods that is consistent

with some equilibrium.1 If Player 1 plays the commitment strategy inde¯nitely, she will receive a

low average payo® vs1 during the screening periods, and a high average payo® v¤1 after the screening

periods, when Player 2 is convinced that she is a commitment type. Player 1's average discounted

payo® will be equal to

(1 ¡ ±T1 )vs1 + ±T1 v¤1;

where ±1 is Player 1's discount factor. If ±T1 is small, her average payo® is approximately equal to

the low payo® during the screening periods, and there is little to gain from developing a reputation.

When Player 2 is more patient, he is willing to screen for more periods; therefore, T is an increasing

function of ±2, Player 2's discount factor. Notice that the cost of screening to Player 2 is at most

equal to (1 ¡ ±T2 )d where d is equal to the largest di®erence in payo®s between any two stage-game

outcomes. Player 2 is willing to pay some positive cost to screen whenever he expects to receive

some positive long-run bene¯t in the event that the screening is successful; therefore, ±T2 should be

1T is ¯nite because Player 2 will screen in a period only if he expects the rational type of Player 1 will reveal her
type with a probability bounded away from zero. See Section 2 for details.
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less than 1 in the limit. Furthermore, the limit of ±T2 will be small when it is unlikely that Player

1 is a commitment type. The relative patience of the players matters because it determines the

relative sizes of ±T1 and ±T2 . When Player 1 and Player 2 are comparably patient in the limit, if

the limit of ±T2 is small, then the limit of ±T1 will be small as well. This explains why the results of

Cripps, Schmidt and Thomas (1993) and others do not apply to this case.

There are two classes of games which are exceptions to the above argument. In both cases,

there must exist a stage-game action a1 for Player 1 such that if Player 1 chooses a1 and Player 2

chooses a best response to it, then Player 1 receives her highest payo® in the convex hull of the set

of strictly individually rational stage-game payo®s. In this case, Player 1 will obtain her highest

repeated-game payo® if she can credibly commit to choosing a1. A stage game is called a strongly-

con°icting-interest game if Player 2 will get his minmax payo® when he best responds to a1. A stage

game is called a strongly-dominant-action game, and a1 is called a strongly-dominant action, if a1

is also a strictly dominant action for Player 1.2 Notice that the argument above critically depended

on the facts (1) that the rational type of Player 1 can be induced to reveal her type and (2) that

Player 2 will su®er a long-term loss for not screening. A strongly-dominant-action game violates

the ¯rst condition, while a strongly-con°icting-interest game violates the second condition.3

In section 5, I show that in an in¯nitely-repeated strongly-dominant-action game with one-sided

incomplete information, if the only commitment type of the informed player (Player 1) is one who

always chooses the strongly-dominant action, then Player 1 will receive her commitment payo® in

any perfect Bayesian equilibrium. Notice that in the perfect-information version of the game, there

usually exists a large set of equilibrium outcomes. In this case, reputation e®ects select a unique

outcome (the one most favorable to Player 1) from that set. Moreover, unlike all previous results

on reputation e®ects in in¯nitely-repeated games, which critically depend on the requirement of

in¯nite relative patience in the limit, this result holds for any strictly positive prior probability of

a commitment type, and any discount factors less than 1. In fact, it applies even when Player 1 is

less patient than Player 2. The basic argument is as follows: Suppose in some equilibrium Player

2 chooses to screen in some period; then he must believe that the rational type of Player 1 will

reveal her type with a ¯nite probability in the future. But in strongly-dominant-action games, the

rational type of Player 1 will reveal her type only when she expects Player 2 to screen in the future.

Hence, by repeating the same argument, we can conclude that in such an equilibrium Player 2

has to choose to screen in an in¯nite number of periods. The key of the proof is to show that

2These terms are formally de¯ned in section 4.
3I would like to thank Eddie Dekel and Wolfgang Pesendorfer for pointing out the second point to me.
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this cannot happen because eventually Player 2 will be convinced that Player 1 is a commitment

type. Hence, any screening by Player 2 is not consistent with a perfect Bayesian equilibrium and,

thus, the rational type of Player 1 must receive her commitment payo® in any perfect Bayesian

equilibrium. Notice that this argument is di®erent from the one introduced by Fudenberg and

Levine (1989) and commonly used in the reputation literature. That argument only requires that

Player 2 update his beliefs rationally and behave optimally given his beliefs, while my argument,

in addition, also makes use of the fact that the strategy of the rational type of Player 1 is a best

response to Player 2's strategy in equilibrium.

There are two recent papers which address issues similar to those in this one.4 Cripps and

Thomas (1997) demonstrate that reputation e®ects do not exist in a class of two-person in¯nitely-

repeated common-interest games with equally patient players. They show that when the players

are su±ciently patient, and one player may be a commitment type who always plays the Pareto-

dominant action, there exists a perfect Bayesian equilibrium in which the payo® for the informed

player is close to her minmax payo®. The general idea of their proof is similar to that of Theorem

1, but their result only applies when the stage game belongs to a special class of common-interest

games. Cripps (1997) studies in¯nitely-repeated games with one-sided incomplete information.

He shows that when uncertainty is small and the players are su±ciently patient, any strictly

individually-rational payo®s can be supported by a perfect Bayesian equilibrium. Despite appar-

ent similarities, his model is not about reputation e®ects. Unlike other recent work on this topic,

including this one, which assumes that the commitment type plays a ¯xed commitment strategy,

Cripps assumes that the commitment type possesses a stage-game payo® function di®erent from

that of the rational type.5 Since he speci¯cally rules out by assumption the possibility that a

commitment type will choose a ¯xed repeated-game strategy, his results do not apply to any of the

cases studied in this paper.6

The rest of the paper is organized as follows: In Section 2, I introduce a measure of relative

4My results are independently of these.
5In Cripps' model, all types are rational. I continue to use the term \commitment type" and \rational type" for

convenience only.
6For example, consider a simple commitment type who chooses a ¯xed stage-game action independent of the

strategy of her opponent. If we want to model a simple commitment type as a rational player who has a di®erent stage-
game payo® function, the payo® function must give the commitment type her highest stage-game payo® whenever she
chooses the commitment action (regardless of what the other player chooses). If not, when the commitment player is
patient enough, there are always some repeated-game strategies for the other player which will induce the commitment
player to deviate from the commitment action. This implies that the minmax payo® for the commitment type is
equal to her highest stage-game payo®, and the set of her individually-rational payo®s is a singleton. Assumption
A.1 in Cripps (97) rules out any payo® functions with this property. This explains why the two exceptions discussed
in this paper do not appear in his model.
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patience, and apply it to study the relationship between relative patience and reputation e®ects.

This section makes clear that the qualitative results which hold in the the simple case of equally

patient players also apply to the more general case of comparably patient players. In Sections

3, 4, and 6, I assume the players are equally patient. But under a minor technical assumption,

the results in these sections apply to the case of comparably patient players as well. Section 3

introduces a model of two-person in¯nitely-repeated games with one-sided incomplete information.

In Section 4, I establish the main result of this paper: Under fairly general conditions, when the

prior probability that the informed player is a commitment type is su±ciently small, there exists

a perfect Bayesian equilibrium in which the payo® for the informed player is close to her minmax

payo®. Section 5 considers an important exception to the general result that reputation e®ects do

not exist in two-person in¯nitely-repeated games. I show that in the case of in¯nitely-repeated

strongly-dominant-action games, if there is a slight probability that a player is a commitment type

who always chooses the strictly-dominant action, then that player will receive her commitment

payo® in any perfect Bayesian equilibrium. In Section 6, I extend the result in Section 4 and prove

a folk theorem with two-sided incomplete information. Section 7 contains the conclusion.

2 Reputation E®ects and Relative Patience

Absolute patience and relative patience are two distinct concepts. A player can be a lot more

patient than another player, even when both are very patient. Consider any strictly increasing,

continuously di®erentiable function ±2(±1), where ±2 : [0; 1] ! [0; 1] such that lim±1!1 ±2(±1) = 1.

This function ±2(±1) expresses Player 2's discount factor as a function of Player 1's. The graph

f±1; ±2(±1)g1±1=0 de¯nes a path ending at (1; 1) on the unit square. As the discount factors move along

the path toward (1; 1), the players become more patient. Conventional folk theorems, assuming

that the players are equally patient, characterize the limiting set of equilibrium payo®s as the

common discount factor approaches one along the diagonal. But in general, the discount factors

of the players need not be the same along any particular path. The relative patience between two

players with discount factors ±1 and ±2 can be measured by, m = ln ±1
ln ±2

, the ratio of the logs of their

discount factors. Note that m compares the weight the two players put on their average discounted

payo®s after any period t. For any t, ±t1 = (±t2)
m, where ±ti is the weight player i puts on the average

payo® after period t. Player 1 is said to be more (less) patient than Player 2 when m is smaller

(bigger) than one, since she puts more (less) weight on her future payo®. De¯nition 1 formalizes

the notion of in¯nite relative patience.
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De¯nition 1 Along any path f±1; ±2(±1)g1±1=0, Player 1 is in¯nitely more patient than Player 2 in

the limit if

lim
±1!1

m(±1; ±2) = 0

The players are called comparably patient in the limit if neither player is in¯nitely more patient than

the other. Geometrically, the condition of in¯nite relative patience is equivalent to the condition

that the slope of ±2(±1) go to in¯nity as ±1 goes to 1.

Whether a number of periods is \long" for a player depends on her discount factor. For example,

one hundred periods may be \short" for a player with a discount factor of 0:9999 but very \long"

for a player with a discount factor of 0:9. This notion of \length" can be measured by ±ti ; t periods

are \long" for Player 1 if ±t1 is small, because Player 1 cares little about her payo®s after t periods.

Lemma 2.1 shows that along any path, a number of periods that is arbitrarily \long" for Player 2

becomes arbitrarily \short" for Player 1 in the limit if and only if Player 1 is in¯nitely more patient

than Player 2. The proofs of all lemmas in this section are given in the appendix.

Lemma 1 Player 1 is in¯nitely more patient than Player 2 in the limit as ±1 goes to 1 i®

8 ²; ´ 2 (0; 1); 9±1 s.t. 8±1 ¸ ±1; and 8t 2 <; ±2(±1)
t = ² ) ±t1 ¸ 1 ¡ ´: (1)

Along any path, both players become more patient. In that case, while Player 1 has a stronger

incentive to develop a reputation, Player 2 also has a stronger incentive to screen out the rational

type of Player 1. In the limit, whether Player 1 can bene¯t from developing a reputation depends

on the relative patience of the players. The following example illustrates the relationship between

relative patience and reputation e®ects.

Player 2
D C

Player 1 D -d,-d q,0
C 0,q q,q

Figure 1: Example 1 (-d,-d)

(q,0)
V1

(0,q) (q,q)

V2

Figure 2: Stage-game payo®s
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In the stage game depicted in Example 1, there are three pure strategy equilibria: (C,D), (C,C)

and (D,C).7 The minmax payo®s for both players are 0. The convex hull of the set of feasible

stage-game payo®s is shown in Fig. 2. The shaded area is the set of subgame-perfect-equilibrium

payo®s of the in¯nitely-repeated version of this game when the players' discount factors are equal

and close to one. Assume that there are two types of Player 1: a rational type with probability

1 ¡ ¹0, and a commitment type, who always chooses D, with probability ¹0. Let ¹t be Player 2's

posterior belief that Player 1 is a commitment type after observing her period t¡1 action. If Player

2 is convinced that Player 1 is the commitment type, his best response is to play C, and Player 1's

corresponding commitment payo® is q.

In equilibrium Player 2 may try to screen out the rational type of Player 1 by choosing D for

T periods unless Player 1 chooses C. Screening is optimal for Player 2 only when the rational type

of Player 1 will choose C with some positive probability in some periods. Suppose the strategy of

the rational type of Player 1 during the screening phase is as follows: In any period t, if she has

not yet revealed her type, then with probability pt, she will do so by choosing C. If she chooses

C and Player 2 chooses D, then Player 1 will always choose C from period t + 1 onward. On the

other hand, if Player 2 chooses C that period, Player 1 will always choose D from period t + 1

onward. Player 2's average continuation payo® will be q in the ¯rst case and 0 in the second. Note

that Player 2's action in period t will a®ect his future payo® only when Player 1 chooses C in that

period. In choosing D in period t, he pays a short-term cost slightly less than d in that period in

return for an expected long-term gain of pt(1 ¡ ¹t)q in the next period, where pt(1 ¡ ¹t) is the

probability that Player 1 is rational and will reveal her type in that period. Thus, Player 2 will

strictly prefer to choose D if

(1 ¡ ±2)d � ±2pt(1 ¡ ¹t)q (2)

To satisfy Equation (2), pt cannot be too small. Set pt = ¢
1¡¹t where

¢ =
(1 ¡ ±2)d

±2q
: (3)

Since the rational type of Player 1 chooses D with a probability strictly less than 1, according to

Bayes' rule, Player 2 will assign a higher posterior belief that Player 1 is a commitment type every

time after Player 1 chooses D. Speci¯cally, the posterior belief will be equal to:

7This example is non-generic, but the conclusion I draw applies in general. I choose this example for brevity. A
more general treatment is given in the Sections 3 and 4.
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¹t+1 =
¹t

¹t + (1 ¡ ¹t)(1 ¡ pt)
(4)

=
¹t

1 ¡ ¢
(5)

=
¹1

(1 ¡ ¢)t
(6)

Equation (6) shows that ¹t is an increasing function of t . Since ¹t+1 cannot exceed 1, screening

cannot last forever in equilibrium. Intuitively, in order to induce Player 2 to screen, the rational

type of Player 1 has to reveal her type with a probability bounded away from zero in every period.

This imposes a lower bound on the rate of Bayesian updating and, hence, an upper bound on the

number of screening periods.8 The number of the screening periods, T , is set so that at the end of

the screening phase, Player 2's posterior belief that Player 1 is a commitment type is just less than

¹¹ � 1.9 Formally,

T = maxft :
¹1

(1 ¡ ¢)t
� ¹¹g: (7)

If a rational type of Player 1 plays the commitment strategy forever, her average payo®, v¤1, will be

equal to

v¤1 = (1 ¡ ±T1 )(¡d) + ±T1 q:

If ±T1 is close to 1, then v¤1 is approximately equal to q; i.e. Player 1 obtains a payo® close to the

commitment payo® by mimicking the commitment type. Basically, ±T1 measures the \length" of

the screening phase relative to Player 1's patience.

Formally, along any path f±1; ±2(±1)g1±1=0, we can de¯ne ¢(±1), ¹t(±1), and T (±1) according to

Equations (3), (6) and (7). Note that ¢(±1) is decreasing in ±1, and goes to 0 as ±1 goes to 1, i.e.

lim±1!1 ¢(±1) = 0. This implies that the rate of belief updating will decrease as the players become

more patient. Intuitively, when Player 2 is more patient, he will value his future payo® more than

his current payo®; therefore, he can be induced to screen even when the probability that Player 1

will deviate from the commitment strategy is small. As a result, the number of screening periods,

T , is increasing in ±2. The next lemma characterizes the limits of ±T (±1)1 and ±T (±1)2 as functions of

q,d, ¹0, ¹¹.

Lemma 2 Along any path f±1; ±2(±1)g1±1=0,
8This argument was introduced by Fudenberg and Levine (1989).
9Obviously, ¹¹ cannot be bigger than 1. In this particular example, we may simply assume ¹¹ = 1, but in Section

4.2, when we consider that case of history-dependent commitment strategy, we will need ¹¹ to be strictly less than 1.
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1. lim±1!1 ±2(±1)
T (±1) = ¹0

¹¹

q
d :

2. If lim±1!1m(±1; ±2(±1)) = ¹m > 0, then lim±1!1 ±
T (±1)
1 = lim±1!1(±2(±1)

T (±1)) ¹m = ¹0
¹¹

q ¹m
d .

Lemma 2.2 illustrates how various factors a®ect the length of the screening phase relative to the

patience of the players. The variables q, d, ¹0, and ¹¹ jointly determine lim±1!1 ±2(±1)
T (±1), which,

together with ¹m, in turn determines lim±1!1 ±
T (±1)
1 . Note that lim±1!1 ±2(±1)

T (±1) is smaller the

smaller the prior belief that Player 1 is a commitment type, the smaller the short-term loss in

screening, and the larger the long-term gains. When Player 1 is relatively more patient than

Player 2, reputation e®ects are magni¯ed because lim±1!1 ±
T (±1)
1 will then be relatively bigger than

lim±1!1 ±2(±1)
T (±1). When Player 1 is in¯nitely more patient than Player 2 in the limit, for any

¯xed ¹0 > 0, lim±1!1 ±
T (±1)
1 = 1. As a result, she will always receive a payo® arbitrarily close to the

commitment payo®, no matter how small the prior probability that Player 1 is a commitment type.

However, that is not true when the players are comparably patient in the limit. The next lemma

shows that in that case, for any q, d, and ¹¹, lim±1!1 ±
T (±1)
1 is close to 0 when ¹0 is su±ciently small.

Lemma 3 If lim±1!1m(±1; ±2(±1)) = ¹m > 0, then 8 ² > 0 9 ¹¹0 and 9 ±1, such that 8 ¹0 � ¹¹0 and

8 ±1 ¸ ±1; ±
T (±1)
1 � ².

Note that Lemma 2.3 applies whenever q and ¹m is strictly positive.10 Thus, the case of equally

patient players is qualitatively similar to the case of comparably but not equally patient players.

In both cases, if the prior probability that the informed player is a commitment type is su±ciently

small, it is possible for the rational type of the informed player to reveal her true type in every

period with a probability that is (1) large enough so that it is optimal for the uninformed player

to choose a non-best-response to the commitment strategy, yet (2) small enough so that screening

can potentially last for a long time. In Sections 3, 4 and 6, I assume that the players are equally

patient. But, under a technical assumption which I specify in Section 4.3, all of my results apply

to the case of comparably patient players as well.

3 A Model

3.1 Preliminaries

Consider a two-person, in¯nitely-repeated game ¡(A; g; ±) where (A; g) is the stage game and

± is the players' common discount factor. In each period the two players play a simultaneous-

move stage game (A; g), where A = A1 £ A2 denotes the set of ¯nite stage-game actions, and

10Of course, for a given ², the threshold ¹¹0 is smaller the smaller q and ¹m.
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g = (g1; g2) : A ! <2 denotes their payo® functions. A pure action, a mixed action and the set

of mixed actions of player i are denoted as ai, ®i and Ai, respectively. Let brj(ai) be the set

of best responses for Player j to Player i's action ai. For convenience, I represent the expected

payo® of a mixed action pro¯le, E®[g(a)], by g(®) = (g1(®); g2(®)), where ® = (®1; ®2). The

stage-game payo®s are assumed to be bounded from above and below. Let d be the maximum

di®erence in payo®s between two di®erent outcomes for both players. Let V be the convex hull of

the set of feasible stage-game payo®s, and V ¤ be the convex hull of the set of strictly individually

rational stage-game payo® pro¯les, i.e. V ¤ ´ f(v1; v2) 2 V : vi > vi; i = 1; 2g where vi is the

minmax payo® for Player i. Let V ¤
i be the projection of V ¤ on Vi.

11 Let ¹vi denote the highest

payo® for Player i in V which is consistent with Player j receiving at least his minmax payo®, i.e.

¹v1 ´ maxfv1 2 V1 : 9 v2 ¸ v2; s.t. (v1; v2) 2 V g. Throughout the paper, I assume that V ¤ is

non-empty, and that the minmax payo®s for the two players, v1 and v2, belong to the closure of

V ¤
i . These assumptions simplify the exposition, but are not crucial to my results.

After each period, the players observe their opponent's action, and they have perfect recall. Let the

function hit : f1; 2::; t¡ 1g ! Ai represent the actions of Player i up to, but not including, period t.

That is, hit(s), for s > t, is Player i's period s action. Let ht = (h1t ; h
2
t ) be a t ¡ 1 period history of

the game and Ht be the set of feasible histories up to period t. Similarly, let h be a complete history

and H1 be the set of complete histories. Finally, let H be the set of all ¯nite histories of the game.

The concatenation of two histories ht and hs is represented by ht:hs. ht:hs is a t + s ¡ 2 period

history where ht:hs(r) is equal to ht(r) if r � t ¡ 1 and equal to hs(r ¡ t + 1) if t � r � t + s ¡ 2.

Similarly, ht:a, for a 2 A, represents the concatenation of history ht and the period t action pro¯le a.

The players can condition their actions on past history. A pure repeated-game strategy of Player

i is given by a function si : H ! Ai; si(ht) is Player i's action in period t after history ht. Sim-

ilarly, a mixed repeated-game strategy of player i is given by a function ¾i : H ! Ai, where

¾i(ht) is Player i's mixed stage-game strategy in period t after history ht. Let Si and §i be the

set of pure and mixed repeated-game strategies of Player i. When it is convenient, I consider ¾i

as a probability distribution over the set of pure strategies Si. Let ¾ijht denote the continuation

strategy of ¾i induced by a history ht. That is, 8 hs 2 H; ¾ijht(hs) = ¾i(ht:hs). Let ht;s1;s2

11V ¤
1 ´ fv1 : 9v2 s.t. (v1; v2) 2 V ¤g, and V ¤

2 ´ fv2 : 9v1 s.t. (v1; v2) 2 V ¤g.

11



be the t-1 period history induced by a pure strategy pro¯le (s1; s2).12 A mixed-strategy pro¯le

(¾1; ¾2) induces a probability measure P¾1;¾2 over H1. Denote the support for P¾1;¾2 by H(¾1; ¾2).

Denote the set of histories that are consistent with a repeated-game strategy ¾i of Player i by

H(¾i) = fht : 9¾j ; j 6= i s.t. P¾i;¾j(ht) > 0g.

Both players try to maximize their discounted expected payo®s. For a history h, the aver-

age discounted payo®s of the two players are given by v(h) = (v1(h); v2(h)), where vi(h) =

(1¡ ±)
P1
t=1 ±t¡1gi(h(t)). Similarly, the average expected discounted payo®s induced by a strategy

pair, ¾ = (¾1; ¾2) are given by v(¾) = E¾[v(h)]. At any period t, the continuation strategy pro¯le

in the next period, ¾jht+1 is a function of current actions; hence, E¾(ht)[v(¾jht+1)] represents the

expected continuation payo®s for the players from the next period onward conditioned on the his-

tory ht and the behavioral strategy in period t.

In a repeated game with perfect information, the Perfect Folk Theorem (Fudenberg and Maskin

1986, 1990, 1991), roughly speaking, implies that any strictly individually rational payo® pro¯le

v 2 V ¤ can be supported by some subgame-perfect Nash equilibrium when the discount factors of

the players are equal and close to 1. Since there are many slightly di®erent versions of this theorem,

to avoid confusion I state below the version that I use in this paper.

Perfect Folk Theorem (Fudenberg and Maskin)

Consider a two-person in¯nitely-repeated game in which public randomization is not available and

only the players' choices of action are observable. For any v01 2 V ¤
1 and v02 2 V ¤

2 , there exists a ± < 1

such that for all ± 2 [±; 1) and for all v 2 fv : V ¤ s.t. v ¸ (v01; v
0
2)g, there is a subgame-perfect Nash

equilibrium of the in¯nitely-repeated game with discount factor ± in which the discounted average

payo®s are v.

Remark: This is essentially Proposition 2 in Fundenberg and Maskin (1991). The only di®er-

ence is that here I emphasize the fact that for any strictly individually rational payo® pro¯le v, a

lower bound of the discount factor ± can be found so that any payo® pro¯les which weakly dominate

v can be supported by some subgame-perfect equilibrium. This is obvious from their proof. The

idea is that if there exist \punishment" equilibria which can support a certain equilibrium path,

12ht;s1;s2 can be de¯ned recursively as follows: h2;s1;s2(1) = (s1(h1); s2(h1)), and ht;s1;s2 (s) =
(s1(hs;s1;s2); s2(hs;s1;s2 )), 8s < t.
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then those \punishment" equilibria should also be su±cient to support any equilibrium path with

weakly higher payo®s.

3.2 Repeated Games with Commitment Types

Suppose there is a small probability that Player 1 is a commitment type °1 where, for convenience,

°1 refers to both the commitment type and the corresponding commitment strategy. The true type

of Player 1 is her private information. Let ¹10 represent Player 2's prior belief that Player 1 is a

commitment type. (Throughout this paper, ¹10 is assumed to be strictly less than 1.) A repeated

game with one-sided incomplete information is denoted by ¡(A; g; ±; °1; ¹
1
0).

After observing the past actions of Player 1, Player 2 will update his belief about Player 1's true

type. Let ¹(ht) be Player 2's subjective belief that Player 1 is a commitment type at the beginning

of period t after observing a history ht. Note that ¹(h1) = ¹10 by de¯nition. Given ¾1, ¹10, and °1,

de¯ne ½1 ´ (1 ¡ ¹10)¾1 + ¹10°1; ½1 is Player 2's expectation of Player 1's strategy.13

In this paper, a commitment strategy can be any pure history-dependent repeated-game strategy

(i.e. °1 2 S1). A commitment strategy is called simple if it consists of playing a ¯xed stage-game

action. The commitment payo® of a commitment strategy °1 is the minimum payo® the rational

type of Player 1 will receive if she plays °1 and Player 2 plays a best response to it. If Player 2

is certain that Player 1 is a commitment type, Player 1 will obtain a payo® at least as large as

the commitment payo®. De¯ne B2;±(°1) ´ arg maxs22S2 v2(°1; s2); B2;±(°1) is the set of Player 2's

best responses to the repeated-game strategy °1. Since the set of best responses to a commitment

strategy °1 is a function of the discount factor ±, the commitment payo® will be a function of ± as

well. Formally, the commitment payo®, º±(°1) is de¯ned as follows:

De¯nition 2 (Commitment Payo®)

º±(°1) ´ min
b22B2;±(°1)

v1(°1; b2)

Let b2(°1) denote the best response of Player 2 to °1 that gives Player 1 her commitment payo®.

The commitment payo® of the continuation commitment strategy °1jht after a history ht, º±(°1jht)
can be de¯ned analogously. It is clear that Player 1 will only have incentive to imitate a commit-

ment type if the commitment payo® is above her minmax payo®. For simplicity, I shall assume

13I will use ½1jht to denote Player 2's expectation of Player 1's strategy after a history ht. Since in equilibrium
Player 2's belief about Player 1's type is consistent, ½1jht = (1¡ ¹(ht))¾1jht + ¹(ht)°1jht.
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that º±(°1jht) > v1 8ht. In the case of simple commitment types, since the commitment payo® is

independent of ±, I will simply denote it as º(°1).
14

The objective of this paper is to characterize the set of perfect-Bayesain-equilibrium payo®s when

the players are patient, and the prior probability that the informed player is commitment type is

small. Below, I ¯rst state the standard de¯nition of perfect Bayesian equilibrium and then introduce

the slightly modi¯ed version I use in this paper.

De¯nition 3 (Perfect Bayesian Equilibrium (A)) (¾1; ¾2; ¹) is a perfect Bayesian equilibrium

of an in¯nitely-repeated game ¡(A; g; ±; °1; ¹
1
0) if the following conditions hold for all ht 2 H:

¹(ht) =
¹(ht¡1)°1(at¡11 jht¡1)

½(at¡11 jht¡1)
whenever the denominator is non-zero,

v1(¾1jht; ¾2jht) ¸ v1(¾
0
1; ¾2jht) 8¾01 2 §1;

v2(½1jht; ¾2jht) ¸ v2(½1jht; ¾02) 8¾02 2 §2:

Remark: The ¯rst condition requires that an unilateral deviation by the uninformed player does

not a®ect his belief about the other player's type. Speci¯cally, he will not change his belief and

conclude that the informed player is rational after his own deviation.

Throughout this paper, I set ¹t(ht) = 0 whenever ½(at¡11 jht¡1) = 0. Note that this restriction

is consistent with the notion of perfect Bayesian equilibrium, which puts no restrictions on such

beliefs. Under this restriction, when Player 2 observes an action of Player 1 which is not consis-

tent with the strategies of both the rational and commitment types of Player 1, he will believe

with certainty that Player 1 is a rational type. As a result, once the rational type of Player 1

has revealed her type, the continuation game becomes a perfect-information repeated game. This

allows me to construct a perfect Bayesian equilibrium in a simple way. Instead of specifying the

behavioral strategies at all information sets, I only need to specify (1) the behavioral strategies at

information sets where Player 2 believes that there is a strictly positive probability that Player 1 is

a commitment type, and (2) the continuation payo®s at information sets immediately after Player

14º1;±(a1) ´mina22br(a1) g1(a1; a2) where a1 is the commitment action.
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1 has revealed that she is rational.

De¯ne H(°1) = fht : 9s2 2 S2 s.t. ht = ht;°1;s2g;

and G(°1) = fht1:a : ht1 2 H(°1) and ht1:a 62 H(°1)g:

H(°1) is the set of ¯nite histories that are consistent with the commitment strategy °1, and G(°1)

is the set of histories which are consistent with the commitment strategy in all periods except the

last. Let ¾¤(ht) = (¾¤1(ht); ¾
¤
2(ht)) : H(°1) ! A1£A2 be a \restricted" behavioral strategy pro¯le.

De¯ne ½¤1 : H(°1) ! A1 such that ½¤1 ´ (1 ¡ ¹)¾¤1 + ¹°1. Note that ½¤1, ¾¤1 and ¾¤2 are de¯ned only

at information sets consistent with the commitment strategy °1. Given any ht 2 H(°1), ¾¤ and

½¤ induces a probability distribution over Hs \ (H(°1) [ G(°1)) for all s > t. For all ht 2 H(°1),

let P¾¤;½¤1(hsjht) be the probability of reaching information set hs, hs 2 H(°1) [ G(°1), for s > t

conditional on ht being reached. Let P¾¤(hsjht) be the probability of reaching information set hs,

hs 2 H(°1) [G(°1), for s > t conditional on ht being reached and Player 1 being rational. Finally,

let ¯¤(ht) = (¯¤1 (ht); ¯
¤
2(ht)) : G(°1) ! V ¤ be the continuation payo®s for the players at ht 2 G(°1).

Given ¾¤, ¹¤, and ¯¤, v¤1(ht) and v¤2(ht), the continuation payo®s for Players 1 and 2, respectively,

after a history ht 2 H(°1) are given by

v¤1(ht) = (1 ¡ ±)
1X

s=t

f
X

hs2H(°1)
±s¡tP¾¤(hsjht)g1(¾¤(hs)) +

X

hs2G(°1)
±s¡tP¾¤(hsjht)¯¤1(hs)g

v¤2(ht) = (1 ¡ ±)
1X

s=t

f
X

hs2H(°1)
±s¡tP¾¤;½¤1(hsjht)g2(¾¤(hs)) +

X

hs2G(°1)
±s¡tP¾¤;½¤1(hsjht)¯¤2(hs)g

De¯nition 4 (Perfect Bayesian Equilibrium (B)) ¾¤, ¯¤, and ¹ are consistent with the no-

tion of perfect Bayesian equilibrium if the following conditions hold for all ht 2 H(°1):

¹(ht) =
¹(ht¡1)°1(at¡11 jht¡1)

½¤(at¡11 jht¡1)
;

v1(¾
¤
1jht; ¾¤2jht) ¸ (1 ¡ ±)g1(a1; ¾

¤
2(ht)) + ±E(a1;¾¤2(ht))[v1(¾

¤
1jht+1; ¾¤2jht+1)] 8a1 2 A1;

v2(½
¤
1jht; ¾¤2jht) ¸ (1 ¡ ±)g2(¾

¤
1(ht); a2) + ±E(¾¤1(ht);a2)[v2(½

¤
1jht+1; ¾¤2jht+1)] 8a2 2 A2; and

there exists a subgame-perfect Nash equilibrium ~¾ht with equilibrium payo®s equal to ¯¤(ht), for all

ht 2 H(°1).

Given ¾¤, ¯¤, and ¹ that are consistent with the notion of perfect Bayesian equilibrium, a per-

fect Bayesian equilibrium (¾; ¹) with the same equilibrium payo® for the rational players can be

constructed by setting ¾(ht) = ¾¤(ht) 8ht 2 H(°1), and ¾jht = ~¾ht 8ht 2 G(°1).
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4 Non-Existence of Reputation E®ects

The example in Section 2 demonstrates that if the prior probability that Player 1 (the informed

player) is a commitment type is small, it may take a long time for her to develop a reputation as

a commitment type. In this section, I formalize that intuition and show that in repeated games in

which one player possesses a small amount of private information, under fairly general conditions,

for any v1 2 V ¤
1 there exists a perfect Bayesian equilibrium in which the expected equilibrium payo®

for the rational type of the Player 1 is equal to v1. In other words, when the players are su±ciently

patient, any payo® for Player 1 that can be supported by a subgame-perfect Nash equilibrium in

a perfect-information repeated game can also be supported by some perfect Bayesian equilibrium

when Player 1 possesses a small amount of private information. Since I assume that v1 is in the

closure of V ¤
1 , the perfect-Bayesian-equilibrium payo® for Player 1 can be arbitrarily close to v1.

This section is divided into three parts: The ¯rst part considers the case of simple commitment

strategies; the second considers the general case of history-dependent commitment strategies; and

the last brie°y discusses other extensions of the basic result.

4.1 Simple Commitment Types

Theorem 1 shows that when the commitment type is simple, reputation e®ects do not exist if the

stage game is neither a strongly-con°icting-interest game nor a strongly-dominant-action game.

De¯nition 5 (Strongly-Con°icting-Interest Games) A stage game (A; g) is a

strongly-con°icting-interest game if

5.1. There exists ~a1 2 A1 such that 8a2 2 br(~a1), g1(~a1; a2) = ¹v1 and g2(~a1; a2) = v2,

5.2. v2 = maxfv2 : (¹v1; v2) 2 V g:

Recall that ¹v1 is the highest payo® for Player 1 in V that is consistent with Player 2 getting at

least his minmax payo®, and v2 is the minmax payo® for Player 2. Condition 5.2 implies that

the converse also holds: v2 is the highest payo® for Player 2 in V that is consistent with Player 1

getting ¹v1. Thus, (¹v1; v2) is on the Pareto frontier. Condition 5.1 implies that there is an action ~a1

for Player 1 such that if Player 1 chooses ~a1 and Player 2 chooses a best response to ~a1, then Player

1 will receive ¹v1 and Player 2 will receive v2. Note that the notion of strongly-con°icting-interest

games is stronger than the notion of con°icting-interest games introduced by Schimdt (1993). The
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latter only requires that there is an action ~a1 for Player 1 such that if Player 1 chooses ~a1 and

Player 2 chooses a best response to it, Player 1 will obtain her Stackelberg payo® and Player 2 will

obtain his minmax payo®. The Stackelberg payo® is less than or equal to ¹v1. Moreover, the notion

of con°icting-interest games does not require that v2 be the highest payo® which is consistent with

¹v1.

De¯nition 6 (Strongly-Dominant-Action Games) A stage game (A; g) is a strongly-dominant-

action game if

6.1. 9 ~a1 2 A1 such that 8a2 2 br(~a1), g1(~a1; a2) = ¹v1;

6.2. 8a2 2 A2; 8a1 2 A1=f~a1g, g1(~a1; a2) > g1(a1; a2):

Then ~a1 is called a strongly-dominant action for Player 1

Condition 6.1 is similar to the ¯rst part of Condition 5.1 in the de¯nition of strongly-con°icting-

interest games, except it does not put any restrictions on the corresponding payo® to Player 2.

Condition 6.2 requires that ~a1 be a strictly-dominant action for Player 1.

The key of the proof is to construct a strategy pro¯le in which (1) the rational type of Player

1 is willing to reveal her type and (2) Player 2 su®ers a long-term loss for not screening, (i.e. q

is strictly positive). It is instructive to see how the argument fails when the stage game is ei-

ther a strongly-con°icting-interest or a strongly-dominant-action game. In both cases, the problem

appears in the last period of screening. When Player 1 imitates a commitment type who plays a

strongly-dominant action, Player 1 will recognize, in the last period of screening, that if she imitates

the commitment type for one more period, she will receive her highest payo® from the next period

onward. And since the commitment action is strictly dominant, she will not reveal her type in the

last period, violating the ¯rst condition. In the next section, I show that in this case Player 1 will

always receive the commitment payo® in equilibrium. In the case of a strongly-con°icting-interest

game, for Player 1 to be willing to reveal her type at the end of the screening phase, her continuation

payo® has to be close to her commitment payo®. The assumption of strongly-con°icting interest

implies that Player 2 must receive a payo® close to his minmax payo® if he follows his equilibrium

strategy. Since the continuation payo® for Player 2 is always weakly higher than his minmax payo®,

there is no scope to further \punish" Player 2 for not screening, violating the second condition.
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Theorem 4 In a two-person in¯nitely-repeated game with one-sided incomplete information and

where the players' discount factors are equal, ¡(A; g; ±; °1; ¹
1
0), if the stage game (A; g) is neither

a strongly-con°icting-interest game nor a strongly-dominant-action game, and °1 is a simple com-

mitment type, then 8v1 2 V ¤
1 , 9 ± and ¹¹10, such that 8± ¸ ± and ¹10 � ¹¹10, there is a perfect Bayesian

equilibrium in which the average discounted payo® for the rational type of Player 1 is equal to v1.

Proof of Theorem 1

Let ac1 be the commitment action for Player 1, and ac2 be an action of Player 2 that belongs to

argmina22br(ac1) g1(â1; a2). Since v1 is by de¯nition the minmax payo® for Player 1, there is an action

as2 for Player 2 such that g1(ac1; a
s
2) � v1. If the rational type of Player 1 imitates the commitment

type by choosing ac1 when Player 2 chooses as2, she will receive a stage-game payo® below or equal

to her minmax payo®. Let a¤1 2 arg maxa12A1=fac1g g1(a1; as2). That is, a¤1 gives Player 1 the highest

stage-game payo® against as2 among all non-commitment actions for Player 1. In the equilibrium I

describe below, Player 1 will mix between ac1 and a¤1. The idea of the proof is to show that when

¹10 is small enough, it is possible to construct a restricted strategy pro¯le ¾¤(ht); 8ht 2 H(°1),

a set of continuation payo®s ¯¤(ht), 8ht 2 G(°1), and a system of beliefs ¹(ht), 8ht 2 H which

are consistent with the notion of perfect Bayesian equilibrium for every discount factor ± above a

certain threshold. Hence, implicitly, the ¾¤, ¯¤, and ¹¤ de¯ned below are all functions of ±.

Since by de¯nition ¹v1 is the highest payo® for Player 1 in V that is consistent with Player 2

getting at least his minmax payo®, it is obvious that the commitment payo® º(°1) is less than or

equal to ¹v1. First, I consider the case where º(°1) = ¹v1.

Case 1: º(°1) = ¹v1

Note that g1(ac1; a
c
2) = ¹v1. Thus, if the stage game is not a strongly-con°icting-interest game,

then either the second part of Condition 4.1 or Condition 4.2 is violated. In both cases, there

exists v02 > v2 such that (¹v1; v02) 2 V ¤. Furthermore, there is â2 2 A2 and â1 2 A1 such

that (1) g1(â1; â2) > g1(ac1; â2), and (2) g1(ac1; â2) < ¹v1. (1) follows from the fact that the

stage game is not a strongly-dominant-action game. To see (2), suppose to the contrary, that

g1(ac1; â2) ¸ ¹v1; then from (1), g1(â1; â2) > ¹v1. This implies that there exists ¸ 2 (0; 1) such that

¸(¹v1; v02) + (1 ¡ ¸)(g1(â1; â2); g2(â1; â2)) À (¹v1; v2), which contradicts the de¯nition of ¹v1.

Since, by assumption, v1 is in the closure of V ¤
1 , there is v002 ¸ v2 such that (v1; v

00
2 ) 2 V . Let
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f : V1 ! < be a linear function that represents the line passing through (v1; v
00
2 ) and (¹v1; v02). Let

(�v1; f(�v1)) and (v̂1; f(v̂1)) be two points on the line segment so that �v1 2 (v1; v1) and f(v̂1) 2
(v2;minff(v1); f(¹v1)g). Set q = minff(v1); f(¹v1)g ¡ f(v̂1); q is strictly positive. Note that, by

construction, �v1 2 V ¤
1 and f(v̂1) 2 V ¤

2 ; hence, it follows from the Perfect Folk Theorem that any

payo® pro¯le, (v1; v2), that is strictly bigger than (�v1; f(v̂1)) can be supported by a subgame-perfect

Nash equilibrium when the players are su±ciently patient.15 First, I show that it is possible to

construct a perfect Bayesian equilibrium in which the equilibrium payo® for the rational type of

Player 1 is equal to v11 2 [v1 ¡ (1 ¡ ±)d; v1] ½ V ¤
1 . See Figure 3.

v
- 2 

v
- 1

v1
-

q

v1

f( v 1 )

v1

v

v

1

2 

Figure 3: Stage-game Payo® when º(°1) = ¹v1

Let ±¤ be the smallest number such that 8 ± 2 [±¤; 1), the following conditions hold: (a) ¹v1¡ 1¡±
± (d+

1) ¸ g1(ac1; â2), (b) ¹v1¡ 1¡±
± (d+1)¡(1¡ ±)d ¸ v1, and (c) [v1¡ (1¡ ±)(d+1); v1+(1¡ ±)(d+1)] ½

[�v1; ¹v1]. These conditions impose a lower bound on ± for the equilibrium strategies I construct

below. For the rest of the proof, assume ± ¸ ±¤.

The \restricted" equilibrium strategies of the two players ¾¤1, ¾¤2 de¯ned in H(°1) (as a function

of ±) are similar to those described in the example in Section 2. During the ¯rst T1 + T2 periods,

Player 2 will choose a non-best-response to ac1 until Player 1 has revealed that she is rational by

choosing an action other than ac1. I refer to these periods where Player 2, uncertain about Player

1's type, chooses a non-best-response to commitment strategy as the \screening" phase, and the

15This is important because v1 and v2 may not belong to set of subgame-perfect Nash equilibrium payo®s.
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action chosen by Player 2 as a \screening" action. In this case, the screening phase consists of

two parts: during the ¯rst T1 periods, Player 2 will play as2 , and during the next T2 periods,

he will play â2. The two phases serve di®erent functions. During each period of the ¯rst phase,

the rational type of Player 1 will receive a payo® lower than or equal to her minmax payo® if

she imitates the commitment type. By choosing an appropriate T1, the equilibrium payo® for the

rational type of Player 1 can be held down close to her minmax payo®. While as2 is an e±cient

way to \punish" the rational type of Player 1 for imitating the commitment type, it does not

provide incentive to induce the rational type of Player 1 to reveal her type. It is possible that the

commitment action may already be a best response to as2. Thus, a second screening action â2 is

needed to induce the rational type of Player 1 to reveal her type near the end of the screening phase.

First, T2 is set so that the continuation payo® for Player 1 in the beginning of the second screen-

ing phase is less than ¹v1 ¡ 1¡±
± d. This is necessary in order to provide enough incentive for

the rational type of Player 1 to reveal her type near the end of the ¯rst screening phase. Set

T2 ´ minft : (1 ¡ ±t¡1)g1(ac1; â2) + ±t¡1(1 ¡ ±)g1(â1; â2) + ±t¹v1 � ¹v1 ¡ 1¡±
± dg. T2 exists because of

(a). Next, T1 is set so that in equilibrium if the rational type of Player 1 chooses the commitment

strategy forever, her average payo® will be (slightly) lower than v11. De¯ne the function  : Z+ ! <
as follows:

(t) ´ (1 ¡ ±t)g1(a
c
1; a

s
2) + ±tf(1 ¡ ±T2)g1(a

c
1; â2) + ±T2¡1(1 ¡ ±)g1(â1; â2) + ±T2¹v1g (8)

If the ¯rst screening phase lasts for t periods and the second screening phase lasts for T2 periods,

then (t) is the average payo® the rational type of Player 1, if she mimics the commitment type in

the ¯rst t + T2 ¡ 1 periods, chooses â1 in period t + T2, and obtains her commitment payo® from

period t + T2 + 1 onward. Note that (0) = (1 ¡ ±T2)g1(ac1; â2) + ±T2¡1(1 ¡ ±)g1(â1; â2) + ±T2¹v1 ¸
¹v1 ¡ 1¡±

± d ¡ (1 ¡ ±)d ¸ v1. The ¯rst inequality follows from the de¯nition of T2, and the second

inequality follows from (b). Moreover, since (t ¡ 1) ¡ (t) = (1 ¡ ±)±t(¹v1 ¡ g1(ac1; a
s
2)) � (1 ¡ ±)d

and limt!1(t) � v1, there exists t such that (t) 2 [v1 ¡ (1 ¡ ±)d; v1] ½ V ¤
1 . Let T1 be the

smallest such t.

Set ¢ ´ (1¡±)d
±q . As in the example in Section 2, ¢ is the probability that the screening action will

be chosen in each period during the screening phase. It follows from Lemma 2.3 that there are ¹¹0

and ±¤¤ such that 8¹0 � ¹¹0 and ± ¸ ±¤¤, ¹0
(1¡¢)T1+T2 � 1. For all ¹0 � ¹¹0 and ± ¸ maxf±¤1; ±

¤¤g,
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de¯ne ¾¤1 , ¾¤2 , and ¹ are given in Tables 1 and 2.

ht 2 H(°1) ¾¤1(ht) ¾¤2(ht)

1 � t � T1 ¾¤1(a
¤
1jht) = ¢

1¡¹(ht) ¾¤2(a
s
2jht) = 1

¾¤1(a
c
1jht) = (1 ¡ ¢

1¡¹(ht) )

T1 < t < T1 + T2 ¾¤1(â1jht) = ¢
1¡¹(ht) ¾¤2(â2jht) = 1

¾¤1(a
c
1jht) = (1 ¡ ¢

1¡¹(ht) )

t = T1 + T2 ¾¤1(â1jht) = 1 ¾¤2(â2jht) = 1

t > T1 + T2 ¾¤1(a
c
1jht) = 1 ¾¤2(a

c
2jht) = 1

Table 1: The equilibrium strategies, ¾¤ 8ht 2 H(°1)

ht 2 H ¹¤(ht)

ht 2 H(°1); 1 � t � T1 + T2
¹10

(1¡¢)t¡1

ht 2 H=H(°1) 0

ht 2 H(°1); t > T1 + T2 1

Table 2: Player 2's beliefs about Player 1's type

During each period of the screening phase, Player 1 will choose ac1 with a probability of 1 ¡ ¢
1¡¹t

and reveal her type (by choosing a¤1 in the ¯rst T1 periods and â1 in the next T2 periods) with a

probability of ¢
1¡¹t , where ¹t represents Player 2's posterior belief that Player 1 is a commitment

type in period t. It is straightforward to verify that ¹t is consistent with Bayes' rule. If the rational

type of Player 1 has chosen ac1 through the ¯rst T1+T2¡1 periods, then in period T1+T2 according

to the equilibrium strategy Player 1 should choose â1 with probability 1. Since Player 2 thinks

that only the commitment type will choose ac1 in that period, if he observes Player 1 choosing ac1,

he will believe that Player 1 is the commitment type. However, no matter what Player 1 chooses,
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Player 2 will choose ac2 from period T1 + T2 + 1 onward. In other words, Player 1 can obtain the

commitment payo® from period T1+T2+1 onward by choosing â1 during the ¯rst T1+T2¡1 periods.

De¯ne ¤(t) : f1; ::; T1 + T2g ! < such that:

v11 = (1 ¡ ±)
t¡1X

i=1

±i¡1g1(ac1; ¾
¤
2) + ±t¡1¤(t): (9)

¤(t) is the equilibrium continuation payo® for the rational type of Player 1 in period t during the

screening phase.

If Player 1 reveals that she is rational for the ¯rst time in period t, then the continuation game from

period t + 1 onward becomes a standard complete-information repeated game. The continuation

equilibrium payo®s are set so that Player 2 has an incentive to screen. Partition G(°1), the set

of information sets immediately after Player 1 has revealed that she is rational, into two subsets:

G1 ´ fht:a
t 2 G(°1) : at2 6= ¾¤2(ht)g, and G2 ´ fht:a

t 2 G(°1) : at2 = ¾¤2(ht)g. The set G1 contains

the periods in G(°1) where Player 2 has deviated in the last period, and the set G2 contains the

periods in G(°1) where Player 2 has not deviated in the last period. The continuation payo®s

depend on whether Player 2 has deviated from the equilibrium strategy in the last period. For all

Ht 2 G1, set ¯¤(ht) = (�v1; f(�v1)). Recall that, by de¯nition, v1 < �v1 < º(°1). The continuation

payo®s ¯¤(ht) for all ht 2 G2 are given in Table 3.

ht 2 G2 ¯¤1(ht) ¯¤2(ht)

1 � t � T1 + 1 ¤(t) ¡ 1¡±
± (g1(ac1; a

s
2) ¡ g1(a¤1; a

s
2)) f(¯¤1 (ht))

T1 + 2 � t � T1 + T2 ¤(t) ¡ 1¡±
± (g1(ac1; â2) ¡ g1(â1; â2)) f(¯¤1 (ht))

t = T1 + T2 ¹v1 f(¹v1)

t > T1 + T2 �v1 f(�v1)

Table 3: Continuation Payo®s, ¯¤(ht); 8ht 2 G2
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The \restricted" equilibrium strategies ¾¤1 and ¾¤2 are sequentially rational given ¹ and ¯¤. First,

consider the case of Player 1. In period T1 + T2, no matter what she chooses, she will get a con-

tinuation payo® of ¹v1 from period T1 + T2 + 1 onward. She will get a higher stage-game payo®

by revealing her type because g1(a
c
1; â2) < g1(â1; â2). Hence, in period T1 + T2, it is optimal for

Player 1 to follow the equilibrium strategy and reveal her type. In any period t between T1 + 1

and T1 + T2 ¡ 1, if Player 1 chooses ac1 and follows the equilibrium strategy after that, her pay-

o® will be equal to (1 ¡ ±)g1(a
c
1; â2) + ±¤(t); if Player 1 chooses â1 and follows the equilibrium

strategy after that, her payo® will be equal to (1 ¡ ±)g1(â1; â2) + ±¯¤1 (ht¡1:(â1; â2)). Similarly, in

any period t between 1 and T1, if Player 1 chooses ac1 and follows her equilibrium strategy after

that, her payo® will be equal to (1 ¡ ±)g1(a
c
1; a

s
2) + ±¤(t); if Player 1 chooses a¤1 and follows her

equilibrium strategy after that, her payo® will be equal to (1 ¡ ±)g1(a
¤
1; a

s
2) + ±¯¤1(ht¡1:(a

¤
1; a

s
2)).

It is easy to verify that ¯¤1(ht) is de¯ned so that Player 1 is indi®erent between ac1 and a¤1 in the

¯rst T1 periods, and between ac1 and â1 in the next T2 ¡ 1 periods. Next, consider the case of

Player 2. By construction, his action in any period t during the screening phase will only a®ect

his stage-game payo® and the continuation payo® in the event that Player 1 reveals that she is

rational in the same period. Hence, the short-term cost of screening is less than (1¡ ±)d, while the

long-term gain from screening is larger then ±¢q. It is easy to verify that ¾¤2 is optimal for Player 2.

Lastly, to complete the proof, I need to show that ¯¤(ht) can be supported by some subgame-

perfect Nash equilibrium for all ht 2 G1 [ H2. For all t � T1, From (1) and (2) and the de¯nition

of T2, it follows that

¤(t) � (1 ¡ ±t¡1)g1(ac1; â2) + ±t¡1(1 ¡ ±)g1(â1; â2) + ±t¹v1 � ¹v1 ¡ 1 ¡ ±

±
d

) ¯¤1(ht) � ¹v1 ¡ 1 ¡ ±

±
d +

1 ¡ ±

±
(g1(a

c
1; a

s
2) ¡ g1(a

¤
1; a

s
2)) � ¹v1:

By de¯nition ¤(t) � ¹v1 for all T1 + 1 � t � T1 + T2. In addition, since g1(ac1; â2) ¡ g1(â1; â2)) < 0;

then,

¯¤1(t) � ¹v1 8 T1 + 1 � t � T1 + T2

As a result, ¯¤(ht) 2 V ¤ for all ht 2 G2. Moreover, since ¯¤(ht) >> (v̂1; f(�v1)), it follows from the

Perfect Folk Theorem that there exists ±¤¤¤ so that for all ± ¸ ±¤¤¤, any ¯¤(ht) ht 2 G1 [ G2 can

be supported by some subgame-perfect Nash equilibrium.

In summary, I have shown that for all ± ¸ maxf±¤; ±¤¤; ±¤¤¤g and ¹0 � ¹¹0, I can construct a
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perfect Bayesian equilibrium with the equilibrium payo® for the rational type of Player 1 equal to

v11 2 [v1¡ (1¡ ±)d; v1]. Using the same argument, I can construct another equilibrium in which the

¯rst period action of Player 2 is di®erent from the equilibrium above, and the equilibrium payo®

for the rational type of Player 1 equal to v21 2 [v1; v1+(1¡ ±)d] 2 V ¤
1 . Finally, an equilibrium with

the payo® for the rational Player 1 exactly equal to v1 can be constructed by taking a convex com-

bination of the two equilibria. This can be achieved by making Player 2 mix with an appropriate

probability between the two equilibria in the ¯rst period.

Case 2 º(°1) < ¹v1

The construction of the desired equilibrium is simpler in this case. When there is a gap between

the commitment payo® and ¹v1, the continuation payo®s for the rational type of Players 1 at the

end of the \screening" phase can be adjusted to induce her to reveal her type, and give her the

desired equilibrium payo® . Thus, it would be unnecessary to construct two di®erent equilibria as

in Case 1. Since Case 2 is a special case of Theorem 2 in the next section, I shall not repeat the

proof here. For details, see the proof of Theorem 2. 2

4.2 History-Dependent Commitment Strategies

In many games, a player may want to commit to a history-dependent strategy. For example, in

the in¯nitely-repeated Prisoners' Dilemma, while a player obviously would not wish to commit to

simple strategies of either cooperating or defecting unconditionally, she may like to commit to a

history-dependent \Tit for Tat" strategy.

When the commitment strategy of Player 1 is history-dependent, Player 2's action in one pe-

riod may a®ect the commitment type's continuation strategy and, hence, the long-term payo® for

Player 2. As a result, the proof of Theorem 1 does not apply directly. However, I show that the

conclusion of Theorem 1 continues to hold under a stronger su±cient condition when the commit-

ment strategy is history-dependent.

In order to understand the complication that arises when the commitment strategy is history-

dependent, we need to get into the details of the basic structure of the equilibrium I construct

in the proof of Theorem 1. The decision tree in Fig. 4 represents the decision facing Player 2 in

period t during the screening phase. In each period, Player 2 expects both types of Player 1 to
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Figure 4: Player 2's decision in period t

choose the commitment action with a total probability of 1¡¢ and a non-commitment action with

a total probability of ¢. If Player 2 chooses as1, he will receive a payo® of gt in that period. The

equilibrium continuation payo® depends on the actions of Player 1. Let gt+i be Player 2's expected

equilibrium stage-game payo® in period t+ i if Player 1 has not revealed that she is rational before

that period, and ¯t+i be the equilibrium continuation payo® from period t + i onward if Player 1

has revealed that she is rational in period t + i ¡ 1. The expected continuation equilibrium payo®

vt takes the following form:

vt = ±[(1 ¡ ±)(1 ¡ ¢)gt+1 + ¢¯t+1] + ±2(1 ¡ ¢)[(1 ¡ ±)(1 ¡ ¢)gt+2 + ¢¯t+2]

+±3(1 ¡ ¢)2[(1 ¡ ±)(1 ¡ ¢)gt+3 + ¢¯t+3] + ::::

Similarly, let g0t; v
0
t be the stage-game payo® in period t and the continuation equilibrium payo® for

Player 2 if he deviates and chooses a best response to the commitment strategy in period t, but

follows the equilibrium strategy from period t + 1 onward. The continuation payo® v0t can also be

represented in the following form:

v0t = ±[(1 ¡ ±)(1 ¡ ¢)g0t+1 + ¢¯0t+1] + ±2(1 ¡ ¢)[(1 ¡ ±)(1 ¡ ¢)g0t+2 + ¢¯0t+2]

+±3(1 ¡ ¢)2[(1 ¡ ±)(1 ¡ ¢)g0t+3 + ¢¯0t+3] + ::::
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When the commitment strategy is simple, Player 2's action in period t will not a®ect the future

actions of the commitment type. Moreover, in the proof of Theorem 1, since the continuation

strategies of the rational type of Player 1 and Player 2 are constructed so that they are independent

of the previous actions of Player 2, Player 2's future equilibrium stage-game payo®s in the periods

where Player 1 has not been revealed as rational are also independent of Player 2's previous actions,

i.e. gs+1 = g0s+1 for s ¸ t. Hence, I can keep the continuation equilibrium payo®s vt and v0t equal

by setting ¯s+2 = ¯ 0s+2 for all s ¸ t. As a result, Player 2 will be \punished" for not screening in

period t only in the event that Player 1 reveals that she is rational in period t. As I have showed

in the example in Section 2, it is rational for Player 2 to screen if

(1 ¡ ±)(g0t ¡ gt) � ¢±(¯t+1 ¡ ¯0t+1) (10)

This relation puts a lower bound on ¢, and hence, on the rate of Bayesian updating. In order to

ensure that screening can last for many periods, it is crucial that the cost of one period of screening

is on the order of (1 ¡ ±)d. When the commitment strategy is history dependent, since Player 2's

action in period t can a®ect the future actions of the commitment type, in general, gs+1 will not

be equal to g0s+1 for s ¸ t. As a result, one period of screening may involve a long-term cost. One

way to avoid this problem is to keep the continuation payo®s v1 and v01 equal by setting ¯s+i and

¯0s+i for all s ¸ t so that

[(1 ¡ ±)(1 ¡ ¢)gs+i + ¢¯s+i] = [(1 ¡ ±)(1 ¡ ¢)g0s+i + ¢¯0s+i]

In this case, ¯s+i will not be equal to ¯0s+i. Intuitively, Player 2's \punishment" for a deviation

is distributed according to how the deviation a®ects the future actions of the commitment type.

Suppose the continuation payo® for the rational type of Player 1 is given by x. In equilibrium, x

has to be set so that she is indi®erent between mimicking the commitment type and revealing her

type and, therefore, cannot be adjusted freely. In order to be able set ¯s+i and ¯0s+i according to

the equation above, both (x; ¯s+i) and (x; ¯0s+i) have to belong to V ¤. This means that x cannot

equal to ¹v1. See Figure 5. The following assumption guarantees that the commitment payo® is

strictly less than ¹v1.

Assumption 1

¹º(°1) < ¹v1

where ¹º(°1) ´ supfº±(°1jht) 8ht 2 H; ± 2 (0; 1)g. When the commitment strategy is history de-

pendent, the continuation commitment payo® after period t depends on the history ht and the
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discount factor ±. And ¹º(°1) is the supremum of the set of continuation commitment payo®s (in-

cluding the original commitment payo® at the beginning of the game) after any ¯nite history and

for any discount factor.

I show that in any two-person in¯nitely-repeated game with one-sided incomplete information,

if the commitment strategy is pure (but possibly history-dependent) and satis¯es Assumption 1,

any then v1 2 V ¤
1 can be supported by some perfect Bayesian equilibrium when the players are

su±ciently patient and the prior probability that Player 1 is a commitment type is su±ciently

small. For example, in the in¯nitely-repeated Prisoners' Dilemma, my result implies that Player 1

cannot guarantee herself a payo® close to the \cooperation" payo® by mimicking a \Tit for Tat"

type (or any other commitment types with the same commitment payo®).16

Note that Assumption 1 is a fairly strong assumption. In strongly-con°icting-interest games and

strongly-dominant-actions games, it rules out simple commitment types with commitment payo®s

equal to ¹v1. More generally, in games where ¹v1 2 V ¤
1 (e.g. Battle of Sexes), Assumption 1 di-

rectly rules out commitment types with commitment payo® equal to ¹v1. In games where ¹v1 62 V ¤
1

(e.g. Prisoners' Dilemma), where the commitment payo® is, by de¯nition, strictly lower than ¹v1,

Assumption 1 requires that the commitment payo® be bounded away from ¹v1 as ± approaches one.

Theorem 5 In a two-person in¯nitely-repeated game with incomplete information ¡(A; g; ±; °1; ¹0)

if °1 is a pure history-dependent strategy with ¹º(°1) < ¹v1, then 8v1 2 V ¤
1 , 9 ± and ¹¹0, such that

8± ¸ ± and ¹0 � ¹¹0, there is a perfect Bayesian equilibrium in which the average discounted payo®

for the rational type of Player 1 is equal to v1.

Proof of Theorem 2:

Since ¹º(°1) < ¹v1 and v1 > v1, there exists v̂1, �v1 and ² > 0 such that v1 < �v1 � ¹v1 ¡ ² and

¹º(°1) + ² � v̂1 < ¹v1. Since V ¤ is convex and non-empty, both �v1, v̂1 belong to V ¤
1 , i.e. there are

�v2, v̂2 that are strictly bigger v2 so that (�v1; �v2) and (v̂1; v̂2) belong to int(V ¤). Let f : V1 ! < be

the linear function representing the line passing through (�v1; �v2) and (v̂1; v̂1). Since V ¤ is convex,

there exists q > 0 such that the set B ´ f(v1; v2) : v1 2 [�v1; v̂1]; v2 2 [f(v1)¡ q; f(v1)+ q]g ½ V ¤. In

other words, any point (v1; v2) where v1 2 [�v1; v̂1], and where the vertical distance from (v1; f(v1))

16Kreps, et al.(1982) show in ¯nitely-repeated prisoners' dilemma, when there is some small probability that one of
the players is a \Tit for Tat" type, then in all sequential equilibria both players will cooperate until almost the end
of the game.
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is less than q is strictly individually rational. See Figure 5.
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Figure 5: Stage-game Payo® for when ¹º(°1) < ¹v1

Given °1, I can construct a function r : A1 ! A2 so that g1(a1; r(a1)) � v1. De¯ne s¤2 : H(°1) ! A2

such that s¤2(ht) = r(°1(ht)) 8ht 2 H(°1). In any period after some history ht, if Player 2 chooses

s¤2(ht) and the rational type of Player 1 chooses °1(ht), then the rational type of Player 1 will

receive a payo® less than or equal to her minmax payo®.

Below, I assume that the players are patient enough such that the stage-game payo® in any single

period does not signi¯cantly a®ect the payo® of the whole repeated game. Speci¯cally, assume that

1¡±
± is less than ²

2d and q
2d . For any ± ¸ ±¤ = minf 2d

2d+² ;
2d
2d+qg, de¯ne ¤ : H(°1) ! < such that:

¤(ht) =

½
v1 ht = h1
1

±t¡1fv1 ¡ (1 ¡ ±)
Pt
i=2 ±i¡21 g1(h

1
t (i ¡ 1); r(h1t (i ¡ 1)))g ht 2 H(°1); t ¸ 2

In the equilibrium which I shall construct, ¤(ht) will be the continuation payo® for the rational type

of Player 1 after a history ht, if the rational type of Player 1 and Player 2 have played according

to °1 and s¤2 during the ¯rst t ¡ 1 periods. ¤(ht) is set so that the expected average payo® of the

whole game for the rational type of Player 1 is equal to v1.

De¯ne the following subsets of ¯nite histories:

H1 = fht 2 H(°1) : ¤(ht) < º(°1)g
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H2 = fht:a 2 H(°1) : ht 2 H1 and º(°1) � ¤(ht) � v̂1 ¡ ²

2
g

Screening takes place in periods ht 2 H1 [ H2. Consider any complete history of the game h that

is consistent with the commitment strategy. If ht+1; ht are the t + 1¡ and t¡period truncations of

h, then

¤(ht) +
1 ¡ ±

±
(v1 ¡ v1) � ¤(ht+1) � ¤(ht) +

1 ¡ ±

±
d: (11)

The ¯rst inequality implies that ¤(ht) is strictly increasing in t, and the second inequality implies

that as ¤(ht) increases with t, it will not jump over the interval [¹º(°1); �v1¡ ²
2 ], so that there is always

a period t¤ such that ht¤ 2 H2. Moreover, for any history that is consistent with the commitment

strategy, the number of periods it takes to reach H2(°1) is uniformly bounded from above . To see

that, note that for all ht 2 H1 [ H2, v1 � (1 ¡ ±t)v1 + ±tv̂1; hence, ±t ¸ v1¡v1
v̂1¡v1 , or equivalently,

t � ln

µ
v1 ¡ v1
v̂1 ¡ v1

¶
= ln ±:

Let T be the smallest integer that is larger than ln
³
v1¡v1
v̂1¡v1

´
= ln ±. Note that T is implicitly a

function of ±. From Lemma 2.3, there exists ¹¹0; ±
¤¤ such that 8¹0 � ¹¹10, ± ¸ ±¤¤, and t � T (±),

¹0
(1 ¡ ¢)t

� ¹¹ =
q

2(d + q)
:

Set ¢ ´ (1¡±)
±

d
q . Now, for all ¹0 � ¹¹0, and ± ¸ maxf±¤; ±¤¤g, de¯ne ¾¤1 and ¾¤2 in H(°1), and ¹ in

H according to Tables 4 and 5.

ht ¾¤1(ht) ¾¤2(ht)

H1 ¾¤1(a
¤
1jht) = ¢

1¡¹(ht) ¾¤2(s
¤
2(ht)jht) = 1

¾¤1(°1(ht)jht) = (1 ¡ ¢
1¡¹(ht) )

H2 ¾¤1(a
¤
1jht) = 1 ¾¤2(s

¤
2(ht)jht) = 1

H(°1)=(H1 [ H2) ¾¤1(°1(ht)jht) = 1 ¾¤2(b2(°1jht)jht) = 1

Table 4: The equilibrium strategies, ¾¤(ht) 8ht 2 H(°1)
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ht ¹(ht)

H1 [ H2
¹10

(1¡¢)t¡1

H=H(°1) 0

H(°1)=H1 [ H2 1

Table 5: Player 2's beliefs about Player 1's type

In equilibrium, screening takes place in periods with ht 2 H1 [ H2. During those periods, Player 2

chooses according to s¤2 so that if the rational type of Player 1 imitates the commitment type, she

will at most receives her minmax payo® v1.
17 In periods with ht 2 H1, the rational type of Player

1 will choose °(ht) with a probability of 1 ¡ ¢
1¡¹(ht) and a¤1 with a probability of ¢

1¡¹(ht) Screening

ends in periods with ht 2 H2 when the rational type of Player 1 reveals her type by choosing a¤1.

It is easy to verify that ¹ is consistent with Bayes' rule given ¾¤1 and ¾¤2 .

The rational type of Player 1 may reveal her type for the ¯rst time in one of the following three situ-

ations: during the screening phase in H1, in a ¯nal period of screening in H2, or after the screening

phase in H(°1)=(H1 [ H2). The following subsets of histories correspond to these situations.

G3 = fht:a 2 G(°1) : ht 2 H1g

G4 = fht:a 2 G(°1) : ht 2 H2g

G5 = fht:a 2 G(°1) : ht 2 H(°1)=(H1 [ H2)g

The continuation payo®s ¯¤(ht) 8ht 2 G3 [ G4 [ G5 are given in Tables 6 and 7.

It is straightforward to verify that ¾¤1 is rational. In periods after the screening phase with

ht 2 H(°1)=H1 [ H2, Player 2 is convinced that Player 1 is a commitment type. Since by con-

struction, the continuation commitment payo® is higher than (1 ¡ ±)d + ±�v1, the highest payo® the

rational type of Player 1 can obtain by deviating, it is optimal for her to follow the equilibrium

strategy. During the \screening" phase, by construction, ¤(ht) = (1 ¡ ±)g1(a
¤
1; s

¤
2(ht)) + ±¯¤1 (h

0
t+1)

for all ht 2 H1 [ H2, where h0t+1 = ht:(a
¤
1; s

¤
2(ht)). That is, if the rational type of Player 1 reveals

17She may receive strictly less than v1, if she chooses a dominated action.
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her type in period t during the \screening" phase, she will receive a payo® of ¤(ht). In periods

with ht 2 H2, since ¤(ht) > ¹º(°1), Player 1 will strictly prefer to choose a¤1. In all other periods

with ht 2 H1, since ¤(ht) = (1 ¡ ±)g1(°1(ht); s
¤
2(ht)) + ±¤(h¤t+1) where h¤t+1 = ht:(°1(ht); s

¤
2(ht)),

Player 1 is indi®erent between choosing °(ht) and a¤1.
18

ht ¯¤1(ht) ¯¤2(ht)

ht = ht¡1:a 2 G3 [ G4
¤(ht¡1)¡(1¡±)g1(a¤1;s¤2(ht¡1))

± f(¯¤1(ht)) + ´(ht)

ht = ht¡1:a 2 G5 �v1 f(�v1)

Table 6: Continuation Payo®s ¯¤(ht) 8ht 2 G3 [ G4 [ G5

ht ´(ht)

ht = ht¡1:a 2 G3
q
dff(g1(½¤1(ht¡1); s

¤
2(ht¡1))) ¡ g2(½¤1(ht¡1); a2)g

ht = ht¡1:a 2 G4
¹(ht¡1)
1¡¹(ht¡1)

n
f (¤(ht¡1))¡(1¡±)f (g1(°1(ht1);s¤2(ht¡1))

± ¡ v2(°1jht; b2(°1jht))
o

+
1

1¡¹(ht¡1)
1¡±
± ff(g1(½¤1(ht¡1); s

¤
2(ht¡1))) ¡ g2(½¤(ht¡1); a2)g

Table 7: ´(ht) 8ht 2 G3 [ G4

Now I shall show that ¾¤2 is rational. Let v¤2(ht) denote v2(½¤1jht; s¤2jht), the equilibrium continuation

payo® in a period with history ht 2 H1 [ H2. First, consider any period with ht 2 H2. If ht 2 H2,

then by de¯nition, ht:(a¤1; a2) must belong to G4. If Player 2 chooses a2 in that period and follows

the equilibrium strategy afterward, his payo® will be equal to

(1 ¡ ±)g2(½
¤
1(ht); a2) + ±f¹(ht)v2(°1jht+1; b2jht+1) + (1 ¡ ¹(ht))(f(¯¤2(h

0
t+1)) + ´(h0t+1))g (12)

where ht+1 = ht:(°1(ht); a2) and h0t+1 = ht:(a
¤
1; a2).

By substituting the de¯nition of ¯¤(h0t+1) and ´(h0t+1) into the equation and rearranging terms, it

18Recall that a¤1 is by de¯nition the best response to the screening action among the non-commitment actions.
Since the continuation payo® for the rational type of Player 1 after she has revealed her type does not depend on
which non-commitment action she chose, Player 1 strictly prefers a¤1 to any other non-commitment action.
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can shown that Equation (12) is equivalent to

f(¤(ht)) ¡ ±¹(ht)f(v2(°1jh¤t+1; b2(°1jh¤t+1)) ¡ v2(°1jht+1; b2(°1jht+1))g

+(1 ¡ ±)ff(g1(½
¤
1(ht); s

¤
2(ht)) ¡ g2(½

¤(ht); a2))g + (1 ¡ ¹(ht))±´(h0t+1)

= f (¤(ht))

where h¤t+1 = ht:(°1(ht); s¤2(ht)) and h0t+1 = ht:(a¤1; s
¤
2(ht)). Player 2's stage-game action a®ects

his expected stage-game payo® in that period and the continuation payo® in the next period in

the event that Player 1 is a commitment type. The value of ´(h0t+1) h0t+1 2 H4 is set to cancel

out these e®ects so that Player 2 is indi®erent between choosing any stage-game actions, and his

equilibrium continuation payo® is equal to ¤(ht).

Next, I shall show that in any period t with ht 2 H1,

(1 ¡ ±)g2(½
¤
1(ht); a2) + ±f¢¯¤2(ht+1) + (1 ¡ ¢)v¤2(ht+t)g = f(¤(ht)) 8a2 2 A2 (13)

where ht+1 = ht:(°1(ht); a2) and h0t+1 = ht:(a¤1; a2). Equation (13) implies that Player 2 is indi®erent

between any actions a2 2 A2, and the equilibrium continuation payo® for Player 2, v¤2(ht), is equal

to f(¤(ht)). Construct fKigT1 , a ¯nite sequence of subsets of H1 as follows:

K1 = fht 2 H1 : 8a2 2 A2; ht:(°1(ht); a2) 2 H2g;

and in general,

Ki = fht 2 H1 : 8a2 2 A2; ht:(°1(ht); a2) 2 Ki¡1g [ Ki¡1 2 � i � T:

Ki includes all periods from which it takes Player 1 at most i more periods of mimicking to reach

the ¯nal period of screening. Since screening lasts for at most T periods, KT = H1.

Suppose Equation (13) holds, and hence, v¤2(ht) = f(¤(ht)) for all ht 2 Ki. Consider a period

ht 2 Ki+1=Ki. If Player 2 chooses a2 in that period, and follows the equilibrium strategy after

that, his expected payo® will be equal to

(1 ¡ ±)g2(½
¤
1(ht); a2) + ±f¢¯¤2(ht:(a

¤
1; a2))] + (1 ¡ ¢)f(¤(ht:(°1(ht); a2))g

= f(¤(ht)) + (1 ¡ ±)(g2(½
¤
1(ht¡1); a2) ¡ f(g1(½

¤
1(ht¡1); s

¤
2(ht¡1)))) + ±¢´(ht:(a

¤
1; a2))g

= f(¤(ht)):
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Since I have already shown that v¤2(ht) = f(¤(ht)) 8ht 2 H2, it is straightforward to verify that

Equation (13) holds for all ht 2 K1; therefore, by induction, it holds for all ht 2 H1.

To complete the proof, I need to show that any ¯¤(ht), ht 2 G3 [ G4 [ G5, can be supported

by some subgame-perfect Nash equilibrium. Since v1 = ¤(h1) < ¤(ht) � v̂1 ¡ ²
2 8ht 2 H1 [ H2,

it follows from the de¯nition of �v1 and v̂1 that

�v1 � ¯1(ht) � v̂1 ht 2 G3 [ G4

By construction, if v1 2 [�v1; v̂1], and v2 2 [f(v1) ¡ q; f(v1) + q], then (v1; v2) 2 V ¤. Since by

assumption, f(g1(½
¤
1(ht¡1); s

¤
2(ht¡1))) ¡ g2(½

¤
1(ht¡1); a2) � d, so j´(ht)j � q 8ht 2 G3. Similarly,

for all ht 2 G4, note that, ¹(ht) � q
2(d+q) , and ± ¸ 2d

2d+q ,

j´(ht)j <
¹(ht1)

1 ¡ ¹(ht¡1)
d +

1

1 ¡ ¹(ht¡1)
1 ¡ ±

±
d � q:

I have shown that ¯¤(ht) 2 V ¤ for all ht 2 G3 [ G4 [ G5. Thus, the Perfect Folk Theorem implies

that there exists a ±¤¤¤, such that 8± ¸ ±¤¤¤, ¯¤(ht) 2 V ¤ can be supported. 2

4.3 Concluding Remarks

Although Theorems 1 and 2 formally assume that the players are equally patient and there is only

one pure commitment type, these assumptions are not crucial to my results. Below, I brie°y discuss

how my results extend to more general cases.

² To extend my results when there are multiple commitment types, I need to construct an

equilibrium in which Player 1 mimics all commitment types with strictly positive probability

during the screening phase. Note that Player 2 can distinguish between two possible pure

commitment types once they have chosen di®erent actions at some information sets. I only

need to make sure that at those information sets, the continuation payo®s for the rational

type of Player 1 are set so that she is willing to mix between di®erent commitment actions.

² In an earlier draft of this paper, I show that the conclusion of Theorem 2 continues to

hold when mixed commitment strategies are allowed, if another assumption, in addition to

Assumption 1, is made to guarantee that the rational type of Player 1 can always reveal

her type.19 The problem becomes complicated in this case.20 The de¯nition of commitment

19Formally, this is equivalent to assuming that the commitment strategies do not have full support at any infor-
mation set.
20However,in this case it is unnecessary to deal with the issue of multiple commitment types explicitly because from
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payo® needs to be generalized, and the equilibrium strategies of the rational type of Player

1 and Player 2 involve mixed actions. Nonetheless, the basic idea of the proof in this case is

the same as that of Theorem 2.

² The Perfect Folk Theorem is needed in the proof of Theorems 1 and 2 to guarantee that

there exist subgame-perfect-Nash-equilibrium payo®s which support the equilibrium strategies

during the screening phase. Although there is no reason to believe that the Perfect Folk

Theorem will not hold when the players have di®erent discount factors and mixed strategies

are unobservable, this has not been proven.21 This is the reason why Theorems 1 and 2,

strictly speaking, only hold when the players are equally patient. The remaining parts of

both proofs do not depend on the assumption of equally patient players. If the Perfect Folk

Theorem holds in the case of comparably patient players, then Theorems 1 and 2 will apply

to those cases as well.

5 Reputation E®ects in Strongly-Dominant-Action Games

In this section I show that in strongly-dominant-action games, a player can build a reputation even

when she is less patient than her opponent. Assume y < 0 and x > 0 in the stage-game depicted

in Fig.6. In this game, the most favorable outcome for Player 1 is (A;A) which gives her a payo®

Player 2
A B

Player 1 A 2,x 0,0
B 0,0 y,2

Figure 6: A Strongly-Dominant-Action Game

of 2. If Player 1 is rational, she always chooses action A , since A is a strictly dominant action. If

Player 2 is rational and knows that Player 1 is rational, he should also choose A. As a result, if the

game is played once, it is very likely that the outcome will be (A;A). When the game is in¯nitely

repeated and the players are patient enough, any average payo® pro¯le that is strictly bigger than

(0; 2x
2+x) can be supported by a subgame-perfect Nash equilibrium. Theorem 4 below shows that

the perspective of Player 2, he is always facing one \aggregate" commitment type with mixed commitment strategies.
For example, suppose there are two commitment types: !1 with probability p1 and !2 with probability p2; for Player
2, this is equivalent to facing a commitment type °1 =

p1
p1+p2

!1 +
p2

p1+P2
!2 with a probability of p1 + p2.

21Lehrer and Pauzner (1997) has shown that the folk theorem holds with di®erent discount factors when mixed
strategies are observable.
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in this case, the folk theorem result is not robust to a small amount of private information. In

particular, if there is a strictly positive probability that Player 1 is a commitment type who always

chooses A, then (A;A) will be played along the equilibrium path in any perfect Bayesian equilib-

rium in the corresponding incomplete-information, in¯nitely-repeated game. This result critically

depends on the assu pt on th t t e o ly om it en ty e f r P ay r 1 lw ys ho se A a d

t at la er is at on l. ow ve , i do s n t r ly n t e a su pt on ha Pl ye 1 i in ni el

mo e p ti nt ha Pl ye 2. n f ct th re ul ho ds ve wh n P ay r 1 s l ss at en th n P ay r 2

Th in ui io is s f ll ws Su po e t th co tr ry (A A) s n t a wa s c os n o th eq i-

ib iu pa h a d P ay r 1 s e ui ib iu pa o® s s ri tl le s t an . I th t c se if la er

ch os s A nd ¯n te y, he e m st e a er od n w ic Pl ye 2, cc rd ng o h s e ui ib iu

st at gy wi l c oo e B it po it ve ro ab li y. in e a ti n B s n t a es re po se or la er

to , P ay r 2 il ch os B o ly he he nt ci at s t at la er wi l c oo e B it po it ve

ro ab li y i ei he th t p ri d o th fu ur . O th ot er an , S nc A i a s ri tl do in nt

ct on or la er , s e w ll ho se in pe io as on as ha wi l n t a ve se y a ec he fu ur

pa o® Th t i , i is at on l f r P ay r 1 o c oo e B nl if la er wi l c oo e B n t e f tu e.

n s or , P ay r 2 ho se B b ca se e t in s P ay r 1 il ch os B i th fu ur , a d P ay r

1 ho se B i th fu ur be au e s e t in s P ay r 2 il ch os B i th fu ur an so n. 2

H we er th s p oc ss an ot as in e¯ it ly f P ay r 2 pd te hi be ie ab ut la er 's yp

ac or in to ay s' ul . U ti at ly th re xi ts pe io wh re it er la er or la er pl ys

ub op im ll , v ol ti g a on it on or er ec Ba es an qu li ri m.

t i in er st ng o c nt as th ab ve as to he as wh re > 2 y > . I th la te

ca e, he am is ne f c mm n- nt re t. ot pl ye s s ri tl pr fe th ou co e ( ; A to ny

th r, ut is o l ng r a tr ct y d mi an ac io fo Pl ye 1. in e t er is o c n° ct f

i te es s b tw en he wo la er , i ma ap ea th t t is s a it at on ar ic la ly on uc ve o

r pu at on ev lo me t. t t rn ou th t c mm n- nt re t i ne th r a ec ss ry or u± ie t

c nd ti n f r t e e is en e o re ut ti n e ec s. ri ps nd ho as 97 sh w t at he mi ed

tr te ie ar al ow d, ve if he e i a s al pr ba il ty ha Pl ye 1 i a c mm tm nt yp wh

al ay ch os s A th re xi ts pe fe t B ye ia eq il br um it eq il br um ay ® f r P ay r 1

2N te ha it s i po ta t h re ha Pl ye 1 e pe ts la er to ho se st ic ly n t e f tu e.
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arbitrarily close to her minmax payo®.23 The sharp di®erence between these two cases illustrates

the critical importance of the assumption that A is a strictly dominant action.24 On the other

hand, it is not important whether the game is of common interest, (i.e. x > 2), because Player 2

will choose A regardless of the value of x as long as he is convinced that Player 1 is going to choose

A. Theorem 3 formalizes the above argument.

Theorem 6 In an in¯nitely-repeated strongly-dominant-action game with one-sided incomplete in-

formation, ¡(A; g; ±1; ±2; °1; ¹
1
0), if the commitment type, °1, always chooses the strongly-dominant

action, then for any ±1; ±2 2 (0; 1), and any ¹10 > 0, the average equilibrium payo® for the rational

type of Player 1 is equal to ¹v1 in any perfect Bayesian equilibrium.

Let â1 be the strongly-dominant action for Player 1 and â2 be one of Player 2's best responses to

â1. Note that in this case, °1(ht) = â1; 8ht 2 H. De¯ne ŝ2 2 S2 such that ŝ2(ht) = â2; 8ht 2 H.

For convenience, I use v̂1 and v̂2 to denote g1(â1; â2) and g2(â1; â2).

The idea of the proof is to show that if (¾1; ¾2; ¹) is a perfect Bayesian equilibrium in which

the equilibrium payo® for Player 1 is strictly below ¹v1, then it is possible to construct a history

ĥ 2 H(°1) and a sequence of time ft1; t2; t3; :::g such that, for some ² 2 (0; 1), ¹(ĥti+1) ¸ ¹(ĥti)
1¡²

for all i. This implies that no matter how small ¹10, there exists a tj such that ¹(ĥtj ) > 1, which

contradicts the assumption that ¹(ht) � 1 8ht 2 H. Thus, no such (¾1; ¾2; ¹) can exist.

Before I can construct ĥ 2 H(°1) and ft1; t2; t3; :::g, I need to establish the following 3 lemmas.

Lemma 5.1 below follows directly from the strict dominance of â1. If Player 1 knows that she can

obtain ¹v1 in the continuation game regardless of her current period's action, she will strictly prefer

to choose â1 in that period.

Lemma 7 If (¾1; ¾2; ¹) is a perfect Bayesian equilibrium of the game ¡ and v1(°1; ¾2jâ1) = v̂1,

then ¾1(h1) = â1.

Lemma 5.2 is a common argument which asserts that when Player 2 discounts his future payo®s,

there is a period N such that Player 2 cares very little about his payo®s after period N. To formally

state Lemma 5.2, it will be convenient to de¯ne a N-period truncated strategy ¾Ni for any ¾i 2 §i.

23Aumann and Sorin (89) show that there exists a pure strategy equilibrium in this game, and all pure strategy
equilibria are Pareto e±cient.
24Cripps and Thomas (1997) assume that A is not a strictly dominant action.
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F r a y ¾ 2 § an po it ve nt ge N, e¯ e ¾i a fo lo s:

N
i ht = ¾ (h ) 8 � N 1

¾i ( t) a0 8t N ¡ fo so e a1 2 1:

N
i s a ru ca ed er io of i. t i eq iv le t t ¾i ur ng he rs N ¡ pe io s a d i eq iv le t

t a c ns an st at gy 0
1 ro pe io N o wa d. he ro fs f L mm s 5 2 a d 5 3 a e g ve in

he pp nd x.

em a 8 iv n ± , 8 > 0 9N uc th t 8 1; 2

j 2( 1; 2) v2 ¾N ; ¾2 ) � ²

Ne t, in ro uc a f nc io dN ½1 : § ! < wh ch ea ur s t e \ is an e" et ee ½1 §1

nd 1 i th ¯r t N 1 p ri ds 25 e¯ e

d (½ ) = ax
22 2

( ¡ P 1; 2( N( 1; 2) )

w er hN °1 s2 is he ¡ 1 er od is or in uc d b th co mi me t s ra eg °1 nd pu e

s ra eg s2 an P½ ;s (h (° ; s )) s t e p ob bi it th t P ay r 1 bo h t e r ti na an co mi -

m nt yp ) c oo es a1 or he rs N p ri d. hu , d (½ ) i ma im m p ob bi it th t P ay r 1

il re ea he ty e i th ¯r t N 1 p ri ds ve al po si le tr te ie of la er . L mm 3 s ow

th t i ½1 nd 1 a e \ lo e" th n t ey en ra e s mi ar ay ®s or la er .

L mm 9 G ve ±2 8 » 0 a d p si iv in eg r N 9² 0 s ch ha if N( 1) ², he 8¾ 2 § ,

j 2(
N
1 ¾N ) ¡ 2(

N
1 ¾N)j »:

ro f o Th or m 3

Su po e ( 1; 2; ) i a p rf ct ay si n e ui ib iu su h t at he qu li ri m p yo fo Pl ye 1

i st ic ly es th n ^1. t f ll ws ha v1 °1 ¾2 < 1̂, nd he e e is s s me is or ht H( 1) n

t e e ui ib iu pa h s ch ha ¾2 â jh ) < . I ot er or s, he e e is s s 2 s pp ¾2 ht su h

t at 2( 1) 2 b (^1) Se t1 t a d h 1 = t, he

v2 °1 s2 � 2̂ ¡ ; w er c = 1 ¡ 2) v̂ ¡ m x
a 2A =b (^1)

2(a1 a2 ):

y L mm 5. , s t N uc th t j 2(¾1 ~¾ ) ¡ 2(¾
N ; ~N2 j � 8 8¾1 §1 ~¾ 2 § : A a r su t,

2(
N
1 sN) � v2

7c .

2 dN :) ol ow fr m t e d ¯n ti n o cl se es be we n t o s ra eg in al i a d L hr r ( 3)
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By Lemma 5.3, set ² such that if dN (½1; °1) � ², then jv2(½N1 ; ~¾N2 ) ¡ v2(°
N
1 ; ~¾N2 )j � c

8 ; 8 ~¾2 2 §2.

I shall show that it is impossible for dN (½1; °1) � ². Suppose to the contrary, that dN (½1; °1) � ²,

then

v2(½
N
1 ; sN2 ) � v2(°

N
1 ; sN2 ) +

c

8

) v2(½
N
1 ; sN2 ) � v̂2 ¡ 6c

8
:

Since s2 is a best response for Player 2,

v2(½1; s2) ¸ v2(½1; ŝ2)

) v2(½
N
1 ; ŝN2 ) � v2(½

N
1 ; sN2 ) ¡ c

8

) v2(½
N
1 ; ŝN2 ) � v̂2 ¡ 5c

8
:

Since v2(°N1 ; ŝN2 ) ¸ v̂2 ¡ c
8 ,

jv2(½N1 ; ŝN2 ) ¡ v2(°
N
1 ; ŝN2 )j ¸ c

2
;

contradicting the assumption that dN (½1; °1) � ². Put di®erently, in order to induce Player 2 to

choose a strategy that is not a best response to °1, the rational Player 1 has to deviate from playing

°1 with a probability bounded away from zero either in response to s2 or in response to ŝ2.

Let ~s2 2 S2 such that 1 ¡ P½1;~s2(hN(°1; ~s2)) ¸ ². Along the path hN(°1; ~s2), let n � N be

the last period in which the rational Player 1 chooses â1 with probability strictly less than 1, so

that P½1;~s2(hn(°1; ~s2)) = P½1;~s2(hN (°1; ~s2)).

Since Player 1 is willing to choose some action a1 6= â1, from Lemma 5.1, there exists a t0-period

history ht0 2 H(°1) such that Player 2 may choose some action a2 6= â2.

Set t2 = t1 + n + t0 and ĥt2 = ĥt1 :hn(°1; ~s2):ht0 :

Since ĥt1 , hn(°1; ~s2), and ht0 all belong to H(°1), ĥt2 belongs to H(°1) as well. Moreover, according

to Bayes' rule, ¹(ĥt2) ¸ ¹(ĥt1)

1¡² . By repeating the above argument, I can construct t3; t4; t5::: and ĥ

similarly, so that 8i; ¹(ĥti+1) ¸ ¹(ĥti )

1¡² . For any ¹10, there is a tk such that ¹(ĥtk) > 1; therefore,

(¾1; ¾2; ¹) is not a perfect Bayesian equilibrium. 2
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6 F lk he re s w th om it en Ty es

n t is ec io , I tr ng he th re ul s o Se ti n 4 n t o w ys Th or m 4 s a ol th or m

w th ne si ed nc mp et in or at on It ho s t at or ny wo pe so in ni el -r pe te ga e

w th ne si ed nc mp et in or at on hi h s ti ¯e th co di io s o ei he Th or ms or , a y

p yo pr ¯l th t i in he nt ri r o th co ve hu l o th se of tr ct y i di id al y r ti na

pa o® ca be up or ed y a er ec Ba es an qu li ri m w en he la er ar su ci nt y p ti nt

nd he ri r p ob bi it th t t e i fo me pl ye is co mi me t t pe s s ±c en ly ma l. n

o he word , w ca an on tr ct qu li ri m w ic gi es he at on l t pe f t e i fo me pl ye

a l w p yo wi ho t a ec ing he ay ® f r t e u in or ed la er

Th or m 1 If tw -p rs n i ¯n te y- ep at d g me it on -s de in om le e i fo ma io

¡( ; g ±; 1;
1
0 sa is es he on it on of it er he re 1 o 2, he 8 ( 1; 2) in (V ); ±

a d ¹10 su h t at ± ¸ an ¹1 � ¹10 th re s a er ec Ba es an qu li ri m w th he at on l

p ay rs eq il br um ay ®s qu l t (v ; v ).

he de be in Th or m 4 s v ry im le Th or ms an 2 i pl th t t er ex st a p rf ct

ay si n e ui ib iu in hi h t e e ui ib iu pa o® or la er is 1; ow e w nt he ay ® f r

P ay r 2 o b eq al o v .) he er ec Fo k T eo em mp ie th t t er ex st a s bg me pe fe t

N sh qu li ri m i wh ch he qu li ri m p yo s f r P ay rs 1 and 2 are, respectively, v1 and v2.

Now, I can construct an equilibrium in which if Player 1 chooses the commitment action in the ¯rst

period, then the players will play the ¯rst equilibrium from period 2 onward; otherwise, they will

play the second equilibrium. Since the rational type of Player 1 is indi®erent between these two

equilibria, it is rational for her to reveal her type with a su±ciently high probability such that the

equilibrium payo® for Player 2 is approximately equal to v2, his equilibrium payo® in the second

equilibrium.

Proof of Theorem 4:

In period 1, the rational type of Player 1 chooses a¤1 with probability p1, and imitates the commit-

ment type by choosing °1(h1) with probability 1 ¡ p1. Player 2 chooses some ~a2 which is a best

response to ½1, his expectation of Player 1's strategy in period 1. De¯ne

¤(a1; a2) =
v1 ¡ (1 ¡ ±)g1(a1; ~a2)

±
:
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The continuation payo®s from period 2 onward for the rational type of Player 1 and Player 2,

(v1(a); v2(a)), and the beliefs about Player 1's type in period 2, ¹(a), are given in Table 8.

a v1(a) v2(a) ¹(a)

a1 = °1(h1) ¤(a) f(¤(a))
¹10

¹10+(1¡¹10)(1¡p1)

a1 6= °1(ht) ¤(a)
v2¡(1¡±)g2(½1; ~a2)¡(1¡p1+¹10p1)±f(¤(a))

(1¡¹10)p1
0

Table 8: The continuation payo®s, (v1(a); v2(a)), and beliefs , ¹(a), in the second period

It is straightforward to verify that ¹(a) is consistent with Bayes' rule and that given (v1(a); v2(a)),

the ¯rst-period strategies of the players are rational, and the equilibrium payo®s for the entire game

are equal to (v1; v2). To prove Theorem 4, I need to show that these continuation payo®s can be

supported by some perfect Bayesian equilibrium when ±1 is close enough to 1 and ¹10 is small enough.

Since (v1; v2) 2 int(V ¤), it is clear that there are ±¤ and ¹1¤ such that 8± ¸ ±¤; ¹01 � ¹1¤, p1 can be

set so that (v1(a); v2(a)) 2 V ¤ 8a 2 A. In the case where a1 6= °1(ht), it follows from the Perfect

Folk Theorem that there exists ±¤¤1 such that 8±1 ¸ ±¤¤1 , (v1(a); v2(a)) can be supported by some

subgame-perfect Nash equilibrium. In the case where a1 = °1(h1), Theorem 1 (or 2) implies that,

in the game ¡(A; g; ±1; ±2; °1ja; ¹(a)), there exist ±¤¤¤ and ¹1¤¤ such that 8± ¸ ±¤¤¤ and ¹10 � ¹1¤¤

there is some perfect Bayesian equilibrium with equilibrium payo®s for the rational type of Player

1 and Player 2 equal to ¤(a) and f (¤(a)), respectively. Set ¹1¤¤¤0 = (1¡p1)¹1¤¤
(1¡p1¹1¤¤) . It is straightforward

to verify that Theorem 4 holds for all ± ¸ maxf±¤; ±¤¤; ±¤¤¤g and ¹10 � minf¹1¤; ¹1¤¤¤g. 2

Theorem 5 extends the result of Theorem 4 to the case where both players possess private in-

formation. Formally, denote a two-person in¯nitely-repeated game with two-sided incomplete in-

formation by ¡(A; g; ±; °1; ¹01; °2; ¹
2
0) where °2 and ¹20 represent the commitment type of Player 2

and the prior probability that Player 2 is a commitment type. (The other notation de¯ned for the

commitment type of Player 1 extends to that of Player 2.) Note that ¡(A; g; ±; °1; ¹01; °2; ¹
2
0) can

be reduced to a one-sided incomplete information game by setting either ¹10 or ¹20 to 0. Let ¡i, for

i = 1; 2, be the resulting repeated game in which only Player i possesses private information (i.e.
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¹j0 = 0; j 6= i). Theorem 5 states that in any in¯nitely-repeated game ¡(A; g; ±; °1; ¹
0
1; °2; ¹

2
0), if

¡1 and ¡2 satisfy the conditions of Theorems 1 or 2, then any payo® pro¯le that is in the interior

of the set of strictly individually-rational payo® pro¯les can be supported by a perfect Bayesian

equilibrium when the players are su±ciently patient, and the prior probability that the players

are commitment types are su±ciently small. Theorem 5 demonstrates that the general result that

reputation e®ects do not exist does not rely on the assumption of one-sided private information.

The basic idea of the proof is similar to that of Theorem 4. The key is to construct an equi-

librium in which the rational types of both players will reveal their types with high probability

in the ¯rst period. This is possible because when each player expects the other player to reveal

her type, then each of them is basically choosing between playing a complete-information or a

one-sided incomplete-information continuation game. If a player reveals her type, she will (most

likely) play a perfect-information continuation game from period 2 onward; otherwise, she will play

a continuation game in which her opponent is not sure about her type. Now from Theorem 4, I

can construct continuation equilibria such that the rational type players are indi®erent between

imitating the commitment types and revealing their types.

Theorem 11 In a two-person in¯nitely-repeated game with two-sided incomplete information

¡(A; g; ±; °1; ¹
1
0; °2; ¹

2
0), if both ¡1 and ¡2 satisfy the conditions of either Theorems 1 or 2, then

8(v1; v2) 2 int(V ¤); 9 ±, ¹¹10, and ¹¹20 such that 8± ¸ ±, ¹10 � ¹¹10, and ¹20 � ¹¹20, there is a perfect

Bayesian equilibrium with the rational players' equilibrium payo®s equal to (v1; v2).

Proof of Theorem 5:

First I establish a simple lemma which shows the existence of equilibrium. The proof is in the

appendix. Let (~v1; ~v2) be the rational players' equilibrium payo®.

Lemma 12 If ¡(A; g; ±; °1; ¹01; °2; ¹
2
0) satis¯es the conditions in Theorem 4, then 9 ±, ¹¹10, and ¹¹20

such that 8± ¸ ±, ¹10 � ¹¹10, and ¹20 � ¹¹20, a perfect Bayesian equilibrium exists.

In period 1, the rational type of Player i chooses a¤i with probability pi and °i(hi) with probability

1 ¡ pi. Consider Player 1's decision, if she chooses a¤1 in period 1. In period 2, she will play

either a complete-information continuation game with probability p2 or continuation game with

her uncertain about Player 2's type with probability 1¡ p2. On the other hand, if Player 1 chooses

°1(h1) in period 1, then in period 2, she will play a continuation game with Player 2 uncertain
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about her type with probability p2, and a two-sided incomplete-information continuation game with

probability 1 ¡ p2. The situation is similar for Player 2.

De¯ne ¤1(a1; a2) =
v1 ¡ (1 ¡ ±)g1(a1; ½2)

±1
;

and ¤2(a1; a2) =
v2 ¡ (1 ¡ ±)g2(½1; a2)

±2
:

a1;a2 v1(a) v2(a) ¹1(a) ¹2(a)
a1 6= °1(h1)
a2 6= °2(h1) ¤1(a) ¤2(a) 0 0
a1 = °1(h1)

a2 6= °2(h1)
¤1(a)¡(1¡p2+¹20p2) ~v1

(1¡¹20)p2
¤2(a)

¹10
¹10+(1¡¹10)(1¡p1)

0

a1 6= °1(ht)

a2 = °2(h1) ¤1(a)
¤2(a)¡(1¡p1+¹10p1) ~v2

(1¡¹10)p1
0

¹20
¹20+(1¡¹20)(1¡p2)

a1 = °1(h1)

a2 = °2(h1) ~v1 ~v2
¹10

¹10+(1¡¹10)(1¡p1)
¹20

¹20+(1¡¹20)(1¡p2)

Table 9: Continuation Payo®s, v1(a); v2(a) in period 2

The continuation payo®s are set so that the equilibrium payo® for the rational type players in the

game is equal to v1 and v2. It is straightforward to verify that ¹1(a) and ¹2(a) are consistent

with Bayes' rule and that the ¯rst period strategies are rational given the beliefs and continuation

payo®s. Using an argument similar to that of Theorem 4, it can be shown that 9 ±; ¹¹10, and ¹¹20

such that 8± ¸ ±; ¹10 � ¹¹10, and ¹20 � ¹¹20, p1 and p2 can be set such that the continuation payo®s

v1(a); v2(a) can be supported by perfect Bayesian equilibrium. 2

7 Conclusion

In this paper, I study a two-person in¯nitely-repeated game in which an informed player tries to

develop a reputation by mimicking a commitment type, but her opponent, expecting that, tries to

screen her out by choosing an action that will \punish" her for imitating the commitment type.

Fudenberg and Levine (1989) and Schmidt (1993) point out that since screening is also costly to

the uninformed player, he will screen only when he expects the informed player to reveal her type

in the future with a probability bounded away from zero. When he sees the informed player choose

the commitment action in a period in which he thinks that she may reveal her type, he assigns
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a higher probability to the event that she really is a commitment type. Based on this argument,

they conclude that for any ¯xed discount factor of the uninformed player, the number of screening

periods must be bounded. Hence, no matter how small the prior probability that the informed

player is a commitment type, if she is su±ciently more patient than the uninformed player, she

can guarantee herself a payo® strictly higher than the minimum payo® she may otherwise receive

in the case of perfect information. This result, while very robust in many other aspects, obviously

depends heavily on the assumption that the informed player is arbitrarily more patient than her

opponent.

The main contribution of this paper is to show that, in general, when the two players are comparably

patient, the informed player does not always bene¯t from developing a reputation. Formally, when

the commitment strategy is simple and the stage game is neither a strongly-con°icting-interest

game nor a strongly-dominant-action game, or when the commitment payo® is strictly less than

the informed player's highest repeated-game payo®, any payo® that is in the interior of the set of

strictly individually rational payo®s can be supported by some perfect Bayesian equilibrium as the

discount factor goes to one and the prior probability that the informed player is a commitment

type goes to zero. This result is very robust. With minor quali¯cations, it can be extended to

allow for multiple commitment types, mixed commitment strategies, comparably patient players

and two-sided private information. In other words, the folk theorem holds even when there is a

small probability that the players are commitment types.

The fundamental idea is that the strength of reputation e®ects depend on the level of relative,

but not absolute, patience. To clarify the relationship between reputation e®ects and relative pa-

tience, I introduce a measure of relative patience based on the weights the players put on their

payo®s after a certain future period. Absolute patience does not matter because as the informed

player becomes more patient, the uninformed player will also become more patient and, hence, may

screen for a longer period of time. For a ¯xed level of relative patience, if the prior probability

that the informed player is a commitment type is su±ciently small, the uninformed player can be

induced to screen for such a long period that it is not worthwhile for the informed player to develop

a reputation.

Another crucial aspect of the proofs of Theorem 1 and 2 is that the informed player can be induced
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to mix between mimicking the commitment type and revealing her type. Giving up her reputa-

tion is not necessarily bad for a rational informed player because, according to the Perfect Folk

Theorem, any strictly individually rational payo® can be supported by a subgame-perfect Nash

equilibrium. As a result, with the exception of strongly-dominant-action games, there always exist

continuation equilibrium payo®s such that the rational informed player is indi®erent between mim-

icking the commitment type and revealing her type. The importance of this point is demonstrated

by the example of in¯nitely-repeated strongly-dominant-action games. In such games, if the only

commitment type is one who always chooses the strongly-dominant action, the rational informed

player cannot be induced to reveal her type in the last period of screening. In that case, I show

that the informed player receives the commitment payo® in all perfect Bayesian equilibria.

Finally, I would like to remind the readers that Assumption 1 is restrictive. It rules out a commit-

ment payo® equal to the highest subgame-perfect-Nash-equilibrium payo® for the informed player.

From Theorem 1, these commitment types are likely to be the most conducive to the development

of reputation. When the commitment strategy is history-dependent, the action of the uninformed

player in one period will have long-term payo® consequences due to its e®ect on the future actions

of the commitment type. In my current approach, these e®ects are balanced o® by adjusting the

informed player's continuation payo®s on equilibrium paths (after some deviations by the unin-

formed player). This, in turn, requires that the continuation payo® for the informed player not be

an extremal point of the payo® set. At this point, it is not clear to what extent Assumption 1 can

be weakened. I intend to clarify this question in future work.

8 Appendix

Proof of Lemma 2.1:

Suppose (1) is true, given any ²; ´ > 0, 9 ±1 s.t. 8±1 ¸ ±1

0 � ln ±1
ln ±2(±1)

� ln(1 ¡ ´)

ln ²

Since the last expression can be made to be arbitrarily small by pushing ´ to zero, lim±1!1 m(±1; ±2(±1))

exists and is equal to 0.

To show the converse is true, suppose lim±1!1 m(±1; ±2(±1)) = 0, then

8°1 > 0 9±1 s.t. 8±1 ¸ ±1;
ln ±1

ln ±2(±1)
� °1
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For arbitrary ², ´ 2 (0; 1), set °1 = ln(1¡´)
ln ² , and (1) follows. 2

Proof of Lemma 2.2:

1.

±2(±1)
T (±1) = ±2(±1)

�
ln(

¹0
¹¹ )

ln(1¡¢(±1))
+[T (±1)¡

ln(
¹0
¹¹ )

ln(1¡¢(±1))
]

¸

= ±2(±1)
[T (±1)¡

ln(
¹0
¹¹ )

ln(1¡¢(±1)) ]:
¹0
¹¹

ln ±2(±1)
ln(1¡¢(±1)) :

Since lim±1!1(T (±1) ¡ ln(
¹0
¹¹
)

ln(1¡¢(±1))) = 0, therefore lim±1!1 ±2(±1)
[T (±1)¡

ln(
¹0
¹¹ )

ln(1¡¢(±1)) ] = 1.

Next, the limit of the exponent of the second term as ±1 goes to 1, which by L'Hospital rule,

is given by:

lim
±1!1

ln ±2(±1)

ln(1 ¡ ¢(±1))
=

q

d

It follows that

lim
±1!1

±2(±1)
T (±1) = lim

±1!1
±
[T (±1)¡

ln(
¹0
¹¹ )

ln(1¡¢(±1))
]

1 lim
±1!1

(
¹0
¹¹

)
ln ±2(±1)

ln(1¡¢(±1))

= (
¹0
¹¹

)
q
d

2

2.

lim
±1!1

±T (±1)1 = lim
±1!1

±2(±1)
T (±1)

ln ±1
ln ±2(±1)

= lim
±1!1

±2(±1)
T (±1)(lim±1!1

ln ±1
ln ±2(±1)

)

= lim
±1!1

±2(±1)
T (±1)m

=
¹0
¹¹

mq
d

2

Proof of lemma 2.3:

Given ¹0 and ²
2 , by Lemma 2.2 9 ±1 such that 8 ±1 ¸ ±1; ±

T (±1)
1 �

³
¹0
¹¹

´ ¹mq
d

+ ²
2 . Set ¹¹0 such

that
³
¹0
¹¹

´ ¹mq
d

= ²
2 . Since

³
¹0
¹¹

´x
is strictly increasing in ¹0

¹¹ when x is positive, 8 ¹0 � ¹¹0 and
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±1 ¸ ¹±1; ±
T (±1)
1 � ². 2

Proof of Lemma 5.2:

Since ¾1 , and ¾2 are identical to ¾N1 and ¾N2 in the ¯rst N-1 periods; therefore

jv2(¾1; ¾2) ¡ v2(¾
N
1 ; ¾N2 )j � ±N2 d

The desired inequality is obtained by setting N to be bigger than ln(²=d)
ln ±2

. 2

Proof of Lemma 5.3:

First notice that

v2(½
N
1 ; ¾N2 ) = E¾2[v2(½

N
1 ; sN2 )]

= jE¾2[f1 ¡ P½1;s2(hN (ŝ1; s2))gE½1(v2(s
N
1 ; sN2 js1 6= ŝ1)) + P½1;s2v2(ŝ

N
1 ; sN2 )]j

As a result,

jv2((½N1 ; ¾N2 ) ¡ v2(ŝ
N
1 ; ¾N2 )j

= jE¾2[(1 ¡ P½1;s2(hN (ŝ1; s2)))E½1(v2(s
N
1 ; sN2 js1 6= ŝ1)) ¡ v2(ŝ

N
1 ; sN2 )]j

� ²jE¾2 [E½1(v2(sN1 ; sN2 js1 6= ŝ1)) ¡ v2(ŝ
N
1 ; sN2 )]j

� ²(1 ¡ ±N2 )d

The desired inequality can be obtained by setting ² = »
(1¡±N2 )d

. 2

Proof of Lemma 6.1:

By de¯nition, 9v2 2 V ¤
2 s.t. (º(°1); v2) 2 V ¤. It is straightforward to construct an equilibrium with

the following features: In period 1 the rational type of Player 1 reveals her type and the rational

type of Player 2 chooses the commitment action. In period 2, from Theorem 4, construct a perfect

Bayesian equilibrium for the one-sided incomplete-information continuation game with payo®s such

that the payo® for the entire game is equal to (º(°1); v2). Note that Player 1 is willing to reveal

her type in period 1 because she is getting her commitment payo®. 2
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