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Abstract

We develop tests for common values at first-price sealed-bid auctions. Our tests are
nonparametric, require observation only of the bids submitted at each auction, and
are based on the fact that the “winner’s curse” arises only in common values auctions.
The tests build on recently developed methods for using observed bids to estimate
each bidder’s conditional expectation of the value of winning the auction. Equilibrium
behavior implies that in a private values auction these expectations are invariant to the
number of opponents each bidder faces, while with common values they are decreasing in
the number of opponents. This distinction forms the basis of our tests. We consider both
exogenous and endogenous variation in the number of bidders. Monte Carlo experiments
show that our tests can perform well in samples of moderate sizes. We apply our tests
to two different types of U.S. Forest Service timber auctions. For unit-price (“scaled”)
sales often argued to fit a private values model, our tests consistently fail to find evidence
of common values. For “lumpsum” sales, where a priori arguments for common values
appear stronger, our tests yield mixed evidence against the private values hypothesis.

Keywords: first-price auctions, common values, private values, nonparametric testing,
winner’s curse, stochastic dominance, endogenous participation, timber auctions
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1 Introduction

At least since the influential work of Hendricks and Porter (1988), studies of auction data

have played an important role in demonstrating the empirical relevance of economic models

of strategic interaction between agents with asymmetric information. However, a funda-

mental issue remains unresolved: how to choose between private and common values models

of bidders’ information. In a common values auction, information about the value of the

object for sale is spread among bidders; hence, a bidder would update his assessment of the

value of winning if he learned the private information of an opponent. In a private values

auction, by contrast, opponents’ private information would be of interest to a bidder only

for strategic reasons–learning an opponent’s assessment of the good would not affect his

beliefs about his own valuation.

In this paper we propose nonparametric tests to distinguish between the common values

(CV) and private values (PV) paradigms based on observed bids at first-price sealed-bid

auctions. The distinction between these paradigms is fundamental in the theoretical lit-

erature on auctions, with important implications for bidding strategies and the design of

markets. While intuition is often offered for when one might expect a private or common

values model to be more appropriate, a more formal approach would be valuable in many

applications. In fact, discriminating between common and private values was the motiva-

tion behind Paarsch’s (1992) pioneering work on structural estimation of auction models.

More generally, models in which strategic agents’ private information leads to adverse se-

lection (a common values auction being just one example) have played a prominent role

in the theoretical economics literature, yet the prevalence and significance of this type of

informational asymmetry is not well established empirically. Because a first-price auction is

a market institution particularly well captured by a tractable theoretical model, data from

these auctions offer a promising opportunity to test for adverse selection using structure

obtained from economic theory.

Several testing approaches explored previously rely heavily on parametric assumptions

about the distribution functions governing bidders’ private information (e.g. Paarsch (1992),

Sareen (1999)). Such tests necessarily confound evaluation of the economic hypotheses of

interest with evaluation of parametric distributional assumptions. Some prior work (e.g.,

Gilley and Karels (1981)) has suggested examining variation in bid levels with the number

of bidders as a test for common values. However, Pinkse and Tan (2002) have recently

shown that this type of reduced-form test generally cannot distinguish CV from PV mod-

els in first-price auctions: in equilibrium, strategic behavior can cause bids to increase or

decrease in the number of opponents under either paradigm. We overcome both of these
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limitations by taking a nonparametric structural approach, exploiting the relationships be-

tween observable bids and bidders’ latent expectations implied by equilibrium bidding in a

model that nests the private and common values frameworks. Unlike tests of particular PV

or CV models (e.g., Paarsch (1992), Hendricks, Pinkse, and Porter (2003)), our approach

enables testing a null hypothesis including all PV models within the standard affiliated val-

ues framework (Milgrom and Weber (1982)) against an alternative including all CV models

in that framework. The price we pay for these advantages is reliance on an assumption of

equilibrium bidding. This is not an innocuous assumption. However, a first-price auction

is a market institution that seems particularly well suited to this structural approach.

The importance of tests for common values to empirical research on auctions is further

emphasized by recent results showing that CV models are identified only under strong con-

ditions on the underlying information structure or on the types of data available (e.g., Athey

and Haile (2002)). Hence, a formal method for determining whether a CV or PV model

is more appropriate could offer an important diagnostic tool for researchers hoping to use

demand estimates from bid data to guide the design of markets. Laffont and Vuong (1996)

have observed that any common values model is observationally equivalent to some private

values model, suggesting that such testing is impossible. However, they did not consider

the possibilities of binding reserve prices or variation in the numbers of bidders, either of

which could aid in distinguishing between the private and common values paradigms.

Our tests exploit variation in the number of bidders and are based on detecting the effects

of the winner’s curse on equilibrium bidding. The winner’s curse is an adverse selection

phenomenon arising in CV but not PV auctions. Loosely, winning a CV auction reveals to

the winner that he was more optimistic about the object’s value than his opponents were.

This “bad news” (Milgrom (1981)) becomes worse as the number of opponents increases–

having the most optimistic signal among many bidders implies (on average) even greater

over-optimism than does being most optimistic among a few bidders. A rational bidder

anticipates this bad news and adjusts his expectation of the value of winning (and, therefore,

his bid) accordingly. In a PV auction, by contrast, the value a bidder places on the object

does not depend on his opponents’ information, so the number of bidders does not affect

his expected value of the object conditional on winning. Relying on this distinction, our

testing approach is based on detecting the adjustments rational bidders make in order to

avoid the winner’s curse as the number of competitors changes. This is nontrivial because we

can observe only bids, and variation in the level of competition affects the aggressiveness

of bidding even in a PV auction. However, economic theory enables us to separate this

competitive response from responses (if any) to the winner’s curse.
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We consider several statistical tests, all involving distributions of bidders’ expected val-

uations (actually, particular conditional expectations of their valuations) in auctions with

varying numbers of bidders. In a PV environment, these distributions should not vary with

the number of bidders, whereas the CV alternative implies a first-order stochastic dominance

relation. Our testing problem is complicated by the fact that we cannot compare empirical

distributions of bidders’ expectations directly; rather, we can only compare empirical distri-

butions of estimates of these expectations, obtained using nonparametric methods recently

developed by Guerre, Perrigne, and Vuong (2000) (hereafter GPV) and extended by Li,

Perrigne, and Vuong (2002), Li, Perrigne, and Vuong (2000) (together, LPV hereafter) and

by Hendricks, Pinkse, and Porter (2003) (hereafter HPP). This nonparametric first stage

raises several issues that can significantly complicate the asymptotic distributions of test

statistics. A further complication arising in many applications is the endogeneity of bidder

participation. After developing our tests for the base case of exogenous participation, we

consider several standard models of endogenous participation and provide conditions under

which our tests can be adapted.

While our testing approach is new, we are not the first to explore implications of the

winner’s curse as an approach for distinguishing PV from CV models. Hendricks, Pinkse

and Porter (2003, footnote 2) suggest a testing approach applicable when there is a binding

reserve price, in addition to several tests of a pure common values model that are applicable

when one observes, in addition to bids, the ex post realization of the object’s value. Although

our tests are applicable when there is a binding reserve price, this is not required–an

important advantage in many applications, including the drilling rights auctions studied by

HPP and the timber auctions we study below. In addition, our tests require observation only

of the bids–the only data available from most first-price auctions. For second-price and

English auctions, Paarsch (1991) and Bajari and Hortacsu (2003) have considered testing

for the winner’s curse using a simple regression approach. However, second-price sealed-

bid auctions are uncommon in practice, and the applicability of this approach to English

auctions is limited by the fact that the winner’s willingness to pay is never revealed (creating

a missing data problem) and further by ambiguity regarding the appropriate interpretation

of losing bids (e.g., Bikhchandani, Haile, and Riley (2002), Haile and Tamer (2003)). Athey

and Haile’s (2002) study of identification in auction models includes sufficient conditions

for discriminating between common and private values. However, they focus on cases in

which only a subset of the bids is observable, consider only exogenous participation, and do

not develop formal statistical tests.

The remainder of the paper is organized as follows. The next section summarizes the
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underlying model, the method for inferring bidders’ expectations of their valuations from

observed bids, and the main principle of our testing approach. In section 3 we provide

the details of two types of tests and develop the necessary asymptotic theory. In section

4 we report the results of Monte Carlo experiments demonstrating the performance of

our tests. In section 5 we show how the tests can be extended to environments with

endogenous participation, and section 6 presents an approach for incorporating auction-

specific covariates. Section 7 then presents the empirical application to U.S. Forest Service

auctions of timber harvesting contracts, where we consider data from two types of sales

that differ in ways that seem likely a priori to affect the significance of any common value

elements. We conclude in section 8.

2 Model and Testing Principle

The underlying theoretical framework is Milgrom and Weber’s (1982) general affiliated

values model. Throughout we denote random variables in upper case and their realizations

in lower case. We use boldface to denote vectors. An auction has N ∈ {n . . . n̄} risk-neutral
bidders, with n ≥ 2. Each bidder i has a valuation Ui ∈ (u, u) for the object and observes
a private signal Xi ∈ (x, x) of this valuation. We let X−i denote the vector of signals of
i’s opponents. Valuations and signals have joint distribution F̃n(U1, . . . , Un,X1, . . . ,Xn),

which is assumed to have a positive joint density on (u, u)n×(x, x)n. We make the following
standard assumptions (see Milgrom and Weber (1982)).

Assumption 1 (Symmetry) F̃n (U1, . . . , Un,X1, . . . ,Xn) is exchangeable with respect to

the indices 1, . . . , n.1

Assumption 2 (Affiliation) U1, . . . , Un,X1, . . . ,Xn are affiliated.

Assumption 3 (Nondegeneracy) E[Ui|Xi = x,X−i = x−i] is strictly increasing in x ∀x−i.

Initially, we also assume that the number of bidders is not correlated with bidder valu-

ations or signals:2

Assumption 4 (Exogenous Participation) For each n < n̄ and all (u1, . . . , un, x1, . . . , xn),

F̃n (u1, . . . , un, x1, . . . , xn) = F̃n̄(u1, . . . , un,∞, . . . ,∞, x1, . . . , xn,∞, . . . ,∞).
1We discuss relaxation of the symmetry assumption in section 8.
2This assumption is not made by Milgrom and Weber (1982) because they consider fixed n.
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Such exogenous variation in the number of bidders will arise naturally in some applications

but not others (cf. Athey and Haile (2002) and section 5 below). Endogenous participation

will be considered in section 5 after results for this base case are presented.

A seller conducts a first-price sealed-bid auction for a single object; i.e., sealed bids are

collected from all bidders, and the object is sold to the high bidder at a price equal to his

own bid.3 Under Assumptions 1—3, in an n-bidder auction there exists a unique symmetric

Bayesian Nash equilibrium in which each bidder employs a strictly increasing strategy sn(·).
Assuming equilibrium bidding by his opponents, bidder i chooses his bid b to maximize

E [(Ui − b)1{sn(xj) ≤ b ∀j 6= i}|Xi = xi]

As shown by Milgrom and Weber (1982), the first-order condition characterizing the equi-

librium bid function is

v(x, x, n) = sn(x) +
s0n(x)Fn(x|x)

fn(x|x)
∀x (1)

where

v(x, x0, n) ≡ E

∙
Ui|Xi = x,max

j 6=i
Xj = x0

¸
, (2)

Fn(·|x) is the distribution of the maximum signal among a given bidder’s opponents condi-

tional on his own signal being x, and fn(·|x) is the corresponding conditional density.
The conditional expectation v(x, x, n) in (1) gives a bidder’s expectation of his valuation

conditional on his signal and on his equilibrium bid being pivotal. Our testing approach

is based on the fact that this expectation is decreasing in n whenever valuations contain a

common value element. To show this, we first formally define private and common values.4

Definition 1 Bidders have private values iff E[Ui|X1, . . . ,Xn] = E[Ui|Xi]; bidders have

common values iff E[Ui|X1, . . . ,Xn] strictly increases in Xj for j 6= i.

Note that the definition of common values incorporates a wide range of models with a

common value component, not just the special case of pure common values, where the value

of the object is unknown but identical for all bidders.5

3We describe the auction as one in which bidders compete to buy. The translation to the procurement
setting, where bidders compete to sell, is straightforward.

4Affiliation implies that E[Ui|X1, . . . ,Xn] is nondecreasing in all Xj , and symmetry implies that when
the expectation strictly increases in some Xj , j 6= i, it must strictly increase in all Xj , j 6= i. For simplicity
our definition of common values excludes cases in which the winner’s curse arises for some realizations of
signals but not others. Without this, the results below would still hold but with weak inequalities replacing
some strict inequalities. Up to this simplification, our PV and CV definitions characterize a partition of the
set of models falling in Milgrom and Weber’s (1982) affiliated values framework.

5Our terminology corresponds to that used by, e.g., Klemperer (1999) and Athey and Haile (2002),
although it is not the only one used in the literature. Some authors reserve the term “common values”
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The following theorem gives the key result enabling discrimination between PV and CV

models.

Theorem 1 Under Assumptions 1—4, v(x, x, n) is invariant to n for all x in a PV model

but strictly decreasing in n for all x in a CV model.

Proof: Given symmetry, we focus on bidder 1 without loss of generality. With private

values, E[U1|X1, . . . ,Xn] = E[U1|X1], which does not depend on n. With common values

v(x, x, n) ≡ E [U1|X1 = X2 = x,X3 ≤ x, . . . ,Xn−1 ≤ x,Xn ≤ x]

= EXn≤xE [U1|X1 = X2 = x,X3 ≤ x, . . . ,Xn−1 ≤ x,Xn]

< EXnE [U1|X1 = X2 = x,X3 ≤ x, . . . ,Xn−1 ≤ x,Xn]

= E [U1|X1 = X2 = x,X3 ≤ x, . . . ,Xn−1 ≤ x]

≡ v(x, x;n− 1)

with the inequality following from the definition of common values. ¤
Informally, in equilibrium a rational bidder adjusts his expectation of his valuation down-

ward to reflect the fact that he wins only when his own signal is higher than those of all

opponents. The size of this adjustment depends on the number of opponents: the infor-

mation that the maximum signal among n is equal to x implies a higher expectation of Ui

than the information that the maximum among m > n is equal to x. Hence, the conditional

expectation v(x, x, n) decreases in n.

2.1 Structural Interpretation of Observed Bids

To use Theorem 1 to test for common values, we must be able to infer or estimate the

latent expectations v(xi, xi, n) for bidders in auctions with varying numbers of participants.

We assume that for each n the researcher observes the bids B1, . . . , Bn from Tn n-bidder

auctions. We let T =
P

n Tn and assume that for all n,
Tn
T → ρn ∈ (0, 1) as T →∞. Below

we will add the auction index t ∈ {1, . . . , T} to the notation defined above as necessary.
For simplicity we initially assume an identical object is sold at each auction. As shown

by GPV, standard nonparametric techniques can be applied to control for auction-specific

covariates. Below we will also suggest a more parsimonious alternative that may be more

for the special case we call pure common values and use the term “interdependent values” (e.g., Krishna
(2002)) or the less accurate “affiliated values” for the class of models we call common values. Additional
confusion sometimes arises because the partition of the Milgrom-Weber framework into CV and PV models
is only one of two partitions that might be of interest, the other being defined by whether bidders’ signals
are independent. Note in particular that dependence of bidders’ signals is neither necessary nor sufficient
for common values.
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useful in applications with many covariates. We assume throughout that each auction is

independent of all others.6

As pointed out by GPV, the strict monotonicity of sn(·) implies that in equilibrium the

joint distribution of bidder signals is related to the joint distribution of bids through the

relations

Fn (y|x) = Gn (sn(y)|sn(x))
fn (y|x) = gn (sn(y)|sn(x)) s0n (y)

(3)

where Gn(·|sn(x)) is the equilibrium distribution of the highest bid among i’s competitors

conditional on i’s equilibrium bid being sn(x), and gn (·|sn (x)) is the corresponding condi-
tional density. Because bi = sn(xi) in equilibrium, the differential equation (1) can then be

rewritten

v(xi, xi, n) = bi +
Gn(bi|bi)
gn(bi|bi)

≡ ξ(bi;n). (4)

For simplicity we will refer to the expectation v(xi, xi, n) on the left side of (4) as bidder

i’s “value.” Although these values are not observed directly, the joint distribution of bids

is. Hence, the ratio Gn(·|·)
gn(·|·) is nonparametrically identified. Because xi = s−1n (bi), equation

(4) implies that each v
¡
s−1n (bi) , s

−1
n (bi) , n

¢
is identified as well. This need not be sufficient

to identify the model (i.e., to identify F̃n(·)); however, identification of the distribution of
values v(Xi,Xi, n) will be sufficient for our purpose.

To address estimation, let Bit denote the bid made by bidder i at auction t, and let

B∗it represent the highest bid among i’s opponents. GPV and LPV suggest nonparametric

estimates of the form

Ĝn(b; b) =
1

Tn × hG × n

TX
t=1

nX
i=1

K

µ
b− bit
hG

¶
1 (b∗it < b, nt = n)

ĝn(b; b) =
1

Tn × h2g × n

TX
t=1

nX
i=1

1(nt = n)K

µ
b− bit
hg

¶
K

µ
b− b∗it
hg

¶
.

(5)

Here hG and hg are bandwidths andK(·) is a kernel. Ĝn(b; b) and ĝn(b; b) are nonparametric

estimates of

Gn(b; b) ≡ Gn(b|b)gn (b) =
∂

∂b
Pr(B∗it ≤ m,Bit ≤ b)|m=b

and

gn(b; b) ≡ gn(b|b)gn (b) =
∂2

∂m∂b
Pr(B∗it ≤ m,Bit ≤ b)|m=b

6This is a standard assumption, but one that serves to qualify almost all empirical studies of bidding,
where data are taken from auctions in which bidders compete repeatedly over time.
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respectively, where gn(·) is the marginal density of bids in equilibrium. Because
Gn(b; b)

gn(b; b)
=

Gn(b|b)
gn(b|b)

(6)

Ĝn(b;b)
ĝn(b;b)

is a consistent estimator of Gn(b|b)
gn(b|b) . Hence, by evaluating Ĝn(·, ·) and ĝn(·, ·) at each

observed bid, we can construct a pseudo-sample of consistent estimates of the realizations

of each Vit ≡ v(Xit,Xit, n) using (4):

v̂it ≡ ξ̂(bit;nt) = bit +
Ĝn(bit; bit)

ĝn(bit; bit)
. (7)

This possibility was first articulated for the independent private values model by Laffont

and Vuong (1993) and GPV, and has been extended to affiliated values models by LPV and

HPP. Following this literature, we refer to each estimate v̂it as a “pseudo-value.”

2.2 Main Principle of the Test

Each pseudo-value v̂it obtained from (7) is an estimate of v(xit, xit, nt). If we have pseudo-

values from auctions with different numbers of bidders, we can exploit Theorem 1 to develop

a test. Let Fv,n(·) denote the distribution of the random variable Vit = v(Xit,Xit, n).

Because Fv,n(v) = Pr (v(Xit,Xit, n) ≤ v), Theorem 1 and Assumption 4 immediately imply

that under the PV hypothesis, Fv,n(·) must be the same for all n, while under the CV
alternative, Fv,n(v) must strictly increase in n for all v.

Corollary 1 Under the private values hypothesis

Fv,n(v) = Fv,n+1(v) = . . . = Fv,n̄(v) ∀v. (8)

Under the common values hypothesis

Fv,n(v) < Fv,n+1(v) < . . . < Fv,n̄(v) ∀v. (9)

3 Tests for Stochastic Dominance

Corollary 1 suggests that a test for stochastic dominance applied to estimates of each Fv,n(·)
would provide a test for common values. If the values vit = v (xit, xit, n) were directly

observed, a wide variety of existing tests from the statistics and econometrics literature could

be used (e.g, McFadden (1989), Anderson (1996), Davidson and Duclos (2000), Barrett and

Donald (2003)). The empirical distribution function

F̂v,n (y) =
1

Tn

1

n

TX
t=1

nX
i=1

1 (vit ≤ y, nt = n) .
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is commonly used to form test statistics.

Our testing problem has the complication that each vit is not directly observed but

estimated. Hence, the empirical distributions we can construct are

F̂v̂,n(y) =
1

Tn

1

n

TX
t=1

nX
i=1

1 (v̂it ≤ y, nt = n) .

Several difficulties are involved in formulating consistent tests based on these empirical

distributions and the testing principle above, and in deriving the large sample properties

of the test statistics. The primary difficulty is the dependence of the asymptotic distri-

butions of test statistics on the first-step nonparametric estimation of pseudo-values. This

not only adds estimation error but also introduces finite sample dependence between nearby

pseudo-value estimates that must be accounted for in the asymptotic theory. A further com-

plication is trimming, which is needed at the boundaries of the supports of the pseudo-value

distributions, because nonparametric density estimates appear in (7). Trimming introduces

theoretical difficulties that can depend on conditions that are hard to interpret in prac-

tice (see, for example, Lavergne and Vuong (1996)), and naive trimming rules can lead

to inconsistent tests. Finally, note that the validity of inference based on the bootstrap

or subsampling also relies on knowledge of convergence rates and asymptotic distributions

of test statistics, so the difficulties in deriving asymptotic distributions cannot be avoided

simply by employing resampling methods.

We consider two approaches that enable us to overcome these difficulties. The first

involves testing the implications of stochastic dominance for finite sets of functionals of

each Fv,n(·). This approach enables us to apply multivariate one-sided hypothesis tests
based on tractable asymptotic approximations. The second approach uses a generalized

version of familiar Kolmogorov-Smirnov statistics, with critical values approximated by

subsampling.

3.1 Multivariate One-Sided Hypothesis Tests for Stochastic Dominance

Let γn denote a finite vector of monotonic functionals of the distribution Fv,n(·). We will
consider tests of hypotheses of the form

H0 (PV) : γn = γn+1 = · · · = γn̄

H1 (CV) : γn > γn+1 > · · · > γn̄



10

or, letting δm,n ≡ γm − γn and δ ≡
¡
δn,n+1, , . . . , δn̄−1,n̄

¢0
,

H0 (PV) : δ = 0

H1 (CV) : δ > 0.
(10)

We consider two types of functionals γn.
7 The first is a vector of quantiles of Fv,n(·).

The second is the mean. In the next two subsections we show that for both cases we can

construct consistent estimators of each γn (or the difference vector δ) with multivariate

normal asymptotic distributions. These results rely on the following assumptions.

Assumption 5 1. Each Gn (b; b) is R+ 1 times differentiable in its first argument and

R times differentiable in its second argument. Each gn (b; b) is R times differentiable

in both arguments. The derivatives are bounded and continuous.

2.
R
K ( ) d = 1 and

R
rK ( ) d = 0 for all r < R.

R
| |RK ( ) d <∞.

3. hG = hg = h. As T →∞, h −→ 0, Th2Á log T −→∞, Th2+2R −→ 0.

3.1.1 Tests based on Quantiles

Let b̂τ,n denote the τth quantile of the empirical distribution of bids from all n-bidder

auctions, i.e.,

b̂τ,n = Ĝ−1n (τ) ≡ inf{b : Ĝn (b) ≥ τ}
where Ĝn (b) =

1
nTn

PT
t=1

Pn
i=1 1 (bit ≤ b, nt = n). Similarly, let bτ,n denote the τthe quan-

tile of the marginal distribution of bids, Gn(·), while xτ denotes the τth quantile of the

marginal distribution Fx(·) of a bidder’s signal. Equation (4) and monotonicity of the

equilibrium bid function imply that vτ,n, the τth quantile of Fv,n(·), can be estimated by

v̂τ,n = b̂τ,n +
Ĝn(b̂τ,n; b̂τ,n)

ĝn(b̂τ,n; b̂τ,n)
.

Because sample quantiles of the bid distribution converge to population quantiles at rate√
Tn, the sampling variance of v̂τ,n − v(xτ , xτ , n) will be governed by the slow pointwise

nonparametric convergence rate of ĝn (·; ·).8 As shown in GPV, for fixed b, ĝn (b; b) converges
7Because each null hypothesis we consider consists of a single point in the space of the “parameter” δ,

the difficulties discussed in Wolak (1991) do not arise here.
8Note thatGn (b; b) is estimated more precisely than gn (b; b) for all bandwidth sequences h. For simplicity,

in Assumption 5 we have chosen hG = hg, in which case the sampling variance will be dominated by that
from estimation of gn (b; b). We have assumed undersmoothing rather than optimal smoothing to avoid
estimating the asymptotic bias term for inference purposes. An alternative is to choose different sequences
for hG and hg. If we have chosen hG and hg close to their optimal range, the sampling variance will still be
dominated by that of ĝn (b; b) and the result of the theorem will not change. On the other hand if hG ≈ h2g
so that Ĝn (b; b) and ĝn (b; b) share the same magnitude of variance, then the convergence rate for Gn (b; b)
will be far from optimal.
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at rate
q
Tnh2g to gn (b; b). Theorem 2 then describes the limiting behavior of each v̂τ,n.

The proof is given in the appendix.

Theorem 2 Suppose Assumption 5 holds. Then as Tn −→∞ for each n,

(i) b̂τ,n − bτ,n = Op

³
1√
Tn

´
.

(ii) For each b such that gn(b; b) > 0,

p
Tnh2

h
ξ̂(b;n)− v

¡
s−1n (b) , s−1n (b) , n

¢i
=
p
Tnh2

Ã
Ĝn (b; b)

ĝn (b; b)
− Gn (b|b)

gn (b|b)

!
d−→ N

Ã
0,
1

n

Gn (b|b)2

gn (b|b)3 gn (b)

∙Z Z
K (e)2K

¡
e0
¢2
de de0

¸!
.

(iii) For distinct values τ1, . . . , τL in (0, 1), the L-dimensional vector with elements√
Tnh2

³
ξ̂
³
b̂τl,n;n

´
− v (xτl , xτl , n)

´
converges in distribution to Z ∼ N(0,Ω), where Ω is a

diagonal matrix with lth diagonal element

Ωl =
1

n

Gn(sn(xτl)|sn(xτl))2
gn(sn(xτl)|sn(xτl))3gn(sn(xτl))

∙Z Z
K (e)2K

¡
e0
¢2
de de0

¸
.

3.1.2 Tests based on Means

An alternative to comparing quantiles is to compare means of the pseudo-value distributions.

We can estimate

Ex[v(x, x, n)] =

Z
v dFv,n(v)

with the sample average of the pseudo-values in all n-bidder auctions:

µ̂n =
1

n× Tn

TX
t=1

nX
i=1

1 (nt = n) v̂it. (11)

By Corollary 1, Ex[v(x, x, n)] is the same for all n under private values but strictly decreasing

in n with common values.

A complication in implementing a test is the need for a practical way of trimming bound-

ary values of v̂it that preserves the interpretation of the null and alternative hypotheses. We

use a trimming rule that equalizes the quantiles trimmed from Fv̂,n(·) across all n. Because
equilibrium bid functions are strictly monotone, the pseudo-value at the τth quantile of

Fv,n(·) is that of the bidder with signal at the τth quantile of Fx(·). Hence, trimming bids
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at the same quantile for all values of n also trims the same bidder types (signals) from all

distributions, thereby preserving the consistency of a test based on Corollary 1.

To make this precise, let b̂τ,n denote the τth quantile of Ĝn(·) and recall that xτ is the
τth quantile of the marginal distribution of a bidder’s signal. The quantile-trimmed mean

is then defined as

µn ≡ E [v(x, x, n) 1 (xτ ≤ x ≤ x1−τ )]

with sample analog

µ̂n,τ ≡
1

n× Tn

TX
t=1

nX
i=1

v̂it 1
³
b̂τ,n ≤ bit ≤ b̂1−τ,n, nt = n

´
.

We can then test the modified hypotheses

H0 : µn,τ = · · · = µn̄,τ (12)

H1 : µn,τ > · · · > µn̄,τ (13)

which are implied by (8) and (9), respectively. The next theorem shows the consistency

and asymptotic normality of each µ̂n,τ .

Theorem 3 Suppose Assumption 5 holds, (logT )
2

Th3 −→ 0 and Th1+2R −→ 0. Then

(i) µ̂n,τ
p−→ µn,τ .

(ii)
√
Tnh (µ̂n,τ − µn,τ )

d−→ N (0, σn) where

σn =

"Z µZ
K
¡ 0¢K ¡ 0 − ¢

d 0
¶2

d

#"
1

n

Z b1−τ,n

bτ,n

Gn (b; b)
2

gn (b; b)
3 gn (b)

2 db

#
. (14)

The proof is given in the appendix. Note that the convergence rate of each µ̂n is
√
Tnh.

While this is slower than the parametric rate
√
Tn, it is faster than the

√
Tnh2 rate obtained

for the quantile differences described above. Intuitively, the intermediate
√
Tnh rate of

convergence arises because although ĝn (b; b) is an estimated bivariate density function, in

constructing the estimate µ̂n we average along the diagonal B
∗
it = Bit.

9

9While the test based on averaged pseudo-values converges faster than that based on a vector of quantiles,
the improvement of the convergence rate is not proportional because the conditions on bandwidths for
the partial mean case can be different from those on the pointwise estimates. However, there are still
improvements after taking this into account, and this advantage of the means-based test is evident in
(unreported) Monte Carlo simulations.
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3.1.3 Test Statistics

In this section we focus on a test for differences in the means of the pseudo-value distribu-

tions. An analogous test can be constructed using quantiles; however, because of the faster

rate of convergence of the means test and its superior performance in Monte Carlo simula-

tions, we focus on this approach. A likelihood ratio (LR) test (e.g., Bartholomew (1959),

Wolak (1989)) or the weighted power test of Andrews (1998) provide possible approaches

for formulating test statistics based on the asymptotic normality results above. Because we

do not have a good a prior choice of the weighting function for Andrews’ weighted power

test, we have chosen to use the LR test.10

Let σn denote the asymptotic variance given in (14) for each value of n = n, . . . , n̄ and

define an ≡ Tn h
σn
. Then the asymptotic covariance matrix of the vector

¡
µ̂n,τ . . . µ̂n̄,τ

¢0
is

Σ =

⎡⎢⎢⎢⎢⎢⎣
1
an

0 0 0

0 1
an+1

0 0

... 0
. . .

...

0 0 . . . 1
an̄

⎤⎥⎥⎥⎥⎥⎦ .

The restricted maximum-likelihood estimate of the (quantile-trimmed) mean pseudo-value

under the null hypothesis (12) is given by

µ̄ =

Pn̄
n=n an µ̂n,τPn̄

n=n an
.

To test against the alternative (13), let µ∗n, . . . , µ
∗
n̄ denote the solution to

min
µn,...,µn̄

n̄X
n=n

an (µ̂n,τ − µn)
2 s.t. µn ≥ µn+1 ≥ · · · ≥ µn̄. (15)

This solution can be found using the well-known “pool adjacent violators” algorithm (Ayer,

et al. (1955)), using the weights an. Define the test statistic

χ̄2 =
n̄X

n=n

an
¡
µ∗n,τ − µ̄

¢2
.

The following corollary states that, under the null hypothesis, the LR statistic χ̄2 is asymp-

totically distributed as a mixture of Chi-square random variables. The proof is given in

Bartholomew (1959, Section 3).

10Indeed, Monte Carlo results in Andrews (1998) comparing the LR test to his more general tests for
multivariate one-sided hypotheses, which are optimal in terms of a “weighted average power,” suggests that
the LR tests are “close to being optimal for a wide range of [average power] weighting functions” (pg. 158).
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Corollary 2 Under the null PV hypothesis,

Pr
¡
χ̄2 ≥ c

¢
=

n̄−n+1X
k=2

Pr
¡
χ2k−1 ≥ c

¢
w(k;Σ) ∀c > 0,

where χ2j denotes a standard Chi-square distribution with j degrees of freedom, and each

mixing weight w(k;Σ) is the probability that the solution to (15) has exactly k distinct

values when the vector {µ̂n,τ , . . . , µ̂n̄,τ} has a multivariate N(0,Σ) distribution.

In practice the weights w(k;Σ) can be obtained by simulation from the MVN(0, Σ̂)

distribution, where Σ̂ is a diagonal matrix with elements obtained from sample analogs of

(14). An alternative to using equation (14), explored below, is to estimate each element of

Σ using bootstrap distributions of mean pseudo-values.

3.2 A Sup-Norm Test

A second testing approach is based on a Kolmogorov-Smirnov-type (KS) statistic for a

k-sample test of equal distributions against an alternative of strict first-order stochastic

dominance. Consider the sum of supremum distances between successive empirical distri-

butions of pseudo-values:

δT =
n−1X
n=n

sup
v∈[v,v̄]

n
F̂v̂,n+1(v)− F̂v̂,n(v)

o
(16)

where [v, v̄] is a compact interval strictly bounded away from the boundaries of the support

of the pseudo-value distribution for all n.

The KS statistic δT is a limiting case of a more general class of test statistics of the form

δ̄T =
n−1X
n=n

sup
v∈[v,v̄]

½
1

(n+ 1)Tn+1

TX
t=1

n+1X
i=1

1 (nt = n+ 1)Λ (v̂it − v)

− 1

nTn

TX
t=1

nX
i=1

1 (nt = n)Λ (v̂it − v)

¾
where Λ (·) is a differentiable strictly decreasing function. If we take Λ (·) to be 1− ψ

¡ ·
h0
¢
,

where ψ (·) is a smooth distribution function with bounded support and h0 is a bandwidth

parameter, then δ̄T provides a smooth approximation to the KS statistic in (16), with

limh0→0 δ̄T = δT . We will work with this generalized statistic.

Strict monotonicity of Λ(·) and uniform consistency of each estimate of EnΛ(vit − v) on

the compact set v ∈ [v, v̄] imply that δ̄T → 0 as T →∞ under H0, while δ̄T → ∆ > 0 under
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H1. This forms a basis for testing. In particular, define the test statistic

ST = ηT δ̄T

where ηT is a normalizing sequence proportional to (Th)1/2. Appendix C describes the

large sample behavior of this test statistic. In particular, we show there that ST has a

nondegenerate limiting distribution.

To approximate the asymptotic distribution of the test statistic, we use a subsampling

approach.11 Recall that the observables consist of the set of bids Bt = (B1t, . . . , Bntt) from

each auction t = 1, . . . , T . So we can write

δ̄T = δ̄T
¡
B1, . . . , BTn , . . . , BT

¢
.

Let RT denote a sequence of subsample sizes and, for each n, let RnT be a sequence pro-

portional to RT , with RnT < Tn. Let

κT =
nX

n=n

µ
Tn
RnT

¶

denote the number of subsets
³
B∗1 , . . . B

∗
RnT

, . . . B∗RnT

´
of (B1, . . . BT ) consisting of all bids

from RnT of the original Tn n-bidder auctions, n = n, . . . n. Let δ̄T,RT ,i denote the statistic

δ̄RT

³
B∗1 , . . . B

∗
RnT

, . . . B∗RnT

´
obtained using the ith such subsample of bids. The sampling

distribution ΦT of the test statistic ST is then approximated by

ΦT,RT (x) =
1

κT

κTX
i=1

1
¡
ηRT δ̄T,RT ,i ≤ x

¢
. (17)

The critical value for a test at level α is taken to be the 1− α quantile, Φ1−αT,RT
, of ΦT,RT

.

Theorem 4 (i) Let RT →∞ and RT
T → 0 as T →∞. Then under H0, Pr

³
ST > Φ1−αT,RT

´
→

α.

(ii) Assume that as T → ∞, RT → ∞, RT
T → 0, and lim infT (ηT/ηRT

) > 1. Then under

H1, Pr
³
ST > Φ1−αT,RT

´
→ 1 as T →∞.

The proof is omitted because the result follows from Theorem 2.6.1 of Politis, Romano,

and Wolf (1999), given the discussion above and the results in Appendix C. As usual, in

practice the empirical distribution in (17) is approximated using random subsampling.

11See Linton, Massoumi, and Whang (2002) for a recent application of subsampling to tests for stochastic
dominance in a different context.
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4 Monte Carlo Simulations

Here we summarize the results of Monte Carlo experiments performed to evaluate our testing

approaches. We examine the performance of our tests on data generated by two PV models

and two CV models:

(PV1) independent private values, xi ∼ u[0, 1];

(PV2) independent private values, lnxi ∼ N(0, 1);

(CV1) common values, i.i.d. signals xi ∼ u[0, 1], ui = xi
2 +

P
j 6=i xj

2(n−1) ;
12

(CV2) pure common values, ui = u ∼ u[0, 1], conditionally independent signals xi uniform
on [0, u].13

Before reporting the results, we turn to Figure 1. Here we illustrate the empirical

distributions of pseudo-values obtained by applying the first-stage nonparametric estimators

using one simulated data set from each of the four models. We do this for n = 2, . . . , 5,

with Tn = 200. For the PV models, the estimated distributions are very close to each

other. For the CV models these distributions clearly suggest the first-order stochastic

dominance relation implied by the winner’s curse. Note that in both model CV1 and

model CV2, the effect of a change in n on the distribution appears to be largest when

n is small. This is the case in many CV models and is quite intuitive: the difference

between E[U1|X1 = maxj∈{2,...,n}Xj = x] and E[U1|X1 = maxj∈{2,...,n+1}Xj = x] typically

shrinks as n grows. This is important because most auction data sets contain relatively few

observations for n large but many observations for n small–exactly where the effects of the

winner’s curse are most pronounced.

We first consider the LR test based on quantile-trimmed means. Tables 1 and 2 summa-

rize the test results, using tests with nominal size 5% and 10%. The last two rows in Table 1

indicate that in the PV models there is a tendency to over-reject when sample analogs of

(14) are used to construct the mixing weights in Corollary 2. For example, for tests with

nominal size 10% and data generated by the PV1 model, we reject 20.5% of the time when

the range of bidders is 2—4, and 39% of the time when the range of bidders is 2—5. The tests

do appear to have good power properties, rejecting the CV models in 70 to 100 percent of

the replications. However, the over-rejection under the null is a concern.

12Here v (x, x;n) = 3n−2
4(n−1)x, leading to the equilibrium bid function sn(x) =

3n−2
4n x. It is easy to see that

although v(x, x;n) is strictly decreasing in n, sn(x) strictly increases in n.
13The symmetric equilibrium bid function for this model is given in Matthews (1984).
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One possible reason for the over-rejections is that the asymptotic approximations of the

variances of the average pseudo-values derived in Theorem 3 may be poor at the modest

sample sizes we consider. We have considered an alternative of using bootstrap estimates of

the elements of Σ.14 We use a block bootstrap procedure that repeatedly selects an auction

from the original sample at random and includes all bids from that auction in the bootstrap

sample, thereby preserving any dependence between bids within each auction. The results,

reported in Table 2, indicate that the tendency towards over-rejection is attenuated when

we estimate these variances with the bootstrap. For a test with nominal size 10%, we now

reject no more than 14% of the time when the range of n is 2—4, and 18% of the time when

the range of n is 2—5. With a 5% nominal size, our rejection rates range between 4% and

12%. The power properties remain very good. These results are encouraging and suggest

use of the bootstrap in practice.

Table 3 provides results for the KS tests using the smoothed step function

Λ(vit − v) =
exp ((v − vit) /h

0)

1 + exp ((v − vit) /h0)

with smoothing parameter h0 = 0.01.15 This test appears to perform extremely well. The

rejection rates for the two PV models are very close to the nominal sizes in all cases, and

the rejection rates for the CV models are extremely high.

5 Endogenous Participation

Thus far we have assumed that variation in bidder participation across auctions is exoge-

nous to the joint distribution of bidders’ valuations and signals. Such exogenous variation

could arise, for example, from shocks to bidders’ costs of participation, variation in bidder

populations across markets, or seller restrictions on participation–e.g., in government auc-

tions (McAfee and McMillan (1987)) or field experiments (Engelbrecht-Wiggans, List, and

Lucking-Reiley (1999)). However, in many applications participation may be endogenous.

Here we explore adaptation of our testing approach to such situations, considering several

different models of participation.

14Note that we are not bootstrapping the distribution of the test statistic given in Corollary 2, only the
component Σ. Bootstrapping the distribution of the test statistic would require resampling bids under the
null hypothesis on the latent values v(x, x, n).
15We have incorporated the recentering approach suggested by Chernozhukov (2002) whereby, in each

subsample, the test statistic is recentered by the original full-sample test statistic. Hence the subsample test

statistic is Ls ≡
√
RhR

hPn̄−1
n=n supx

³
F̂ s
n+1(x)− F̂ s

n(x)
´
−K

i
, where K ≡

Pn̄−1
n supx

³
F̂n+1(x)− F̂n(x)

´
is

the full-sample statistic. The p-value is computed as 1
S

PS
s=1 1

¡
Ls >

√
ThTK

¢
.
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5.1 Binding Reserve Prices

The most common model of endogenous participation is one in which the seller uses a

binding reserve price r, so that only bidders with sufficiently favorable signals bid. We

continue to let N denote the number of potential bidders and will now let A denote the

number of actual bidders–those submitting bids of at least r. Variation in the number

of potential bidders is still taken to be exogenous; i.e., Assumption 4 is maintained in this

case. However, A will be determined endogenously. Because we consider sealed bid auctions

with private information, it is natural to assume bidders know the realization of N but not

that of A when choosing their bids, because A is determined by the realizations of the

signals.16 We still assume the researcher can observe N .17 As before, we let Fv,n(·) denote
the distribution of the values v(X,X, n) of the n potential bidders.

As shown by Milgrom and Weber (1982), given r and n, a bidder participates if and only

if his signal exceeds the “screening level”

x∗(r, n) = inf

½
x : E

∙
Ui|Xi = x,max

j 6=i
Xj ≤ x

¸
≥ r

¾
. (18)

That is, a bidder participates only if he would be willing to pay the reserve price for the

good even when no other bidder were. In a PV auction, we may assume without loss of

generality that E[Ui|Xi = x] = x. Because E [Ui|Xi = x,maxj 6=iXj ≤ x] = E[Ui|Xi = x]

in a PV model, equation (18) gives x∗(r, n) = r. In a common values model, however,

E [Ui|Xi = x,maxj 6=iXj ≤ x] decreases in n (the proof follows that of Theorem 1), implying

that x∗(r, n) increases in n. This gives the following lemma.

Lemma 1 The screening level x∗(r, n) is invariant to n in a PV model but strictly increas-

ing in n in a CV model.

This result implies that our baseline testing approach must be modified to account for

the selection introduced by endogenous participation. For both PV and CV models, the

equilibrium participation rule implies that the marginal distribution of the signals of actual

bidders is the truncated distribution

Fx(x|r, n) =
Fx(x)− Fx(x

∗(r, n))

1− Fx(x∗(r, n))
.

16Schneyerov (2002) considers a different model in which bidders observe a signal of the number of actual
bidders after the participation decision but before bids are made.
17See HPP for an example. If this is not the case, not only is testing difficult, but the more fundamental

identification of bidders’ values v(x, x, n) generally fails. This is because bidding is based on a first-order
condition for bidders who condition on the realization of N when constructing their beliefs Gn(b|b) regarding
the most competitive opposing bid. In general, identification based on a first-order condition requires that
the researcher condition on the same information available to bidders.
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Hence, letting

v∗(r, n) = v (x∗ (r, n) , x∗ (r, n) , n)

the distribution of values for actual bidders is given by

FA
v,n(v) =

Fv,n(v)− Fv,n(v
∗(r, n))

1− Fv,n(v∗(r, n))
∀v ≥ v∗(r, n). (19)

In a PV model, Fx(x|r, n) = Fx(x)−Fx(r)
1−Fx(r) . Because neither this distribution nor the

expectation v(x, x, n) varies with n in a PV model, it is still the case that the distribution

Fv,n(·) is invariant to n in a PV model, implying that FA
v,n(·) is too. However, the CV

case does not give a clean prediction about FA
v,n(·). Because x∗(r, n) increases with n under

common values, changes in n affect the marginal distribution of actual bidders’ values in

two ways: first by the fact that v(x, x, n) decreases in n for fixed x; second by the fact that

as n increases, only higher values of x are in the sample. The first effect creates a tendency

toward the FOSD relation derived in Theorem 1 for CV models, while the second effect

works in the opposite direction. This leaves the effect on FA
v,n(v) of an exogenous change

in n ambiguous in a CV model. However, we can obtain unambiguous testable predictions

under both the PV and CV hypotheses by exploiting the following result.

Lemma 2 With a binding reserve price r, Fv,n (v
∗ (r, n)) is identified for all n.

Proof: Let F̃x,n(·) denote the joint distribution of signalsX1, . . . ,Xn in an n-bidder auction.

Then

Fv,n (v
∗(r, n)) = Fx(x

∗(r, n))

= F̃x,n (x
∗(r, n),∞, . . . ,∞)

=
nX

k=1

k

n
Pr (A = n− k|N = n) (20)

where the first equality follows from nondegeneracy and the last two follow from exchange-

ability. ¤
With Fv,n (v

∗(r, n)) known for each n, we can then reconstruct Fv,n(v) for all v ≥ v∗(r, n).

In particular, from (19) we have

Fv,n(v) = [1− Fv,n (v
∗ (r, n))]FA

v,n(v) + Fv,n (v
∗ (r, n)) ∀v ≥ v∗(r, n). (21)

With this we can give the main result of this section.

Theorem 5 Fv,n(v) is identified for all v ≥ v∗(r, n).
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Proof: With a binding reserve price

Gn(b|b) = Pr(A = 1|Bi = b,N = n) +
nX

j=2

Pr(A = j, max
k∈{1,2,...,j}\i

Bk ≤ b|Bi = b,N = n).

Hence, the observables and the first-order condition (4) uniquely determine v(s−1n (b), s
−1
n (b), n)

for all n and b ≥ sn(x
∗(r, n)). This determines the distribution FA

v,n(·). Lemma 2 and equa-
tion (21) then give the result. ¤
Testable implications of the PV and CV models for the distribution Fv,n(v) were estab-

lished in Corollary 1, and estimation is easily adapted from that for the baseline case using

sample analogs of the probabilities in the identification results above.18 However, note that

we cannot compare the distributions Fv,n(v) in their (truncated) left tails, but rather only

in the regions of common support of the distributions FA
v,n(·). In particular, because x∗(r, n)

is nondecreasing in n we can test19

H0 : Fv,n(v) = Fv,3(v) = · · · = Fv,n̄(v) ∀v ≥ v∗(r, n̄) (22)

against

H1 : Fv,n(v) < Fv,3(v) < · · · < Fv,n̄(v) ∀v ≥ v∗(r, n̄) (23)

which are implied by (8) and (9), respectively.20

While this provides an approach for consistent testing, the fact that we must restrict

the region of comparison could be a limitation in finite samples, particularly if the true

model is one in which the effects of the winner’s curse are most pronounced for bidders with

signals in the left tail of the distribution. However, a significant difference between v∗(r, n̄)

and v∗(r, n) for n < n̄ (the reason a test of (22) vs. (23) would involve a substantially

restricted support) is itself evidence inconsistent with the PV hypothesis but implied by

the CV hypothesis. Hence, a complementary testing approach is available based on the

following theorem.

Theorem 6 Under the PV hypothesis, Fv,n (v
∗(r, n)) is identical for all n. Under the CV

hypothesis, Fv,n (v
∗(r, n)) is strictly increasing in n.

18The definitions of Ĝn(b; b) and ĝn(b; b)would require the obvious modifications to account for the fact
that only a bids, not n, are observed in each auction with n potential bidders.
19Each v∗(r, n) is just the lowest value of v(x, x, n) for an actual bidder and is therefore easily estimated

from the pseudo-values.
20We have assumed here that r is fixed across auctions. This is not necessary. For example, if r is the

largest reserve price used, the approach here would enable identification of Fv,n(v) for all v > v∗(r, n).
Furthermore, as GPV have suggested, variation in r can enable one to trace out more of the distribution
Fv,n(·) by extending methods from the statistics literature on random truncation. A full development of
this extension is a topic unto itself and not pursued here.
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Proof: Because Fv,n (v
∗(r, n)) = F (x∗(r, n)), the result follows from Lemma 1. ¤

Consistent estimation of Fv,n (v
∗(r, n)) for each n is easily accomplished with sample

analogs of the probabilities on the right-hand side of (20). A multivariate one-sided hy-

pothesis test similar to those developed above could then be applied.

5.2 Costly Participation

Endogenous participation also arises when it is costly for bidders to participate. In some

applications preparing a bid may be time consuming. In others, learning the signal Xi

might require estimating costs based on detailed contract specifications, soliciting bids from

subcontractors, or exploratory work. Because bidders must recover participation costs on

average, for N large enough it is not an equilibrium for all bidders to participate, even if

all are certain to place a value on the good strictly above the reserve price (if any). We

consider two standard models of costly participation from the theoretical literature.

5.2.1 Bid Preparation Costs

Samuelson (1985) studied a model in which bidders first observe their signals and the reserve

price r, then decide whether to incur a cost c of preparing a bid. Samuelson considered

only the independent private values model; however, for our purposes this model of costly

participation is equivalent to one in which the seller charges a participation fee c (a bidder’s

participation decision and first-order condition are the same regardless of whether the fee is

paid to the seller, to an outside party, or simply “burned”). The case of a participation fee

paid to the seller has been treated by Milgrom and Weber (1982) for their general affiliated

values model. We will assume that their “regular case” (pp. 1112—1113) obtains.

Given r and n, participation is again determined by the realization of signals and a

screening level

x∗ (r, c, n) = inf

½
x :

Z x

−∞
[v(x, y, n)− r] dFn(y|x)] ≥ c

¾
.

Unlike the model in the preceding section, this screening level varies with n even with private

values, because Fn (x|x) varies with n. However, a valid testing approach can nonetheless

be developed in a manner nearly identical to that in the preceding section. In particular,

the argument used to prove Lemma 2 also implies the following.

Lemma 3 With a reserve price r and bid preparation cost c, Fv,n (v (x
∗ (r, c, n) , x∗ (r, c, n) , n))

is identified from observation of A and N.
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Letting v∗(r, n) now denote v(x∗ (r, c, n) , x∗ (r, c, n) , n), the first-order condition (4) and

equation (21) can then be used to construct consistent estimates of Fv,n (v) for all v ≥
v∗(r, n̄), enabling testing of the hypotheses (22) vs. (23) as in the preceding section.

5.2.2 Signal Acquisition Costs

A somewhat different model is considered by Levin and Smith (1994).21 In their model,

each bidder chooses whether to incur cost c in order to learn (or to process) his signalXi and

submit a bid. Bidders know N and observe the number of actual bidders before they bid.

In the symmetric equilibrium, each potential bidder’s participation decision is a binomial

randomization. With no reserve price, this leads to exogenous variation in A. Because A

is observed by bidders prior to bidding in their model, our analysis for the baseline case of

exogenous variation in N then carries through directly, substituting A for N .22

5.3 Unobserved Heterogeneity

The last model of endogenous participation we consider is the most challenging. Here

participation is determined in part by unobserved factors that also affect the distribution

of bidders’ valuations. There are really two problems that arise in such an environment.

First, it is clear that if auctions with large numbers of bidders tend to be those in which

the good is known by bidders to be of particularly high (or low) value, tests based on

an assumption that variation in participation is exogenous can give misleading results.

Second, unobserved heterogeneity in first-price auctions introduces serious challenges to

the nonparametric identification of bidders’ valuations that underlies our approach (recall

footnote 17).23 Here we describe a structure under which both problems can be overcome,

using instrumental variables.

Suppose that the number of actual bidders, A, at each auction can be represented as a

function of two factors, Z and W . Z is an index capturing the effects of factors observable

both to bidders and to the researcher. W summarizes the effects factors observable only to

21Li (2002) has considered parametric estimation of the symmetric IPV model for first-price auctions
under this entry model.
22If, in addition, there were a binding reserve price, only bidders who paid the signal acquisition cost and

observed sufficiently high signals would participate. The mixed strategies determining signal acquisition,
however, still result in exogenous variation in the number of “informed bidders,” I, a subset A of whom
would obtain sufficiently high signals to bid. In this case testing would be possible following the approach
in section 5.1, but with I replacing N .
23Krasnokutskaya (2003) has recently shown that methods from the literature on measurement error can

be used to enable estimation of a particular private values model in which unobserved heterogeneity enters
multiplicatively (or additively) and is independent of the idiosyncratic components (themselves indepen-
dently distributed) of bidders’ values.
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bidders. We make the following assumptions.

Assumption 6 Z ∈ R is independent of (U1, . . . , Un̄,X1, . . . ,Xn̄,W ) .

Assumption 7 A = φ(Z,W ), with φ increasing in Z and strictly increasing in W.

Assumption 6 allows the possibility that the unobserved factor W is correlated with

(U1, . . . , Un̄,X1, . . . ,Xn̄), but requires that Z not be. We will see in the following section

that observables affecting the distribution of valuations can be controlled for directly. Hence,

the availability of Z satisfying Assumption 6 is a standard exclusion restriction, and we will

refer to Z as the instrument. Changes in Z will provide exogenous variation in the level of

competition that is essential to our ability to detect the winner’s curse. Note that in some

applications Z might simply be the number of potential bidders, N . However, it need not

be. For example, we might have

A = υ(ζ) +W

where Z = υ(ζ) is a function (possibly unknown) of a vector of instrumental variables ζ.

In Assumption 7, monotonicity of φ(·) in Z is the requirement that the instrument be

positively correlated with the endogenous variable A. Weak monotonicity of φ(·) in the
unobservable W would be a normalization of W and could be assumed without loss. The

strict monotonicity assumed here is a restriction implying that (A,Z) are joint sufficient

statistics for W ; in particular

F̃n(U1, . . . , Un,X1, . . . ,Xn|A,Z,W ) = F̃n(U1, . . . , Un,X1, . . . ,Xn|A,Z).24

This property will enable us to retain identification of bidders’ values despite the presence

of unobservables.25

Define

v(x, x; a, z) ≡ E

∙
Ui|Xi = max

j 6=i
Xj = x, φ(Z,W ) = a, Z = z

¸
. (24)

Let

Ga,z(b
∗|b) = Pr(max

j 6=i
Bj ≤ b∗|Bi = b,A = a, Z = z)

24If the relationship between A and W were only weakly monotone, conditioning on (A,Z) would be
equivalent to conditioning on (A,Z) and the event W ∈W for some set W. In some applications this may
be sufficient to enable the use of the first-order condition (4) as a useful approximation.
25This idea is related to that taken in a very different problem by Olley and Pakes (1996).
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and denote the corresponding conditional density by ga,z(b
∗|b). When bidders observe both

Z andW before choosing their bids, the sufficient statistic property implies that equilibrium

bidding can be characterized by the first-order condition (the analog of (4))

v(xi, xi; a, z) = bi +
Ga,z(bi|bi)
ga,z(bi|bi)

. (25)

Analogous to the baseline case, this first-order condition enables consistent estimation of

each v(xi, xi; a, z), using straightforward modifications of the nonparametric estimators de-

scribed above.

Now observe that

Pr (v (X,X;A,Z) ≤ v|Z = z) = Pr (v (X,X;φ(z,W ), z) ≤ v) (26)

= Pr

µ
E

∙
U1|X1 = max

j∈{2,...,φ(z,W )}
Xj = X,W,Z = z

¸
≤ v

¶
= Pr

µ
E

∙
U1|X1 = max

j∈{2,...,φ(z,W )}
Xj = X,W

¸
≤ v

¶
where the final equality follows from Assumption 6. Assumption 7 and the proof of Theorem

1 imply that the final expression above is increasing in z in a CV auction but invariant to

z in a PV auction. Hence our testing approaches are still applicable if we exploit the

exogenous variation in the instrument Z rather than variation in N or A. In particular,

after estimating pseudo-values using equation (25), one can pool pseudo-values over all

values of a while holding z fixed to compare the sample analogs of the distributions in (26)

across values of z. We emphasize that while the comparison of distributions of pseudo-

values forming the test is done pooling over a, the first-stage estimation of pseudo-values

using (25) must be done conditioning on both a and z.

6 Observable Heterogeneity

For simplicity we have thus far assumed that data were available from auctions of iden-

tical goods. In practice this is rarely the case. In our application below, as in many

others, we observe auction-specific characteristics that are likely to shift the distribution

of bidder valuations. The results above can be extended to incorporate observables us-

ing standard nonparametric techniques. Let Y be a vector of observables and define

Gn,y(b|b) = Pr(maxj 6=iBj ≤ b|Bi = b,N = n,Y = y) etc. One simply substitutes
Gn,y(b|b)
gn,y(b|b)

for Gn(b|b)
gn(b|b) on the right-hand side of the first-order condition (4) and

v(x, x, n,y) ≡ E[Ui|Xi = max
j 6=i

Xj = x,Y = y]
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on the left-hand side. Standard smoothing techniques can be used to estimate
Gn,y(b|b)
gn,y(b|b) , in

principle enabling one to apply our testing approaches. With many covariates, however,

estimation of the pseudo-values using smoothing techniques will require large data sets.

An alternative is available if we are willing to assume

v(x, x, n,y) = v(x, x, n) + Γ(y) (27)

withY independent of X1, . . . ,Xn. This additively separable structure is particularly useful

because it is preserved by equilibrium bidding.26

Lemma 4 Suppose that Y is independent of X and (27) holds. Then the equilibrium bid

function, conditional on Y = y, has the additively separable form s(x;n,y) = s(x;n)+Γ(y).

The proof follows the standard equilibrium derivation for a first-price auction (only the

boundary condition for the differential equation (1) changes) and is therefore omitted. An

important implication of this result is that we can account for observable heterogeneity in a

two-stage procedure that avoids the need to condition on (smooth over) Y when estimating

distributions and densities of bids. Let

s0(n) = EX [s(X;n)]

and

Γ0 = EY[Γ(Y)].

We can then write the equilibrium bidding strategy as

s(x;n,y) = s0(n) + Γ0 + Γ1(y) + s1(x;n)

where the stochastic term s1(x;n) has mean zero conditional on (n,y). Now observe that

βit ≡ s0(nt) + Γ0 + s1(xit;nt) (28)

is the bid that bidder i would have submitted in equilibrium in a generic (i.e., Γ1(y) = 0)

n-bidder auction. Hence, given estimates Γ̂1(y) of each Γ1(y), we can construct estimates

β̂it = bit− Γ̂1(y) of each βit. Our tests can then be applied using these “homogenized” bids.
To implement this approach, we first regress all observed bids on the covariates Y and a

set of dummy variables for each value of n. The sum of each residual and the corresponding

intercept estimate provides an estimate of each βit. These estimates are then treated as bids

26If the covariates enter multiplicatively rather than additively, an analogous approach to that proposed
below can be applied.
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in a sample of auctions of homogeneous goods. Note that the function Γ1(·) is estimated
using all bids in the sample rather than separately for each value of n. This can make it

possible to incorporate a large set of covariates and can make a flexible specification of Γ1(·)
feasible. Furthermore, the asymptotic distributions of the ultimate test statistics are not

affected by this procedure as long as Γ̂1(y) converges at a faster rate than the pseudo-value

estimates. This is guaranteed, for example, if Γ1(·) is parametrically specified.
Adapting this approach to the models of endogenous participation discussed above is

straightforward. The case requiring modification is that in which instrumental variables

are used. There the intercept of the equilibrium bid functions s(x; a,y, w) will now vary

with both a and w (or, equivalently, with both a and z). Under the assumptions of section

5.3, one needs only to include in the regressions separate intercepts s0(a, z) +Γ0 (replacing

s0(n)+Γ0 in (28)) for each combination of a and z. The sum of the (a, z)-specific intercept

and the residuals from the corresponding auctions are then the homogenized bids.

7 Application to U.S. Forest Service Timber Auctions

7.1 Data and Background

We apply our tests to auctions held by the United States Forest Service (USFS). In each

sale, a contract for timber harvesting on Federal land was sold by first-price sealed bid

auction. Detailed descriptions of the contracts being sold and the auctions themselves can

be found in, e.g., Baldwin (1995), Baldwin, Marshall, and Richard (1997), Athey and Levin

(2001), Haile (2001), or Haile and Tamer (2003). Here we discuss a few key features that

are particularly relevant to our analysis.

We will separately consider two types of Forest Service auctions, for which the signifi-

cance of common value elements may be different. The first type is known as a lumpsum

sale. As the term suggests, here each bidder offers a total bid for an entire tract of standing

timber. The winning bidder pays his bid regardless of the volume actually realized at the

time of harvest. Bidders, therefore, may face considerable common uncertainty over the

volume of timber on the tract. More significant, individual bidders often conduct a “cruise”

of the tract before the auction, creating a natural source of the private information essen-

tial to the CV model. Before each sale, however, the Forest Service conducts its own cruise

of the tract to provide bidders with estimates of (among other things) timber volumes by

species, harvesting costs, costs of manufacturing end products from the timber, and selling

prices of these end products. This creates a great deal of common knowledge information

about the tract. Whether scope remains for significant private information regarding de-
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terminants of tract value common to all bidders is uncertain, although our a priori belief

was that lumpsum sales were likely possess common value elements.

The second type of auction is known as a “scaled sale.” Here, bids are made on a per

unit (thousand board-feet of timber) basis. The winner is selected based on these unit

prices and the ex ante estimates of timber volumes obtained from the Forest Service cruise.

However, payments to the Forest Service are based on the winning bidder’s unit prices

and the actual volumes, measured by a third party at the time of harvest. As a result,

the importance of common uncertainty regarding tract values may be reduced. In fact,

bidders are less likely to send their own cruisers to assess the tract value for a scaled sale

(National Resources Management Corporation (1997)). This may leave less scope for private

information regarding any shared determinants of bidders’ valuations and, therefore, less

scope for common values. Bidders may still have private information of an idiosyncratic

nature, e.g., regarding their own sales and inventories of end products, contracts for future

sales, or inventories of uncut timber from private timber sales. This has led several authors

(e.g., Baldwin, Marshall, and Richard (1997), Haile (2001), Haile and Tamer (2003)) to

assume a private values model for scaled sales.27 However, this is not without controversy;

Baldwin (1995) and Athey and Levin (2001) argue for a common values model even for

scaled sales.28

The auctions in our samples took place between 1982 and 1990 in Forest Service regions 1

and 5. Region 1 covers Montana, eastern Washington, Northern Idaho, North Dakota, and

northwestern South Dakota. The Region 5 data consist of sales in California. The restriction

to sales after 1981 is made due to policy changes in 1981 that (among other things) reduced

the significance of subcontracting as a factor affecting bidder valuations, because resale

opportunities can alter bidding in ways that confound the empirical implications of the

winner’s curse (cf. Bikhchandani and Huang (1989), Haile (1999), and Haile (2001)). For

the same reason, we restrict attention to sales with no more than 12 months between the

auction and the harvest deadline.29 For consistency, we consider only sales in which the

Forest Service provided ex ante estimates of the tract values (based on the cruise) using

the predominant method of this time period, known as the “residual value method” (cf.

Baldwin, Marshall, and Richard (1997)). We exclude salvage sales, sales set aside for small

27Other studies assuming private values at timber auctions (USFS and others) include Cummins (1994),
Elyakime, Laffont, Loisel, and Vuong (1994), Hansen (1985), Hansen (1986), Johnson (1979), Paarsch (1991),
and Paarsch (1997).
28Other studies assuming common values models for Forest Service timber auctions include Chatterjee

and Harrison (1988), Lederer (1994), and Leffler, Rucker, and Munn (1994).
29This is the same rule used by Haile and Tamer (2003) and the opposite of that used by Haile (2001) to

focus on sales with significant resale opportunities.
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firms, and sales of contracts requiring the winner to construct roads.

Table 4 describes the resulting sample sizes for auctions with each number of bidders

n = 2, 3, . . . , 12. There are fairly few auctions with more than four bidders, particularly in

the sample of lumpsum sales. However, the unit of observation, both for estimation of the

pseudo-values and for estimation of the distribution of pseudo-values, is a bid. Our data

set contains 75 or more bids for auctions of up to seven bidders in both samples.

Our data include all bids30 for each auction, as well as a large number of auction-specific

observables. These include the year of the sale, the appraised value of the tract, the acreage

of the tract, the length (in months) of the contract term, the volume of timber sold by the

USFS in the same region over the previous six months, and USFS estimates of the volume

of timber on the tract, harvesting costs, costs of manufacturing end products, selling value

of the end products, and an index of the concentration of the timber volume across species

(cf. Haile (2001)). All dollar values are in constant 1983 dollars per thousand board-feet of

timber. Table 5 provides summary statistics.

7.2 Results

We first perform our tests on each sample under the assumption of exogenous participation.

We consider comparisons of auctions with up to 7 bidders, although we look at ranges

of 2—3, 2—4, 2—5, and 2—6 bidders as well. We use the method described in section 6 to

eliminate the effects of observable heterogeneity with an initial linear regression of bids on

the covariates listed above. Figures 2 and 3 show the estimated distributions of pseudo-

values for each of these comparisons. The distributions compared appear to be roughly

similar, although there is certainly some variation. Table 6 reports the formal test results,

where we set the number of resampling draws at 5000 for both types of tests. For each

specification we report the R2 from the regressions of bids on auction covariates, the means

of each estimated distribution of pseudo-values, and the p-value associated with each test

of the private values null hypothesis.

The fit of the bid regressions are generally very good (recall that bids are already nor-

malized by the size of the tract), leaving plausible residual variation to be attributed to

bidders’ private information. The formal tests provide little evidence of common values.

For the scaled sales, only one of the ten test statistics suggests rejection of the PV null at

the 10 percent level. For the lumpsum sales, the p-values are generally smaller; however,

30In practice separate prices are bid for each identified species on the tract. Following, e.g., Baldwin,
Marshall, and Richard (1997), Haile (2001), and Haile and Tamer (2003), we consider only the total bid of
each bidder, which is also the statistic used to determine the auction winner. See Athey and Levin (2001)
for an analysis of the distribution of bids across species.
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only two of ten tests indicate rejection at a 10 percent level. Only in the sample of auctions

with 2—4 bidders do we obtain results suggesting rejection of the PV null from both types

of test.

One possible reason for a failure to reject the null is the presence of unobserved het-

erogeneity correlated with the number of bidders.31 If tracts of higher value in unobserved

dimensions also attracted more bidders, for example, there would be a tendency for the

distributions compared to shift in the direction opposite that predicted by the winner’s

curse. There is some suggestion of this in the graphs. Hence, we also perform the tests

using the model of endogenous participation with unobserved heterogeneity discussed in

section 5.3.32 As instruments, ζ, we use the numbers of sawmills and logging firms in the

county of each sale and its neighboring counties (cf. Haile (2001)). This approach adds a

second least-squares projection used to estimate Z = υ(ζ) = E[A|ζ]. We then construct a
discrete instrument W by splitting the sample into thirds (halves when we compare only 2-

and 3-bidder auctions) based on the number of predicted bidders.

Figures 4 and 5 show the resulting empirical distributions of pseudo-values compared in

each test. For the scaled sales, the distributions are generally close and exhibit no clear

ordering. For the lumpsum sales the distributions also appear to be fairly similar, although

most comparisons suggest the stochastic ordering predicted by a CV model. The formal

test results are given in Table 7. For the scaled sales we again find only one of ten tests

suggesting rejection of the PV null at a 10 percent level. Furthermore, the two samples for

which p-values below 0.15 are obtained are also the two samples for which the two types

of test yield substantially different results. An examination of the corresponding graphs

in Figure 4 reveals that these are cases in which the empirical distributions are shifting

with n, but in a nonmonotonic fashion. For the lumpsum sales, three of ten tests yield

p-values below 0.05, and six of ten tests give p-values below 0.20. Among the KS tests,

which appeared to be the best performers in the Monte Carlo experiments, the p-values are

below 0.05 in two of five cases, and below 0.20 in four of five cases. However, while this

provides a much stronger suggestion of common values than the tests on the scaled sale

data, the results are clearly mixed.

As a specification check, we have examined the relationship between the estimated

pseudo-values and the associated bids. Under the maintained assumption of equilibrium

31Haile (2001) provides some evidence using a different sample of USFS auctions.
32We continue to assume the absence of a binding reserve price. See, e.g., Mead, Schniepp, and Watson

(1981), Baldwin, Marshall, and Richard (1997), Haile (2001), Haile and Tamer (2003) for arguments that
Forest Service reserve prices are nonbinding, explanations for why this might be the case, and supporting
evidence.
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bidding in the Milgrom-Weber model, v(s−1n (b), s
−1
n (b), n) must be strictly monotone in b.

While testing this restriction has been suggested by GPV and LPV, we are not aware of

any formal testing approach that is directly applicable. However, this does not appear to

be essential in our case. The importance of a formal test is in giving the appropriate al-

lowance for deviations from strict monotonicity that would arise from sampling error. In

most cases we find no deviations from strict monotonicity whatsoever, so that no formal

test could reject. In particular, we have examined the relation between bids and estimated

pseudo-values in each subset of the data examined above. For the case in which no instru-

mental variables are used (so that the samples are divided based on the value of n) we find

violations only in the case of lumpsum sales with n = 6, and here only in the right tail.

When instrumental variables are used, the samples are split based on the value of both n

and the instrument, leading to smaller samples and greater sampling error. Nonetheless,

even here there are only a few violations. For scaled sales, violations occur at no more than

2 points (i.e., 2 bids) per subsample, and the magnitudes of the violations are extremely

small–on the order of 0.03 to 0.3 percent of the pseudo-values themselves. The handful of

larger violations for lumpsum sales again occur only when auctions with n = 6 are exam-

ined. These subsamples also account for two of three cases in which the means test and KS

test give qualitatively different results.

8 Conclusions and Extensions

We have developed nonparametric tests for common values in first-price sealed-bid auctions.

The tests are nonparametric, require observation only of bids, and are consistent against all

common values alternatives within Milgrom and Weber’s (1982) general framework. The

tests perform well in Monte Carlo simulations and can be adapted to incorporate auction-

specific covariates as well as several models of endogenous participation. In addition to

providing an approach for formal testing, our approach of comparing distributions of pseudo-

values obtained from auctions with different numbers of bidders provides one natural way for

quantifying the magnitude of any deviation from a private values model. For example, our

estimates can be used to describe how much bidders adjust their expectations of the value

of winning in response to an exogenous increase in competition (on average, or at various

quantiles, etc.). This provides a natural measure of the severity of the winner’s curse.

Of course, in some applications one would like to address questions like how far wrong a

particular policy prescription would go if a private values model were incorrectly assumed.

Unfortunately, answering such a question will generally require identification of the model,

and such identification generally fails without strong functional form assumptions once the
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PV hypothesis is dropped (see, e.g., Li, Perrigne and Vuong (2000) and Athey and Haile

(2002)). Indeed, the lack of nonparametric identification of CV models is one motivation

for developing formal tests for common values.

In our application to USFS timber sales, we consistently fail to find evidence of common

values at scaled sales. This is consistent with a priori arguments for private values at these

auctions offered in the literature. We obtain mixed evidence against the PV hypothesis for

lumpsum sales, where the a priori case for common values seemed stronger. The estimates

published following the Forest Service cruise may be sufficiently precise that they leave little

role for private information of a common values nature.33 In fact, the cruises performed by

the Forest Service for lumpsum sales are more thorough than those for scaled sales, a fact

reflected in the name “tree measurement sale” given to such sales by the Forest Service.

Hence, the intuitive argument for common values at the lumpsum sales might simply be

misleading. It is, of course, a desire to avoid relying on intuition alone that led us to pursue

a formal testing approach in the first place.

However, our tests are not without limitations that should be kept in mind when inter-

preting our empirical results and applying our tests elsewhere. While we have allowed a

rich class of models in our underlying framework, we have maintained the assumption of

equilibrium competitive bidding in a static game, ruling out collusion and dynamic factors

that might influence bidding decisions. While a verification of the monotonicity restriction

our assumptions imply provides some comfort, this specification test cannot detect all vi-

olations of these assumptions. Even if these assumptions are satisfied, our techniques for

dealing with endogenous participation and auction heterogeneity have required additional

assumptions and finite sample approximations. Finally, while our tests are consistent, the

effects of the winner’s curse in the USFS auctions may be sufficiently small that they are

difficult to detect in the moderate sample sizes available. In this case a failure to reject the

PV null (here or elsewhere) should be viewed as evidence that any CV elements are fairly

small relative to other sources of variation in the data.

A further limitation of the approach as we have described it above is an assumption of

symmetry. However, this is not essential. One can extend our methods to detect common

value elements with asymmetric bidders (i.e., dropping the exchangeability assumption) as

long as at least one bidder participates in auctions with different numbers of competitors.

A full treatment of this topic is left for future work. However, two basic modifications of our

approach are required. The first is that we must examine one bidder at a time. For example,

33The fact that bidders conduct their own tract cruises does not contradict this, because the information
obtained from private cruises could relate primarily to firm-specific (private value) factors.
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a test for the presence of common values for bidder 1 can be based on the distributions of

his values v1(x, x, n), given in equilibrium by the first-order condition

v1(x1t, x1t, nt) = b1t +
∂
∂b Pr(maxj 6=1Bjt ≤ b∗, B1t ≤ b|Nt = nt)|b=b∗=b1t
∂2

∂b∂b∗ Pr(maxj 6=1Bjt ≤ b∗, B1t ≤ b|Nt = nt)|b=b∗=b1t
. (29)

The nonparametric estimators described previously are easily adapted to this case, using

the joint distribution of bids from the auctions bidder 1 participates in to estimate the

right-hand side of (29). Under the PV hypothesis, v1(x, x, n) is constant across n. In order

to obtain a stochastic ordering under the CV alternative, however, we require the second

modification: in considering auctions with n = 2, 3, . . . , we must construct a sequence of

sets of opponents faced by bidder 1 in which the winner’s curse is becoming unambiguously

more severe, e.g., {bidder 2}, {bidder 2, bidder 3}, {bidder 2, bidder 3, bidder 4}, etc.
This structure ensures that the severity of the winner’s curse faced by bidder 1 is greater

in auctions with larger numbers of participants, even though opponents are not perfect

substitutes for each other. While estimation using a long sequence would require a great

deal of data, doing so for a shorter sequence (where the change in the severity of the winner’s

curse is typically largest anyway) may be feasible in some applications.
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Appendix

A Proof of Theorem 2

1. This is a standard result on the
√
Tn-convergence of sample to population quantiles (cf. van der

Vaart (1999), Corollary 21.5).

2. For simplicity we introduce the notation Int = 1 (nt = n), Gn ≡ Gn (b; b), gn ≡ gn (b; b),

Ĝn ≡ Ĝn (b; b) =
1

nTnh

PT
t=1 Int

Pn
i=1 1 (b

∗
it < b)K

¡
b−bit
h

¢
and

ĝn ≡ ĝn (b; b) =
1

nTnh2

TX
t=1

Int
nX
i=1

K

µ
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h

¶
K

µ
b− b∗it
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¶
.

Then we can use a first-order Taylor expansion to write
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¡
s−1 (b) , s−1 (b) , n
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=

Ĝn
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Ĝn −Gn

´
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´
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Standard bias calculations for kernel estimators yield, by Assumption 5,
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Z
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where C and C 0 are constants. Next it will be shown thatp
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d−→ N
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K (e)

2
K (e0)

2
de de0

¶
gn (b; b)

¶
.

For this purpose it suffices to show that
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V ar
³p
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This is verified by the following calculation:
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It is a standard result that

E
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and it can be verified that for j 6= i
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Therefore we can write
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where the last equality uses the substitutions e = ( − b)Áh and e0 = ( 0 − b)Áh. Finally the
same type of variance calculation shows that

V ar
³p

Tnh2
³
Ĝn −EĜn

´´
−→ 0.

Hence the proof for part 2 is complete.

3. Because the sample quantiles of the bid distribution converge at rate
√
Tn to the population

quantile, which is faster than the convergence rate for the pseudo-values, for large Tn the
sampling error in the τth quantile of the bid distribution does not affect the large sample
properties of the estimated quantiles of the pseudo-value distribution. Hence, for each τ ∈
{τ1, . . . , τl}³

v̂
³
s−1n

³
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´
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³
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This implies that the limiting distribution of the vector with elementsp
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In part 2 we showed that each element of this vector is asymptotically normal with limit
variance given by the corresponding diagonal element of Ω. It remains to show that the off-
diagonal elements are 0. For this purpose it suffices to show, using the standard result that
kernel estimates at two distinct points (here, two quantiles bτ ≡ s(xτ ) and bτ 0 ≡ s(xτ 0)) are
asymptotically independent, i.e., that
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Using the bias calculation and convergence rates derived in part 2, it suffices for this purpose
to show that

lim
Tn→∞
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Using the fact that for each i
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we can further rewrite the covariance function as
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B Proof of Theorem 3

First note that Assumption 5 directly implies the following uniform rates of convergence for Ĝn (b; b)
and ĝn (b; b) (see Horowitz (1998) and Guerre, Perrigne, and Vuong (2000)).
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Since part (i) is an immediate consequence of part (ii), we proceed to prove part (ii) directly. Letting
ξ (b;n) = v
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, we can decompose the left side of part (ii) asp
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where we have again let Int = 1 (nt = n), and

µ̂1n,τ =
p
Tnh

1

Tnn

TX
t=1

nX
i=1

Ã
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We consider the properties of each of these terms in turn. For µ̂4n,τ , the law of large numbers gives

µ̂4n,τ =
√
h Op (1) = op (1) .

The function in the summand of µ̂3n,τ satisfies stochastic equicontinuity conditions (a type I function

of Andrews (1994)). Hence using the parametric convergence rates of b̂τ and b̂1−τ ,
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Similarly, the function in the summand of µ̂1n,τ also satisfies stochastic equicontinuity conditions
(product of type I and type III functions in Andrews (1994)), and hence
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Ĝn (b; b)
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Combining the above results, we have thus far shown thatp
Tnh (µ̂n,τ −E [ξ (b;n)1 (bτ,n ≤ b ≤ b1−τ,n)]) = µ̂2n,τ + op (1) .

The term µ̂2n,τ can be further decomposed using a second order Taylor expansion:

µ̂2n,τ = µ̂5n,τ + µ̂6n,τ + µ̂7n,τ
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where
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h2n (bit) (ĝn (bit; bit)− gn (bit; bit))
2 1 (bτ,n ≤ bit ≤ b1−τ,n) Int .

Here the functions h1n (·) and h2n (·) denote the second derivatives with respect to Gn (·) and gn (·)
evaluated at some mean values between Ĝn (·) and Gn (·) and between ĝn (·) and gn (·). We first
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This follows from a limit variance calculation for U -statistics. Letting bt represent the vector of all
bids at auction t, we can write
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where
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The first term is asymptotically negligible, because
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Finally, we note that if we apply the calculations performed for µ̂6n,τ to µ̂
5
n,τ , we see that
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= o (1) and V ar
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which then implies that µ̂5n,τ
p−→ 0. The proof is now completed by putting these terms together.¤

C Large Sample Behavior of the Generalized KS Statistic

Here we describe the asymptotic behavior of the generalized KS statistic ST = ηT δ̄T under H0. As
we show, ST converges to a maximum functional of a zero-mean Gaussian process with variance-
covariance function described below.
For notational simplicity we consider the case in which only one value of n is used in calculating

δ̄T (i.e., when only two distributions are compared). The general case is a straightforward extension.
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We begin by studying the behavior of Ln2 (v) for a fixed v. Using a first-order Taylor approximation,
we have
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where λ (·) = Λ0 (·) and νn = limT→∞
p
T/Tn. L̃

n
2 (v) is very similar in structure to partial mean

statistic examined in appendix B, and we therefore only reproduce the key steps of the analysis of



40

this term. Observe that

L̃n2 (v) =
p
Tnh

1

nTn
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t=1

nX
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λ (vit − v)
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Ĝn (bit; bit)
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Gn (bit; bit)
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=
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1
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nX
i=1

λ (vit − v)
Gn (bit; bit)

gn (bit; bit)
2 (ĝn (bit; bit)−Eĝn (bit; bit)) Int + op (1)

≡Qn (v)−EQn (v) + op (1) ,

where, after rewriting vit as v (bit), Q
n (v) is defined as

Qn (v) =
p
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1

n2T 2n
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s=1
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2

1
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K

µ
bit − bjs

h

¶
K

µ
bit − b∗js

h

¶
Int Ins .

Using U-statistic projection results, we can approximate Qn (v) − EQn (v) by Pn (v) − EPn (v) +
op (1), where

Pn (v) ≡
p
Tnh

1

nTn
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Z
λ (v (bit)− v)

Gn (bit; bit)

gn (bit; bit)
2

1

h2
K

µ
bit − bjs

h

¶
K

µ
bit − b∗js

h

¶
gn (bit) dbit

=
1

n
√
Tn

TX
s=1

Ins
nX
j=1

Z
λ (v (bjs + h )− v)

Gn (bjs + h ; bjs + h )

gn (bjs + h ; bjs + h )
2

1√
h
K ( )K

µ
bjs − b∗js

h
+

¶
gn (bjs + h ) d

=
1

n
√
Tn

TX
s=1

Ins
nX
j=1

λ (v (bjs)− v)
Gn (bjs; bjs)

gn (bjs; bjs)
2 gn (bjs)

1√
h

Z
K ( )K

µ
bjs − b∗js

h
+

¶
d + op (1)

≡P̄n (v) + op (1) .

It remains to calculate the limit of the covariance function of the process P̄n (v) : v ∈ [v, v̄]. First
observe that

V ar
¡
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¢
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n
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The expectations term above is given byZ ⎧⎨⎩
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Next, we calculate Cov
¡
P̄n (v) , P̄n (v0)

¢
for v 6= v0:
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The cross covariance terms for i 6= j will be of order h. Therefore we can write
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¢
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Using the same change of variables used above (and omitting subscripts for simplicity), we obtain

Cov
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Hence, limT→∞ V ar
¡
P̄n (v)

¢
is a special case of limT→∞Cov

¡
P̄n (v) , P̄n (v0)

¢
when v = v0.

Combining the results above, we derive that, under the PV null hypothesis,

ηT δ̄T
d−→ sup

v∈[v,v̄]
G (v)

where G (v) is a zero-mean Gaussian process defined on v ∈ [v, v̄] with

V ar (G (v)) = ν2n lim
T→∞
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¢
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V ar
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¢
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0)
¢
+ ν2n+1 lim
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¡
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0)
¢
.

The existence of this nondegenerate limit distribution is the essential result validating the use of
resampling methods to construct the critical values of the test. In practice, resampling methods are
typically the only feasible methods for approximating the asymptotic distributions of functionals of
general Gaussian processes which are difficult to simulate directly.
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Table 1: Monte Carlo Results
200 replications of each experiment.

PV1 CV1 PV2 CV2

Range of n: 2—4 2—5 2—4 2—5 2—4 3—5 3—5 3—6
Tn 200 200 200 200 200 200 200 200

share of p-values < 10% 0.21 0.39 1.00 1.00 0.12 0.27 0.94 0.99
share of p-values < 5% 0.11 0.29 1.00 1.00 0.05 0.18 0.91 0.99

Table 2: Monte Carlo Results
Bootstrap Estimation of Σ

200 replications of each experiment.
PV1 CV1 PV2 CV2

Range of n: 2—4 2—5 2—4 3—6 2—4 3—5 3—5 3—6
Tn 200 200 200 200 200 200 200 200

share of p-values < 10% 0.14 0.18 1.00 1.00 0.13 0.21 0.80 0.91
share of p-values < 5% 0.10 0.12 1.00 1.00 0.04 0.11 0.70 0.83



Table 3: Monte Carlo Results
K-S Test using subsampled critical values.a

200 replications of each experiment.

PV1 CV1

Range of n: 2—3 2—4 2—5 2—3 2—4 2—5
T b 200 200 200 200 200 200
Rc 50 50 50 50 50 50
Sd 151 151 151 151 151 151

%(reject at 5%) 0.01 0.01 0.01 0.59 0.92 0.80
%(reject at 10%) 0.06 0.07 0.11 0.88 0.99 0.99

PV2 CV2

Range of n: 2—3 2—4 2—5 2—3 2—4 2—5
T 200 200 200 200 200 200
R 50 50 50 50 50 50
S 151 151 151 151 151 151

%(reject at 5%) 0.01 0.01 0.02 0.44 0.82 0.91
%(reject at 10%) 0.02 0.04 0.15 0.86 1.00 1.00

aThe bandwidth sequence is hT = O(T−
1
4 ).

bNumber of auctions.
cNumber of auctions in each subsampled dataset.
dNumber of subsamples taken.



Table 4: Data Configuration
USFS Timber Auctions

Scaled Sales Lumpsum Sales
number of number of number of number of
auctions bids auctions bids

n = 2 63 126 54 108
n = 3 39 117 40 120
n = 4 42 168 33 132
n = 5 33 165 16 80
n = 6 23 138 18 108
n = 7 14 98 11 77
n = 8 4 32 6 48
n = 9 9 81 7 63
n = 10 11 110 3 30
n = 11 1 11 0 0
n = 12 4 48 3 36

TOTAL 243 1094 191 802



Table 5: Summary Statistics
USFS Timber Auctions

Scaled Sales Lumpsum Sales
mean std dev mean std dev

number of bidders 4.50 2.47 4.20 2.30
winning bid 80.50 51.49 77.53 46.57
appraised value 36.12 32.56 36.10 29.08
estimated volume 609.89 640.50 390.04 555.86
est. manuf cost 141.51 45.79 153.46 43.08
est. harvest cost 120.57 29.55 118.36 24.92
est. selling value 312.04 75.85 335.74 96.88
species concentration 0.5267 0.5003 0.5497 0.4988
6-month inventory 334161 120445 389821 139625
contract term 7.31 3.27 6.39 3.63
acres 697.78 2925.45 266.82 615.28
region 5 dummy 0.8519 0.6806



Table 6: Test Results
Without Instrumental Variables

Scaled Sales

range of n 2-3 2-4 2-5 2-6 2-7
bid regression R2 .730 .668 .753 .712 .702
means 27.06 31.25 31.07 29.45 26.14

28.25 33.46 33.51 32.78 30.14
41.35 40.32 37.79 35.34

37.23 34.87 30.31
39.29 35.79

49.76
p-values:
means test .505 .670 .737 .795 .845
K-S test .223 .708 .065 .597 .630

Lumpsum Sales

range of n 2-3 2-4 2-5 2-6 2-7
bid regression R2 .752 .736 .627 .574 .566
means 23.73 22.02 3.52 8.09 9.67

23.85 24.60 5.85 10.62 12.09
17.97 0.90 6.48 8.15

15.12 17.32 18.68
17.35 18.67

10.71
p-values:
means test .499 .090 .621 .807 .788
K-S test .314 .114 .197 .705 .039



Table 7: Test Results
With Instrumental Variables

Scaled Sales

range of n 2-3 2-4 2-5 2-6 2-7
IV regression R2 .172 .134 .178 .190 .215
bid regression R2 .740 .671 .758 .722 .724
means 24.34 37.13 34.53 32.92 34.27

23.74 46.55 37.45 29.35 29.66
36.77 41.09 32.75 37.74

p-values:
means test .442 .343 .668 .488 .627
K-S test .301 .034 .675 .451 .138

Lumpsum Sales

range of n 2-3 2-4 2-5 2-6 2-7
IV regression R2 .387 .258 .291 .292 .321
bid regression R2 .754 .745 .642 .639 .633
means 28.98 35.43 7.15 33.15 28.33

24.11 24.84 3.48 29.84 24.94
24.18 10.29 28.39 22.82

p-values:
means test .135 .028 .586 .376 .287
K-S test .172 .021 .452 .103 .043



Figure 1. Empirical Distributions of Pseudo-values

From One Monte Carlo Sample



Figure 2. Empirical Distributions of Pseudo-values

Scaled Sales



Figure 3. Empirical Distributions of Pseudo-values

Lumpsum Sales



Figure 4. Empirical Distributions of Pseudo-values

Scaled Sales, Using Instrumental Variables



Figure 5. Empirical Distributions of Pseudo-values

Lumpsum Sales, Using Instrumental Variables


