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On the Non-Existence of Reputation Effects in T'wo-Person
Infinitely-Repeated Games

Jimmy Chan*
Department of Economics
Johns Hopkins University

chan@jhunix.hcf.jhu.edu

Abstract

Consider a two-person infinitely-repeated game in which one player is either a normal “ra-
tional” type or a “commitment” type that automatically plays a fixed repeated-game strategy.
When her true type is private information, a rational type may want to develop a reputation as
a commitment type by mimicking the commitment type’s actions. But, the uninformed player,
anticipating the behavior of the rational type, may try to “screen out” the rational type by
choosing an action which gives the rational type a low payoff when she mimics the commitment
type. My main result shows that for “comparably” patient players, if the prior probability that
the player is a commitment type is sufficiently small, the “screening” process may take so long
that the rational type does not benefit from developing a reputation. In the case of equally
patient players, I show that the folk theorem holds even when both players possess a small
amount of private information. Schmidt (1994) and Cripps, Schmidt and Thomas (1993) argue
that reputation effects can rule out outcomes permitted by the folk theorem, regardless of how
small the prior probability that the player is a commitment type. My results show that this
argument only applies when one player is “infinitely” more patient than the other.

*I would like to thank Bob Anderson, Dan Covitz, Eddie Dekel, John Giles, Erik Heitfield, Rika Onishi Mortimer,
Peter Norman, Wolfgang Pesendorfer, Bob Powell, Chris Shannon, Ilya Segal, Clara Wang, and seminar participants
at , Berkeley, Johns Hopkins, Northwestern, and “Summer in Tel Aviv 97” for helpful comments, and I am grateful
to Matthew Rabin for his invaluable advice and Erik Eyster for his detailed comments on a draft of this paper.



1 Introduction

In this essay, I study the effects of reputation in a class of incomplete-information, two-person,
infinitely-repeated games. They differ from standard perfect-information repeated games in that
one of the players possesses private information as to whether she is a rational or “commitment”
type who plays a fixed repeated-game strategy. Because he does not know the true type of the
informed player, the uninformed player can only form a belief about the informed player’s type
based on her past actions. As a result, a rational informed player can try to develop a “reputation”
as a commitment type by mimicking her behavior. The goal is to study whether the possession of
a small amount of private information allows the informed player to obtain a higher payoff than in
the case of perfect information.

Most previous work in the literature consider the case where the uninformed player’s discount
factor is fixed as the informed player’s approaches one. As the informed player’s discount factor
increases, she would become relatively, and in the limit infinitely, more patient than the uninformed
player. Fudenberg and Levine (1989) show that in a game in which a long-run player plays against
a sequence of short-run players, if the long-run player is patient enough, she will obtain a payoff
close to or better than her Stackelberg payoff, which generally is strictly higher than her minmax
payoff. Cripps, Schmidt and Thomas (1993) extend the results of Fudenberg and Levine (1989)
to the case of two long-run players. They show that, in general, as the informed player becomes
sufficiently more patient than her opponent, she can guarantee herself a payoff strictly higher
than her minmax payoff. Under some conditions, she can guarantee herself a payoff close to her
Stackelberg payoff (Schmidt 1993), and in some others, close to her highest repeated-game payoff
(Celentani, Fudenberg, Levine, and Pesendorfer 1993).

The condition of infinite relative patience is obviously highly restrictive. Many economic rela-
tionships, for example, repeated oligopolistic competition, involve parties that are equally or, at
least, comparably patient. In this paper, I study reputation effects when the informed player is
only finitely more patient than the uninformed player in the limit, or, put differently, where the
players are equally or comparably patient. My main result shows that in any two-person, infinitely-
repeated game, except for two special classes specified below, if the two players are equally and
sufficiently patient, the commitment strategy is history-independent, and the prior probability of
that the informed player is a commitment type is sufficiently small, then any strictly individually
rational payoff profile can be supported by a perfect Bayesian equilibrium. Under slightly stronger

conditions, the same result applies even when the commitment strategy is history-dependent, the



players are comparably (but not equally) patient, and both players possess private information.
In other words, the minimum equilibrium payoffs that the informed player may receive with or
without private information are the same. In conclusion, reputation effects do not exist when the
players are comparably patient, and the prior probability that the informed player is a commitment
type is sufficiently small.

Compared to previous results, my results suggest that the strength of reputation effects critically
depends on the players’ relative patience. For any fixed prior probability that a player is a
commitment type, reputation effects become stronger as the informed player becomes more patient
than her opponent. But, when the relative patience between players is fixed, reputation effects
deminish as the prior probability that the player is a commitment type decreases. Call the informed
player Player 1 and the uninformed player Player 2. While Player 2 is uncertain about Player 1’s
type, in equilibrium, he should expect that a rational Player 1 will mimic the commitment type
and, hence, will not quickly conclude that his opponent is a commitment type after observing her
choosing the commitment strategy. Instead, Player 2 may choose an action which will give the
rational type of Player 1 a low payoff when she chooses the commitment strategy so as to “screen
out” the rational type. “Screening” is rational for Player 2 if he believes that the rational type
of Player 1 may reveal her type in the future, and if in this case he will obtain a higher payoff in
the continuation game. Suppose T is the maximum number of screening periods that is consistent
with some equilibrium.! If Player 1 plays the commitment strategy indefinitely, she will receive a
low average payoff v§ during the screening periods, and a high average payoff v after the screening
periods, when Player 2 is convinced that she is a commitment type. Player 1’s average discounted
payoff will be equal to

(1= & )vf + &1 vf,

where §; is Player 1’s discount factor. If §7 is small, her average payoff is approximately equal to
the low payoff during the screening periods, and there is little to gain from developing a reputation.
When Player 2 is more patient, he is willing to screen for more periods; therefore, T is an increasing
function of 89, Player 2’s discount factor. Notice that the cost of screening to Player 2 is at most
equal to (1 — 62)d where d is equal to the largest difference in payoffs between any two stage-game
outcomes. Player 2 is willing to pay some positive cost to screen whenever he expects to receive

some positive long-run benefit in the event that the screening is successful; therefore, 62 should be

LT is finite because Player 2 will screen in a period only if he expects the rational type of Player 1 will reveal her
type with a probability bounded away from zero. See Section 2 for details.



less than 1 in the limit. Furthermore, the limit of 67 will be small when it is unlikely that Player
1 is a commitment type. The relative patience of the players matters because it determines the
relative sizes of 67 and 62. When Player 1 and Player 2 are comparably patient in the limit, if
the limit of 61 is small, then the limit of 67 will be small as well. This explains why the results of
Cripps, Schmidt and Thomas (1993) and others do not apply to this case.

There are two classes of games which are exceptions to the above argument. In both cases,
there must exist a stage-game action a; for Player 1 such that if Player 1 chooses a; and Player 2
chooses a best response to it, then Player 1 receives her highest payoff in the convex hull of the set
of strictly individually rational stage-game payoffs. In this case, Player 1 will obtain her highest
repeated-game payoff if she can credibly commit to choosing a;. A stage game is called a strongly-
conflicting-interest game if Player 2 will get his minmax payoff when he best responds to a;. A stage
game is called a strongly-dominant-action game, and a; is called a strongly-dominant action, if aq
is also a strictly dominant action for Player 1.2 Notice that the argument above critically depended
on the facts (1) that the rational type of Player 1 can be induced to reveal her type and (2) that
Player 2 will suffer a long-term loss for not screening. A strongly-dominant-action game violates
the first condition, while a strongly-conflicting-interest game violates the second condition.?

In section 5, I show that in an infinitely-repeated strongly-dominant-action game with one-sided
incomplete information, if the only commitment type of the informed player (Player 1) is one who
always chooses the strongly-dominant action, then Player 1 will receive her commitment payoff in
any perfect Bayesian equilibrium. Notice that in the perfect-information version of the game, there
usually exists a large set of equilibrium outcomes. In this case, reputation effects select a unique
outcome (the one most favorable to Player 1) from that set. Moreover, unlike all previous results
on reputation effects in infinitely-repeated games, which critically depend on the requirement of
infinite relative patience in the limit, this result holds for any strictly positive prior probability of
a commitment type, and any discount factors less than 1. In fact, it applies even when Player 1 is
less patient than Player 2. The basic argument is as follows: Suppose in some equilibrium Player
2 chooses to screen in some period; then he must believe that the rational type of Player 1 will
reveal her type with a finite probability in the future. But in strongly-dominant-action games, the
rational type of Player 1 will reveal her type only when she expects Player 2 to screen in the future.
Hence, by repeating the same argument, we can conclude that in such an equilibrium Player 2

has to choose to screen in an infinite number of periods. The key of the proof is to show that

2These terms are formally defined in section 4.
3T would like to thank Eddie Dekel and Wolfgang Pesendorfer for pointing out the second point to me.



this cannot happen because eventually Player 2 will be convinced that Player 1 is a commitment
type. Hence, any screening by Player 2 is not consistent with a perfect Bayesian equilibrium and,
thus, the rational type of Player 1 must receive her commitment payoff in any perfect Bayesian
equilibrium. Notice that this argument is different from the one introduced by Fudenberg and
Levine (1989) and commonly used in the reputation literature. That argument only requires that
Player 2 update his beliefs rationally and behave optimally given his beliefs, while my argument,
in addition, also makes use of the fact that the strategy of the rational type of Player 1 is a best
response to Player 2’s strategy in equilibrium.

4 Cripps and

There are two recent papers which address issues similar to those in this one.
Thomas (1997) demonstrate that reputation effects do not exist in a class of two-person infinitely-
repeated common-interest games with equally patient players. They show that when the players
are sufficiently patient, and one player may be a commitment type who always plays the Pareto-
dominant action, there exists a perfect Bayesian equilibrium in which the payoff for the informed
player is close to her minmax payoff. The general idea of their proof is similar to that of Theorem
1, but their result only applies when the stage game belongs to a special class of common-interest
games. Cripps (1997) studies infinitely-repeated games with one-sided incomplete information.
He shows that when uncertainty is small and the players are sufficiently patient, any strictly
individually-rational payoffs can be supported by a perfect Bayesian equilibrium. Despite appar-
ent similarities, his model is not about reputation effects. Unlike other recent work on this topic,
including this one, which assumes that the commitment type plays a fixed commitment strategy,
Cripps assumes that the commitment type possesses a stage-game payoff function different from
that of the rational type.® Since he specifically rules out by assumption the possibility that a
commitment type will choose a fixed repeated-game strategy, his results do not apply to any of the
cases studied in this paper.©

The rest of the paper is organized as follows: In Section 2, I introduce a measure of relative

4My results are independently of these.

®In Cripps’ model, all types are rational. I continue to use the term “commitment type” and “rational type” for
convenience only.

SFor example, consider a simple commitment type who chooses a fixed stage-game action independent of the
strategy of her opponent. If we want to model a simple commitment type as a rational player who has a different stage-
game payoff function, the payoff function must give the commitment type her highest stage-game payoff whenever she
chooses the commitment action (regardless of what the other player chooses). If not, when the commitment player is
patient enough, there are always some repeated-game strategies for the other player which will induce the commitment
player to deviate from the commitment action. This implies that the minmax payoff for the commitment type is
equal to her highest stage-game payoff, and the set of her individually-rational payoffs is a singleton. Assumption
A.1 in Cripps (97) rules out any payoff functions with this property. This explains why the two exceptions discussed
in this paper do not appear in his model.



patience, and apply it to study the relationship between relative patience and reputation effects.
This section makes clear that the qualitative results which hold in the the simple case of equally
patient players also apply to the more general case of comparably patient players. In Sections
3, 4, and 6, I assume the players are equally patient. But under a minor technical assumption,
the results in these sections apply to the case of comparably patient players as well. Section 3
introduces a model of two-person infinitely-repeated games with one-sided incomplete information.
In Section 4, I establish the main result of this paper: Under fairly general conditions, when the
prior probability that the informed player is a commitment type is sufficiently small, there exists
a perfect Bayesian equilibrium in which the payoff for the informed player is close to her minmax
payoff. Section 5 considers an important exception to the general result that reputation effects do
not exist in two-person infinitely-repeated games. I show that in the case of infinitely-repeated
strongly-dominant-action games, if there is a slight probability that a player is a commitment type
who always chooses the strictly-dominant action, then that player will receive her commitment
payoff in any perfect Bayesian equilibrium. In Section 6, I extend the result in Section 4 and prove

a folk theorem with two-sided incomplete information. Section 7 contains the conclusion.

2 Reputation Effects and Relative Patience

Absolute patience and relative patience are two distinct concepts. A player can be a lot more
patient than another player, even when both are very patient. Consider any strictly increasing,
continuously differentiable function 62(61), where 62 : [0,1] — [0, 1] such that limg, .1 62(61) = 1.
This function 62(61) expresses Player 2’s discount factor as a function of Player 1’s. The graph
{61,62(61) }}1:0 defines a path ending at (1, 1) on the unit square. As the discount factors move along
the path toward (1,1), the players become more patient. Conventional folk theorems, assuming
that the players are equally patient, characterize the limiting set of equilibrium payoffs as the
common discount factor approaches one along the diagonal. But in general, the discount factors
of the players need not be the same along any particular path. The relative patience between two
players with discount factors 61 and 0y can be measured by, m = %12-, the ratio of the logs of their
discount factors. Note that m compares the weight the two players put on their average discounted
payoffs after any period ¢. For any t, 61 = (65)™, where &! is the weight player i puts on the average
payoff after period t. Player 1 is said to be more (less) patient than Player 2 when m is smaller
(bigger) than one, since she puts more (less) weight on her future payoff. Definition 1 formalizes

the notion of infinite relative patience.



Definition 1 Along any path {61, (52((51)}%1:0, Player 1 is infinitely more patient than Player 2 in
the limit if
lim1 m(61,02) =0

61—

The players are called comparably patient in the limit if neither player is infinitely more patient than
the other. Geometrically, the condition of infinite relative patience is equivalent to the condition

that the slope of 62(61) go to infinity as 61 goes to 1.

Whether a number of periods is “long” for a player depends on her discount factor. For example,
one hundred periods may be “short” for a player with a discount factor of 0.9999 but very “long”
for a player with a discount factor of 0.9. This notion of “length” can be measured by é!; ¢ periods
are “long” for Player 1 if 8! is small, because Player 1 cares little about her payoffs after ¢ periods.
Lemma 2.1 shows that along any path, a number of periods that is arbitrarily “long” for Player 2
becomes arbitrarily “short” for Player 1 in the limit if and only if Player 1 is infinitely more patient

than Player 2. The proofs of all lemmas in this section are given in the appendix.

Lemma 1 Player 1 is infinitely more patient than Player 2 in the limit as 61 goes to 1 iff
Ve,n€(0,1), 38 s.t. V6 > 8;, and Yt ER, 5(61) =e=6> 1—n. (1)

Along any path, both players become more patient. In that case, while Player 1 has a stronger
incentive to develop a reputation, Player 2 also has a stronger incentive to screen out the rational
type of Player 1. In the limit, whether Player 1 can benefit from developing a reputation depends
on the relative patience of the players. The following example illustrates the relationship between

relative patience and reputation effects.

V2
Player 2
D C (oXe) (@9
Player 1 D | -d,-d | q,0
Cl 04 |ag
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Figure 1: Example 1 (-d,-d)

Figure 2: Stage-game payoffs
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In the stage game depicted in Example 1, there are three pure strategy equilibria: (C,D), (C,C)
and (D,C).” The minmax payoffs for both players are 0. The convex hull of the set of feasible
stage-game payoffs is shown in Fig. 2. The shaded area is the set of subgame-perfect-equilibrium
payoffs of the infinitely-repeated version of this game when the players’ discount factors are equal
and close to one. Assume that there are two types of Player 1: a rational type with probability
1 — po, and a commitment type, who always chooses D, with probability pg. Let u; be Player 2’s
posterior belief that Player 1 is a commitment type after observing her period ¢ — 1 action. If Player
2 is convinced that Player 1 is the commitment type, his best response is to play C, and Player 1’s

corresponding commitment payoff is q.

In equilibrium Player 2 may try to screen out the rational type of Player 1 by choosing D for
T periods unless Player 1 chooses C. Screening is optimal for Player 2 only when the rational type
of Player 1 will choose C with some positive probability in some periods. Suppose the strategy of
the rational type of Player 1 during the screening phase is as follows: In any period t, if she has
not yet revealed her type, then with probability p;, she will do so by choosing C. If she chooses
C and Player 2 chooses D, then Player 1 will always choose C from period ¢ + 1 onward. On the
other hand, if Player 2 chooses C that period, Player 1 will always choose D from period ¢ + 1
onward. Player 2’s average continuation payoff will be ¢ in the first case and 0 in the second. Note
that Player 2’s action in period t will affect his future payoff only when Player 1 chooses C in that
period. In choosing D in period ¢, he pays a short-term cost slightly less than d in that period in
return for an expected long-term gain of p:(1 — p;)q in the next period, where p;(1 — p) is the
probability that Player 1 is rational and will reveal her type in that period. Thus, Player 2 will
strictly prefer to choose D if

(1 —62)d [V b2pi(1 — pt)q (2)
To satisfy Equation (2), p; cannot be too small. Set p, = ﬁ where
(1—462)d
A=-—" 3
5 (3)

Since the rational type of Player 1 chooses D with a probability strictly less than 1, according to
Bayes’ rule, Player 2 will assign a higher posterior belief that Player 1 is a commitment type every

time after Player 1 chooses D. Specifically, the posterior belief will be equal to:

"This example is non-generic, but the conclusion I draw applies in general. T choose this example for brevity. A
more general treatment is given in the Sections 3 and 4.
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Equation (6) shows that y; is an increasing function of ¢ . Since p;41 cannot exceed 1, screening
cannot last forever in equilibrium. Intuitively, in order to induce Player 2 to screen, the rational
type of Player 1 has to reveal her type with a probability bounded away from zero in every period.
This imposes a lower bound on the rate of Bayesian updating and, hence, an upper bound on the
number of screening periods.® The number of the screening periods, T, is set so that at the end of
the screening phase, Player 2’s posterior belief that Player 1 is a commitment type is just less than

A [ 1.2 Formally,

T = max{t : ﬁ 0 b (7)

If a rational type of Player 1 plays the commitment strategy forever, her average payoff, v}, will be

equal to

vi=(1-61)(=d) +6{q.

If 67 is close to 1, then v} is approximately equal to g; i.e. Player 1 obtains a payoff close to the
commitment payoff by mimicking the commitment type. Basically, 67 measures the “length” of

the screening phase relative to Player 1’s patience.

Formally, along any path {61,82(61)}§ _o, we can define A(61), pu(61), and T(61) according to
Equations (3), (6) and (7). Note that A(é1) is decreasing in 61, and goes to 0 as §; goes to 1, i.e.
limg, 1 A(61) = 0. This implies that the rate of belief updating will decrease as the players become
more patient. Intuitively, when Player 2 is more patient, he will value his future payoff more than
his current payoff; therefore, he can be induced to screen even when the probability that Player 1
will deviate from the commitment strategy is small. As a result, the number of screening periods,

T(él) and 63—’(51)

T, is increasing in 6. The next lemma characterizes the limits of ¢; as functions of

q,d, po, fi.

Lemma 2 Along any path {61, 52(51)}(%1:0,

8This argument was introduced by Fudenberg and Levine (1989).
®Obviously, fi cannot be bigger than 1. In this particular example, we may simply assume i = 1, but in Section
4.2, when we consider that case of history-dependent commitment strategy, we will need f to be strictly less than 1.



1. Timg, 1 82(8;)71) = £,

2. ]f limg —1 m(él, 52(51)) =m > 0, then limg —1 (ST(él) = limg —1 52 51 T(b1)ym =
1 1 1 1

= |§
U

Lemma 2.2 illustrates how various factors affect the length of the screening phase relative to the
patience of the players. The variables ¢, d, o, and i jointly determine limg, 1 52(61)T(51), which,
together with m, in turn determines limg, 3 (5{(61). Note that lims, 1 (52(51)T(51) is smaller the
smaller the prior belief that Player 1 is a commitment type, the smaller the short-term loss in
screening, and the larger the long-term gains. When Player 1 is relatively more patient than

T(61)

Player 2, reputation effects are magnified because lims, —,1 6; will then be relatively bigger than

lims, 3 85(61)7®1) . When Player 1 is infinitely more patient than Player 2 in the limit, for any

fixed j1o > 0, limg, _; 67 )

= 1. As a result, she will always receive a payoff arbitrarily close to the
commitment payoff, no matter how small the prior probability that Player 1 is a commitment type.
However, that is not true when the players are comparably patient in the limit. The next lemma

(1)

shows that in that case, for any ¢, d, and fi, limgs, _,q (5{ is close to 0 when i is sufficiently small.

Lemma 3 If limg, .1 m(61,62(61)) =m >0, then V € >0 3 jip and 3 61, such that ¥ po U fip and
V6 > 6, 6000 0

Note that Lemma 2.3 applies whenever g and m is strictly positive.!? Thus, the case of equally
patient players is qualitatively similar to the case of comparably but not equally patient players.
In both cases, if the prior probability that the informed player is a commitment type is sufficiently
small, it is possible for the rational type of the informed player to reveal her true type in every
period with a probability that is (1) large enough so that it is optimal for the uninformed player
to choose a non-best-response to the commitment strategy, yet (2) small enough so that screening
can potentially last for a long time. In Sections 3, 4 and 6, I assume that the players are equally
patient. But, under a technical assumption which I specify in Section 4.3, all of my results apply

to the case of comparably patient players as well.

3 A Model

3.1 Preliminaries

Consider a two-person, infinitely-repeated game I'(A,g,6) where (A,g) is the stage game and
6 is the players’ common discount factor. In each period the two players play a simultaneous-

move stage game (A4, g), where A = A; x Ay denotes the set of finite stage-game actions, and

00f course, for a given €, the threshold fio is smaller the smaller g and 7.
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g = (g1,92) : A — R2 denotes their payoff functions. A pure action, a mixed action and the set
of mixed actions of player i are denoted as a;, a; and A;, respectively. Let brj(a;) be the set
of best responses for Player j to Player i’s action a;. For convenience, I represent the expected
payoff of a mixed action profile, E,[g(a)], by g(a) = (g1(c), g2()), where o = (a1,a2). The
stage-game payoffs are assumed to be bounded from above and below. Let d be the maximum
difference in payoffs between two different outcomes for both players. Let V be the convex hull of
the set of feasible stage-game payoffs, and V* be the convex hull of the set of strictly individually
rational stage-game payoff profiles, i.e. V* = {(v1,v2) € V : v; > v;,i = 1,2} where v; is the
minmax payoff for Player i. Let V;* be the projection of V* on V;.!1 Let #; denote the highest
payoff for Player i in V' which is consistent with Player j receiving at least his minmax payoff, i.e.
01 = max{v; € V1 : 3 vy > vy, s.t. (v1,v2) € V}. Throughout the paper, I assume that V* is
non-empty, and that the minmax payoffs for the two players, v; and w,, belong to the closure of

V.*. These assumptions simplify the exposition, but are not crucial to my results.

After each period, the players observe their opponent’s action, and they have perfect recall. Let the
function ht : {1,2..,t — 1} — A; represent the actions of Player i up to, but not including, period t.
That is, hi(s), for s > t, is Player i’s period s action. Let hy = (h{, h?) be a t — 1 period history of
the game and H; be the set of feasible histories up to period ¢. Similarly, let h be a complete history
and H., be the set of complete histories. Finally, let H be the set of all finite histories of the game.
The concatenation of two histories h; and hg is represented by h;.hs. hg.hg is a t + s — 2 period
history where hy.hs(r) is equal to hy(r) if r [0 ¢ — 1 and equal to hg(r —t+1)if ¢t O r Ot +s—2.

Similarly, h;.a, for a € A, represents the concatenation of history h; and the period ¢ action profile a.

The players can condition their actions on past history. A pure repeated-game strategy of Player
i is given by a function s; : H — A;; s;(ht) is Player i’s action in period ¢ after history h;. Sim-
ilarly, a mixed repeated-game strategy of player i is given by a function o; : H — A;, where
o;(ht) is Player i’s mixed stage-game strategy in period ¢ after history h;. Let S; and 3; be the
set of pure and mixed repeated-game strategies of Player i. When it is convenient, I consider o;
as a probability distribution over the set of pure strategies S;. Let o;|h; denote the continuation

strategy of o; induced by a history hy. That is, V hy € H, o;|hi(hs) = oi(hi.hs). Let heg, s,

My = {vr: v st (vi,v2) € V'), and Vs = {va : Fur st (v1,v2) € V*}

11



be the t-1 period history induced by a pure strategy profile (s1,s2).'2 A mixed-strategy profile
(01, 02) induces a probability measure Py, ,, over Hy,. Denote the support for Py, 5, by H(o1,02).
Denote the set of histories that are consistent with a repeated-game strategy o; of Player i by
H(o;) = {hs : 3oj,j # i s.t. Py, 5, (hs) > 0}

Both players try to maximize their discounted expected payoffs. For a history h, the aver-
age discounted payoffs of the two players are given by v(h) = (vi(h),va(h)), where v;(h) =
(1—6)>222, 8 Lg;(h(t)). Similarly, the average expected discounted payoffs induced by a strategy
pair, 0 = (01,02) are given by v(o) = E,[v(h)]. At any period ¢, the continuation strategy profile
in the next period, o|hy1 is a function of current actions; hence, E,p,)[v(o|ht11)] represents the
expected continuation payoffs for the players from the next period onward conditioned on the his-

tory h; and the behavioral strategy in period ¢.

In a repeated game with perfect information, the Perfect Folk Theorem (Fudenberg and Maskin
1986, 1990, 1991), roughly speaking, implies that any strictly individually rational payoff profile
v € V* can be supported by some subgame-perfect Nash equilibrium when the discount factors of
the players are equal and close to 1. Since there are many slightly different versions of this theorem,

to avoid confusion I state below the version that I use in this paper.

Perfect Folk Theorem (Fudenberg and Maskin)

Consider a two-person infinitely-repeated game in which public randomization is not available and
only the players’ choices of action are observable. For any vy € Vi* and vl € Vi, there exists a 6 < 1
such that for all 6 € [§,1) and for allv € {v: V* s.t. v > (v{,v})}, there is a subgame-perfect Nash

equilibrium of the infinitely-repeated game with discount factor & in which the discounted average

payoffs are v.

Remark: This is essentially Proposition 2 in Fundenberg and Maskin (1991). The only differ-
ence is that here I emphasize the fact that for any strictly individually rational payoff profile v, a
lower bound of the discount factor 6 can be found so that any payoff profiles which weakly dominate
v can be supported by some subgame-perfect equilibrium. This is obvious from their proof. The

2

idea is that if there exist “punishment” equilibria which can support a certain equilibrium path,

12ht,51752 can be defined recursively as follows:  has ,s,(1) = (s1(h1),s2(h1)), and his s (s) =
(sl(hsvslvs2)752(h5751752))7 Vs < t.
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then those “punishment” equilibria should also be sufficient to support any equilibrium path with

weakly higher payoffs.

3.2 Repeated Games with Commitment Types

Suppose there is a small probability that Player 1 is a commitment type v, where, for convenience,
~1 refers to both the commitment type and the corresponding commitment strategy. The true type
of Player 1 is her private information. Let u} represent Player 2’s prior belief that Player 1 is a
commitment type. (Throughout this paper, ué is assumed to be strictly less than 1.) A repeated

game with one-sided incomplete information is denoted by I'(A, g, 8,71, ud)-

After observing the past actions of Player 1, Player 2 will update his belief about Player 1’s true
type. Let u(hy) be Player 2’s subjective belief that Player 1 is a commitment type at the beginning
of period t after observing a history h;. Note that p(hi) = ud by definition. Given o, ug, and 71,
define p1 = (1 — pd)o1 + pgi; p1 is Player 2’s expectation of Player 1’s strategy.

In this paper, a commitment strategy can be any pure history-dependent repeated-game strategy
(i.e. y1 € S1). A commitment strategy is called simple if it consists of playing a fixed stage-game
action. The commitment payoff of a commitment strategy 7; is the minimum payoff the rational
type of Player 1 will receive if she plays 7, and Player 2 plays a best response to it. If Player 2
is certain that Player 1 is a commitment type, Player 1 will obtain a payoff at least as large as
the commitment payoff. Define By s(v1) = arg maxs,es, v2(71,52); Bas(v1) is the set of Player 2’s
best responses to the repeated-game strategy ~y;. Since the set of best responses to a commitment
strategy 71 is a function of the discount factor ¢, the commitment payoff will be a function of ¢ as

well. Formally, the commitment payoff, vs(1) is defined as follows:
Definition 2 (Commitment Payoff)

= i , b
vs(m) bzeglzl,lg(w)vlh1 2)

Let by(71) denote the best response of Player 2 to v, that gives Player 1 her commitment payoff.
The commitment payoff of the continuation commitment strategy ~1|h; after a history hy, vs(y1|he)
can be defined analogously. It is clear that Player 1 will only have incentive to imitate a commit-

ment type if the commitment payoff is above her minmax payoff. For simplicity, I shall assume

131 will use p1|hs to denote Player 2’s expectation of Player 1’s strategy after a history h:. Since in equilibrium
Player 2’s belief about Player 1’s type is consistent, p1|h: = (1 — p(ht))o1|he + p(he)y1|he.
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that vs(y1]he) > vy Vhe. In the case of simple commitment types, since the commitment payoff is

independent of &, I will simply denote it as v/(7;).'

The objective of this paper is to characterize the set of perfect-Bayesain-equilibrium payoffs when
the players are patient, and the prior probability that the informed player is commitment type is
small. Below, I first state the standard definition of perfect Bayesian equilibrium and then introduce

the slightly modified version I use in this paper.

Definition 3 (Perfect Bayesian Equilibrium (A)) (01,02, 1) is a perfect Bayesian equilibrium
of an infinitely-repeated game T'(A, g,8,v1,11$) if the following conditions hold for all hy € H :

plhe—1)y(ay* he-1)
playhe-1)

p(he) =

whenever the denominator is non-zero,
vi(o1|he, o2|he) > v1 (07, 02|he)  Voi € Xy,
va(p1lhe, o2|he) > v2(p1|he, 05)  Voh € Do

Remark: The first condition requires that an unilateral deviation by the uninformed player does
not affect his belief about the other player’s type. Specifically, he will not change his belief and

conclude that the informed player is rational after his own deviation.

Throughout this paper, I set ju;(h¢) = 0 whenever p(ai™|h;_1) = 0. Note that this restriction
is consistent with the notion of perfect Bayesian equilibrium, which puts no restrictions on such
beliefs. Under this restriction, when Player 2 observes an action of Player 1 which is not consis-
tent with the strategies of both the rational and commitment types of Player 1, he will believe
with certainty that Player 1 is a rational type. As a result, once the rational type of Player 1
has revealed her type, the continuation game becomes a perfect-information repeated game. This
allows me to construct a perfect Bayesian equilibrium in a simple way. Instead of specifying the
behavioral strategies at all information sets, I only need to specify (1) the behavioral strategies at
information sets where Player 2 believes that there is a strictly positive probability that Player 1 is

a commitment type, and (2) the continuation payoffs at information sets immediately after Player

Yu1 s(a1) = ming, epr(ay) 91(a1, az) where a; is the commitment action.
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1 has revealed that she is rational.

Define H(y1) = {ht:3s2 € Sa s.t. hy = hyyy 50}

and G(y1) = {hy.a:hy € H(m1) and he,.a & H(m)}

H(71) is the set of finite histories that are consistent with the commitment strategy 1, and G(v1)
is the set of histories which are consistent with the commitment strategy in all periods except the
last. Let o*(hy) = (o7 (ht),05(ht)) : H(71) — A1 x A be a “restricted” behavioral strategy profile.
Define pf : H(v1) — A such that pj = (1 — p)o} + pwyi. Note that pj, o} and o3 are defined only
at information sets consistent with the commitment strategy ;. Given any h; € H (1), o* and
p* induces a probability distribution over Hs N (H(7v1) UG(v1)) for all s > t. For all hy € H(y1),
let Py« px(hs|ht) be the probability of reaching information set hy, hs € H(y1) U G(11), for s >t
conditional on h; being reached. Let P,«(hs|h:) be the probability of reaching information set hs,
hs € H(y1) UG(m1), for s > t conditional on h; being reached and Player 1 being rational. Finally,
let B*(he) = (B (he), B4 (he)) : G(y1) — V* be the continuation payoffs for the players at hy € G(71).
Given o*, p*, and (%, vf(h) and v;(h:), the continuation payoffs for Players 1 and 2, respectively,
after a history hy € H(vy1) are given by

vi(he) = (1-6 Z{ D 8T P (hslh) (0 (hs)) + D 8 P (hs|he) 51 (hs)}

s=t hscH(v1) hs€G (1)
vy(he) = (1-9) Z{ Y 8T P i (hslhe)ga(0% (hs)) + D 6% o i (| he) B3 (he)}
s=t hy,cH(y1) hs€G(11)

Definition 4 (Perfect Bayesian Equilibrium (B)) o*, 8%, and p are consistent with the no-
tion of perfect Bayesian equilibrium if the following conditions hold for all hy € H(y1):

p(hu—1)vi(ay he—1)
pr(ai 1)

v1 (07 |ty 05 |he) > (1 = 6)gi(a1,05(ht)) + 0E(ay o3 (he)) [V1(07 [hes1, 05| het1)]  Var € As,

p(he) =

v2(pilhe, 031 he) > (1 = 8)ga(07 (he), a2) + 6 E(ox (ny),a0) [V2(PT] et 1, 05 hes1)] Vag € Ag, and

there exists a subgame-perfect Nash equilibrium &y, with equilibrium payoffs equal to B*(hs), for all

h € H(’yl)

Given ¢*, 8%, and u that are consistent with the notion of perfect Bayesian equilibrium, a per-
fect Bayesian equilibrium (o, u) with the same equilibrium payoff for the rational players can be

constructed by setting o(ht) = 0*(ht) Vhy € H(1), and o|hy = 6, Vhy € G(m1).
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4 Non-Existence of Reputation Effects

The example in Section 2 demonstrates that if the prior probability that Player 1 (the informed
player) is a commitment type is small, it may take a long time for her to develop a reputation as
a commitment type. In this section, I formalize that intuition and show that in repeated games in
which one player possesses a small amount of private information, under fairly general conditions,
for any v; € V* there exists a perfect Bayesian equilibrium in which the expected equilibrium payoff
for the rational type of the Player 1 is equal to v1. In other words, when the players are sufficiently
patient, any payoff for Player 1 that can be supported by a subgame-perfect Nash equilibrium in
a perfect-information repeated game can also be supported by some perfect Bayesian equilibrium
when Player 1 possesses a small amount of private information. Since I assume that v, is in the
closure of Vj*, the perfect-Bayesian-equilibrium payoff for Player 1 can be arbitrarily close to v;.
This section is divided into three parts: The first part considers the case of simple commitment
strategies; the second considers the general case of history-dependent commitment strategies; and

the last briefly discusses other extensions of the basic result.

4.1 Simple Commitment Types

Theorem 1 shows that when the commitment type is simple, reputation effects do not exist if the

stage game is neither a strongly-conflicting-interest game nor a strongly-dominant-action game.

Definition 5 (Strongly-Conflicting-Interest Games) A stage game (A, g) is a

strongly-conflicting-interest game if

5.1. There exists a1 € Ay such that Yag € br(ay), g1(a1,az) =01 and g2(ay, az) = v,,

5.2. vy = max{vy : (U1,v2) € V'}.

Recall that 77 is the highest payoff for Player 1 in V' that is consistent with Player 2 getting at
least his minmax payoff, and v, is the minmax payoff for Player 2. Condition 5.2 implies that
the converse also holds: v, is the highest payoff for Player 2 in V that is consistent with Player 1
getting v1. Thus, (v1,v,) is on the Pareto frontier. Condition 5.1 implies that there is an action a;
for Player 1 such that if Player 1 chooses a; and Player 2 chooses a best response to a;, then Player
1 will receive 7 and Player 2 will receive v,. Note that the notion of strongly-conflicting-interest

games is stronger than the notion of conflicting-interest games introduced by Schimdt (1993). The
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latter only requires that there is an action a; for Player 1 such that if Player 1 chooses a; and
Player 2 chooses a best response to it, Player 1 will obtain her Stackelberg payoff and Player 2 will
obtain his minmax payoff. The Stackelberg payoff is less than or equal to 7;. Moreover, the notion
of conflicting-interest games does not require that v, be the highest payoff which is consistent with

V1.

Definition 6 (Strongly-Dominant-Action Games) A stage game (A, g) is a strongly-dominant-

action game if

6.1. 3 a1 € Ay such that Yag € br(ay), g1(ay, az) = o1,

6.2. Vag S AQ, Val S Al/{al}; gl(&l,ag) > gl(al,ag).

Then aq is called a strongly-dominant action for Player 1

Condition 6.1 is similar to the first part of Condition 5.1 in the definition of strongly-conflicting-
interest games, except it does not put any restrictions on the corresponding payoff to Player 2.

Condition 6.2 requires that a; be a strictly-dominant action for Player 1.

The key of the proof is to construct a strategy profile in which (1) the rational type of Player
1 is willing to reveal her type and (2) Player 2 suffers a long-term loss for not screening, (i.e. q
is strictly positive). It is instructive to see how the argument fails when the stage game is ei-
ther a strongly-conflicting-interest or a strongly-dominant-action game. In both cases, the problem
appears in the last period of screening. When Player 1 imitates a commitment type who plays a
strongly-dominant action, Player 1 will recognize, in the last period of screening, that if she imitates
the commitment type for one more period, she will receive her highest payoff from the next period
onward. And since the commitment action is strictly dominant, she will not reveal her type in the
last period, violating the first condition. In the next section, I show that in this case Player 1 will
always receive the commitment payoff in equilibrium. In the case of a strongly-conflicting-interest
game, for Player 1 to be willing to reveal her type at the end of the screening phase, her continuation
payoff has to be close to her commitment payoff. The assumption of strongly-conflicting interest
implies that Player 2 must receive a payoff close to his minmax payoff if he follows his equilibrium
strategy. Since the continuation payoff for Player 2 is always weakly higher than his minmax payoff,

there is no scope to further “punish” Player 2 for not screening, violating the second condition.

17



Theorem 4 In a two-person infinitely-repeated game with one-sided incomplete information and
where the players’ discount factors are equal, T'(A, g,8,v1, 1), if the stage game (A, g) is neither
a strongly-conflicting-interest game nor a strongly-dominant-action game, and vy, is a simple com-
mitment type, then Vvy € V¥, 3§ and [i, such that V6 > § and u$ O iy, there is a perfect Bayesian

equilibrium in which the average discounted payoff for the rational type of Player 1 is equal to v1.

Proof of Theorem 1

Let af be the commitment action for Player 1, and a§ be an action of Player 2 that belongs to
argming, cpr(a¢) 91(G1, az). Since v, is by definition the minmax payoff for Player 1, there is an action
a$ for Player 2 such that ¢1(a§, a$) U v;. If the rational type of Player 1 imitates the commitment
type by choosing af when Player 2 chooses a3, she will receive a stage-game payoff below or equal
to her minmax payoff. Let a] € argmax,, e, /{ac} g1(a1,a3). That is, aj gives Player 1 the highest
stage-game payoff against a3 among all non-commitment actions for Player 1. In the equilibrium I
describe below, Player 1 will mix between af and aj. The idea of the proof is to show that when
pd is small enough, it is possible to construct a restricted strategy profile o*(h:), Vhy € H(v1),
a set of continuation payoffs 5*(h:), Vhy € G(71), and a system of beliefs p(ht), Vhy € H which
are consistent with the notion of perfect Bayesian equilibrium for every discount factor ¢ above a

certain threshold. Hence, implicitly, the o*, 8*, and p* defined below are all functions of 6.

Since by definition 77 is the highest payoff for Player 1 in V that is consistent with Player 2
getting at least his minmax payoff, it is obvious that the commitment payoff (1) is less than or

equal to v1. First, I consider the case where v(y;) = 3.

Case 1: v(y1) =11

Note that gi(a§,a$) = v1. Thus, if the stage game is not a strongly-conflicting-interest game,
then either the second part of Condition 4.1 or Condition 4.2 is violated. In both cases, there
exists vy > wy such that (01,v5) € V*. Furthermore, there is a2 € Az and a; € A; such
that (1) gi(a1,a2) > gi(a§,a2), and (2) gi(af,a2) < v1. (1) follows from the fact that the
stage game is not a strongly-dominant-action game. To see (2), suppose to the contrary, that
g1(a§, a2) > v1; then from (1), g1(ai,a2) > v1. This implies that there exists A € (0,1) such that
Av1,v5) + (1 = AN)(g1(a1, az), g2(ar, az)) > (1,,), which contradicts the definition of ;.

Since, by assumption, v; is in the closure of Vj*, there is v) > v, such that (v;,vy) € V. Let
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f: Vi — R be a linear function that represents the line passing through (v;,v45) and (o1, v5). Let
(1, f(#1)) and (01, f(01)) be two points on the line segment so that v € (vy,v1) and f(01) €
(v, min{ f(v1), f(v1)}). Set ¢ = min{f(v1), f(v1)} — f(01); q is strictly positive. Note that, by
construction, vy € V¥ and f(01) € V5'; hence, it follows from the Perfect Folk Theorem that any
payoff profile, (v1,v2), that is strictly bigger than (1, f(01)) can be supported by a subgame-perfect
Nash equilibrium when the players are sufficiently patient.!® First, I show that it is possible to
construct a perfect Bayesian equilibrium in which the equilibrium payoff for the rational type of

Player 1 is equal to v} € [v; — (1 — 8)d,v1] C Vi*. See Figure 3.

Vo

Figure 3: Stage-game Payoff when v(y;) = 1

Let 6* be the smallest number such that V 6 € [6*, 1), the following conditions hold: (a) vy —152(d+
1) > gi(a§, az), (b) 01 — 1%‘S(dJr 1)—(1=06)d > vy, and (¢) [vt1 — (1 =06)(d+1),v1+(1=6)(d+1)] C
[0i,71]. These conditions impose a lower bound on ¢ for the equilibrium strategies I construct

below. For the rest of the proof, assume § > 6*.

The “restricted” equilibrium strategies of the two players o7, o3 defined in H(y1) (as a function
of §) are similar to those described in the example in Section 2. During the first 77 + T periods,
Player 2 will choose a non-best-response to af until Player 1 has revealed that she is rational by
choosing an action other than af. I refer to these periods where Player 2, uncertain about Player

1’s type, chooses a non-best-response to commitment strategy as the “screening” phase, and the

15This is important because v, and v, may not belong to set of subgame-perfect Nash equilibrium payoffs.
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action chosen by Player 2 as a “screening” action. In this case, the screening phase consists of
two parts: during the first 77 periods, Player 2 will play a3 , and during the next 75 periods,
he will play ao. The two phases serve different functions. During each period of the first phase,
the rational type of Player 1 will receive a payoff lower than or equal to her minmax payoff if
she imitates the commitment type. By choosing an appropriate T, the equilibrium payoff for the
rational type of Player 1 can be held down close to her minmax payoff. While aj is an efficient
way to “punish” the rational type of Player 1 for imitating the commitment type, it does not
provide incentive to induce the rational type of Player 1 to reveal her type. It is possible that the
commitment action may already be a best response to a3. Thus, a second screening action as is

needed to induce the rational type of Player 1 to reveal her type near the end of the screening phase.

First, T5 is set so that the continuation payoff for Player 1 in the beginning of the second screen-
ing phase is less than v; — 1géd. This is necessary in order to provide enough incentive for
the rational type of Player 1 to reveal her type near the end of the first screening phase. Set
Ty = min{t : (1 —&6Y)gi(a§,a2) + 611 — 8)g1(ar, az) + &ty [ 01 — 1géd}. T, exists because of
(a). Next, T3 is set so that in equilibrium if the rational type of Player 1 chooses the commitment
strategy forever, her average payoff will be (slightly) lower than vi. Define the function Q : Z, — R

as follows:
Q(t) = (1 - 6g1(a5, a3) + 6{(1 — 6")gu1(af, a2) + 6 (1 — 6)g1(ar, a2) + 6™v1} (8)

If the first screening phase lasts for ¢ periods and the second screening phase lasts for 15 periods,
then Q(¢) is the average payoff the rational type of Player 1, if she mimics the commitment type in
the first ¢t + T — 1 periods, chooses a1 in period t + T5, and obtains her commitment payoff from
period ¢ + Ty + 1 onward. Note that Q(0) = (1 — §72)gy(a$, d2) + 672711 — 8)g1(ar, az) + 6720, >
v — 1g‘sd — (1 = é)d > v1. The first inequality follows from the definition of 75, and the second
inequality follows from (b). Moreover, since Q(t — 1) — Q(t) = (1 — 8)&%(v1 — g1(a$,as)) O (1 — &)d
and lim¢ o0 Q(t) [J vy, there exists ¢ such that Q(t) € [v1 — (1 — §)d,v1] C Vj*. Let T1 be the

smallest such t.

Set A = (1g§)d. As in the example in Section 2, A is the probability that the screening action will
be chosen in each period during the screening phase. It follows from Lemma 2.3 that there are jig
and 6** such that Vuo 0 jig and § > 6, —E%— [J 1. For all po 0 fio and 6§ > max{6}, 6},

(1-A)T+T2
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define o7, 03, and p are given in Tables 1 and 2.

hy € H(vq)

oi(hy)

10¢t0T

o1 (ailhe) = T

ot (a§he) = (1 - =25)

T <t<Ti+7T5

oi(a1lhe) = =

oi(aflhy) = (1 - ﬁ)

o5 (ag|ht) =1

t=T+1»

oj(ai|ht) =1

oy (az|he) =1

t>1T1 + 15

oi(aflhs) =1

o3(aslhy) =1

Table 1: The equilibrium strategies, o*

Vhy € H('Yl)

h{ € H

p*(he)

htEH(’Yl), 10t0Ty+ T ﬁ))tj

he € H/H(m)

htEH(’Yl), t>T,+1s 1

Table 2: Player 2’s beliefs about Player 1’s type

During each period of the screening phase, Player 1 will choose af with a probability of 1 —
and reveal her type (by choosing a} in the first 77 periods and a; in the next T periods) with a
probability of ﬁ’ where p; represents Player 2’s posterior belief that Player 1 is a commitment
type in period t. It is straightforward to verify that u; is consistent with Bayes’ rule. If the rational
type of Player 1 has chosen af through the first 77 +75 — 1 periods, then in period 77 +7% according
to the equilibrium strategy Player 1 should choose a; with probability 1. Since Player 2 thinks
that only the commitment type will choose af in that period, if he observes Player 1 choosing af,

he will believe that Player 1 is the commitment type. However, no matter what Player 1 chooses,
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Player 2 will choose a§ from period 71 + 15 + 1 onward. In other words, Player 1 can obtain the

commitment payoff from period 71 +75+1 onward by choosing a1 during the first 17 +75—1 periods.

Define A(t) : {1,..,T1 + T>} — R such that:

t—1

vi=(1-8) 8 "g1(af,03) +8A®). (9)

i=1
A(t) is the equilibrium continuation payoff for the rational type of Player 1 in period ¢ during the

screening phase.

If Player 1 reveals that she is rational for the first time in period ¢, then the continuation game from
period ¢t + 1 onward becomes a standard complete-information repeated game. The continuation
equilibrium payoffs are set so that Player 2 has an incentive to screen. Partition G(v1), the set
of information sets immediately after Player 1 has revealed that she is rational, into two subsets:
Gy = {h.at € G(y1) : ab # o5(hy)}, and Gy = {hy.a® € G(v1) : ab = o3 (hy)}. The set G; contains
the periods in G(v1) where Player 2 has deviated in the last period, and the set Gy contains the
periods in G(71) where Player 2 has not deviated in the last period. The continuation payoffs
depend on whether Player 2 has deviated from the equilibrium strategy in the last period. For all
H; € Gy, set 3*(ht) = (1, f(91)). Recall that, by definition, v; < © < v(v1). The continuation
payoffs 5*(h;) for all hy € G4 are given in Table 3.

hy € Go Bi(he) B3 (he)

10t0T +1 A(t) — 52(91(af, a3) — g1(af, a3)) | f(Bf(h))

Ti+20t 0T +To | At) — 52(g1(af, 42) — g1(a1,a2)) | F(BF (M)

t="T+1T> U1 f(v1)

t>T+1» (2] f(u)

Table 3: Continuation Payoffs, 5*(ht), Vh: € G2
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The “restricted” equilibrium strategies o] and o are sequentially rational given p and 3*. First,
consider the case of Player 1. In period T7 + T, no matter what she chooses, she will get a con-
tinuation payoff of v; from period Ty + To + 1 onward. She will get a higher stage-game payoff
by revealing her type because g1(a{,a2) < gi(ai,a2). Hence, in period 11 + T», it is optimal for
Player 1 to follow the equilibrium strategy and reveal her type. In any period ¢ between T7 + 1
and 11 + T — 1, if Player 1 chooses af and follows the equilibrium strategy after that, her pay-
off will be equal to (1 — 6)g1(a§, az) + 6A(t); if Player 1 chooses a; and follows the equilibrium
strategy after that, her payoff will be equal to (1 — 6)g1(a1,az) + 667 (hi—1.(a1,az)). Similarly, in
any period t between 1 and 77, if Player 1 chooses af and follows her equilibrium strategy after
that, her payoff will be equal to (1 — §)g1(af, a3) + 6A(t); if Player 1 chooses aj and follows her
equilibrium strategy after that, her payoff will be equal to (1 — 6)g1(af,a3) + 607 (hi—1.(aj,a3)).
It is easy to verify that 7 (h:) is defined so that Player 1 is indifferent between af and aj in the
first T periods, and between af and a; in the next 7o — 1 periods. Next, consider the case of
Player 2. By construction, his action in any period t during the screening phase will only affect
his stage-game payoff and the continuation payoff in the event that Player 1 reveals that she is
rational in the same period. Hence, the short-term cost of screening is less than (1 — ¢)d, while the

long-term gain from screening is larger then 6Aq. It is easy to verify that o3 is optimal for Player 2.

Lastly, to complete the proof, I need to show that 3*(h:) can be supported by some subgame-
perfect Nash equilibrium for all h; € G; U Hy. For all ¢ [1 T3, From (1) and (2) and the definition
of Ty, it follows that

A(t) 0 (1 — (5t_1)gl(a‘1:, &2) + (St_l(l — 5)91(&1, &2) + 5t171 o — 1—76d

6
* — 1-46 1-6 c s * 8 —
= 01 (h) 0 01 — — At —5— (91(af,a3) — g1(ai,a3)) O 01,

By definition A(t) 0 vy for all 77 + 1 00 ¢ [ T} + T». In addition, since g1 (a§, a2) — g1(a1,a2)) < 0;
then,
ﬂik(t) Ovy VI +10t0T1+ 15

As a result, 5*(hy) € V* for all hy € G3. Moreover, since 5*(hy) >> (01, f(11)), it follows from the
Perfect Folk Theorem that there exists 6*** so that for all 6 > §***, any 8*(h:) hts € G1 UG3 can

be supported by some subgame-perfect Nash equilibrium.

In summary, I have shown that for all § > max{6*,6**,6**} and uo [ fig, I can construct a
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perfect Bayesian equilibrium with the equilibrium payoff for the rational type of Player 1 equal to
v} € [vp — (1 —8)d, v1]. Using the same argument, I can construct another equilibrium in which the
first period action of Player 2 is different from the equilibrium above, and the equilibrium payoff
for the rational type of Player 1 equal to v? € [vy, vy + (1 —6)d] € V{* . Finally, an equilibrium with
the payoff for the rational Player 1 exactly equal to v; can be constructed by taking a convex com-
bination of the two equilibria. This can be achieved by making Player 2 mix with an appropriate

probability between the two equilibria in the first period.

Case 2 v(y1) < 11

The construction of the desired equilibrium is simpler in this case. When there is a gap between
the commitment payoff and 71, the continuation payoffs for the rational type of Players 1 at the
end of the “screening” phase can be adjusted to induce her to reveal her type, and give her the
desired equilibrium payoff . Thus, it would be unnecessary to construct two different equilibria as
in Case 1. Since Case 2 is a special case of Theorem 2 in the next section, I shall not repeat the

proof here. For details, see the proof of Theorem 2. O

4.2 History-Dependent Commitment Strategies

In many games, a player may want to commit to a history-dependent strategy. For example, in
the infinitely-repeated Prisoners’ Dilemma, while a player obviously would not wish to commit to
simple strategies of either cooperating or defecting unconditionally, she may like to commit to a

history-dependent “Tit for Tat” strategy.

When the commitment strategy of Player 1 is history-dependent, Player 2’s action in one pe-
riod may affect the commitment type’s continuation strategy and, hence, the long-term payoff for
Player 2. As a result, the proof of Theorem 1 does not apply directly. However, I show that the
conclusion of Theorem 1 continues to hold under a stronger sufficient condition when the commit-

ment strategy is history-dependent.

In order to understand the complication that arises when the commitment strategy is history-
dependent, we need to get into the details of the basic structure of the equilibrium I construct
in the proof of Theorem 1. The decision tree in Fig. 4 represents the decision facing Player 2 in

period t during the screening phase. In each period, Player 2 expects both types of Player 1 to
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Figure 4: Player 2’s decision in period t

choose the commitment action with a total probability of 1 — A and a non-commitment action with
a total probability of A. If Player 2 chooses aj, he will receive a payoff of g; in that period. The
equilibrium continuation payoff depends on the actions of Player 1. Let g;1; be Player 2’s expected
equilibrium stage-game payoff in period ¢ + i if Player 1 has not revealed that she is rational before
that period, and Bi; be the equilibrium continuation payoff from period ¢ + ¢ onward if Player 1
has revealed that she is rational in period ¢ +¢ — 1. The expected continuation equilibrium payoff

vy takes the following form:

v = 8[(1=8)(1 = A)grr1 + Aba] +67(1 = A)[(1 = 8)(1 — A)gsi2 + Abs2]
+63(1 = AP[(1 = 8)(1 = A)gess + ABys] + ...
Similarly, let g}, v; be the stage-game payoff in period ¢ and the continuation equilibrium payoff for
Player 2 if he deviates and chooses a best response to the commitment strategy in period ¢, but

follows the equilibrium strategy from period ¢ 4+ 1 onward. The continuation payoff v} can also be

represented in the following form:

vp = O[(1=8)(1— A)giyy + AB ] + 61— A)[(1—6)(1 — A)giys + AB ]
+6%(1 = A)?[(1 = 8)(1 — A)gprg + ABys] + o
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When the commitment strategy is simple, Player 2’s action in period ¢ will not affect the future
actions of the commitment type. Moreover, in the proof of Theorem 1, since the continuation
strategies of the rational type of Player 1 and Player 2 are constructed so that they are independent
of the previous actions of Player 2, Player 2’s future equilibrium stage-game payoffs in the periods
where Player 1 has not been revealed as rational are also independent of Player 2’s previous actions,
ie. gsy1 = g,y for s > t. Hence, I can keep the continuation equilibrium payoffs v; and v; equal
by setting Bs12 = [, o for all s > t. As a result, Player 2 will be “punished” for not screening in
period t only in the event that Player 1 reveals that she is rational in period t. As I have showed

in the example in Section 2, it is rational for Player 2 to screen if

(1= 8)(g: — g0) 0 A8(Bra — Brya) (10)

This relation puts a lower bound on A, and hence, on the rate of Bayesian updating. In order to
ensure that screening can last for many periods, it is crucial that the cost of one period of screening
is on the order of (1 — §)d. When the commitment strategy is history dependent, since Player 2’s
action in period ¢ can affect the future actions of the commitment type, in general, gs11 will not
be equal to g, ; for s > t. As a result, one period of screening may involve a long-term cost. One
way to avoid this problem is to keep the continuation payoffs v; and v} equal by setting (s4; and

B, for all s >t so that

[(1 = 8)(L = A)gsyi + ABsra] = [(1 = 8)(1 — A)ggy; + ALy

In this case, Bsy; will not be equal to 3 Intuitively, Player 2’s “punishment” for a deviation

s+i°
is distributed according to how the deviation affects the future actions of the commitment type.
Suppose the continuation payoff for the rational type of Player 1 is given by x. In equilibrium, =

has to be set so that she is indifferent between mimicking the commitment type and revealing her

/

type and, therefore, cannot be adjusted freely. In order to be able set 3s1; and 3],

according to
the equation above, both (z, 3s1;) and (z, 3 ;) have to belong to V*. This means that x cannot
equal to 7. See Figure 5. The following assumption guarantees that the commitment payoff is

strictly less than v;.

Assumption 1

v(m) <1

where 7(y1) = sup{vs(y1|ht) Ve € H,6 € (0,1)}. When the commitment strategy is history de-

pendent, the continuation commitment payoff after period t depends on the history h; and the
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discount factor . And (1) is the supremum of the set of continuation commitment payoffs (in-
cluding the original commitment payoff at the beginning of the game) after any finite history and

for any discount factor.

I show that in any two-person infinitely-repeated game with one-sided incomplete information,
if the commitment strategy is pure (but possibly history-dependent) and satisfies Assumption 1,
any then v; € Vi can be supported by some perfect Bayesian equilibrium when the players are
sufficiently patient and the prior probability that Player 1 is a commitment type is sufficiently
small. For example, in the infinitely-repeated Prisoners’ Dilemma, my result implies that Player 1
cannot guarantee herself a payoff close to the “cooperation” payoff by mimicking a “Tit for Tat”

type (or any other commitment types with the same commitment payoff).'6

Note that Assumption 1 is a fairly strong assumption. In strongly-conflicting-interest games and
strongly-dominant-actions games, it rules out simple commitment types with commitment payoffs
equal to v;. More generally, in games where v; € V;* (e.g. Battle of Sexes), Assumption 1 di-
rectly rules out commitment types with commitment payoff equal to ;. In games where v; ¢ V*
(e.g. Prisoners’ Dilemma), where the commitment payoff is, by definition, strictly lower than v,

Assumption 1 requires that the commitment payoff be bounded away from 7, as é approaches one.

Theorem 5 In a two-person infinitely-repeated game with incomplete information I'(A, g, 6,71, o)
if v1 is a pure history-dependent strategy with v(vy1) < 01, then Yvy € Vi*, 3 8 and [y, such that
Y6 > 6 and po U fig, there is a perfect Bayesian equilibrium in which the average discounted payoff

for the rational type of Player 1 is equal to vy.

Proof of Theorem 2:

Since 7(7y1) < v and vy > vy, there exists 01, ¥ and € > 0 such that v; < ©§ [0 93 — € and
v(y1) + € [ 01 < 01. Since V* is convex and non-empty, both ¢, 9; belong to Vj*, i.e. there are
09, Uy that are strictly bigger vy so that (01, 09) and (01, 02) belong to int(V*). Let f: V3 — R be
the linear function representing the line passing through (21, ©$) and (01,01). Since V* is convex,
there exists ¢ > 0 such that the set B = {(v1,v2) : v1 € [04,01],v2 € [f(v1) —q, f(v1)+¢]} CV*. In

other words, any point (v1,v2) where vy € [0], 1], and where the vertical distance from (v1, f(v1))

K reps, et al.(1982) show in finitely-repeated prisoners’ dilemma, when there is some small probability that one of
the players is a “Tit for Tat” type, then in all sequential equilibria both players will cooperate until almost the end
of the game.
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is less than q is strictly individually rational. See Figure 5.

Vi

Figure 5: Stage-game Payoff for when v(y;) < 01

Given 71, I can construct a function r : A1 — Ag so that g1(a1,7(a1)) O vy. Define s3 : H(y1) — As
such that s5(hy) = r(v1(ht)) Vhy € H(7). In any period after some history hy, if Player 2 chooses
s5(hy) and the rational type of Player 1 chooses 7i(h:), then the rational type of Player 1 will

receive a payoff less than or equal to her minmax payoff.

Below, I assume that the players are patient enough such that the stage-game payoff in any single

period does not significantly affect the payoff of the whole repeated game. Specifically, assume that

1=0 is less than -5 and 5. For any 6 > 6* = min{ 2516, #ﬁq}, define A : H(1) — R such that:

[ he = I
Alhe) = { grfon = (1= 8) X, 6 20 (hf(i = 1),r(h}(i = 1))} he€ H(m), t =2

In the equilibrium which I shall construct, A(h;) will be the continuation payoff for the rational type
of Player 1 after a history h;, if the rational type of Player 1 and Player 2 have played according
to v1 and s} during the first ¢ — 1 periods. A(h¢) is set so that the expected average payoff of the

whole game for the rational type of Player 1 is equal to v;.

Define the following subsets of finite histories:
Hy = {h€H(m): Ahe) <v(mn)}
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Hy = {hpa€ H(m): hy € Hy and v(y1) O A(hy) O 9y — %}

Screening takes place in periods hy € Hy U Hy. Consider any complete history of the game h that
is consistent with the commitment strategy. If hyy1, hy are the t + 1— and t—period truncations of
h, then

1-6 1-6

(‘5 (’Ul *Ql) 0 A(ht+1) 0 A(ht) + Td (11)

The first inequality implies that A(h:) is strictly increasing in t, and the second inequality implies

A(he) +

that as A(h¢) increases with t, it will not jump over the interval [7(y1), 01 —§], so that there is always
a period t* such that hys € Hs. Moreover, for any history that is consistent with the commitment
strategy, the number of periods it takes to reach Ha(71) is uniformly bounded from above . To see
that, note that for all hy € Hy U Ha, v1 U (1 — ')y + 6'01; hence, 6% > 222 | or equivalently,

V1 -0y
t1n <le Ql) /Iné.

V1 — U

v
—uy

Let T be the smallest integer that is larger than In (Zi—l> /Iné. Note that T is implicitly a
function of §. From Lemma 2.3, there exists ig, 6** such that Vuo 0 i, § > §**, and t [ T(9),

__Ho D[L:L
(1 —A) 2(d+q)°

Set A = ﬁ%élg. Now, for all po [ fig, and 6§ > max{6*,6**}, define o] and o} in H(y1), and p in
H according to Tables 4 and 5.

hy ai(hy) a5 (hy)

H o1 (ailh) = 03 (s5(he)|he) = 1

A
1—p(he)

o (r(h)lhe) = (1 — =555)

Hy oi(ailh) =1 03 (85(ht)|he) = 1

H(m)/(Hi U Hy) | o7 (va(he)[le) =1 a3 (ba(ya|he)|he) = 1

Table 4: The equilibrium strategies, 0*(ht) Vh: € H(71)

29



hy p(he)

U Hy Ayt

H/H(m) 0

H(’yl)/HlLJHQ 1

Table 5: Player 2’s beliefs about Player 1’s type

In equilibrium, screening takes place in periods with h; € H; U Hy. During those periods, Player 2
chooses according to s3 so that if the rational type of Player 1 imitates the commitment type, she
will at most receives her minmax payoff v;.!” In periods with h; € Hy, the rational type of Player

1 will choose y(h:) with a probability of 1 — %

) and aj with a probability of #(ht) Screening
ends in periods with h; € Hs when the rational type of Player 1 reveals her type by choosing aj.

It is easy to verify that p is consistent with Bayes’ rule given o7 and o3.

The rational type of Player 1 may reveal her type for the first time in one of the following three situ-
ations: during the screening phase in Hi, in a final period of screening in Hs, or after the screening

phase in H(v1)/(H1 U Hy). The following subsets of histories correspond to these situations.

Gg = {ht.a € G(’Yl) chy € Hl}
G4 = {ht.a S G('yl) thy € HQ}
G5 = {ht.a € G(’Yl) : ht € H(’yl)/(Hl U Hg)}

The continuation payoffs 8*(h;) Vh: € G3 U G4 U G5 are given in Tables 6 and 7.

It is straightforward to verify that o] is rational. In periods after the screening phase with
ht € H(v1)/H; U Hs, Player 2 is convinced that Player 1 is a commitment type. Since by con-
struction, the continuation commitment payoff is higher than (1 — §)d + 604, the highest payoff the
rational type of Player 1 can obtain by deviating, it is optimal for her to follow the equilibrium
strategy. During the “screening” phase, by construction, A(h;) = (1 — 8)g1(a], s3(he)) + 657 (hyi 1)
for all hy € Hy U Hy, where hy,; = hy.(a},s5(hs)). That is, if the rational type of Player 1 reveals

17She may receive strictly less than v,, if she chooses a dominated action.
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her type in period ¢ during the “screening” phase, she will receive a payoff of A(h:). In periods
with hy € Ho, since A(hy) > v(v1), Player 1 will strictly prefer to choose aj. In all other periods
with h; € Hy, since A(hy) = (1 — 6)g1(71(he), 85(ht)) + OA(hj, 1) where by, = hi.(v1(he), s5(Re)),

Player 1 is indifferent between choosing ~(h;) and a}.'8

hy B (he) B3 (he)

he=hi 1.0 € GyUG, | M=) 0aleistes) | r(g2(h,)) + y(hy)

hi = hi_1.a € G5 (] f(ﬁi)

Table 6: Continuation Payoffs 5*(h;) Vhy € G3 UGy UG5

hy n(h¢)

he = hi—1.a € Gs | 2{f(91(p] (ht—1), $5(he—1))) — g2(pi(he—1),a2)}

1—p(he—1)
i A (91 (o3 (he 1), s5(he1))) — ga(p*(he—1), a2)}

Table 7: n(ht) Vhy € G3 UGy

he = hi_1.a € Gy | Llu=1) {f(A(htfl))_(1_6)f((591(71(ht1)’Sg(hhl)) — va(mhe, b2(’Y1|ht))}+

Now I shall show that o3 is rational. Let v} (h:) denote va(p7|he, s5|ht), the equilibrium continuation
payoff in a period with history h; € Hy U Hy. First, consider any period with h; € Hy. If hy € Ho,
then by definition, h¢.(a7, a2) must belong to Ga4. If Player 2 chooses as in that period and follows
the equilibrium strategy afterward, his payoff will be equal to

(1 = 8)g2(pi (he), az) + { p(he)v2 (vl hegrs bolhera) + (1= p(he)) (f (85 (hiya)) + n(hiya))} - (12)

where hy1 = hy.(v1(he), a2) and hy,; = h.(a], a2).

By substituting the definition of 5*(hj, ) and n(h; ;) into the equation and rearranging terms, it

18Recall that a} is by definition the best response to the screening action among the non-commitment actions.
Since the continuation payoff for the rational type of Player 1 after she has revealed her type does not depend on
which non-commitment action she chose, Player 1 strictly prefers a] to any other non-commitment action.
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can shown that Equation (12) is equivalent to

F(A(Re)) = dp(he){(va(v1lhisq, b2(11lhis1)) — va(yalhetr, b2 (1l het1)) }
+(1 = 8){f(g1(p1(he), 85(he)) — g2(p" (he), a2)) } + (1 — pu(he))on(hyyq)
= f(A(h))

where hy ; = hi.(y1(ht), s5(he)) and R, = hy.(a},s5(he)). Player 2’s stage-game action affects
his expected stage-game payoff in that period and the continuation payoff in the next period in
the event that Player 1 is a commitment type. The value of n(hj,,) hi,, € Hy is set to cancel
out these effects so that Player 2 is indifferent between choosing any stage-game actions, and his

equilibrium continuation payoff is equal to A(hy).

Next, I shall show that in any period ¢ with h; € Hy,
(1= 6)g2(pi(he), az) + 6{AB5 (hegr) + (1 — A3 (here)} = f(A(he)) Vag € Ay (13)

where hyy1 = h¢.(v1(he), az) and hj ;= h¢.(a},az). Equation (13) implies that Player 2 is indifferent
between any actions as € Ao, and the equilibrium continuation payoff for Player 2, vj(h:), is equal

to f(A(ht)). Construct {K;}T, a finite sequence of subsets of H; as follows:

K= {ht € Hy: Vag € AQ, ht.(’yl(ht),ag) € HQ},
and in general,
K; = {ht € Hy: Vay € A2a ht-(’Yl(ht),(Ig) c Ki—l} UK;_120:¢:0T.

K; includes all periods from which it takes Player 1 at most ¢ more periods of mimicking to reach

the final period of screening. Since screening lasts for at most T periods, K = H;.

Suppose Equation (13) holds, and hence, vi(h:) = f(A(h:)) for all hy € K;. Consider a period
ht € K;y1/K;. If Player 2 chooses ay in that period, and follows the equilibrium strategy after
that, his expected payoff will be equal to

(1= 0)g2(p1(he), az) + 6{AB3 (he-(aq, az))] + (1 — A) f(A(he-(71(he), a2)) }
= f(A(he)) + (1 = 6)(g2(pi(ht-1), a2) = f(g1(pi(hi-1), 52(he-1)))) + 6An(he- (a3, a2))}
= [(A(ht)).
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Since I have already shown that v3(h:) = f(A(h:e)) VYhe € Ha, it is straightforward to verify that
Equation (13) holds for all h; € K7; therefore, by induction, it holds for all h; € H;.

To complete the proof, I need to show that any *(h:), hy € G3 U G4 U G5, can be supported
by some subgame-perfect Nash equilibrium. Since vy = A(hy) < A(hy) U 0y — 5 Vhy € Hy U Hy,
it follows from the definition of ¥ and ©; that

o O ﬂl(ht) 001 hy €G3UG4

By construction, if v; € [0},01], and vy € [f(v1) — ¢, f(v1) + ¢], then (vi,v2) € V*. Since by
assumption, f(g1(p](he-1),85(he-1))) — g2(pi(he-1), a2) U d, so [n(ht)| U ¢ Vhs € Gs. Similarly,

for all hy € Gy, note that, u(hy) O m, and 6 > %,

1(hey) 1 1-4
d—+
1—p(he—1) 1= p(he—r) 6

I have shown that 5*(h:) € V* for all hy € G3 U G4 U G5. Thus, the Perfect Folk Theorem implies
that there exists a §***, such that V6 > §***, §*(hs) € V* can be supported. O

In(he)| < drlq.

4.3 Concluding Remarks

Although Theorems 1 and 2 formally assume that the players are equally patient and there is only
one pure commitment type, these assumptions are not crucial to my results. Below, I briefly discuss

how my results extend to more general cases.

e To extend my results when there are multiple commitment types, I need to construct an
equilibrium in which Player 1 mimics all commitment types with strictly positive probability
during the screening phase. Note that Player 2 can distinguish between two possible pure
commitment types once they have chosen different actions at some information sets. I only
need to make sure that at those information sets, the continuation payoffs for the rational

type of Player 1 are set so that she is willing to mix between different commitment actions.

e In an earlier draft of this paper, I show that the conclusion of Theorem 2 continues to
hold when mixed commitment strategies are allowed, if another assumption, in addition to
Assumption 1, is made to guarantee that the rational type of Player 1 can always reveal

her type.!? The problem becomes complicated in this case.?? The definition of commitment

YFormally, this is equivalent to assuming that the commitment strategies do not have full support at any infor-
mation set.
20However,in this case it is unnecessary to deal with the issue of multiple commitment types explicitly because from
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payoff needs to be generalized, and the equilibrium strategies of the rational type of Player
1 and Player 2 involve mixed actions. Nonetheless, the basic idea of the proof in this case is

the same as that of Theorem 2.

e The Perfect Folk Theorem is needed in the proof of Theorems 1 and 2 to guarantee that
there exist subgame-perfect-Nash-equilibrium payoffs which support the equilibrium strategies
during the screening phase. Although there is no reason to believe that the Perfect Folk
Theorem will not hold when the players have different discount factors and mixed strategies

are unobservable, this has not been proven.?!

This is the reason why Theorems 1 and 2,
strictly speaking, only hold when the players are equally patient. The remaining parts of
both proofs do not depend on the assumption of equally patient players. If the Perfect Folk
Theorem holds in the case of comparably patient players, then Theorems 1 and 2 will apply

to those cases as well.

5 Reputation Effects in Strongly-Dominant-Action Games

In this section I show that in strongly-dominant-action games, a player can build a reputation even
when she is less patient than her opponent. Assume y < 0 and x > 0 in the stage-game depicted

in Fig.6. In this game, the most favorable outcome for Player 1 is (A, A) which gives her a payoff

Player 2

A B

Player 1 A | 2,x | 0,0
B|00|y,2

Figure 6: A Strongly-Dominant-Action Game

of 2. If Player 1 is rational, she always chooses action A , since A is a strictly dominant action. If
Player 2 is rational and knows that Player 1 is rational, he should also choose A. As a result, if the
game is played once, it is very likely that the outcome will be (A, A). When the game is infinitely
repeated and the players are patient enough, any average payoff profile that is strictly bigger than

(0, %) can be supported by a subgame-perfect Nash equilibrium. Theorem 4 below shows that

the perspective of Player 2, he is always facing one “aggregate” commitment type with mixed commitment strategies.
For example, suppose there are two commitment types: w; with probability p1 and w2 with probability ps; for Player
2, this is equivalent to facing a commitment type v1 = p_ﬁ]ﬁwl + ﬁng with a probability of p1 + pa.

T ehrer and Pauzner (1997) has shown that the folk theorem holds with different discount factors when mixed
strategies are observable.
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in this case, the folk theorem result is not robust to a small amount of private information. In
particular, if there is a strictly positive probability that Player 1 is a commitment type who always
chooses A, then (A, A) will be played along the equilibrium path in any perfect Bayesian equilib-
rium in the corresponding incomplete-information, infinitely-repeated game. This result critically
depends on the assu pton thtt eoly om it en ty efrPayr1l Iwys hose Aad
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arbitrarily close to her minmax payoff.2> The sharp difference between these two cases illustrates
the critical importance of the assumption that A is a strictly dominant action.?* On the other
hand, it is not important whether the game is of common interest, (i.e. > 2), because Player 2
will choose A regardless of the value of x as long as he is convinced that Player 1 is going to choose

A. Theorem 3 formalizes the above argument.

Theorem 6 In an infinitely-repeated strongly-dominant-action game with one-sided incomplete in-
formation, T'(A, g, 61,62,71, 113), if the commitment type, v1, always chooses the strongly-dominant
action, then for any 61,62 € (0,1), and any pg > 0, the average equilibrium payoff for the rational

type of Player 1 is equal to U1 in any perfect Bayesian equilibrium.

Let a; be the strongly-dominant action for Player 1 and as be one of Player 2’s best responses to
da1. Note that in this case, v1(ht) = a1, Yhy € H. Define §3 € So such that §a(hy) = ag, Vhy € H.

For convenience, I use 01 and 02 to denote g1(a1,az2) and ga(ai, az).

The idea of the proof is to show that if (o1,092,1) is a perfect Bayesian equilibrium in which
the equilibrium payoff for Player 1 is strictly below o1, then it is possible to construct a history
) > H(iltz)

h € H(v) and a sequence of time {t1,t2,ts,...} such that, for some € € (0,1), (b -

141
for all 4. This implies that no matter how small pf, there exists a t; such that u(ﬁtj) > 1, which

contradicts the assumption that p(hy) 01 Vhy € H. Thus, no such (07,09, 1) can exist.

Before I can construct h € H(y;) and {t1,t2,13,...}, I need to establish the following 3 lemmas.
Lemma 5.1 below follows directly from the strict dominance of a;. If Player 1 knows that she can
obtain 77 in the continuation game regardless of her current period’s action, she will strictly prefer

to choose a1 in that period.

Lemma 7 If (01,09, 1) is a perfect Bayesian equilibrium of the game T' and v1(y1,02|d1) = 01,

then Ul(hl) = &1.

Lemma 5.2 is a common argument which asserts that when Player 2 discounts his future payoffs,
there is a period N such that Player 2 cares very little about his payoffs after period N. To formally

state Lemma 5.2, it will be convenient to define a N-period truncated strategy o.¥ for any o; € ¥;.

23 Aumann and Sorin (89) show that there exists a pure strategy equilibrium in this game, and all pure strategy
equilibria are Pareto efficient.
24Cripps and Thomas (1997) assume that A is not a strictly dominant action.
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By Lemma 5.3, set € such that if d™(p1,71) O €, then |va(pY, 55 ) —vo (1], 60)| 0 §, V G2 € o.
I shall show that it is impossible for d™¥(py,71) 0 €. Suppose to the contrary, that d™ (p1,v1) 0 €,
then

C
IUQ(p{Va Sév) U IUQ(’Y{Va Sév) + é

R 6c¢
= vp(pY, 55 ) [ B — 5

Since s9 is a best response for Player 2,

va(p1,82) > va(p1, 32)

AN N _N c
= UQ(pivaSQ ) 0 U2(p1 y S9 ) - g
R R 5c
= vp(pY, 85 ) [ B — 5

Since va (i, 8Y) > 9 —

Y

oo

. . c
|’U2(piv, Sév) - IUQ(’Y{Va Sév)| > §a

contradicting the assumption that d™¥(p1,71) O e. Put differently, in order to induce Player 2 to
choose a strategy that is not a best response to 1, the rational Player 1 has to deviate from playing

~1 with a probability bounded away from zero either in response to sz or in response to So.

Let 5o € Sy such that 1 — P, 5,(hn(71,52)) > €. Along the path hy(71,52), let n I N be
the last period in which the rational Player 1 chooses a; with probability strictly less than 1, so

that Py 5, (hn(71,32)) = Bpy 5 (A (71, 52))-

Since Player 1 is willing to choose some action a; # a;, from Lemma 5.1, there exists a t’-period

history hy € H(v1) such that Player 2 may choose some action as # as.
Set to=t;+n+t and ]Azt2 = iLtl.hn(’yl, §2).ht/.

Since Btl, hn (71, 82), and hy all belong to H (), Btz belongs to H(7;) as well. Moreover, according
to Bayes’ rule, u(ﬁtz) > %@—) By repeating the above argument, I can construct ts, ta, ts... and h
similarly, so that Vi, u(ﬁti ) = %—) For any pd, there is a t; such that u(ﬁtk) > 1; therefore,

(01,09, 1) is not a perfect Bayesian equilibrium. O
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Now, I can construct an equilibrium in which if Player 1 chooses the commitment action in the first
period, then the players will play the first equilibrium from period 2 onward; otherwise, they will
play the second equilibrium. Since the rational type of Player 1 is indifferent between these two
equilibria, it is rational for her to reveal her type with a sufficiently high probability such that the
equilibrium payoff for Player 2 is approximately equal to v, his equilibrium payoff in the second

equilibrium.

Proof of Theorem 4:
In period 1, the rational type of Player 1 chooses aj with probability p;, and imitates the commit-
ment type by choosing v1(h1) with probability 1 — p;. Player 2 chooses some ds which is a best

response to p1, his expectation of Player 1’s strategy in period 1. Define

v (1= 8)gi(ar, da)

Aa1,a2) = 3
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The continuation payoffs from period 2 onward for the rational type of Player 1 and Player 2,

(v1(a),v2(a)), and the beliefs about Player 1’s type in period 2, p(a), are given in Table 8.

ar =y1(h1) | Ala) f(A(a)) N S

va—(1—6 ,d2)—(1— 1p1)6f(Aa
a1 # (k) | Ale) | 2el fl)_fil))pplﬁ“opl) [ |

Table 8: The continuation payoffs, (v1(a),v2(a)), and beliefs , u(a), in the second period

It is straightforward to verify that u(a) is consistent with Bayes’ rule and that given (vi(a), va(a)),
the first-period strategies of the players are rational, and the equilibrium payoffs for the entire game
are equal to (v1,v2). To prove Theorem 4, I need to show that these continuation payoffs can be

supported by some perfect Bayesian equilibrium when ¢; is close enough to 1 and ué is small enough.

Since (v1,vq) € int(V*), it is clear that there are 6* and p'* such that 6 > &*, u{ [0 u**, p can be
set so that (vy(a),ve(a)) € V* Va € A. In the case where a; # v1(h¢), it follows from the Perfect
Folk Theorem that there exists 67* such that V6; > 67, (vi(a),v2(a)) can be supported by some
subgame-perfect Nash equilibrium. In the case where a3 = 71(h1), Theorem 1 (or 2) implies that,
in the game T'(4, g, 61, 82,71 |a, u(a)), there exist 6*** and p!** such that V6 > §*** and pf 0 p'**
there is some perfect Bayesian equilibrium with equilibrium payoffs for the rational type of Player
1 and Player 2 equal to A(a) and f(A(a)), respectively. Set ud*** = Qopi ™ g g straightforward

(1_p1“1**)
to verify that Theorem 4 holds for all § > max{&*,§**,6**} and pf O min{p!*, pt***}. O

Theorem 5 extends the result of Theorem 4 to the case where both players possess private in-
formation. Formally, denote a two-person infinitely-repeated game with two-sided incomplete in-
formation by T'(A, g, 8,1, 19, y2, 43) where v and pZ represent the commitment type of Player 2
and the prior probability that Player 2 is a commitment type. (The other notation defined for the
commitment type of Player 1 extends to that of Player 2.) Note that ['(4,g, 8, v1,u?,v2, u3) can
be reduced to a one-sided incomplete information game by setting either ud or p3 to 0. Let I';, for

i = 1,2, be the resulting repeated game in which only Player i possesses private information (i.e.
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) =0, j #i). Theorem 5 states that in any infinitely-repeated game T'(A4, g,8,v1, 13,72, u3), if
I'; and Ty satisfy the conditions of Theorems 1 or 2, then any payoff profile that is in the interior
of the set of strictly individually-rational payoff profiles can be supported by a perfect Bayesian
equilibrium when the players are sufficiently patient, and the prior probability that the players
are commitment types are sufficiently small. Theorem 5 demonstrates that the general result that

reputation effects do not exist does not rely on the assumption of one-sided private information.

The basic idea of the proof is similar to that of Theorem 4. The key is to construct an equi-
librium in which the rational types of both players will reveal their types with high probability
in the first period. This is possible because when each player expects the other player to reveal
her type, then each of them is basically choosing between playing a complete-information or a
one-sided incomplete-information continuation game. If a player reveals her type, she will (most
likely) play a perfect-information continuation game from period 2 onward; otherwise, she will play
a continuation game in which her opponent is not sure about her type. Now from Theorem 4, I
can construct continuation equilibria such that the rational type players are indifferent between

imitating the commitment types and revealing their types.

Theorem 11 In a two-person infinitely-repeated game with two-sided incomplete information
T(A,g,6 1, 1g, Y2, 13), if both Ty and T satisfy the conditions of either Theorems 1 or 2, then
V(v1,v9) € int(V*), 368, iy, and i3 such that V6 > &, py 0 i, and pd O 2, there is a perfect

Bayesian equilibrium with the rational players’ equilibrium payoffs equal to (vy,v3).

Proof of Theorem 5:
First I establish a simple lemma which shows the existence of equilibrium. The proof is in the

appendix. Let (01, 02) be the rational players’ equilibrium payoff.

Lemma 12 IfT'(A,g,8,71, 143, v2, u3) satisfies the conditions in Theorem 4, then 3 8, i}, and p3

such that V6 > §, ug O i@, and p3 0 i3, a perfect Bayesian equilibrium exists.

In period 1, the rational type of Player i chooses a] with probability p; and ~;(h;) with probability
1 — p;. Consider Player 1’s decision, if she chooses a] in period 1. In period 2, she will play
either a complete-information continuation game with probability p2 or continuation game with
her uncertain about Player 2’s type with probability 1 — ps. On the other hand, if Player 1 chooses

~v1(h1) in period 1, then in period 2, she will play a continuation game with Player 2 uncertain
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about her type with probability p2, and a two-sided incomplete-information continuation game with

probability 1 — po. The situation is similar for Player 2.

v1 — (1 —é)gi(a, p2)
b1 ’

Define Aj(a,az) =

vy — (1 = 6)g2(p1,a2)

and Ag(al, CLQ) =

62

a1, az vi(a) va(a) pi(a) pa(a)
a1 # 71(h1)
ag # Y2(h1) | Ai(a) As(a) 0 0
a1 = y1(h1) ; )

Ai1(a)—(1—p2+pgp2)v; By
az # 7a(h) | = (1—u%2)p20 | Aa(a) A | Y
a1 # y1(he) ) ,

_ Az(a)—(1—p1+pgp1)v: By

az =2(h1) | Ai(a) ) (1—u%1)p10 — |0 pd+(1—pd)(1—p2)
a1 = y1(h1) ) ,

- - u u
az =72(l) | 01 v2 P00 p) | B0 p)

Table 9: Continuation Payoffs, v;i(a),v2(a) in period 2

The continuation payoffs are set so that the equilibrium payoff for the rational type players in the
game is equal to v; and ve. It is straightforward to verify that wui(a) and po(a) are consistent
with Bayes’ rule and that the first period strategies are rational given the beliefs and continuation
payoffs. Using an argument similar to that of Theorem 4, it can be shown that 3 §, f}, and i
such that V& > 8, pd [0 i, and w2 [ i3, p1 and pa can be set such that the continuation payoffs

v1(a), va(a) can be supported by perfect Bayesian equilibrium. O

7 Conclusion

In this paper, I study a two-person infinitely-repeated game in which an informed player tries to
develop a reputation by mimicking a commitment type, but her opponent, expecting that, tries to
screen her out by choosing an action that will “punish” her for imitating the commitment type.
Fudenberg and Levine (1989) and Schmidt (1993) point out that since screening is also costly to
the uninformed player, he will screen only when he expects the informed player to reveal her type
in the future with a probability bounded away from zero. When he sees the informed player choose

the commitment action in a period in which he thinks that she may reveal her type, he assigns
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a higher probability to the event that she really is a commitment type. Based on this argument,
they conclude that for any fixed discount factor of the uninformed player, the number of screening
periods must be bounded. Hence, no matter how small the prior probability that the informed
player is a commitment type, if she is sufficiently more patient than the uninformed player, she
can guarantee herself a payoff strictly higher than the minimum payoff she may otherwise receive
in the case of perfect information. This result, while very robust in many other aspects, obviously
depends heavily on the assumption that the informed player is arbitrarily more patient than her

opponent.

The main contribution of this paper is to show that, in general, when the two players are comparably
patient, the informed player does not always benefit from developing a reputation. Formally, when
the commitment strategy is simple and the stage game is neither a strongly-conflicting-interest
game nor a strongly-dominant-action game, or when the commitment payoff is strictly less than
the informed player’s highest repeated-game payoff, any payoff that is in the interior of the set of
strictly individually rational payoffs can be supported by some perfect Bayesian equilibrium as the
discount factor goes to one and the prior probability that the informed player is a commitment
type goes to zero. This result is very robust. With minor qualifications, it can be extended to
allow for multiple commitment types, mixed commitment strategies, comparably patient players
and two-sided private information. In other words, the folk theorem holds even when there is a

small probability that the players are commitment types.

The fundamental idea is that the strength of reputation effects depend on the level of relative,
but not absolute, patience. To clarify the relationship between reputation effects and relative pa-
tience, I introduce a measure of relative patience based on the weights the players put on their
payoffs after a certain future period. Absolute patience does not matter because as the informed
player becomes more patient, the uninformed player will also become more patient and, hence, may
screen for a longer period of time. For a fixed level of relative patience, if the prior probability
that the informed player is a commitment type is sufficiently small, the uninformed player can be
induced to screen for such a long period that it is not worthwhile for the informed player to develop

a reputation.

Another crucial aspect of the proofs of Theorem 1 and 2 is that the informed player can be induced
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to mix between mimicking the commitment type and revealing her type. Giving up her reputa-
tion is not necessarily bad for a rational informed player because, according to the Perfect Folk
Theorem, any strictly individually rational payoff can be supported by a subgame-perfect Nash
equilibrium. As a result, with the exception of strongly-dominant-action games, there always exist
continuation equilibrium payoffs such that the rational informed player is indifferent between mim-
icking the commitment type and revealing her type. The importance of this point is demonstrated
by the example of infinitely-repeated strongly-dominant-action games. In such games, if the only
commitment type is one who always chooses the strongly-dominant action, the rational informed
player cannot be induced to reveal her type in the last period of screening. In that case, I show

that the informed player receives the commitment payoff in all perfect Bayesian equilibria.

Finally, I would like to remind the readers that Assumption 1 is restrictive. It rules out a commit-
ment payoff equal to the highest subgame-perfect-Nash-equilibrium payoff for the informed player.
From Theorem 1, these commitment types are likely to be the most conducive to the development
of reputation. When the commitment strategy is history-dependent, the action of the uninformed
player in one period will have long-term payoff consequences due to its effect on the future actions
of the commitment type. In my current approach, these effects are balanced off by adjusting the
informed player’s continuation payoffs on equilibrium paths (after some deviations by the unin-
formed player). This, in turn, requires that the continuation payoff for the informed player not be
an extremal point of the payoff set. At this point, it is not clear to what extent Assumption 1 can

be weakened. I intend to clarify this question in future work.

8 Appendix

Proof of Lemma 2.1:

Suppose (1) is true, given any €,7 > 0, 3 8, s.t. Vo1 > &,

In 6 . In(1 —n)
In 62(61) Ine

Since the last expression can be made to be arbitrarily small by pushing 7 to zero, limg, 1 m(81, 62(61))

0

exists and is equal to 0.

To show the converse is true, suppose limg, .1 m(61,02(81)) = 0, then

Iné
v’Yl >0 El(_sl s.t. Vé1 26_51, ln;lgﬁ om
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For arbitrary €, n € (0,1), set 91 = (1-n) “and (1) follows. O

Ine

Proof of Lemma 2.2:

1.
ln(ﬂl) ln(ﬂ,l)
52(51)T(61) = &(61) ma-Aey L) - ma=Awy)
() In 59(51)
= (‘52(61)[T(51)—1n(17A(51))]‘@1n(17A(51)) ‘
v

In iQ)

n(£Q S b A
() ) = 0, therefore limg, 3 (52((51)[T(51) RIAG — 1,

Since limg, 1 (7(61) — m

Next, the limit of the exponent of the second term as 61 goes to 1, which by L’Hospital rule,

is given by:

ln (‘52((‘51) q

soaIn(l— A®Gy))  d

It follows that

In(£0Q)
61) B In §(671)
lim 8(6,)7¢Y = lim 5£T( DoRE=AE iy (K2 ma=a)
61—1 61—1 61—1 1
Ho \ 4
= (T)d
T
O
2.
In 84
6hm1 (‘5{(61) = 6hm1 (‘52((‘51)T(61)1“52(51)
1— 1—
= lim (‘52((‘51)T(61)(hm61ﬂ1 lnlénz(z%))
61 —1
= lim 6(6;)7 )™
61—1
_ Mt
i
O
Proof of lemma 2.3:
Mg
Given g and §, by Lemma 2.2 3 ¢; such that V 6 > 61, (5{(61) 0 (%) ¢4 5. Set fip such
mg x
that (%) ¢ = 5. Since (%) is strictly increasing in % when x is positive, V po [J fig and
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by > 61, 6780 el 0

Proof of Lemma 5.2:

Since oy , and oy are identical to 0¥ and o2’ in the first N-1 periods; therefore

[va(01,02) — va (o1 ,0d')| 0 65'd

The desired inequality is obtained by setting N to be bigger than %. O

Proof of Lemma 5.3:

First notice that

va(pl,08) = Egy[va(pl, s3]

= |Eoy[{1 = Pyy sy (hn (81, 52)) L Ep, (va(s7, 89 |81 # 81)) + Poy syv2(87 53 )|

As a result,
[o2((p1, 03") — v2(81, 0)))|
= |Eoy [(1 = Ppy sy (v (31, 52))) Epy (va (57, 53|51 # 81)) — v2(37, 53]
0 € Egy [Ep, (va(s7, 55 |51 7# 81)) — w287, 53|
0 e(1—6)d
The desired inequality can be obtained by setting € = L O

(1-6M)d"

Proof of Lemma 6.1:

By definition, Jvy € V5" s.t. (v(71),v2) € V*. It is straightforward to construct an equilibrium with
the following features: In period 1 the rational type of Player 1 reveals her type and the rational
type of Player 2 chooses the commitment action. In period 2, from Theorem 4, construct a perfect
Bayesian equilibrium for the one-sided incomplete-information continuation game with payoffs such
that the payoff for the entire game is equal to (v(71),v2). Note that Player 1 is willing to reveal

her type in period 1 because she is getting her commitment payoff. O
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