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Abstract

The dynamic behavior of a price-fixing cartel is explored when it is concerned

about creating suspicions that a cartel has formed. The intertemporal structure

of the price path is characterized and the effect of antitrust policy on the cartel’s

steady-state price is explored.
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1 Introduction

Since the beginning of FY 1997, the Antitrust Division has prosecuted inter-

national cartels affecting over $10 billion in U.S. commerce ... [These cartels]

have been bigger, in terms of the volume of affected commerce and the amount

of harm caused to American businesses and consumers, than any conspiracies

previously encountered by the Antitrust Division. [Annual Report, Antitrust

Division, United States Department of Justice, 1999: pp. 5-6]

International cartels are estimated to represent a drain of hundreds of millions

of euros on the European economy. ... Since 1998, the number of cartel

cases investigated by the Commission has increased dramatically. [European

Community Competition Policy, XXXth Report on Competition Policy, 2000:

pp. 24-25]

As these quotes from American and European antitrust authorities suggest, price-fixing

remains a perennial problem which makes it all the more important that we understand

when cartels form and, when they do form, how they behave. Though there is a volu-

minous theoretical literature on collusive pricing, an important dimension to price-fixing

cartels has received little attention. In light of the illegality of price-fixing, a critical

goal faced by a cartel is to avoid the appearance that there is a cartel. Firms

want to raise prices but not suspicions that they are coordinating their behavior. If high

prices or rapidly increasing prices or, more generally, anomalous price movements may

make customers and the antitrust authorities suspicious that a cartel is operating, one

would expect this to have implications for how the cartel prices.

This paper is the initial step in a research project whose objective is to explore cartel

pricing in the presence of detection considerations. Some of the questions to be addressed

include: What are the intertemporal properties of the collusive price path? How does

the decision to form a cartel and the properties of the collusive price path respond to

various instruments of antitrust policy? What types of industry traits make detection

more difficult and what are the implications of those traits for cartel pricing?

Towards beginning to address these questions, this paper makes two contributions.

First, it characterizes the intertemporal structure to the joint profit maximizing price path

when two dynamics are at work - higher prices increase penalties in the event of detection

and bigger price changes make detection more likely. In spite of the potential complexity

of these dynamics, the cartel price path is shown to be monotonically increasing under

2



general assumptions. The cartel gradually raises price as it balances off increasing profit

with increasing the probability of detection. The second contribution is to explore how

antitrust policy impacts the steady-state cartel price. While some results confirm existing

intuition about the impact of antitrust policy, some yield a new intuition. Comparative

statics on the steady-state price reveal that it is decreasing in the damage multiple and

the probability of detection; both of which confirm existing intuition. However, it is

independent of the level of fixed fines. Furthermore, if fines are the only penalty, the

cartel’s steady-state price is the same as in the absence of antitrust laws. The equivalence

between fines and damages found in previous work is then shown to break down in the

context of a dynamic model. A second surprising result is that a more stringent standard

for calculating damages actually increases the cartel’s steady-state price. Finally, this

model of detection is augmented by allowing both higher prices as well as bigger price

changes to make detection more likely. Numerical analysis reveals a unique and potentially

identifying pricing pattern - the cartel gradually raises price but then price moderately

declines to its steady-state value.

Related Work A few papers have investigated, in a static setting, optimal cartel

pricing under the constraint of possible detection. Block, Nold, and Sidak (1981) consider

a static oligopoly model in which the probability of detection depends on the price-cost

margin and the penalty is a multiple of above-normal profits. They show that the optimal

cartel price is below the monopoly price and that the cartel price is decreasing in the

penalty multiple and the level of enforcement expenditures (higher levels of which raise

the probability of detection). Spiller (1986), Salant (1987), and Baker (1988) extend the

static formulation to allow buyers to adjust their purchases under the anticipation that

they may be able to collect multiple damages if sellers are shown to have been colluding.

Also within a static setting, Besanko and Spulber (1989, 1990), LaCasse (1995), Polo

(1997), and Souam (2001) explore a context in which firms have private information,

which influences whether or not they collude, and either the government or buyers must

decide whether to pursue costly legal action. Three papers consider a dynamic setting.

Cyrenne (1999) modifies Green and Porter (1984) by assuming that a price war, and the

ensuing raising of price after the war, results in detection for sure and with it a fixed fine.

Spagnolo (2000) and Motta and Polo (2001) consider the effects of leniency programs

on the incentives to collude when the probability of detection and penalties are both

fixed. Though considering collusive behavior in a dynamic setting with antitrust laws,

these papers exclude the sources of dynamics that are the foci of the current analysis;
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specifically, that the probability of detection and penalties are sensitive to firms’ pricing

behavior. It is that sensitivity that will generate predictions about cartel pricing dynamics.

2 Model

The representative firm’s profit when all firms charge a price of P ∈ Ω is denoted π (P )

where Ω is the set of feasible prices. If market demand is D (·) and a firm’s cost function
is C (·) then the profit function is π (P ) = P (D (P ) /n)−C (D (P ) /n) , given n ≥ 2 firms.
In the absence of the formation of a cartel, a symmetric equilibrium is assumed to exist

which entails a price of bP and firm profit of bπ ≥ 0.
If firms form a cartel, they meet to determine price. Assume these meetings, and any

associated documentation, provides the “smoking gun” if an investigation is pursued.1

The cartel is detected with some probability and incurs penalties in that event. Detection

can be viewed as the end of the horizon with a terminal payoff of [bπ/ (1− δ)] −Xt − F

where Xt is a firm’s damages in the event the cartel is detected, F is any (fixed) fines,

and δ ∈ (0, 1) is the discount factor.2 In this model, damages refers to any penalty that
is sensitive to the prices charged while fines refer to penalties that are fixed with respect

to the endogenous variables.3 If not detected, collusion continues on to the next period.

There is an infinite number of periods. Penalties are assumed to be sufficiently bounded

from above for all histories so that the expected present value of a firm’s income stream

is always positive and thus bankruptcy is avoided.

A cartel member’s damages, denoted Xt for period t, are assumed to evolve in the

following manner:

Xt = βXt−1 + γx
¡
P t
¢
where β ∈ [0, 1) , γ ≥ 0, (1)

1Though it is assumed that an investigation leads to conviction with probability one, all results would

go through if the probability of conviction is only required to be positive.
2One could allow for the cartel to be reestablished sometime in the future and I suspect many results

would not change. Of the 1300 firms indicted by the Department of Justice over 1962-1980, 14% were

recidivists (Bosch and Eckard, 1991).
3Though this use of the term "fines" is standard in the literature, in recent years U.S. Department of

Justice fines have become sensitive to the length of the cartel and the prices charged. Federal Sentencing

Guidelines provide for fines equal to 20% of the value of affected commerce multiplied by a culpability

score which lies between 2 and 4 (American Antitrust Institute, 12/7/01). However, the sensitivity of

actual penalties at the margin is not so clear. For example, according to these guidelines, Hoffman-La

Roche should have been levied a penalty between $1.3 and 2.6 billion and it was instead required to

pay $500 million due to some final adjustment. Also, prison sentences are probably quite insensitive to

marginal changes in prices so that their monetary valuation would make up part of F .
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where P t is the cartel price. As time progresses, damages incurred in previous periods

become increasingly difficult to document and 1−β measures the rate of the deterioration
of the evidence.4 x (P t) is the level of damages incurred in the current period where γ is

the multiple of damages that a firm can expect to pay if found caught colluding. While

U.S. antitrust law specifies treble damages, γ could be less than three because a case

is settled out-of-court. Single damages are not unusual for an out-of-court settlement.5

Current U.S. antitrust practice is x (P t) =
³
P t − bP´ (D (P t) /n) .6

Detection of a cartel can occur from many sources; some of which are related to price -

such as customer complaints - and some of which are unrelated to price - such as internal

whistleblowers.7 Hay and Kelley (1974) find that detection was attributed to a complaint

by a customer or a local, state, or federal agency in 13 of 49 price-fixing cases. In the recent

graphite electrodes case, it was reported that the investigation began with a complaint

from a steel manufacturer which is a purchaser of graphite electrodes (Levenstein and

Suslow, 2001). Anomalous pricing may cause customers to become suspicious and pursue

legal action or share their suspicions with the antitrust authorities.8 Though it isn’t

important for my model, I do imagine that buyers (in many price-fixing cases, they are

industrial buyers) are the ones who are becoming suspicious about collusion.

As a general rule, the [Antitrust] Division follows leads generated by disgrun-

tled employees, unhappy customers, or witnesses from ongoing investigations.

4Assuming a depreciation rate to damages is important analytically as it bounds the penalty. An

alternative approach is to impose a statute of limitations so that the damage penalty is the sum of

damages incurred over a bounded number of periods into the past. I conjecture the same type of insight

would emerge under such an assumption. I thank Ted O’Donoghue for making this suggestion. β can

also capture the fact that the real value of the damages declines over time as defendants are not required

to pay foregone interest; interest is applied only after the judicial determination of an antitrust violation.

Blackstone and Bowman (1987) estimate that this reduced the real value of damage penalties by around

50% in 1975 given the average length of a cartel around that time was 8.6 years.
5 See Connor (2001) and White (2001) for some estimates of damages associated with the lysine cartel.

Also see de Roos (1999) for an analysis of the lysine cartel.
6 "[After the] court selects a ’competitive price,’ [it] ... awards the plaintiff the difference between the

competitive estimate and the amount paid, times the quantity purchased, trebled." (Breit and Elzinga,

1986, p. 21.)
7Bryant and Eckard (1991) estimate the chances of a price-fixing cartel being indicted in a 12-month

period to be around 15%.
8The Nasdaq case is one in which truly anomalous pricing resulted in suspicions about collusion.

It was scholars rather than market participants who observed that dealers avoided odd-eighth quotes

and ultimately explained it as a form of collusive behavior (Christie and Schultz, 1994). Though the

market-makers did not admit guilt, they did pay an out-of-court settlement of around $1 billion.
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As such, it is very much a reactive agency with respect to the search for crim-

inal antitrust violations. ... Customers, especially federal, state, and local

procurement agencies, play a role in identifying suspicious pricing, bid, or

shipment patterns. [McAnney, 1991, pp. 529, 530]

In modelling the detection process, there isn’t much relevant evidence to offer guidance

and it is not well-understood how people identify anomalous events. I have then decided

to take a more agnostic approach by specifying a class of probability of detection functions

and exploring how properties of those functions influence cartel pricing dynamics. Letting

φ
¡
P t, P t−1¢ denote the probability of detection in period t, it is allowed to depend on the

current price and the previous period’s price. One can interpret φ
³ bP, bP´ as a baseline

probability of detection driven by, for example, internal whistleblowers. The inclusion of

a more comprehensive price history would significantly complicate the analysis - greatly

expanding the state space - without any apparent gain in insight. Allowing just the most

recent past to matter is potentially significant, however, as price changes can then play a

role in detection.

This modelling of detection warrants some further discussion since it does not explicitly

model those agents who might engage in detection. The first point to make concerns

tractability. Even with a single agent (that is, the cartel), this is a complex model with

two state variables,
¡
P t−1,Xt−1¢, and thereby two distinct sources of dynamics - detection

and antitrust penalties. As currently formulated, the model is rich enough to provide new

insight into cartel pricing dynamics, even with a simple modelling of the detection process,

and a more complex model at this stage is likely to prove intractable. Tractability issues

aside, there is another motivation for this approach. The objective of this paper is not to

develop insight and testable hypotheses about detection but rather about cartel pricing. A

good model of the detection process is then defined to be one that is a plausible description

of how cartel members perceive the detection process. To my knowledge, there is little

evidence from past cases that cartels hold a sophisticated view of buyers (which is implied

if one were to model buyers as strategic agents and derive an equilibrium). It strikes

me as quite reasonable that firms might simply postulate that higher prices or bigger

price changes result in a greater likelihood of creating suspicions without having derived

that relationship from first principles about buyers. Thus, even if this modelling of the

detection process is wrong, the resulting statements about cartel pricing may be accurate

if that model is a reasonable representation of firms’ perceptions.9

9Nor do I believe it is inconsistent to model firms as choosing prices optimally - as that is a statement
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In period 1, firms have the choice of forming a cartel, and risking detection and penal-

ties, or earning non-collusive profit of bπ. If they choose the former, they can, at any
time, choose to discontinue colluding. In that event, it is assumed they’ll never collude

again and receive a terminal payoff of [bπ/ (1− δ)]− σ
¡
P t−1,Xt−1¢ where the last period

of collusion is period t − 1. σ
¡
P t−1,Xt−1¢ is to be interpreted as the present value of

the expected penalty when collusion is discovered after the dissolution of the cartel (for

example, incidental discovery of incriminating documents in an unrelated legal case).

For the purposes of establishing the existence of an optimal cartel price path, the fol-

lowing assumptions are imposed. Additional structure will be required to derive properties

of that path.10

A1 π : Ω → < is bounded and continuously differentiable and ∃Pm > bP such that

π0 (P ) T 0 as P S Pm.

A2 x : Ω→ <+ is bounded, continuously differentiable, and non-decreasing.

A3 φ : Ω2 → [0, 1] is continuous.

A4 σ : Ω×<+ → <+ is bounded, continuous, and non-decreasing.

A5 Ω is a compact convex subset of <+ and
h bP, Pm

i
⊆ Ω .

The cartel chooses an infinite price path so as to maximize the expected sum of dis-

counted income. To break indifference, firms are assumed to collude if they are indifferent

between colluding and not colluding. It is important to emphasize that we do not ignore

the usual incentive compatibility constraints which ensure that a firm will go along with

the collusive price path. One can cast the preceding model as an infinite-horizon perfect

monitoring (though non-repeated) game played among the n firms. The joint profit-

maximizing price path that is characterized here is then the best symmetric equilibrium

price path when δ is sufficiently close to one; that is, when these incentive compatibility

constraints do not bind. Given the complexity of the dynamics associated with detection

and antitrust penalties, it makes sense to initially characterize this price path which, as

the reader will see, is a substantive task in itself.

about what one thinks is best for one’s self - and, at the same time, suppose that firms do not derive

buyers’ optimal detection behavior - as that is a statement about what one thinks is best for others. An

agent may know what is best for themselves without having a clue as to what is best for someone else.
10 If x (P ) =

³
P − bP´ (D (P ) /n) then it could be decreasing for sufficiently high prices which contradicts

A2. However, it is shown in Harrington (2001) that, under standard assumptions on demand and cost

functions, x is increasing for prices on the optimal price path.
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3 Existence of an Optimal Price Path

The basic problem is one of the cartel manager choosing a price path to maximize the

expected present value of the representative cartel member’s income stream. To establish

the existence of an optimal price path, dynamic programming is used. The state variables

are yesterday’s price, P t−1, and accumulated damages, Xt−1. V
¡
P t−1,Xt−1¢ denotes the

value function when the cartel is still functioning as of period t and is defined as the fixed

point to:

(2)

V
¡
P t−1,Xt−1¢ = maxP∈Ω π (P ) + δφ

¡
P, P t−1¢ £(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
+δ
£
1− φ

¡
P, P t−1¢¤max©V ¡P, βXt−1 + γx (P )

¢
, (bπ/ (1− δ))− σ

¡
P, βXt−1 + γx (P )

¢ª
.

(bπ/ (1− δ)) − βXt−1 − γx (P ) − F is the terminal payoff associated with the cartel

being detected. Also note that firms have the future option of dismantling the cartel

and receiving a terminal payoff of (bπ/ (1− δ))− σ
¡
P, βXt−1 + γx (P )

¢
. All proofs are in

Appendix A.

Theorem 1 Assume A1-A5. An optimal price path exists.

A natural specification for the post-cartel penalty function is

σ
¡
P t−1,Xt−1¢ = ∞X

τ=t

δτ−t+1
£
βτ−t+1Xt−1 + F

¤
ωτ
¡
P t−1¢ (3)

where ωτ
¡
P t−1¢ is the probability of the cartel being discovered in period τ (which

may depend on the initial conditions for price for the post-cartel period). In that case,

σ
¡
P t−1,Xt−1¢ is an affine function ofXt−1. This property is used in the next result which

shows that the value function is a decreasing convex function of accumulated damages.

Theorem 2 Assume A1-A5 and σ is a weakly concave function of Xt−1. V
¡
P t−1,Xt−1¢

is a decreasing convex function of Xt−1.

As a higher value for Xt−1 means a more severe penalty in the event of detection,

it is unsurprising that the value of collusion is decreasing in the amount of accumulated

damages. It is also easy to explain why the value function is convex. Holding the price

path fixed and assuming collusion is infinitely-lived, a firm’s period t payoff is linear and

decreasing in Xt−1 as the expected present value of the penalty associated with Xt−1 is
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Xt−1P∞
τ=t (δβ)

τ−t+1 ωτ where ωτ is the probability of detection in period τ .11 Since the

cartel can partially mitigate the effect of increased accumulated damages by adjusting

the price path to make detection less likely, the value function, at each value of Xt−1,

is bounded from below by a linear decreasing function of Xt−1 which is tangent to the

value function at that value of Xt−1. With this lower bound, the value function is then

(weakly) convex in Xt−1.

4 Properties of the Price Path

Given existence, the next step is to characterize the intertemporal structure of the price

path which will lay the foundation for then exploring how antitrust policy impacts cartel

pricing. Obviously, additional structure on the probability of detection function is required

to yield a useful characterization of cartel pricing. Previous static analyses of the influence

of antitrust law on cartel pricing assume the probability of detection depends only on the

price level and is an increasing function (for example, Block et al, 1981). I initially

explored this case but found nonsensical results; after raising price in the first period, the

cartel steadily lowers price (Harrington, 2001). The intuition is quite general. As firms

collude over time, one can show that accumulated damages on an optimal cartel price

path grow which means a higher penalty in the event of detection. Since the probability

of detection is increasing in price, a natural response to a higher potential penalty is to

lower price and thereby reduce the likelihood of detection. Thus, firms steadily lower

price over time so as to make detection less likely. To my knowledge, there is no empirical

evidence for such a cartel price path. Indeed, it is quite contrary to the steadily rising price

paths documented in the citric acid cartel of 1987-97 (Connor, 1998) and the graphite

electrodes cartel of 1992-97 (Levenstein and Suslow, 2001). In that a falling price path

is the logical implication of having detection depend only on the price level, I infer that

detection is not largely driven by the price level. A natural alternative is that detection

is driven instead by price changes. That is the avenue I will pursue here. However, I will

later explore allowing detection to depend on both price changes and price levels.

In specifying properties for the probability of detection function, the basic story to

have in mind is that the environment is perceived to be stable so that cartel members

expect buyers to anticipate price being fairly stable. Thus, bigger price changes - up

and even possibly down - are more likely to be perceived as anomalous and thus trigger

11 If collusion is finitely-lived then one has the same type of expression up until the final period of

collusion and then σ is relevant thereafter.
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suspicions about the presence of a cartel.

A6 ∃bφ : < → [0, 1] and g : Ω → <++, where g is a strictly positive, non-increasing,

continuously differentiable function, such that

φ
¡
P t, P t−1¢ = bφ ¡¡P t − P t−1¢ g ¡P t−1¢¢ ∀ ¡P t, P t−1¢ ∈ Ω2.

A7 If x ≥ y ≥ 0 then bφ (x) ≥ bφ (y) .
A8 bφ (x) ≥ bφ (0) ∀x ∈ < and bφ (0) ∈ [0, 1) .
A9 ∃ε > 0 such that bφ is continuously differentiable in an ε-ball around ∀P 00 ∈ P 0,∀P 0 ∈

Ω and bφ0 (0) = 0.
A6-A8 specify that the probability of detection depends on the change in price, is

non-decreasing for price increases, and is minimized by keeping price constant. Note

that if g is a constant then the probability of detection depends only on the size of price

movements while if g
¡
P t−1¢ = 1/P t−1 then it depends on the percentage change in price.

A9 requires differentiability around a price change of zero and is a necessary technical

condition.12 Though we state bφ0 (0) = 0 as an assumption, it actually follows from A8

and assuming the derivative of bφ at a price change of zero is defined. Two additional
assumptions involving the profit function are required.

A10 π (P )− δbφ (0) h³γx(P )1−β
´
+ F

i
> bπ ∀P ∈ ³ bP, Pm

i
.

A11 ∃P ∗ ∈
³ bP, Pm

i
such that

π0 (P )−
h
δbφ (0) /³1− δβ

³
1− bφ (0)´´i γx0 (P ) T 0 as P S P ∗.

In Harrington (2001), it is shown that A10 is sufficient to ensure that, at a steady state

price of P , colluding is preferable to not colluding. A11 requires quasi-concavity of an

income function which is defined to be profit less some multiple of damages. It is shown

later that these assumptions are satisfied under standard conditions on demand and cost

functions.
12 I want to acknowledge Ali Khan for the proper statement of A9. He developed an elegant example

which showed that a function can be differentiable at a point but not be differentiable in an ε-ball around

that point.

10



4.1 Monotonicity of the Price Path

Theorem 3 shows that collusion is infinitely-lived, involves a non-decreasing price path,

and the long-run price is P ∗ (as defined in A11).13 These properties for the price path

are derived when firms choose to cartelize.14

Theorem 3 Assume A1-A11 and P 0 ∈
h bP, P ∗´. If it is optimal to form a cartel then it

is optimal to collude in all periods and if {P t}∞t=1 is an optimal price path then: i) it is
non-decreasing over time; and ii) P t → P ∗ as t→∞.

In spite of the generality of the structure, the price path is well-behaved in being

monotonic. The intuition is immediate. In that larger price movements result in a higher

probability of detection, the optimal price path has the cartel gradually increase price to

its long-run target value of P ∗ with the hope of not triggering suspicions. A numerical

example in Figure 1 shows a typical price path when the probability of detection function

is strictly increasing in price increases. Price starts at the non-collusive (Cournot) price

of 333 and is gradually raised; asymptoting a value of 470 which is below the simple

monopoly price of 500.15 Let me note that if the probability of detection is fixed at bφ (0)
- so that it is independent of price - then the cartel immediately increases price to P ∗ and

leaves it there. Intuitively, when the probability of detection is fixed then the expected

penalty associated with past damages is independent of what firms do (as long as they

continue colluding). Those damages are sunk. Hence, the optimal price doesn’t change

over time even though damages do grow.

Though the equations characterizing the dynamic path of price are rather complex,

there is a simple equation defining the long-run cartel price, P ∗, which makes it conducive

for performing comparative statics. P ∗ is defined as the unique solution to

π0 (P ∗)−
h
δbφ (0) /³1− δβ

³
1− bφ (0)´´i γx0 (P ∗) = 0. (4)

13Without A11, the proof of Theorem 3 still establishes that the price path is non-decreasing and is

bounded from above by P∗. A11 serves to show that limt→∞P t = P∗.
14Here are two sets of sufficient conditions for cartel formation to occur when P 0 = bP and X0 = 0.

First, γ and F are sufficiently small. Second, x
³ bP´ = 0 and F = 0. The first case is immediate and the

second case is shown in Harrington (2001). The latter is robust to small changes in the assumptions.
15The numerical analysis assumes market demand of 1000 − P t, constant marginal cost of zero, bP is

the Cournot price, the damage function is x
¡
P t
¢
=
³
P t − bP´ ¡D ¡P t

¢
/n
¢
, and σ = 0∀ ¡P t−1,Xt−1¢ .

Parameters are n = 2, β = .6, γ = 1, δ = .96, and F = 0. The probability of detection function is

φ
¡
P t, P t−1¢ = minn.05 + .0002592

¡
P t − P t−1¢2 , 1o so that raising the price 25% of the way from the

non-collusive to the simple monopoly price in one period results in a 50% chance of detection. More

numerical results are in Harrington (2001).
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The long-run cartel price then depends on the damage function and multiple, the rate

at which damages depreciate, and the probability of detection function. If the profit

function is concave (π00 < 0), the damage function is strictly increasing (γx0 > 0), and

the minimum probability of detection is positive (bφ (0) > 0) then P ∗ < Pm so that the

cartel price is bounded below the simple monopoly price in all periods. Thus, antitrust

law constrains pricing behavior. However, note that if γ = 0, so that the only penalty is

fixed fines, then it follows from (4) that P ∗ = Pm. At the steady-state, fixed fines do not

constrain the cartel’s price. It is true, however, that higher fines can be expected to affect

the speed with which price is raised and, if fines are sufficiently high, they can deter cartel

formation altogether. This is summarized as Remark 1.

Result 1 The steady state cartel price is less than the simple monopoly price when

penalties include damages. The steady-state cartel price equals the simple monopoly

price when the only penalty is fixed fines (assuming cartel formation occurs).

This independence result with respect to fines can be explained as follows. In the long

run, price settles down so that price changes converge to zero. Given that bφ0 (0) = 0,

marginal changes in price have no first-order effect on the probability of detection though

continue to have a first-order effect on the potential penalty through the damage function.

Thus, factors that influence the relationship between price and the size of the penalty -

the discount factor, the rate of depreciation of damages, the damage multiple, and the

damage function - all influence the long-run price. As a result, if there are only fines

and no damages then, as price changes go to zero, marginal changes in price have no

effect on the expected penalty so that the cartel price converges to the simple monopoly

price. Recall that bφ0 (0) = 0 follows from differentiability of the probability of detection

function and that the probability of detection is minimized at a price change of zero; both

assumptions being quite reasonable when the environment is stationary. Thus, a fairly

general implication is that fixed penalties have no long-run effect on the cartel price.

The independence of the steady-state cartel price with respect to fixed penalties is

in stark contrast to static models of collusive pricing in the presence of antitrust laws.

In those models, there is an equivalence between fines and damages in the sense that

any price resulting for some damage multiple could alternatively be generated through

an appropriately selected fine.16 In contrast, when detection depends on price changes

in a dynamic model, price is bounded below the simple monopoly price when penalties
16To see this point, consider a static model in which the cartel maximizes profit less expected penalties

and let ψ (P ) denote the probability of detection (note that it only depends on the price level). When
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include damages but instead converges to the simple monopoly price when damages are

not deployed. Thus, if antitrust policy is intended to constrain cartel prices, even in the

long run, it is essential that penalties be responsive to the price charged.

Finally, the steady-state price can also be independent of the damage multiple though

it requires that damages are proportional to profit. If x (P t) = θπ (P t) for some θ > 0

then (4) once again implies P ∗ = Pm. For example, this proportionality occurs under

the standard damage formula of x (P t) =
³
P t − bP´ (D (P t) /n) when marginal cost is

constant and the but-for price is the competitive price.

4.2 Comparative Statics

Assume the market demand function, D (·), is twice differentiable and each firm has

constant marginal cost of c. A firm’s profit is then π (P ) = (P − c) (D (P ) /n) . Further

assume D00 (P ) ≤ 0 so that A1 holds. Next suppose that the damage function is x (P ) =³
P − bP´ (D (P ) /n) where bP > c. To ensure that A11 is satisfied, define

Ψ (P ) ≡ π (P )− κd (P ) = (1/n)
h
(P − c)D (P )− κ

³
P − bP´D (P )i

where κ ≡ δbφ (0) γ.³1− δβ
³
1− bφ (0)´´ .

Note that if Ψ00 (P ) < 0 then P ∗ is defined by Ψ0 (P ∗) = 0. Taking the first two derivatives

of Ψ:

Ψ0 (P ) = (1/n)
n
(1− κ) [(P − c)D0 (P ) +D (P )] + κ

³ bP − c
´
D0 (P )

o
, (5)

Ψ00 (P ) = (1/n)
n
(1− κ) [2D0 (P ) + (P − c)D00 (P )] + κ

³ bP − c
´
D00 (P )

o
.

Ψ00 (P ) < 0 if κ < 1 and D00 ≤ 0. For P ∗ to exceed bP , one needs:
Ψ0
³ bP´ = (1/n)n( bP − c)D0

³ bP´+ (1− κ)D
³ bP´o > 0. (6)

Since ( bP − c)D0
³ bP´ + D

³ bP´ > 0, as bP is associated with the non-collusive outcome,

then Ψ0
³ bP´ > 0 if κ is sufficiently close to zero which holds, for example, if either the

the penalty is damages, the expected penalty is ψ (P ) γx (P ) and when the penalty is fines, the expected

penalty is ψ (P )F. The optimal cartel price is defined by that price which equates marginal profit with

marginal expected penalty. Next suppose a price of P is induced by a policy of damages:

π0
¡
P
¢
= ψ0

¡
P
¢
γx
¡
P
¢
+ ψ

¡
P
¢
γx0

¡
P
¢
.

We can then induce that same price with fines by setting F so that

ψ0
¡
P
¢
F = ψ0

¡
P
¢
γx
¡
P
¢
+ ψ

¡
P
¢
γx0

¡
P
¢⇔ F = γx

¡
P
¢
+
£
ψ
¡
P
¢
/ψ0

¡
P
¢¤
γx0

¡
P
¢
.

Thus, any price can be implemented either by fines or damages.
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probability of detection or the damage multiple is sufficiently small. P ∗ is then defined

by:

(1− κ) [(P ∗ − c)D0 (P ∗) +D (P ∗)] + κ
³ bP − c

´
D0 (P ∗) = 0. (7)

Taking the total derivative of (7) with respect to κ,

∂P ∗

∂κ
=

[(P ∗ − c)D0 (P ∗) +D (P ∗)]−
³ bP − c

´
D0 (P ∗)

(1− κ) [2D0 (P ∗) + (P ∗ − c)D00 (P ∗)] + κ
³ bP − c

´
D00 (P ∗)

< 0. (8)

It is straightforward to show that κ is increasing in γ, bφ (0) , β, and δ. The following

intuitive results are then immediate.

Result 2 The steady-state cartel price is reduced when: i) the damage multiple, γ, is

increased; ii) the probability of detection, bφ (·) , is increased; iii) the rate at which
damages persist over time, β, is increased; and iv) the discount factor, δ, is increased.

Numerical analysis reveals that when a change in a parameter causes the long-run

cartel price to fall (rise), the entire price path declines (rises); see Harrington (2001). The

first three results are quite immediate. To explain the last one, note that the cartel faces

an intertemporal trade-off in that a higher price in the current period raises current profit

but lowers the future payoff by increasing the likelihood of detection and, in the event of

future detection, increasing the penalty. As cartel members become more patient, they

then prefer lower cartel prices.

A final interesting comparative static exercise is to consider the influence of the but-for

price, bP, on the steady-state cartel price. Recall that the but-for price is the price used
in calculating damages.17 It will be useful to generalize the damage function to:

x (P ) =
³
P − bP´hα (D (P ) /n) + (1− α)

³
D
³ bP´ /n´i (9)

where α ∈ [.5, 1] . U.S. antitrust practice is captured by α = 1 while if damages were

specified to equal the loss in consumer surplus then α = .5, using a linear approximation.

Note that as α falls, the cartel’s price has less of an influence on the level of demand used

for calculating damages. It is straightforward to derive:

∂P ∗

∂ bP =
κ
h
(1− α)D0

³ bP´− αD0 (P ∗)
i

(1− κα) [2D0 (P ∗) + (P ∗ − c)D00 (P ∗)] + κα
³ bP − c

´
D00 (P ∗)

. (10)

17Actually, bP represents two different prices: the non-collusive price and the but-for price. While, in

practice, they are intended to be the same, in principle they could be different. The point to make is that

it is bP as the but-for price which influences the steady-state cartel price.
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As before, the denominator is negative. Since the numerator is increasing in α, it is

minimized at α = .5 and, therefore, the numerator is non-negative as long as D0
³ bP´ ≥

D0 (P ∗) . Since P ∗ > bP then D00 ≤ 0 implies D0
³ bP´ ≥ D0 (P ∗) . This gives us the

following result.

Result 3 The steady-state cartel price is decreasing in the but-for price, ∂P ∗/∂ bP < 0.

To understand this result, first note that lowering bP raises the total amount of damages
by increasing the overcharge, which is the amount of damages assigned per unit of damage

demand. One response to a lower but-for price is to lower the cartel price so as to bring

back down the overcharge. Alternatively, firms could raise the cartel price so as to reduce

the number of units upon which damages are assessed. Given α is not too low - so that the

number of units used for the damage calculation is sufficiently sensitive to the collusive

price - the latter effect dominates. Surprisingly, the steady-state cartel price is then

decreasing in the but-for price. Thus, if the cartel anticipates that a more competitive

standard will be applied in calculating damages, this will result in a higher cartel price in

the long-run.

5 When Detection Depends on Both the Price Level

and Price Changes

As argued at the start of Section 4, counterfactual results about the pattern of prices

emerge when detection is assumed to depend only on the price level. More factual results

follow when detection is driven by price changes. However, it is possible that detection is

driven by both forces - being more likely when price changes are bigger and when price

levels are higher. In this section, numerical analysis is used to explore such a possibility.

As it turns out, allowing both a higher price level and bigger price changes to make

detection more likely generates some possibly identifying pricing patterns to a price-fixing

cartel.

Assume market demand is 1000−P t and each firm has constant marginal cost of zero.

Parameter values are n = 2, δ = .75, β = .95, γ = 1, and F = 0. The but-for price is

assumed to be the Cournot price, which is 333, and the simple monopoly price is 500.

The probability of detection is specified to be

φ
¡
P t, P t−1¢ = min½φ0 + λφ1

³
P t − bP´2 + (1− λ)φ2

¡
P t − P t−1¢2 , 1¾ .
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When λ = 0 then detection is only sensitive to price movements and λ = 1 results in

detection depending only on the price level. φ0 is set equal to .01 so that the baseline

probability of detection is 1%. φ1 = .00000324 which implies that when λ = 1 then

setting the monopoly price results in a 10% chance of detection and φ2 = .00003204 so

that, when λ = 0, raising price from the non-collusive to the monopoly price in a single

period results in a 90% chance of detection. The optimal price path was calculated for

λ ∈ {0, .01, . . . , .99, 1} . All of the resulting price paths can be found at

www.econ.jhu.edu/People/Harrington/cartelpricing.avi

where, by clicking the image, an animated movie shows how the price path changes when

λ is raised from 0 to 1 so that the importance of the price level with regards to detection

is increased relative to that of price changes.

Typical of our findings is Figure 2 which depicts the optimal cartel price path when

λ = .15. The cartel begins by gradually raising price from 333 and thereby avoiding those

big price changes that are likely to induce suspicions about collusion. Price peaks at 462

around period 10 after which it gradually declines and converges to its steady-state value

of 448. I believe this pattern is quite general for the following reason. At the time of

cartel formation, price is at its non-collusive level so that the task before the cartel is to

raise price but to do so without triggering detection. This results in a gradual increase

in price. As price tends towards its steady-state value, price changes are going to zero

which means there is no first-order effect of price changes on detection. While, with

price bounded above the non-collusive level, there is a first-order effect on detection from

changing the price level. Hence, as price converges, the marginal impact of the price level

on detection is becoming large relative to the marginal impact of price changes. The price

path is then declining as the cartel seeks to lower the probability of detection with a lower

price level and thus offset the fact that the penalty is increasing over time. By this logic,

I then conjecture that a general prediction of allowing for detection to largely depend on

price changes but also to be sensitive to the price level is that the price path will initially

rise and then moderately decline to its steady-state value.

6 Concluding Remarks

In choosing a price path, it is natural to expect a price-fixing cartel to try to avoid

creating suspicions that collusion is afoot. This paper is the first to explore how detection

16



impacts cartel pricing in the context of a dynamic model when detection and penalties are

endogenous. Its contribution is two-fold. First, the intertemporal structure of the price

path is characterized. When detection depends on price changes, the cartel gradually

raises price. A more subtle property emerges when detection is driven by both price

changes and price levels. In that case, the initial phase in which price is gradually increased

is followed by having price moderately decline as it converges to its steady-state value.

The second contribution is exploring the impact of antitrust policy on the steady-state

price. Some of the ensuring results serve to alter our basic intuition. Based on static

models, there is generally thought to be an equivalence between damages and (fixed) fines

in the sense that if damages constrains the cartel to price at some level then there is a

fixed fine that will do so as well. That equivalence breaks down in a dynamic model.

When the only penalties are fines, the cartel’s steady-state price is exactly the simple

monopoly price. Antitrust policy fails to constrain the cartel. However, when damages

are used, the steady-state price is below the simple monopoly price and, furthermore, is

decreasing the damage multiple. A second accepted piece of intuition is that deployment

of a more competitive standard for calculating damages will induce the cartel to price

lower because now any given price has assigned to it a higher overcharge. I find just the

contrary is true. A lower but-for price induces the cartel to price higher.

The model and analysis of this paper is an initial attempt to develop a richer dynamic

theory of price-fixing cartels by taking account of their illegality and the desire of firms

to avoid detection. There are many directions that one can go from here. With this

particular model, there is a need to take account of (binding) equilibrium conditions so as

to ensure that, more generally, firms do not want to deviate from the cartel price path. Of

particular interest is to explore how antitrust policy interacts with these conditions. To

what extent do concerns about detection make cheating more or less desirable and what

is the role of antitrust policy in destabilizing the internal stability of cartels?

A second set of extensions is to encompass leniency programs. There have been a

number of interesting papers exploring how leniency - in the form of allowing cartel

members who provide evidence to receive reduced penalties - affects the degree of collusion

and welfare. That work, however, does not take into account the endogeneity of detection

and antitrust penalties. The central set of questions in that literature revolve around the

optimal form of leniency. Should all firms be able to apply for leniency or just the first to

come forward (as with the U.S. program)? While in both Europe and the U.S. leniency

means avoidance of fines (also prison sentences in the U.S.), this leaves a firm still liable
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for damages in the U.S. (and there are no damages in Europe). What difference does it

make that some but not all penalties are avoided?

A third extension is related to the fact that detection has been assumed to depend

only on movements in a common firm price. However, suspicions about collusion are also

generated by firms’ prices moving in tandem. If buyers may infer, rightly or wrongly,

from parallel price movements that a cartel is present, this will also have implications for

pricing behavior.

In conclusion, by taking into account the issue of detection, theory may eventually

be able to empirically distinguish between explicit and tacit collusion. Tacit collusion

I define as when firms engage in a pricing arrangement that serves to raise price and

is achieved without explicit communication. While it is possible to prosecute tacitly

colluding firms, it is very difficult. Explicit collusion is when firms engage in direct

communication regarding the setting of prices (or some other form of collusion such as

market allocation). Explicit collusion is clearly an antitrust violation. While antitrust case

law makes a critical distinction between explicit and tacit collusion, existing collusive

pricing theories do not.18 However, if explicit collusion is illegal and tacit collusion is

not (or at least it is considerably more difficult to prove illegality) then concerns about

detection are much more important when firms have formed a price-fixing cartel (or what

is called a “hard-core cartel” in policy circles). In the model of this paper, all pricing

dynamics are driven by concerns about detection and penalties. Indeed, if tacit collusion

is legal then the joint profit-maximizing price path under successful tacit collusion is to

price at the simple monopoly price in all periods. This is strikingly different from the

hard-core cartel price path in which price gradually rises and is bounded below the simple

monopoly price. The qualitatively different pricing dynamics between explicit and tacit

collusion offers some hope to distinguish between the two forms of collusion. This is quite

important for policy purposes as it is best if the antitrust authority allocates its resources

to prosecuting explicit collusion for there is both more hope of achieving a conviction and

in deterring the formation of hard-core cartels.

18There are a few exceptions. McCutcheon (1997) models meetings between firms. Athey, Bagwell,

and Sanchirico (1998) and Athey and Bagwell (2001) model the exchange of cost information by firms

which would seem more appropriate for explicit than tacit collusion (though such exchange could still

occur through a trade association).
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Appendix A

Proof of Theorem 1 The proof is an adaptation of arguments in Stokey and Lucas

(1989). Begin by supposing that the cartel has been formed and let v : Ω× £0, X¤ → <
be a continuous (and necessarily bounded) function. Note that the boundedness of x and

β < 1 imply Xt is bounded and we let X denote such a bound. Let T be a function with

domain B which is the space of continuous functions that map Ω × £0,X¤ into <. T is

defined as follows:

T (v (·)) = max
P∈Ω

π (P ) + δφ
¡
P, P t−1¢ £(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
(11)

+δ
£
1− φ

¡
P, P t−1¢¤max{v ¡P, βXt−1 + γx (P )

¢
,

(bπ/ (1− δ))− σ
¡
P, βXt−1 + γx (P )

¢}.
By A1-A5 and the presumption that v is a continuous function, the above problem involves

maximizing a continuous function over a compact set. Hence, T (v (·)) exists by the
Theorem of the Maximum (Theorem 3.6, Stokey and Lucas, 1989). As π, φ, x, σ, and

v are continuous functions and Ω is compact, T is a continuous function (Theorem 3.6,

Stokey and Lucas, 1989). Hence, the range of T is B so that T : B → B.

To show that T is a contraction, Blackwell’s theorem is used (Theorem 3.3, Stokey

and Lucas, 1989). This requires showing that T satisfies monotonicity and discounting.

Monotonicity is satisfied when: if vo, voo ∈ B and

vo
¡
P t−1,Xt−1¢ ≤ voo

¡
P t−1,Xt−1¢∀ ¡P t−1,Xt−1¢ ∈ Ω× £0, X¤

then

T
¡
vo
¡
P t−1,Xt−1¢¢ ≤ T

¡
voo

¡
P t−1,Xt−1¢¢∀ ¡P t−1,Xt−1¢ ∈ Ω× £0, X¤ .

This is trivially true. Discounting is satisfied when ∃θ ∈ (0, 1) such that

T
¡
v
¡
P t−1,Xt−1¢+ a

¢ ≤ T
¡
v
¡
P t−1,Xt−1¢¢+ θa

∀v ∈ B, a ≥ 0, ¡P t−1,Xt−1¢ ∈ Ω× £0,X¤ .
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First note that

T
¡
v
¡
P t−1,Xt−1¢+ a

¢
= max

P
π (P ) + δφ

¡
P, P t−1¢ £(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
+δ
£
1− φ

¡
P, P t−1¢¤max{vo ¡P, βXt−1 + γx (P )

¢
+ a,

(bπ/ (1− δ))− σ
¡
P, βXt−1 + γx (P )

¢}
≤ max

P
π (P ) + δφ

¡
P, P t−1¢ £(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
+δ
£
1− φ

¡
P, P t−1¢¤max{vo ¡P, βXt−1 + γx (P )

¢
,

(bπ/ (1− δ))− σ
¡
P, βXt−1 + γx (P )

¢}+ δ
£
1− φ

¡
P, P t−1¢¤ a

≤ max
P

π (P ) + δφ
¡
P, P t−1¢ £(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
+δ
£
1− φ

¡
P, P t−1¢¤max{vo ¡P, βXt−1 + γx (P )

¢
,

(bπ/ (1− δ))− σ
¡
P, βXt−1 + γx (P )

¢}+ δa

= T
¡
v
¡
P t−1,Xt−1¢¢+ δa.

As δ ∈ (0, 1), T is a contraction. Since the space of continuous functions over a compact
subset of Euclidean space is a complete metric space (in the sup metric) then, by the

Contraction Mapping Theorem (Theorem 3.2, Stokey and Lucas, 1989), T has a unique

fixed point which is a continuous function. This fixed point is the value function, V. Since

then

π (P ) + δφ
¡
P, P t−1¢ £(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
(12)

+δ
£
1− φ

¡
P, P t−1¢¤max{V ¡P, βXt−1 + γx (P )

¢
,

(bπ/ (1− δ))− σ
¡
P, βXt−1 + γx (P )

¢}
is a continuous function and Ω is compact, an optimal price path exists.

All of this analysis is for when the cartel has been formed. If V
¡
P 0,X0

¢ ≥ bπ/ (1− δ)

then it is indeed optimal to form the cartel and the price path is that which maximizes

(12). If V
¡
P 0,X0

¢
< bπ/ (1− δ) then it is not optimal to form the cartel and the optimal

price path is bP in all periods. ¥
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Proof of Theorem 2 Define the sequence of value functions {vh (·)}∞h=1 :

vh+1
¡
P t−1,Xt−1¢ = max

P∈Ω
π (P ) (13)

+δφ
¡
P, P t−1¢ £(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
+δ
£
1− φ

¡
P,P t−1¢¤max{vh ¡P, βXt−1 + γx (P )

¢
,

(bπ/ (1− δ))− σ
¡
P, βXt−1 + γx (P )

¢}.
Given A1-A5, it follows from the Contraction Mapping Theorem that V (·) = limh→∞ vh (·) .
Any property that holds for the sequence of functions {vh (·)}∞h=1 then holds for V (·) .
Suppose vh (·) is decreasing in Xt−1. Since σ (·) is nondecreasing in Xt−1 then

max {vh (·) , (bπ/ (1− δ))− σ (·)} is nondecreasing in Xt−1. Using this fact along with£
(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
being decreasing in Xt−1, it follows that vh+1 (·) is

decreasing in Xt−1. Therefore, V (·) is decreasing in Xt−1.

Suppose vh (·) is convex in Xt−1. As σ (·) is concave in Xt−1 and, since the max-

imum of convex functions is convex, then max {vh (·) , (bπ/ (1− δ))− σ (·)} is convex in
Xt−1.19 Next note that

£
(bπ/ (1− δ))− βXt−1 − γx (P )− F

¤
is convex in Xt−1. Thus,

the function being maximized on the rhs of (13) is convex in Xt−1. As vh+1 (·) is simply
the maximum of a collection of convex functions - each one parameterized by a different

element of Ω - then vh+1 (·) is convex in Xt−1. ¥

Proof of Theorem 3 There are several steps in the proof. First, it is shown that if

it is optimal to form a cartel then it is optimal to collude forever. Second, the optimal

price path is bounded above by P ∗. Third, the optimal price path is non-decreasing over

time. Fourth, the optimal price path converges to P ∗.

• It is optimal to collude forever.

The strategy is to show that if it is optimal to collude in, say, period T then it must be

optimal to collude in period T + 1. Assume it is optimal to form a cartel. It is sufficient

to show that it is optimal to collude forever when σ
¡
P t−1,Xt−1¢ = 0∀ ¡P t−1,Xt−1¢ so

that the terminal payoff from stopping collusion is bπ/ (1− δ). Suppose it is optimal to

19Suppose u1 (·) , u2 (·) , . . . , uk (·) are convex in z. To show that U (·) ≡ max {u1 (·) , u2 (·) , . . . , uk (·)}
is convex, suppose to the contrary. This means that ∃z0, z00 and λ ∈ (0, 1) such that

λU (z0) + (1− λ)U (z00) < U (λz0 + (1− λ) z00) . Suppose U (z0) = ui (z0), U (z00) = uj (z00) , and

U (λz0 + (1− λ) z00) = uk (λz
0 + (1− λ) z00) . The condition is then: λui (z

0) + (1− λ)uj (z
00) <

uk (λz
0 + (1− λ) z00) . Since ui (z0) ≥ uk (z

0) and uj (z00) ≥ uk (z
00) , it follows that: λuk (z

0) +

(1− λ)uk (z
00) < uk (λz

0 + (1− λ) z00) , but this contradicts the assumption that uk (·) is convex.
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collude until period T where T is finite. For it to be optimal to collude in T , it must be

true that:

π
¡
PT
¢− δφ

¡
PT , PT−1¢ £βXT−1 + γx

¡
PT
¢
+ F

¤
+

δbπ
1− δ

≥ bπ
1− δ

.

The lhs is the payoff from colluding in T and stopping collusion as of T + 1 and the rhs

is the payoff from stopping collusion in T. This expression is equivalent to:

π
¡
PT
¢− δφ

¡
PT , PT−1¢ £βXT−1 + γx

¡
PT
¢
+ F

¤ ≥ bπ. (14)

For it to be optimal to dismantle the cartel in T + 1, it is necessary that:

bπ
1− δ

> π
¡
PT
¢− δbφ (0) £β ¡βXT−1 + γx

¡
PT
¢¢
+ γx

¡
PT
¢
+ F

¤
+

δbπ
1− δ

⇔

bπ > π
¡
PT
¢− δbφ (0) £β ¡βXT−1 + γx

¡
PT
¢¢
+ γx

¡
PT
¢
+ F

¤
. (15)

The rhs of the first line in (15) is the payoff from maintaining a price of PT in T + 1 and

then stopping collusion as of T +2.20 Note that φ
¡
PT , PT

¢
= bφ (0) . Combining (14)-(15):

π
¡
PT
¢− δφ

¡
PT , PT−1¢ £βXT−1 + γx

¡
PT
¢
+ F

¤
≥ bπ > π

¡
PT
¢− δbφ (0) £β ¡βXT−1 + γx

¡
PT
¢¢
+ γx

¡
PT
¢
+ F

¤
.

A necessary condition for this to hold is:

π
¡
PT
¢− δφ

¡
PT , PT−1¢ £βXT−1 + γx

¡
PT
¢
+ F

¤
> π

¡
PT
¢− δbφ (0) £β ¡βXT−1 + γx

¡
PT
¢¢
+ γx

¡
PT
¢
+ F

¤
or

bφ (0) £β ¡βXT−1 + γx
¡
PT
¢¢
+ γx

¡
PT
¢
+ F

¤
> φ

¡
PT , PT−1¢ £βXT−1 + γx

¡
PT
¢
+ F

¤
.

Since, by A8, φ
¡
PT , PT−1¢ ≥ bφ (0) , a necessary condition is:

β
¡
βXT−1 + γx

¡
PT
¢¢
+ γx

¡
PT
¢
> βXT−1 + γx

¡
PT
¢⇔ γx

¡
PT
¢

(1− β)
> XT−1.

Intuitively, if it is optimal to collude at a price of PT in period T but it is not optimal

to do so in T + 1 then damages must be higher in T + 1. For that to be the case, what

is added to damages in T, γx
¡
PT
¢
, must exceed the amount of damages lost through

depreciation, (1− β)XT−1. This produces the above condition.

20The assumption is used that a firm must strictly prefer not to collude for it to dissolve the cartel.
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Next note that it is never optimal for the cartel price to exceed the simple monopoly

price of Pm. Relative to a price of Pm, a higher price yields strictly lower current profit,

weakly higher damages, and, as price initially starts below Pm, a weakly higher probability

of detection. It is straightforward to show that a price path with prices above Pm yields

a lower payoff to one in which all those prices exceeding Pm are replaced with Pm. Since

then PT ≤ Pm, it follows from A10 that:

π
¡
PT
¢− δbφ (0)"Ãγx

¡
PT
¢

1− β

!
+ F

#
> bπ. (16)

Given it has been shown that XT−1 is bounded above by γx
¡
PT
¢
/ (1− β) , (16) contra-

dicts (15). This contradiction establishes that the claim that collusion stops in finite time

is false.

• The optimal price path is bounded above by P ∗.

The proof strategy is to show that if the price path ever exceeds P ∗ that a higher

payoff is realized by pricing at P ∗ forever, starting in the period with which price first

exceeds P ∗.

Assuming firms collude forever and using the representation of the payoff in (25), the

payoff starting from period t0 for the collusive price path
n
P
t
o∞
t=1

is

h
π
³
P
t0
´
−∆t0

γx
³
P
t0
´
− (bπ − (1− δ)F )

i
−∆t0

βXt0−1 (17)

+
∞X

t=t0+1

δt−t
0


t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
−∆t

γx
³
P
t
´
− (bπ − (1− δ)F )

i
+ [(bπ/ (1− δ))− F ]

where

∆
t ≡ δ

∞X
τ=t

(δβ)
τ−t

φ
³
P
τ
, P

τ−1´ τ−1Y
j=t

h
1− φ

³
P
j
, P

j−1´i
.

In considering (17), it is as if a colluding firm receives net income in each period equal to

π
³
P
t
´
−∆t

γx
³
P
t
´
where π

³
P
t
´
is gross profit and ∆

t
γx
³
P
t
´
is the expected present

value of damages associated with colluding in that period.

Suppose it is not true that price is bounded above by P ∗ so ∃t0 such that P t0
> P ∗ ≥

P
t0−1

. If this price path is optimal then, starting from period t0, it must yield at least as

high a payoff as a price path in which firms collude and price at P ∗ forever. This is true
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iff: h
π
³
P
t0
´
−∆t0

γx
³
P
t0
´
− (bπ − (1− δ)F )

i
−∆t0

βXt0−1 (18)

+
∞X

t=t0+1

δt−t
0


t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
−∆t

γx
³
P
t
´
− (bπ − (1− δ)F )

i
≥

h
π (P ∗)− e∆t0γx (P ∗)− (bπ − (1− δ)F )

i
− e∆t0βXt0−1

+
∞X

t=t0+1

δt−t
0
½h
1− φ

³
P ∗, P

t0−1´i h
1− bφ (0)it−t0−1 hπ (P ∗)− e∆tγx (P ∗)− (bπ − (1− δ)F )

i¾
where

e∆t0 ≡ δ

(
φ
³
P ∗, P

t0−1´
+

∞X
τ=t0+1

(δβ)
τ−t0 h

1− φ
³
P ∗, P

t0−1´i h
1− bφ (0)iτ−t0−1 bφ (0)) ,

e∆t ≡ δ
∞X
τ=t

(δβ)τ−t
h
1− bφ (0)iτ−t bφ (0) , t ≥ t0 + 1

and recall that φ (P ∗, P ∗) = bφ (0) . To show that ∆t ≥ e∆t∀t ≥ t0, first note that these

expressions can be represented as:

∆t = δ
∞X
τ=t

(δβ)τ−t ωτ
τ−1Y
j=t

¡
1− ωj

¢
where ωτ is the probability of detection in period τ condition on no detection as of τ − 1.
Note that:

∂∆t

∂ωto
= δ

(δβ)to−t
to−1Y
j=t

¡
1− ωj

¢− ∞X
τ=to+1

(δβ)
τ−t

ωτ
τ−1Y

j=t,j 6=to

¡
1− ωj

¢
= δ (δβ)t

o−t
to−1Y
j=t

¡
1− ωj

¢1−
∞X

τ=to+1

(δβ)τ−t
o

ωτ
τ−1Y

j=to+1

¡
1− ωj

¢ .

P∞
τ=to+1 ω

τ
Qτ−1

j=to+1

¡
1− ωj

¢
is the probability of detection over periods to + 1, . . . ,∞.

Since it is less than or equal to one, it follows that:

1−
∞X

τ=to+1

(δβ)τ−t
o

ωτ
τ−1Y

j=to+1

¡
1− ωj

¢
> 0.

Thus, ∆t is increasing in ωt
o

. Since P
t0
> P ∗ ≥ P

t0−1
then, by A7, φ

³
P
t0
, P

t0−1´ ≥
φ
³
P ∗, P

t0−1´
. By A8, φ

³
P
t
, P

t−1´ ≥ bφ (0) , t ≥ t0 + 1. The probability of detection in

period τ (condition on no detection as of τ − 1) is then weakly higher for
n
P
t
o∞
t=1

than

for the alternative price path ∀t ≥ t0. It is concluded that ∆
t ≥ e∆t∀t ≥ t0.
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Consider the lhs expression in (18). Since it is non-increasing in ∆
t
and ∆

t ≥ e∆t∀t ≥
t0, the expression is weakly increased if e∆t replaces ∆

t ∀t ≥ t0. It follows that if (18) holds

then it must be true that:h
π
³
P
t0
´
− e∆t0γx

³
P
t0
´
− (bπ − (1− δ)F )

i
− e∆t0βXt0−1 (19)

+
∞X

t=t0+1

δt−t
0


t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
− e∆tγx

³
P
t
´
− (bπ − (1− δ)F )

i
≥

h
π (P ∗)− e∆t0γx (P ∗)− (bπ − (1− δ)F )

i
− e∆t0βXt0−1

+
∞X

t=t0+1

δt−t
0
½h
1− φ

³
P ∗, P

t0−1´i h
1− bφ (0)it−t0−1 hπ (P ∗)− e∆tγx (P ∗)− (bπ − (1− δ)F )

i¾
.

The objective is to establish that a contradiction follows from (19). The first step is to

show that the summation term on the rhs is at least as great as the summation term on

the lhs. As e∆t = δbφ (0) / h1− δβ
³
1− bφ (0)´i, it follows from A11 that

π (P ∗)− e∆tγx (P ∗) ≥ π
³
P
t
´
− e∆tγx

³
P
t
´
, t ≥ t0 + 1.

Given δbφ (0) / (1− β) ≥ e∆t, A10 implies π (P ∗) − e∆tγx (P ∗) > bπ + δbφ (0)F and thus

π (P ∗)− e∆tγx (P ∗) > bπ − (1− δ)F . Finally, note that

h
1− φ

³
P ∗, P

t0−1´i h
1− bφ (0)it−t0−1 ≥ t−1Y

j=t0

h
1− φ

³
P
j
, P

j−1´i
, t ≥ t0 + 1.

It is concluded that

∞X
t=t0+1

δt−t
0


t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
− e∆tγx

³
P
t
´
− (bπ − (1− δ)F )

i
≤

∞X
t=t0+1

δt−t
0
½h
1− φ

³
P ∗, P

t0−1´i h
1− bφ (0)it−t0−1 hπ (P ∗)− e∆tγx (P ∗)− (bπ − (1− δ)F )

i¾
.

Thus, (19) implies:

π
³
P
t0
´
− e∆t0γx

³
P
t0
´
≥ π (P ∗)− e∆t0γx (P ∗) . (20)

Since γx
³
P
t0
´
≥ γx (P ∗) (so that the lhs is decreasing in e∆t0 at a faster rate than the

rhs), it follows from e∆t0 ≥ e∆t that (20) implies:

π
³
P
t0
´
− e∆tγx

³
P
t0
´
≥ π (P ∗)− e∆tγx (P ∗) .

Since e∆t = δbφ (0) / h1− δβ
³
1− bφ (0)´i and P

t0
> P ∗, this cannot be true by A11. This

proves that the price path is bounded above by P ∗.
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• The optimal price path is non-decreasing over time.

The proof strategy involves two parts. First, suppose that price falls from t0 − 1
to t0 and furthermore that price never exceeds its level prior to the decline, that is,

P t0−1 ≥ P t∀t ≥ t0. It is shown that a higher payoff is realized when price is kept constant

at P t0−1∀t ≥ t0. Second, suppose that price falls from t0− 1 to t0 and remains at or below
P t0−1 over periods t0+1, ..., t00. It is then shown that a higher payoff is realized by skipping

the price path over periods t0+1, ..., t00 and jumping to a price of P t00+1 in period t0, P t00+2

in period t0 + 1, and so forth.

Suppose
n
P
t
o∞
t=1

is an optimal price path and it is not non-decreasing over time.

Hence, ∃t0 > 1 such that P 0 < P
1 ≤ · · · ≤ P

t0−1
> P

t0
. A necessary condition for

optimality is that the payoff, starting in t0, from
n
P
t
o∞
t=1

is at least as great as maintaining

price at P
t0−1

forever:h
π
³
P
t0
´
−∆t0

γx
³
P
t0
´
− (bπ − (1− δ)F )

i
−∆t0

βXt0−1 (21)

+
∞X

t=t0+1

δt−t
0
t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
−∆t

γx
³
P
t
´
− (bπ − (1− δ)F )

i
+ [bπ/ (1− δ)− F ]

≥
h
π
³
P
t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
− e∆βXt0−1

+
∞X

t=t0+1

δt−t
0 h
1− bφ (0)it−t0 hπ ³P t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
+ [bπ/ (1− δ)− F ]

where e∆ ≡ δ
TX
τ=t

(δβ)
τ−t h

1− bφ (0)iτ−t bφ (0) .
The first step is to show that if P

t0−1
> P

t0
and P

t0−1 ≥ P
t∀t ≥ t0+1 then (21) cannot

be true; maintaining price at P
t0−1

forever is superior. Recall that price is bounded above

by P ∗ so that P
t0−1 ≤ P ∗. Since e∆ ≤ ∆t∀t then the lhs of (21) is less than:h

π
³
P
t0
´
− e∆γx³P t0

´
− (bπ − (1− δ)F )

i
− e∆βXt0−1

+
∞X

t=t0+1

δt−t
0
t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
− e∆γx³P t

´
− (bπ − (1− δ)F )

i
+ [bπ/ (1− δ)− F ] .
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Hence, a necessary condition for (21) to be true is:h
π
³
P
t0
´
− e∆γx³P t0

´
− (bπ − (1− δ)F )

i
(22)

+
∞X

t=t0+1

δt−t
0
t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
− e∆γx³P t

´
− (bπ − (1− δ)F )

i
≥

h
π
³
P
t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
+

∞X
t=t0+1

δt−t
0 h
1− bφ (0)it−t0 hπ ³P t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
To show that the summation term on the rhs is at least as great as that on the lhs, first

note that A11 implies

π
³
P
t0−1´−e∆γx³P t0−1´−(bπ − (1− δ)F ) ≥ π

³
P
t
´
−e∆γx³P t

´
−(bπ − (1− δ)F ) , t ≥ t0+1.

as, by supposition, P
t0−1 ≥ P

t∀t ≥ t0+1 and it has already been proven that P ∗ ≥ P
t0−1

.

Next note that A10 implies

π
³
P
t
´
− e∆γx³P t

´
− (bπ − (1− δ)F ) > 0 and

π
³
P
t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F ) > 0,

∀t ≥ t0 + 1 because P
t0−1

, P
t ≤ Pm and e∆ ≤ δbφ (0) / (1− β). Finally,

h
1− bφ (0)it−t0 ≥ t−1Y

j=t0

h
1− φ

³
P
j
, P

j−1´i
, t ≥ t0 + 1.

It is concluded that the summation term on the rhs of (22) is at least as great as the

summation term on the lhs of (22). Therefore, for (22) (and hence, (21)) to be true, it is

necessary that:

π
³
P
t0
´
− e∆γx³P t0

´
≥ π

³
P
t0−1´− e∆γx³P t0−1´

.

However, by P
t0
< P

t0−1 ≤ P ∗, this contradicts A11. It is concluded that the price path

cannot be bounded above by P
t0−1

for t ≥ t0.

Therefore, if P
t0−1

> P
t0
then ∃t00 ≥ t0 such that P

t0−1 ≥ P
t0+1

, . . . , P
t00
and P

t0−1
<

P
t00+1

. Once again compare this price path with one in which price is kept constant at

P
t0−1

. By the arguments just given, one can show that the income from
n
P
t
o∞
t=1

is strictly

lower at t0 and is weakly lower at periods t0 + 1, . . . , t00. Hence, a necessary condition for
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optimality is that the sum of the discounted terms for periods t ≥ t00+1 is strictly higher:

∞X
t=t00+1

δt−t
0
t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i× (23)h
π
³
P
t
´
−∆t

γx
³
P
t
´
− (bπ − (1− δ)F )

i
>

∞X
t=t00+1

δt−t
0 h
1− bφ (0)it−t0 hπ ³P t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
or

δt
00−t0+1

t00Y
j=t0

h
1− φ

³
P
j
, P

j−1´i×
∞X

t=t00+1

δt−t
00−1

t−1Y
j=t00+1

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
−∆t

γx
³
P
t
´
− (bπ − (1− δ)F )

i
> δt

00−t0+1
h
1− bφ (0)it00−t0+1 ×

∞X
t=t00+1

δt−t
00−1

h
1− bφ (0)it−t00−1 hπ ³P t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
.

Since

θ ≡ δt
00−t0+1

h
1− bφ (0)it00−t0+1 ≥ δt

00−t0+1
t00Y
j=t0

h
1− φ

³
P
j
, P

j−1´i ≡ ξ

then a necessary condition for (23) is:

Y ≡
∞X

t=t00+1

δt−t
00−1

t−1Y
j=t00+1

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
−∆t

γx
³
P
t
´
− (bπ − (1− δ)F )

i
>

∞X
t=t00+1

δt−t
00−1

h
1− bφ (0)it−t00−1 × hπ ³P t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
≡ X.

From this condition it will be argued that a strictly superior price path to
n
P
t
o∞
t=t0

is to

set P t = P
t+t00−t0+1

, t ≥ t0. The reason is simple. It has been shown that
n
P
t
ot00
t=t0

does

worse than a constant price of P
t0−1

over periods t0, . . . , t00. The optimality of
n
P
t
o∞
t=t0

then requires that a strictly higher payoff be received after t00. Beginning from t0, a higher

payoff to
n
P
t
o∞
t=t0

can then be earned by skipping the prices over t0, . . . , t00 and start

pricing in t0 according to the price path as of t00 + 1.

Define y and z as the payoff over t0, . . . , t00 from the price path
n
P
t
o∞
t=t0

and a constant

price of P
t0−1

, respectively,

y ≡
t00X
t=t0

δt−t
0
t−1Y
j=t0

h
1− φ

³
P
j
, P

j−1´i h
π
³
P
t
´
−∆t

γx
³
P
t
´
− (bπ − (1− δ)F )

i
,
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z ≡
t00X
t=t0

δt−t
0 h
1− bφ (0)it−t0 hπ ³P t0−1´− e∆γx³P t0−1´− (bπ − (1− δ)F )

i
.

Note that Z = z/ (1− θ) . In this notation, (21) takes the form:

y + ξY −∆t0
βXt0−1 + [bπ/ (1− δ)− F ] ≥ z + θZ − e∆βXt0−1 + [bπ/ (1− δ)− F ] .

Consider:

Y − (y + ξY ) = (1− ξ)Y − y > (1− ξ)Y − z = (1− ξ)Y − (1− θ)Z > 0.

The last inequality follows from θ ≥ ξ and that it has been shown that (21) implies

Y > Z. It is then true that: Y > y + ξY. Now consider the payoff starting from t0

in which P t = P
t+t00−t0+1

, t ≥ t0. It will be shown that it is bounded below by Y −
∆
t0
βXt0−1+[bπ/ (1− δ)− F ] . As defined, Y is the payoff from

n
P
t
o∞
t=t0

starting in t00+1

and discounting back to t00 + 1 with an initial price of P
t00
. It is also the payoff from

P t = P
t+t00−t0+1

for t ≥ t0, starting in t0 and discounting back to t0 but with one caveat.

The preceding price to P
t00+1

is not P
t00
but rather P

t0−1
. Since P

t00+1
> P

t0−1 ≥ P
t00

then ³
P
t00+1 − P

t00
´
g
³
P
t00
´
≥
³
P
t00+1 − P

t0−1´
g
³
P
t0−1´

> 0,

so that, by A7, the probability of detection at t0 from the price path P t = P
t+t00−t0+1

is no greater than that at t00 + 1 from
n
P
t
o∞
t=t0

.21 Thus, the associated payoff is weakly

higher than Y −∆t0
βXt0−1 + [bπ/ (1− δ)− F ] .

To summarize, it has been shown that a price path of P t = P
t+t00−t0+1

for t ≥ t0

yields a payoff of at least Y −∆t0
βXt0−1+[bπ/ (1− δ)− F ] while

n
P
t
o∞
t=t0

yields a payoff

of y + ξY − ∆t0
βXt0−1 + [bπ/ (1− δ)− F ] . Since Y > y + ξY then the former is larger

which contradicts the optimality of
n
P
t
o∞
t=t0

. This contradiction shows the falsity of the

supposition that ∃t0 > 1 such that P 0 < P 1 ≤ · · · ≤ P
t0−1

> P
t0
. It is concluded that the

price path is non-decreasing.

• The optimal price path converges to P ∗.

A variational approach is used to characterize the limiting price. If
n
P
t
o∞
t=1

is an

optimal price path then it is non-decreasing and is bounded above by P ∗. Therefore,

limt→∞ P t exists and is denoted P. Consider a price path in which P t = P
t
for t < T

21This is the only step in the proof that requires g to be a non-increasing function.
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and P t = P
t
+ ε for t ≥ T. Starting with period T , it yields a payoff of

π
³
P
T
+ ε
´

−
n
δφ
³
P
T
+ ε, P

T−1´
+ δβ

h
1− φ

³
P
T
+ ε, P

T−1´i
∆
T+1

o
×h

γx
³
P
T
+ ε
´
+ βXT−1

i
− [bπ − (1− δ)F ]

+
∞X

t=T+1

δt−T
h
1− φ

³
P
T
+ ε, P
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P
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π
³
P
t
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´
−∆t

γx
³
P
t
+ ε
´
− (bπ − (1− δ)F )

i
+ [bπ/ (1− δ)− F ] ,

where ∆
t ≡ δ

∞X
τ=t

(δβ)
τ−t

φ
³
P
τ
+ ε, P

τ−1
+ ε
´ τ−1Y
j=t

h
1− φ

³
P
j
+ ε, P

j−1
+ ε
´i

.

This payoff is continuous in ε and equals the payoff from
©
P
ª∞
t=T

when ε = 0. Optimality

requires that if the derivative of the payoff with respect to ε is defined then it equals 0 at

ε = 0. Prior to taking the derivative, recall that

φ
³
P
T
+ ε, P

T−1´
= bφ³³PT

+ ε− P
T−1´

g
³
P
T−1´´

,

φ
³
P
t
+ ε, P

t−1
+ ε
´
= bφ³³P t − P

t−1´
g
³
P
t−1

+ ε
´´

, t > T

When the derivative of φ is taken, it’ll be replaced with its alternative representation ofbφ for purposes of the analysis.
Taking the derivative of the payoff with respect to ε :

π0
³
P
T
+ ε
´
−
³
1− β∆
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´
δbφ0 ³³PT

+ ε− P
T−1´
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³
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o
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where
∂∆

t

∂ε
= δ

∞X
τ=t

(δβ)τ−t bφ0 ³³P τ − P
τ−1´

g
³
P
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´
×
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³
P
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Optimality requires that this derivative (if defined) equals zero at ε = 0, ∀T. Consider
this derivative, evaluated at ε = 0, as T →∞. Since limT→∞ P

T
= P then

lim
T→∞

bφ0 ³³PT − P
T−1´

g
³
P
T−1´´

g
³
P
T−1´

= bφ0 (0) = 0
lim
T→∞

bφ0 ³³P t − P
t−1´

g
³
P
t−1´´

g0
³
P
t−1´

= bφ0 (0) = 0, t > T.

Since bφ0 (0) is defined by A9, then the above derivative of the payoff function is defined.
Thus, as T → ∞, all of the expressions with bφ0 equal zero as do ∂∆

T
/∂ε and ∂∆

t
/∂ε.

This leaves:

π0
¡
P
¢− nδbφ (0) + δβ

h
1− bφ (0)i∆o γx0 ¡P¢

+
∞X

t=T+1

δt−T
h
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h
1− bφ (0)i £π0 ¡P¢−∆γx0 ¡P¢¤

=
∞X
t=T

δt−T
h
1− bφ (0)it−T £π0 ¡P¢−∆γx0 ¡P¢¤

=
π0
¡
P
¢−∆γx0 ¡P¢

1− δ
³
1− bφ (0)´ ,

where ∆ ≡ δ
∞X
τ=t

(δβ)
τ−t bφ (0) h1− bφ (0)iτ−t = δbφ (0)

1− δβ
³
1− bφ (0)´ .
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Optimality then requires that π0
¡
P
¢−∆γx0 ¡P¢ = 0 which, by A11, implies P = P ∗.

This completes the proof of Theorem 3. ¥

Appendix B
Key to our analysis is a useful representation of a firm’s payoff. To save on notation,

let φt ≡ φ
¡
P t, P t−1¢ denote the probability of detection in period t, as of the start of

period t. Suppose collusion is infinitely-lived (subject to detection interrupting it) and

the collusive price path is {P t}∞t=1 . The payoff as of period t can then be represented as:

π
¡
P t
¢
+ δφt

£
(bπ/ (1− δ))− βXt−1 − γx

¡
P t
¢− F

¤
+ δ

¡
1− φt

¢
π
¡
P t+1

¢
+δ2

¡
1− φt

¢
φt+1

£
(bπ/ (1− δ))− β2Xt−1 − βγx

¡
P t
¢− γx

¡
P t+1

¢− F
¤

+δ2
¡
1− φt

¢ ¡
1− φt+1

¢
π
¡
P t+2

¢
+δ3

¡
1− φt

¢ ¡
1− φt+1

¢
φt+2 ×£

(bπ/ (1− δ))− β3Xt−1 − β2γx
¡
P t
¢− βγx

¡
P t+1

¢− γx
¡
P t+2

¢− F
¤
+ · · ·

A firm earns π (P t) in the current period. With probability φt, detection occurs which

results in bπ in all future periods and a penalty of βXt−1 + γx (P t) + F. With probability

1− φt, detection does not occur so π
¡
P t+1

¢
is earned in period t+ 1 and so forth. This

expression can be re-arranged to:

{π ¡P t
¢− γx

¡
P t
¢
δ
h
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¡
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¢
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2 ¡
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i
.

Let

∆t ≡ δ
∞X
τ=t

(δβ)
τ−t

φτ
τ−1Y
j=t

£
1− φj

¤
,

where the convention is adopted that
Qt−1

j=t

£
1− φj

¤
= 1. The above expression is then:

∞X
τ=t

δτ−tΠτ−1j=t

¡
1− φj

¢
[π (P τ )− γx (P τ )∆τ ] (24)

+[(bπ/ (1− δ))− F ] δ
∞X
τ=t

δτ−tφτΠτ−1j=t

¡
1− φj

¢− βXt−1∆t.

The collusive payoff is represented as the stream of profit net of the expected present value

of damages, π (P τ )−γx (P τ )∆τ , less the expected present value of the fine, δ
P∞

τ=t δ
τ−tφτΠτ−1j=t

¡
1− φj

¢
F,
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less the expected present value of inherited damages, βXt−1∆t, plus the value from not

colluding, (bπ/ (1− δ)) δ
P∞

τ=t δ
τ−tφτΠτ−1j=t

¡
1− φj

¢
.

Let us manipulate the term [(bπ/ (1− δ))− F ] δ
P∞

τ=t δ
τ−tφτΠτ−1j=t

¡
1− φj

¢
:
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Substituting this expression into (24):
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¡
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