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Abstract: For a market with an atomless continuum of assets, we formulate the intuitive

idea of a \well-diversi�ed" portfolio, and present a notion of \exact arbitrage", strictly weaker

than the more conventional notion of \asymptotic arbitrage", and necessary and suÆcient for

the validity of an APT pricing formula. Our formula involves \essential" risk, one based on

a speci�c index portfolio constructed from factors and factor loadings that are endogenously

extracted to satisfy an optimality property involving a �nite number of factors. We illustrate

how our results can be translated to markets with a large but �nite number of assets.Journal

of Economic Literature Classi�cation Numbers: G12, C60.

Key Words: exact arbitrage, asymptotic arbitrage, exact law of large numbers, well-diversi�ed

portfolio, essential risk, arbitrage pricing theory, Loeb measure space.
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1 Introduction

Ross' [35, 36] arbitrage pricing theory (APT) is an attempt to formalize the raw intuition that

\well-diversi�ed portfolios exhibit no idiosyncratic risk", and thereby to derive an APT asset-

pricing formula for markets which do not permit any possibility of gains from arbitrage. The

claim is that the market does not reward gains from naive diversi�cation in an arbitrage-free

environment, and therefore the expected rate of return to a particular asset is approximately

linearly related to its factor loadings, which is to say, determined solely by factors formalizing

systematic risk. This intuition concerning naive diversi�cation is based simply on portfolio size

and correspondingly draws on a version of the classical law of large numbers. It is therefore

important to note that it di�ers from that of the capital-asset-pricing model (CAPM) of Sharpe

[40] and Lintner [28] where the distinction between non-diversi�able and diversi�able risks is

based on mean-variance eÆciency, and thereby on the eÆcient diversi�cation of a portfolio.1

However, despite several attempts,2 the intuitive notion of a \well-diversi�ed" portfolio

has resisted a rigorous and precise treatment. In fact, Chamberlain-Rothschild [7, p.1282] 
atly

state, \Ross' heuristics cannot be made rigorous."3 In this paper, we o�er an APT theory of

considerable scope and power that not only dispels these, and other, misgivings, but also

allows us to uncover concepts that have so far been missed in the literature. In particular,

our theoretical framework allows us to present a notion of no-arbitrage gains that is directly

suggested by the popular aphorism, \there are no pro�table opportunities without cost or risk".

As such, it is both appealing and extremely simple: a portfolio with zero cost and zero risk

has a zero return. Such an assumption is strictly weaker than the more elaborate asymptotic

no-arbitrage assumption common in the conventional APT literature,4 and unlike it, both

necessary and suÆcient for an APT asset-pricing formula to hold.

Our model is based on a \large" number of asset names formalized as an atomless measure

space, and the random returns of the assets are described by a real-valued stochastic process

indexed by elements of such a space. The measure-theoretic structure is used to formulate

the intuitive notion of \negligibility", and then by de�ning unsystematic risk in terms of its

e�ect on a \negligible" corner of the �nancial market, to capture in a precise way the common

1See [33, pp. 173-197] for a discussion of naive and eÆcient diversi�cation. We note here that there is no
uniform terminology in the literature. For example, the terms non-diversi�able risk and diversi�able risk used
here for the CAPM are also called systematic risk and unsystematic risk in [40]. On the other hand, systematic

risk and unsystematic risk used here for the APT model are also referred to as non-diversi�able and diversi�able

risk in, for example, [38, pp. 116-120] and [37].
2See [27]; we comment further on these attempts in the sequel.
3After presenting the intuitive de�nition of an unsystematic risk, Ross et al. [37, p. 294]) note that \we may

not be able to de�ne a systematic risk and an unsystematic risk exactly, but we know them when we see them."
Also see Al-Najjar's [1, p. 248-249] comments on how diÆcult it is \to formalize (let alone prove) within the
sequence model" the basic intuition.

4As, for example, in [35], [36], [6],[7],[10],[18], [19]. In the sequel, we shall no longer refer to these papers
when we use the phrase \conventional APT literature" but simply to this footnote.
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intuition underlying the distinction between systematic and unsystematic risks. Speci�cally,

we use the results in [41, 42], based on a particular class of measure spaces due to Loeb

[29], to model probabilistic phenomenon involving a \large" number of random variables in

situations where there is no natural topology on the set indexing these random variables. A

key feature of this framework is that well-known measurability issues related to the complete

cancellation of idiosyncratic risks are automatically resolved, and various versions of the exact

law of large numbers can be proved. In our particular context, it means that unsystematic

risks can be completely eliminated under naive diversi�cation. This naturally leads to the

formulation of the no-arbitrage condition in a more concrete and transparent way, which is

then shown to be equivalent to the APT valuation formula under the simple projection method

in the theory of Hilbert spaces. The underlying biorthogonal representation theorem also allows

an endogenous and optimal extraction of the factors by identifying the eigenfunctions of the

associated autocorrelation function of the process.

Our theoretical framework enables us to identify an index portfolio I0 in terms of which

systematic risks can be further decomposed into what we shall call here essential and inessential

risks. Whereas unsystematic risk can be eliminated by naive diversi�cation, inessential risk is

correlated with a non-negligible portion of the market and can only be eliminated by eÆcient

diversi�cation. We thus obtain a valuation formula in which the expected return of an asset t

is exactly linearly dependent on its beta, �t; but now recalculated to be the covariance of the

asset's random return with that of the index portfolio I0: This is an I0-based Beta model of

the rates of return,5 and it sharply brings out the fact that in spite of many factor risks, the

market only rewards a risk which is essential and which can never be eliminated through either

naive or eÆcient diversi�cation. The novel feature here is that we distinguish three types of

risk (unsystematic, essential and inessential risks) explicitly and study the exact nature of two

di�erent types of diversi�cation (naive and eÆcient) in one model. This is in contrast to the

previous asset pricing literature where only two of these three types of risks are identi�ed, and

handled, one pair at a time, and in di�erent settings.

The idealized limit model thus uncovers phenomena obscured in the discrete case, and

also not readily apparent in the large but �nite case. It is only after the identi�cation of the

exact no-arbitrage assumption in the ideal case that we know what approximations to look for

in the large but �nite case. In such a setting, by necessity, each asset occupies a non-negligible

portion of the market, and the exact no-arbitrage assumption is expressed in an asymptotic

form that is di�erent from the usual asymptotic no-arbitrage assumption in the literature. It

is an additional strength of the idealized setting that it allows a translation of the intuitive

and transparent regularities of the idealized case into (of necessity, rather complicated epsilon-

cluttered) statements for the large but �nite case. In classical treatments of the APT, as in

5See DuÆe's text [12, Chapter 1] for details and additional references.
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[6],[7], factor structures are not re�ned enough,6 well-diversi�ed portfolios can only be de�ned

as limits of the returns of �nite portfolios, and by requiring the sum of an in�nite series to be

�nite, the approximate results do not give equal treatment to each asset. It is because of this

that one can understand why the concepts singled out here as important and relevant, both in

the idealized and non-idealized cases,7 have not been identi�ed in earlier work.

The remainder of the paper is organized in two substantive sections, followed by a conclu-

sion that highlights its principal contribution, and an Appendix that collects the technicalities

of one proposition. In Section 2, we present the principal results and the basic contours of the

theory, and in Section 3, explain how it impacts on, and clari�es, concepts that are current in

the literature.

2 Exact Arbitrage, Risk Analysis and Asset Pricing

It is well-known that there are measurability problems associated with the sample functions as

well as with the relevant joint process when idiosyncratic risks are considered in the setting of

a Lebesgue continuum of assets; see Doob [8, 9] and Judd [21]. A key feature in [41, 42] is the

use of the Loeb measure framework to resolve these measurability issues automatically.

We �rst recall some basic de�nitions from [20] and [23]. Let (T; T ; �) be the Loeb

counting probability space on a hyper�nite set T , to be used as the index set of assets.8 We

work with another atomless Loeb measure space (
;A; P ) as the sample space, a space that

formalizes all possible uncertain social or natural states relevant to the asset market. The usual

product space is denoted by (T �
; T 
A; �
 P ). The crucial point is that even though this

product space is not large enough for the study of idiosyncratic risks, there is another product

space (T �
; T 
LA; �
LP ), the Loeb product space, that extends the usual product, retains

the Fubini property and is rich enough for the study of idiosyncratic risks (see [42]). As is

conventional, we shall refer to a measurable function of two variables as a process. Given a

process g on the Loeb product space, for each t 2 T , and each ! 2 
, gt denotes the function

g(t; �) on 
 and g! denotes the function g(�; !) on T . The functions gt are usually called the

random variables of the process g, while the g! are referred to as the sample functions of the

process.9 Since the measure � 
L P is an extension of � 
 P on the usual product �-algebra

6The factor loadings in the hyper�nite factor model in [42] are also orthonormal; see Theorem A below.
7We hope that the reader will appreciate, especially after reading Section 3.2, that the scienti�c content of a

result for the idealized and the non-idealized (large but �nite) cases is identical.
8Note that (T; T ; �) is an atomless measure space constructed from an internal counting probability space

on (T; �T ; ��). As is by now well-understood in the economics literature, Loeb measure spaces, even though
constituted by nonstandard entities, are standard measure spaces in the speci�c sense that any result proved
for an abstract measure space applies to them; for details, see [2] and its references. For a mathematical
introduction to nonstandard analysis and to applications, see, for example, [20]. It is of course not necessary to
use the counting measure on T ; it is simply a natural one given our interest in translating the (idealized) limit
results to a sequence of large but �nite markets.

9Note that the measurability of gt and g! is a simple consequence of a Fubini type result for Loeb product
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T 
 A to the larger product �-algebra T 
L A, for notational simplicity, we replace � 
L P

by �
 P in the sequel. We emphasize that we always work with the larger product �-algebra

T 
L A since T 
A is \too small" to be endowed with any non-trivial independent risks (see

Proposition 1.1 in [43]).

We shall model the �nancial market10 by a real-valued T 
LA-measurable function x on

T �
, and interpret the real-valued random variable xt de�ned on (
;A; P ) as the one-period

random return to an asset t in T: In order to use the notion of the variance of the return to

any asset, we shall assume that the asset return process x has a �nite second moment, and

therefore belongs to the Hilbert space L2(�
 P ) of real-valued square integrable functions on

the Loeb product space.11 Thus the square of the norm of x is given by the inner product

(x; x) =

Z Z
T�


x2(t; !)d�
 P (t; !) < 1: (1)

Let � be the mean function of the random variables embodied in the process x of asset returns,12

which is to say that �(t) =
R

 x(t; !)dP (!) is the expected return of asset t 2 T . By the

Cauchy-Schwarz inequality, it is clear thatZ
T
�2(t)d� �

Z Z
T�


x2(t; !)d�
 P (t; !) <1; (2)

and hence � is �-square integrable and belongs to the Hilbert space L2(�): The centered process

f; de�ned by f(t; !) = x(t; !)��(t); embodies the unexpected or the net random return of all

the assets, and is also �
 P -square integrable.13

A portfolio is simply a function listing the amounts held of each asset. Since short sales

are allowed, this function can take negative values. The cost of each asset is assumed to be

unity, and hence the cost of a particular portfolio is simply its integral with respect to �: Since

we are interested in the mean and variance of the return realized from a portfolio, we shall

assume it to be a square integrable function. The random return from a particular portfolio

then depends on the random return, and the amounts held in the portfolio, of each asset t 2 T:

Formally,

measures (also referred to as Keisler's Fubini theorem); see [23].
10In the sequel, we shall also refer to this simply as a \market".
11As exposited, for example, in [39, Chapter 4]. It is worth noting that in the context of the subject matter

of this paper, projection maps on Hilbert spaces have played a fundamental role in [6], [7], [19], [34] and [27].
12It is clear that x is also �
P -integrable. An appeal to the Fubini type theorem for Loeb measures as shown

by Keisler, then guarantees that � is a Loeb integrable function on (T; T ; �). In the sequel, �(t) will also be
denoted by �t. One can understand a Fubini type result on iterated integrals in the hyper�nite Loeb measure
setting as the simple observation that hyper�nite sums can be exchanged. Hereafter, when the need arises, we
simply change the order of integrals without an explicit statement on the application of any Fubini type results.

13As noted in [37, p. 293], \the unanticipated part of the return, that portion resulting from surprises, is the
true risk of any investment. After all, if we had already got what we had expected, there would be no risk and
no uncertainty."
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De�nition 1 A portfolio is a square integrable function p on (T;T ; �). The cost C(p) of a

portfolio p is given by (p; 1) =
R
T p(t)d�(t): The random return of the portfolio p is given by

Rp(!) = (p; x!) =
R
T p(t)x(t; !)d�(t): The mean (or the expected return) E(p) and the variance

V (p) of the portfolio p are the mean and the variance of the random return Rp respectively.

Heuristically, d�(t) is interpreted as an in�nitesimal amount of an asset t and can be regarded

as a small accounting unit in some sense. Thus, in the portfolio p; p(t)d�(t) is the amount, and

p(t)x(t; !)d�(t) is the return, of shares of asset t 2 T: For any two assets, s and t in T; p(s)

and p(t) measure their relative amounts in the portfolio p: Since these terms are integrable as a

function of t over an atomless measure space, the amount invested in, and the return pertaining

to, any asset is in�nitesimal, and therefore any portfolio is well-diversi�ed automatically.

We now turn to the decomposition of an asset's return into systematic and unsystematic

(synonymously, factor and idiosyncratic) risks.

2.1 Systematic and Unsystematic Risks: A Bi-variate Decomposition

We begin by noting the interesting fact that the completion of the standard product measure

space14 (T � 
;T 
 A; � 
 P ); corresponding to the standard measure spaces (T;T ; �) and

(
;A; P ); is always strictly contained in the Loeb product space (T �
;T 
LA; �
P ).15 For

simplicity, let U denote the product �-algebra T 
 A. For an integrable real-valued process g

on the Loeb product space, let E(gjU ) denote the conditional expectation
16 of g with respect

to U . This conditional expectation is a key operation,17 introduced in [41], and used here

to formalize the ensemble of systematic risks and unsystematic risks, and thereby to model

uncertainty from both the macroscopic and microscopic points of view. It makes rigorous

the pervasive attempts in the economic literature that use a discrete or continuous parameter

process with low intercorrelation to model individual uncertainty, and then to invoke the law

of large numbers to remove this individual uncertainty.18

We now collect for the reader's convenience relevant results from [42, Corollary 4.8]), [41,

Theorems 1-3], as a portmanteau theorem.

Theorem A Let f be a real-valued square integrable centered process on the Loeb product space

(T � 
; T 
L A; � 
 P ). Then f has the following expression: for � 
 P -almost all (t; !) in

14For product measures, and for integration on such measures, see, for example, [30, Chapter VIII] or [39,
Chapter 7].

15See [42, Proposition 6.6].
16See [31, Chapter VIII] for details as to conditional expectations.
17Note that such an operation involves both a product �-algebra and a natural but signi�cant extension of

it: U and the Loeb product algebra T 
L A: As such, it has no natural counterpart in standard mathematical
practice or in nonstandard mathematics using only internal entities; see [41, 42] for details.

18Of course, as emphasized in the introduction, and also in Part 3 below, the continuous case does not allow
a viable law of large numbers, and the discrete case results in only an approximate removal.
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T � 
;

f(t; !) =
1X
n=1

�n n(t)'n(!) + e(t; !);

with properties:

(i) �n; 1 � n <1 is a decreasing sequence of positive numbers; the collection f n : 1 � n <1g

is orthonormal; and f'n : 1 � n < 1g is a collection of orthonormal and centered random

variables.

(ii) E(f jU )(t; !) =
P1

n=1 �n n(t)'n(!) and E(ejU ) = 0.

(iii) The random variables et are almost surely orthogonal, which is to say that for �
�-almost

all (t1; t2) 2 T � T; Z


et1(!)et2(!)dP (!) = 0:

(iv) If p is a square integrable real-valued function on (T; T ; �), then for P -almost all ! 2 
;

Z
T
p(t)e!(t)d�(t) = 0 and

Z
T
p(t)f(t; !)d�(t) =

1X
n=1

�n

�Z
T
p(t) n(t)d�(t)

�
'n(!):

(v) If � is a square integrable random variable on (
;A; P ), then for �-almost all t 2 T; it is

orthogonal to et, and

Z


�(!)f(t; !)dP (!) =

1X
n=1

�n

�Z


�(!)'n(!)dP (!)

�
 n(t):

The structural result in Theorem A can be seen as a hyper�nite version of the classi-

cal factor model with a �nite population: the centered random variables 'n as factors, the

corresponding functions  n as factor loadings, and the decreasing sequence of numbers �n as

scaling constants, with the size of �n measures the role of the factor 'n in understanding the

correlational structure of f . It is worth emphasizing that the factors are endogenously derived

by virtue of the fact that the associated autocorrelation function of the process f; R(t1; t2) =R

 f(t1; !)f(t2; !)dP; by serving as a kernel, de�nes an integral operator K on the space L2(�)

of square integrable functions on (T;T ; �). That is, K(h)(t1) =
R
T R(t1; t2)h(t2)d�(t2) for

h 2 L2(�): It is easily checked that �2n is in fact the n-th positive eigenvalue of the operator K

with eigenfunction  n, with all the eigenvalues listed according to reverse order and repeated

up to their corresponding multiplicities.19 It is also clear that 'n(!) = (1=�n)
R
T f!(t) n(t)d�.

Before commenting on the �ve claims of Theorem A, let us refer to a risk as any centered

random variable with a �nite variance de�ned on the sample space 
:We shall measure a level

19Note that if there are only m positive eigenvalues, then the in�nite sum in Theorem A should be read in
the sequel as a �nite sum of m terms.

6



of risk by the variance of the risk. Thus, the risk in asset t is simply the net random return

ft of asset t; and the process f is the ensemble of all the risks present in the �nancial market.

The following de�nition then encapsulates the intuitive notion of an unsystematic risk.

De�nition 2 A centered random variable � on the sample space 
 is said to be an unsystematic

risk for a �nancial market x if � has �nite variance and is uncorrelated to xt for �-almost all

t 2 T .

We can now see that Theorem A presents, simply by virtue of the fact that the underlying

process is square integrable, a bi-variate decomposition of an asset's unexpected rate of return

into endogenously derived categories of unsystematic and systematic risks. Conditions (i) and

(ii) say that the conditional expectation E(f jU ) has a biorthogonal expansion in which both

the random variables 'n and the functions  n are orthogonal among themselves.20

Condition (iii) pertains to the use of the process e as an expression of the ensemble of

unsystematic risks in the �nancial market, and makes explicit the requirement in classical factor

models that the error terms have low intercorrelation. Note that for an arbitrarily given t 2 T ,

et is orthogonal to es except for a �-null set of s 2 T with s 6= t. This �-null set may often

contain many points. It may also happen that some unsystematic risk is uncorrelated with

every asset, and thus has no presence at all in the �nancial market. The �rst part of Condition

(iv) is a strong version of the law of large numbers for the process, and captures in an exact

sense the common-sensical notion that unsystematic risks can be completely canceled through

diversi�cation.21 Indeed, it is this law of large numbers, and the cancellation it embodies, that

allows complete diversi�cation of unsystematic risks: as long as p is square integrable over

T , almost all sample functions of the process p(t)e(t; !) have zero means. Together with the

Karhunen-Lo�eve type biorthogonal expansion, it is crucial for the viability of our distinctive

(exact arbitrage) approach to the APT.

For any portfolio p; Condition (iv) yields22

Rp(!) =

Z
T
p(t)�(t)d�+

1X
n=1

�n

�Z
T
p(t) n(t)d�

�
'n(!)

= (p; �) +
1X
n=1

�n(p;  n)'n(!): (3)

20The corresponding continuous analogue for processes which are continuous in quadratic means on an interval
is often called the Karhunen-Lo�eve expansion theorem and is well-known; see [31]. Note that it is a trivial matter
to require the factors to be orthonormal, but non-trivial to show that both factors and factor loadings can be
orthogonal among themselves; see [41, 42] for details.

21In the terminology of [7, p.1306], all portfolios are \well-diversi�ed" since they contain only factor variance
and no idiosyncratic variance; also [7, Footnote 3].

22Recall that (p; �) and (p; n) denote the inner products
R
T
p(t)�(t)d� and

R
T
p(t) n(t)d�.

7



Hence, by the fact that 'n; n � 1; are orthonormal with means zero,

E(p) = (p; �) =

Z
T
p(t)�(t)d�;V (p) =

1X
n=1

�2n(p;  n)
2 =

1X
n=1

�2n

�Z
T
p(t) n(t)d�

�2
: (4)

In particular, p is a riskless portfolio, which is to say that V (p) = 0; if and only if p is orthogonal

to all of the  n.

Condition (v) and the second part of Condition (iv) say that in so far as integrals are

concerned, one can simply ignore the error terms and focus on the factors. Conditions (iii) and

(v) imply that for �-almost all t 2 T , et is orthogonal to all the 'n; n � 1; as well as to es for

�-almost all s 2 T . By ignoring a null set of assets, one can assume for convenience that this

observation holds for all t 2 T: With this assumption, it is obvious that for each t 2 T , et is

uncorrelated to xs for �-almost all s 2 T and hence is an unsystematic risk. For a centered

random variable � de�ned on the sample space 
, Condition (v) implies that for �-almost all

t 2 T; � is uncorrelated with xt if and only if � is orthogonal to all the factors 'n. This

means that a risk is unsystematic if and only if it is uncorrelated with all the factors. Thus,

any non-trivial random variable � in the linear space F spanned by all the factors 'n; n � 1;

cannot be an unsystematic risk, and hence � must be correlated with a non-negligible segment

of the �nancial market. In fact, for each n � 1,

cov (xt; 'n) =

Z


ft(!)'n(!)dP = �n n(t) 6= 0 (5)

holds on a nonnull subset of T . It is then natural to de�ne systematic risks to be the random

variables which belong to the space F , and thus the conditional expectation E(f jU ) expresses

the ensemble of the systematic risks for all assets. Formally

De�nition 3 A centered random variable � on the sample space 
 is said to be a systematic

risk for a �nancial market x if � has �nite variance and is in the linear space F spanned by

all the factors 'n; n � 1.

In summary, a given risk 
 can be additively decomposed into an element � in the

endogenously identi�ed space F ; and an element � in its orthogonal complement { De�nitions

2 and 3 simply provide a crystallization of the common intuition that generally one can divide

risks into a systematic and an unsystematic portion.23

We conclude this subsection by presenting an optimality property of the endogenously

extracted factors. The result simply says that if one is allowed to use only m sources of

risk to measure the systematic behavior of the market, the best approximation is achieved by

23According to the intuitive discussion in [37, pp. 293-294], as long as � 6= 0, one should call 
 a systematic
risk. On the other hand, our formal de�nition does not involve any unsystematic portion, i.e., it is purely
systematic. For convenience, we shall observe the convention of referring to 
 and � as a risk and a systematic
risk respectively, rather than as a systematic risk and a purely systematic risk.
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picking the m eigenfunctions corresponding to the largest m eigenvalues of the autocorrelation

function of the asset return process. We can thereby justify the use of a relatively small number

of factors, as de�ned in this hyper�nite framework, to understand the relevant correlation

structures. There are of course, many ways of choosing factors to describe such structures, but

the above procedure, based on the ranking of the importance of a particular factor in terms of

the magnitude of its eigenvalue, is optimal in a well-speci�ed sense.

Proposition 1 For 1 � i � m; let �i 2 IR; ai 2 L
2(�) with

R
T a

2
i (t)d� = 1; bi 2 L

2(P ) withR

 b

2
i (!)dP = 1: Then

Z Z
T�


[
mX
i=1

�iai(t)bi(!)� f(t; !)]2d�
 P �
1X

n=m+1

�2n +

Z Z
T�


[f �E(f jU )]
2d�
 P;

or alternatively,

� �

Z Z
T�


[
mX
i=1

�iai(t)bi(!)�E(f jU )]
2d�
 P �

1X
n=m+1

�2n:

The minimum is achieved at �i = �i; ai =  i; bi = 'i for 1 � i � m. If �m is an eigenvalue of

unit multiplicity, and if the minimum is achieved by
Pm

i=1 �iai(t)bi(!) � �(t; !); then �(t; !) =Pm
n=1 �n'n(!) n(t):

The result also indicates that even though one can use m sources of risk to approximate the

ensemble of risks in the market in an optimal way, unsystematic risks remain irrespective of the

size of m: On the other hand, since unsystematic risks have no signi�cance from a macroscopic

point of view, one can simply choosem so that the square sum of the remaining scaling constants

is small enough.

2.2 Exact Arbitrage and APT

We begin with our rendition of Ross' theorem on asset pricing in large asset markets without

arbitrage, but in contrast to his treatment, we work with an endogenous factor structure,

the asset pricing formula is exact and, implies, as well as implied by, a no exact arbitrage

assumption. We begin with a precise formulation of such an assumption; namely, the common-

sensical assertion that a riskless and costless portfolio earns a zero rate of return.

De�nition 4 A market does not permit exact arbitrage opportunities if for any portfolio p,

V (p) = C(p) = 0 implies E(p) = 0.

We are now ready to state a theorem on the equivalence of the validity of an APT type

pricing formula with the economic principle of no arbitrage. The formula simply says that

except for a null set of assets, the expected return of an asset is linearly dependent on its

9



factor loadings in an exact way. To show that asymptotic no arbitrage implies an APT linear

equation, Huberman [18] uses the projection of the expected return function onto the closed

subspace generated by the factor loadings  n together with the constant function 1, and to

which a relevant orthogonal vector becomes arbitrary small as the number of assets becomes

arbitrary large. Here we use a similar idea to show the necessity part of Theorem 1; however,

the analogue of the relevant vector is identically zero in our setting.24 Such a kind of exact

equality leads to the discovery that the exact no arbitrage condition is also implied by the

relevant APT linear equation. The details are as follows.

Theorem 1 A market does not permit exact arbitrage opportunities if and only if there is a

sequence f�ng
1
n=0 of real numbers such that for �-almost all t 2 T , �t = �0 +

P1
n=1 �n n(t):

Proof: We begin with necessity. For an arbitrary portfolio p, let pr be the projection of p on

the closed subspace spanned by the constant function 1 and all the  n. Denote ps = p � pr.

Since � 2 L2(�) from (2) above, we can also project it on the same closed subspace, and de�ne

�r and �s accordingly. If p is costless and riskless, then it is clear from De�nition 1 and (4)

above that p is orthogonal to 1 and to all of the  n: This implies that pr = 0. In this case, we

obtain that

E(p) =

Z
T
ps(t)�(t)d�(t) =

Z
T
ps(t)�s(t)d�(t):

Thus, no arbitrage means that
R
T ps(t)�s(t)d�(t) = 0 for any ps, and in particular, it is true

when ps = �s. Hence, we obtain
R
T �

2
s(t)d� = 0, and thus �s(t) = 0 for �-almost all t 2 T . By

the de�nition of �r, there are real numbers f�ng
1
n=0 such that �(t) = �r(t) = �0+

P1
n=1 �n n(t)

for �-almost all t 2 T .

On the other hand, for the suÆciency part of the claim, the validity of the arbitrage

pricing formula clearly implies �s = 0, which also furnishes us the no arbitrage condition.

As de�ned in the above proof, �s is the orthogonal complement of � on the subspace

spanned by the constant function 1 together with all the factor loadings  n. The following

corollary is obvious.

Corollary 1 A market does not permit exact arbitrage opportunities if and only if �s = 0:

If one is only allowed to use �nitely many factors among countably many factors, then the

following obvious corollary says that one can still obtain an approximate APT pricing result.

Corollary 2 If a market does not permit exact arbitrage opportunities, there is a sequence

f�ng
1
n=0 of real numbers such that limk!1 k�t � �0 � (

Pk
n=1 �n n(t))k2 = 0, where k � k is the

norm in the Hilbert space L2(�).

24As such, the proof of the result bypasses any sequential arguments and simply formalizes Ross' [35, 36]
heuristics; also see [18, 19] and [38, Theorem 2; p. 118], the latter in the context of what is termed an approximate
factor structure.
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2.3 The Equivalence of Beta Pricing and APT Pricing

In this section we connect the APT pricing formula to a beta model for asset pricing in which

the expected return on any asset is linearly related to the rate of return on a reference portfolio,

as exposited, for example, in DuÆe's textbook [12, Chapter 1]. Note, in passing, that the beta

model does not introduce investors' preferences explicitly as in the CAPM model of Sharpe

[40] and Lintner [28]; and thus the prediction that the reference portfolio is held by optimizing

agents is not a consequence of the beta model.25

Before turning to the equivalence between the APT pricing formula and one deriving

from the beta model, we need to specify a particular portfolio h: This portfolio is de�ned

by projecting the constant function 1 on the closed subspace orthogonal to that spanned by

[ 1(�);  2(�); � � �]: For each n � 1, let sn =
R
T  n(t)d�(t) = (1;  n); and note that h is given by

h(t) = 1�
P1

n=1 sn n(t). Since h is orthogonal to the  n(�); we obtain

(h; h) =

Z
T
h2(t)d� = (h; 1) =

Z
T
h(t)d� = C(h) � h0: (6)

We can now present

Theorem 2 The following two conditions are equivalent:

(i) there is a portfolio M and a real number � such that for �-almost all t 2 T; �t =

�+cov (xt;M), where we follow the convention that the covariance cov (xt;M) is actually

cov (xt;RM );

(ii) there is a sequence f�ng
1
n=0 of real numbers such that

P1
n=1(�

2
n=�

4
n) < 1, and for �-

almost all t 2 T , �t = �0 +
P1

n=1 �n n(t):

Proof: For (i) =) (ii), letM(t) =M0h(t)+
P1

n=1Mn n(t)+Ms(t) such thatMs is orthogonal

to h and all the  n. Then by (3), RM �E(M) =
P1

n=1 �nMn'n. SinceM is square integrable,

Bessel's inequality [39, p. 88] guarantees that
P1

n=1M
2
n � (M;M) < 1. It is also clear that

RM �E(M) is square integrable, and thus we can then appeal to Condition (v) of Theorem A

to assert that for �-almost all t 2 T ,

cov (xt;M) =

Z


(xt � �t)(!) (RM (!)�E(M)) dP =

1X
n=1

�2nMn n(t):

Hence it follows from (i) above that

�t = �+
1X
n=1

�
�2nMn

�
 n(t):

25We are indebted to an Associate Editor and a referee for their emphasis on these observations.

11



By letting �0 = � and �n = �2nMn for n � 1, we obtain the APT linear pricing equation. SinceP1
n=1M

2
n <1, we have

P1
n=1(�

2
n=�

4
n) <1:

Next, we consider (ii) =) (i). Assume that the APT linear pricing equation in (ii) holds,

and
P1

n=1(�
2
n=�

4
n) <1: De�ne a portfolio M as follows:

M(t) =
1X
n=1

�
�n
�2n

�
 n(t):

By
P1

n=1(�
2
n=�

4
n) < 1; we know that M is �-square integrable, and hence is a well-de�ned

portfolio in our setting. By (3), it is easy to see that the di�erence of RM with its mean isP1
n=1(�n(�n=�

2
n))'n(!): Thus, by Condition (v) of Theorem A, we obtain that for �-almost all

t 2 T ,

cov (xt;M) =

Z


(xt � �t)(!)(RM (!)�E(M))dP

=
1X
n=1

(�n n(t))

�
�n
�n

�
=

1X
n=1

�n n(t):

Let � = �0. Hence, by the APT linear pricing equation in (ii), we obtain �t = �+ cov (xt;M)

for �-almost all t 2 T , which is to say that (i) holds.

If only �nitely many factors are derived from the process x of asset returns, then the

summability condition26 in Theorem 2 (ii) is trivially satis�ed. Otherwise, it means that the

coeÆcient �n related to the risk premium of the n-th factor must be comparatively much smaller

than the associated scaling constant. If one can earn a relatively large amount of premium by

holding small factor risks, then the risk premium awarding scheme in the market cannot be

described by a pricing formula based on a reference portfolio as discussed here.

2.4 APT and Beta Pricing with Observable Parameters

Theorem 2 exhibits the equivalence between APT and beta pricing without a concrete speci�ca-

tion of the reference carrier portfolio M: In this section, we develop some notation to translate

the coeÆcients �n of Theorems 1 and 2 into directly observed market parameters. Towards

this end, consider the portfolio h de�ned in the previous subsection, and use it to de�ne the

following parameter �0 by

�0 =

8<
:
R
T
�(t)h(t)d�R
T
h2(t)d�

=
R
T �(t)h(t)d�(t)=h0 if h 6� 0;

0 if h � 0.
(7)

Finally, for each n � 1, let �n = (�;  n) =
R
T �(t) n(t)d�; and note

� = �0h+
1X
n=1

�n n + �s: (8)

26The summability condition follows from the existence of the reference portfolio M by Bessel's inequality.
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If we view  n as a portfolio, �n and sn are respectively the mean E( n) and cost C( n) of  n:

Note also that the spaces respectively spanned by [h;  1(�);  2(�); � � �] and [1;  1(�);  2(�); � � �]

are the same. The following corollary relates the �n in Theorem 1 to the sn and �n.

Corollary 3 Assume that for �-almost all t 2 T; �t = �0 +
P1

n=1 �n n(t). Then we have the

following:

(i) if h 6� 0, then �0 = �0 and �n = �n � �0sn for n � 1;

(ii) if h � 0, then �n = �n � �0sn, where �0 is an arbitrary real number. In particular, one

can take �0 = �0 = 0 and �n = �n for n � 1.

Proof: By the assumption, we have for �-almost all t 2 T , �t = �0+
P1

n=1 �n n(t), and hence

by substituting 1 = h+
P1

n=1 sn n, we derive � = �0h+
P1

n=1(�n + �0sn) n: By Equation (8)

and the fact that �s = 0, we obtain that �0h = �0h, and �n + �0sn = �n for all n � 1. For

(i), we simply note that h 6� 0 implies that �0 = �0, and thus �n = �n � �0sn for all n � 1.

For (ii), we only have to consider whether �n + �0sn = �n for all n � 1, since �0h = �0h = 0

is always satis�ed in this case irrespective of �0: Therefore, one can take �n = �n � �0sn for all

n � 1 with �0 being a variable.

The next corollary then characterizes the validity of the beta linear pricing equation in

terms of the market parameters sn and �n.

Corollary 4 Assume that the asset market does not permit exact arbitrage opportunities. Then

there is a portfolio M and a real number � such that for �-almost all t 2 T , �t = �+ cov (xt;M)

if and only if one of the following holds:

(i) if h 6� 0, then
P1

n=1(�n � �0sn)
2=�4n <1;

(ii) if h � 0, then there exists a real number 
 such that
P1

n=1(�n � 
sn)
2=�4n <1.

Proof: Since there is no arbitrage, Corollary 3 implies that � = �0 +
P1

n=1(�n � �0sn) n:

If h 6� 0, then such a representation is unique as shown in Corollary 3(i), and hence we can

appeal to the equivalence of (i) and (ii) in Theorem 2, to obtain the desired equivalence. Thus

(i) is shown.

For (ii), assume h � 0. By Theorem 2, there is a portfolio M and a real number � such

that for �-almost all t 2 T; �t = �+cov (xt;M) if and only if there is a sequence f�ng
1
n=0 of real

numbers such that
P1

n=1(�
2
n=�

4
n) < 1, and for �-almost all t 2 T , �(t) = �0 +

P1
n=1 �n n(t).

On the other hand, if for �-almost all t 2 T , �(t) = �0 +
P1

n=1 �n n(t), then Corollary 3(ii)

implies that �n = �n��0sn. Therefore, the equivalence follows by taking �0 to be some number


.
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2.5 Essential, Inessential and Unsystematic Risks: A Tri-variate Decompo-

sition

We now turn to the notion of essential risks and to an associated asset pricing theorem. The

importance of the theorem comes from its claim that the market only rewards a risk which

is essential and which can never be eliminated through any sort of diversi�cation. It asserts

that two assets with the same essential risks earn the same risk premium even though they

hold di�erent systematic risks. In other words, even though systematic risks are rewarded

as indicated by the APT model and its associated pricing formula, the relevant inessential

risks among them do not earn a premium. Thus, the fact that APT allows multiple sources

of industry-wide or market-wide factor risks does not mean that the reward scheme for risk

taking necessarily involves a multiple number of risks; the market, in fact, only rewards the

holding of one type of risk as described by a particular portfolio I0; and the risk premium for

other types of risk depend on the correlation of these risks with the essential risk X0 embodied

in the return to this portfolio. Stated more simply, this formula shows that the usual APT

claim that the market rewards only systematic risks is not sharp enough; systematic risks can

be reduced still further until a portfolio has only essential risk, and it is only this component

of systematic risk that earns a premium.

Towards the execution of these ideas, we shall work with a �xed index portfolio I0

explicitly constructed from the factor loadings in order to measure the risk most relevant to

the risk premium of any asset. Assume that
P1

n=1(�n � �0sn)
2=�4n <1; and let

I0 =
1X
n=1

((�n � �0sn)=�
2
n) n; with net random return X0 =

1X
n=1

((�n � �0sn)=�n)'n: (9)

We can check that the cost, mean and variance of I0 are respectively given by C(I0) =P1
n=1 sn(�n� �0sn)=�

2
n; E(I0) =

P1
n=1 �n(�n� �0sn)=�

2
n and V (I0) =

P1
n=1(�n� �0sn)

2=�2n:

We can now use I0 to present

De�nition 5 A centered random variable de�ned on the sample space 
 is an essential risk

for a �nancial market x if it is in the one dimensional linear space generated by the net random

return X0 of the index portfolio I0; and is an inessential risk if it is in the orthogonal complement

of X0 in the space F of systematic risks.

The above de�nition formalizes our contention that a systematic risk can be additively decom-

posed into an essential risk and an inessential risk.

We now turn to the pricing formula based on portfolio I0 and one that only rewards the

holding of essential risks. If V (I0) 6= 0, we de�ne the beta �t of asset t by

�t =
cov (xt; I0)

V (I0)
=

P1
n=1(�n � �0sn) n(t)P1
n=1(�n � �0sn)2=�2n

:

14



For each asset t, let

Y (t; !) =
1X
n=1

�
�n n(t)�

�t
�n

(�n � �0sn)

�
'n(!):

Then it is easy to check that Yt is orthogonal to X0 and the portion of systematic riskP1
n=1 �n n(t)'n in the total risk ft of asset t can be written as the sum of an essential risk

�tX0 and an inessential risk Yt: Hence

x(t; !)� �(t) = �tX0(!) + Y (t; !) + e(t; !):

That is, we can break down the total risk xt��t of an asset t into three components: the �rst

involves the projection of the risk onto X0, the component of essential risk; the second is the

projection on the orthogonal complement of X0 in the space of systematic risks, the component

of inessential risk; and the third is the component of residual unsystematic risk. The following

theorem shows that as long as there is no arbitrage, the risk premium of almost all assets t only

depends on �t, the level of essential risk held in the asset. More precisely, it is equal to the beta

of the asset multiplied by the risk premium of the index portfolio. Note that the equivalence

of (i) and (ii) below is simply a restatement of Theorem 1, which is included here to emphasize

the uni�cation, in our setting, of APT, the beta pricing model and the no arbitrage condition.

Theorem 3 Assume that
P1

n=1(�n � �0sn)
2=�4n < 1 and the market is non-trivial in the

sense that the expected return function � is not essentially the constant function �0: Then the

following conditions are equivalent:

(i) the market does not permit exact arbitrage opportunities;

(ii) there is a sequence f�ng
1
n=0 of real numbers such that for �-almost all t 2 T , �t =

�0 +
P1

n=1 �n n(t);

(iii) for �-almost all t 2 T; �t = �0 + �t (E(I0)� �0C(I0)) :

Proof: The equivalence of (i) and (ii) is already shown in Theorem 1. To show the rest, note

that the relevant formulae for the cost, return and variance of the index portfolio I0 imply that

V (I0) = E(I0)� �0C(I0), and hence by the de�nition of �t, we obtain

�0 + �t (E(I0)� �0C(I0)) = �0 +
1X
n=1

(�n � �0sn) n(t):

If (ii) holds, then Corollary 3 implies that for �-almost all t 2 T , �(t) = �0+
P1

n=1(�n�

�0sn) n(t), and hence �(t) = �0 + �t (E(I0)� �0C(I0)) for �-almost all t 2 T , i.e., (iii) holds.

On the other hand, if we assume (iii), then the computation in the �rst paragraph implies

that (ii) holds. Therefore all the three statements are equivalent.
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3 Conceptual Rami�cations for APT

In this second substantive section of this paper, we provide an analysis of our results in Section

2 in the broader context of the motivations behind the APT literature. In particular, we relate

our notion of no exact arbitrage to the more conventional asymptotic formulation, termed here

no asymptotic arbitrage.27 We also consider an asymptotic formulation of the no exact arbitrage

assumption of this paper, termed here no uniformly-asymptotic arbitrage.

3.1 Asymptotic versus Exact Arbitrage

We begin by drawing the reader's attention to the fact that the assumptions of no exact

arbitrage and no asymptotic arbitrage are both made on an asset market as discusses in

Section 2 above. Thus, the net return of asset t at sample realization ! is xt(!) � �t =P1
n=1 �n n(t)'n(!) + et(!) as in Theorem A. Without loss of generality, assume that the re-

turn xt of any asset t 2 T is in L2(P ). Thus
P1

n=1 �
2
n 

2
n(t) < 1 for every t 2 T , and in

particular,  n(t) is �nite for every n and every t. An overview of the results of this subsection

are sketched in Figure 1.

As in much of the previous APT literature referred to above (see [27]), the no asymptotic

arbitrage assumption only involves �nite portfolios. Such a portfolio p is a function � : T �!

IR for which �(t) 6= 0 for only �nitely many t: In this case, one can simply write C(p) =P
t2T �t; E(p) =

P
t2T �t�t; R(p) =

P
t2T �txt and

V (p) = V

 
1X
n=1

X
t2T

�t�n n(t)'n(!) +
X
t2t

�tet(!)

!
:

When the unsystematic risk terms et are orthogonal to all the factors 'n, it is obvious that

V (p) =
P1

k=1 (
P

t2T �t�n n(t))
2 + V (

P
t2T �tet(!)): Since only �nitely many terms are non-

zero in all the sums
P

t2T involving �t; they are all well-de�ned. We present the formal

de�nition of the no asymptotic arbitrage assumption below.

De�nition 6 A market does not permit asymptotic arbitrage opportunities if for any sequence

of �nite portfolios fpng
1
n=1; limn!1 V (pn) = 0 and limn!1C(pn) = 0 =) limn!1E(pn) =

0:

We can now present

Proposition 2 If a market with a riskless asset xt0 ; t0 2 T , of a positive return � does not

permit asymptotic arbitrage opportunities, it does not permit exact arbitrage opportunities.

27See the references in Footnote 4 above.
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Proof: By Proposition 1 in [7] and [26], the cost functional is continuous, and thus there is a

random variable28 C with a �nite second moment such that the inner product (C; xt) = 1 for

all t 2 T: In particular, (C; xt0 ) = 1; and thus (C; 1) = E(C) = (1=�): Let �r and �s be the

projections as in the proof of Theorem 1 above. Then Theorem A(v) and (C; xt) = 1 for all

t 2 T imply

1 = �t(C; 1) +
1X
n=1

�n(C;'n) n(t) + (C; et) = �r=�+ �s=�+
1X
n=1

�n(C;'n) n(t)

for �-almost all t 2 T , and hence �s is in the closed linear space spanned by f1;  1; � � � ;  n; � � �g.

On the other hand, �s ? f1;  1; � � � ;  n; � � �g. Therefore, �s = 0: Hence, by Corollary 1, the

market does not permit exact arbitrage opportunities.

The following example shows that the assumption of the absence of asymptotic arbi-

trage opportunities is strictly stronger than the assumption of the absence of exact arbitrage

opportunities.

Example 1 For each i = 1; 2; : : :, let ei be a random variable with mean zero and variance 1=i.

Assume that the ei's are mutually orthogonal. In an asset market consisting of risky assets

fxtgt2T ; take a sequence ftig
1
i=1 from T such that

xti = �i + ei; �i = �+
1

i
; i = 1; 2; � � � ;

with xt0 a riskless asset with a positive return �; and xt = � for t 6= ti; i = 1; � � � : Since

E(xt) = � for all except countably many assets, Theorem 1 implies that the market does not

permit exact arbitrage opportunities. For each n � 1, take a portfolio pn = (�0; �1; : : : ; �n)

with �0 = �
Pn

i=1 �i and �i = i=n for 1 � i � n, where �i is the share of asset ti. Then, it is

obvious that C(pn) = 0. It is also easy to obtain that

V (pn) =
nX
i=1

�2i V (ei) =
nX
i=1

1=n2 = 1=n

and

E(pn) = �0�+
nX
i=1

�i�i =
nX
i=1

�i=i = 1:

Since limn!1 V (pn) = 0, and for all n � 1, C(pn) = 0 and E(pn) = 1, the market does permit

asymptotic arbitrage.

For our next result, we develop some additional terminology.

28As detailed in [26], the symbol C does triple duty: as the cost of a portfolio, as a continuous functional on
the space of random returns and as a random variable in the space of random returns. Thus E(C) is well-de�ned.
We also remind the reader that (x; y) denotes the inner product between the random variables x and y.
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De�nition 7 A market exhibits an APT asset-pricing formula with bounded total square de-

viations if there exists a sequence f�ng
1
n=0 of real numbers such that

P1
n=1 �n n(t) converges

for every t 2 T and X
t2T

(�t � �0 �
1X
n=1

�n n(t))
2 <1:

We can now state, in the notation of this paper and for the sake of completeness, a consequence

of the absence of asymptotic arbitrage opportunities in terms of an APT asset pricing formula

with bounded total square deviations. The proof is omitted.29

Theorem 4 Consider a market with a riskless asset of positive return � in which cov (es; et) =

0 for all s; t 2 T; with s 6= t and there exists 0 � � < 1 such that V (et) � � for all t 2 T: If

such a market does not permit asymptotic arbitrage opportunities, then the market exhibits an

APT asset-pricing formula with bounded total square deviations.

Remark 1: Theorem 4 is essentially taken from [27], and is a version of Ross's result tran-

scribed for a market with an arbitrary index set of assets. In [27, Theorem 2, Corollary 2],

following [7] and [35, p. 355], we present additional, and more general, versions of the above

result on the implications of the absence of asymptotic arbitrage opportunities in terms of

asset pricing in a market. Our point is made most simply in terms of the version embodied in

Theorem 4 presented here.

We now present an example to show that the assumption of a market not permitting

asymptotic arbitrage opportunities, while suÆcient, is not necessary for the validity of the

APT asset-pricing formula with bounded total square deviations. In other words, for an asset

market with a strict factor structure, the absence of realizing gains from asymptotic arbitrage

is strictly stronger than claiming the validity of the usual APT type formula in the literature.

Example 2 Use the same market as in Example 1. Then it is obvious that the market has

no factors and exhibits an APT asset-pricing formula with bounded total square deviations.

However, it does permit asymptotic arbitrage opportunities as shown in Example 1.

For the next series of observations, we need an additional de�nition.

29As in the proof of Theorem 1 in [27], the corresponding �n can be taken to be ���n(C;'n), where C is the
cost random variable as in the proof Proposition 2. Thus,

1X
n=1

j�n n(t)j � �

 
1X
n=1

(C;'n)
2

!1=2 
1X
n=1

�
2

n 
2

n(t)

!1=2

<1:

Hence
P
1

n=1
�n n(t) converges for every t 2 T . The rest of the proof is exactly the same as that of Theorem 1

in [27].
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De�nition 8 A set U � T of assets in a market is said to be exactly factor-priced if there

exists a sequence f�ng
1
n=0 of real numbers such that

P1
n=1 �n n(t) converges for every t 2 T

and

�t = �0 +
1X
n=1

�n n(t) for all t 2 U:

We can now present two straightforward but useful observations.

Remark 2: If a market exhibits an APT asset-pricing formula with bounded total square

deviations, then there exists a set S of countable cardinality such that all assets in T � S are

exactly factor-priced.

Remark 3: If in a market, all assets in T � S; S of countable cardinality, are exactly factor-

priced, then all assets except those in a set of zero �-measure are exactly factor-priced.

Note that in Remarks 2 and 3, we successively move from a stronger condition to a

weaker one. In terms of the terminology of De�nition 8, Theorem 1 says that a market does

not permit exact arbitrage opportunities if and only if all assets except those in a set of zero

�-measure are exactly factor-priced. The remarks then also show that a market that exhibits

an APT pricing formula with bounded total square deviations, or in which all but countably

many assets are exactly factor-priced, does not permit exact arbitrage opportunities. As shown

in Examples 3 and 4 below, the converse to both statements is false.

The following example shows the existence of a market that neither permits exact ar-

bitrage opportunities nor exhibits the APT asset-pricing formula with bounded total square

deviations

Example 3: For each i = 1; 2; : : :, let ei be a random variables with mean zero and variance

1=i. Assume that the ei's are mutually orthogonal. In an asset market consisting of risky assets

fxtgt2T ; take a sequence ftig
1
i=1 from T such that

xti = �i + ei; �i = 1 + �; i = 1; 2; � � � ;

with xt0 a riskless asset with a positive return �; and xt = � for t 6= ti; i = 1; � � � : Since

E(xt) = � for all except countably many assets, Theorem 1 implies that the market does not

permit exact arbitrage opportunities. It is easy to check that this market does not exhibit the

APT asset-pricing formula with bounded total square deviations.

The next example shows that there is a market that neither permits exact arbitrage nor

prices all but countably many assets exactly in terms of factor pricing.

Example 4: Consider an uncountable set A � T with �-measure zero. Let � be a positive

number and et; t 2 A an orthonormal set of random variables with mean zero. In an asset

market consisting of risky assets fxtgt2T ; such that

xt = 1 + �+ et; t 2 A;
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and xt = � for t 62 A: There are no factors in this market. Since E(xt) = � for all assets except

those in A; Theorem 1 implies that the market does not permit exact arbitrage opportunities.

It is also not true that all but countably many assets are exactly factor-priced.

We now state as a remark an equivalence result that is by now well-known and goes back

to [7]; see also [34] and, in the context of a market with an index set of arbitrary cardinality,

[27, Proposition 1].

Remark 4: A market with a riskless asset does not permit asymptotic arbitrage opportunities

if and only if there exists a continuous functional, termed a cost functional, on the space of

asset returns.

The following is a triviality.

Remark 5: If a cost functional C is de�ned on the returns xt of all assets t 2 T (i.e., (C; xt) = 1

for all t 2 T ), then it is de�ned on the returns xt of all assets t 2 T �S; �(S) = 0: Informally,

if a cost functional prices all assets, then it prices almost all assets.

We now present conditions under which there exists a cost functional that prices almost

all assets.

Proposition 3 Assume that h 6� 0 and the market does not permit exact arbitrage opportuni-

ties. Then there is a continuous functional C such that C(xt) = 1 for �-almost all t 2 T if and

only if �0 6= 0 and
P1

n=1((�n � �0sn)=�n)
2 <1:

Proof: Note that h 6� 0 implies that the set fh;  1; : : : ;  n; : : :g is linearly independent, and so is

f1;  1; : : : ;  n; : : :g. As in Corollary 3, �t = �0 +
P1

n=1(�n � �0sn) n(t): As noted in Footnote

28, we shall still use C to denote the pricing random variable corresponding to continuous

functional C. Let C = C0 +
P1

n=1Cn'n + Cs; where Cs is orthogonal to 1; '1; : : : ; 'n; : : :.

Then Bessel's inequality implies that
P1

n=1C
2
n < 1. It is easy to see that for �-almost all

t 2 T , (C; xt) = 1 if and only if for �-almost all t 2 T ,

C0�0 +
1X
n=1

[C0(�n � �0sn) + �nCn] n(t) = 1;

which is equivalent to

C0�0 = 1; C0(�n � �0sn) + �nCn = 0 for n � 1

by the linear independence of f1;  1; : : : ;  n; : : :g. It is then equivalent to

�0 6= 0 and
1X
n=1

((�n � �0sn)=�n)
2 <1;

and the proof is complete.
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As noted in Remark 4, the no asymptotic arbitrage assumption is closely related to the

existence of a continuous cost functional that prices all assets in a market with a riskless asset.

However, the following three examples show that the existence of a continuous cost functional

that prices almost all assets could be very di�erent from the assumption of no exact arbitrage

in a market with a riskless asset. The �rst example shows that in the case when h � 0, the

existence of a continuous functional that prices almost all assets does not imply the absence of

exact arbitrage opportunities.

Example 5: Take functions  1 and  2 on T such that  1 � 1; E 2 = 0 and E 2
2 = 1: Then

1� (E 1) 1 6� 0 and h 6� 0. Choose �s on T such that  1;  2; �s are orthonormal. Let e be a

process on the Loeb product space such that the et's are almost surely orthogonal with mean

zero and variance one.30 De�ne an asset market on the Loeb product space with the following

returns. Take t0 2 T and de�ne xt0 � � for some positive number �. For t 6= t0,

xt(!) =  1(t) +  2(t) + �s(t) +  1(t)'1(!) +  2(t)'2(!) + et(!)

Let C = '1. Then C(xt) = (C; xt) =  1(t) = 1 for �-almost all t 2 T ; but the market permits

exact arbitrage by Corollary 1.

The next example shows that there may not exist a continuous functional that prices

almost all assets even though the market does not permit exact arbitrage opportunities and h

is non-zero.

Example 6: Let  and ' have mean zero and variance one on T and 
 respectively, and e a

process on the Loeb product space such that the et's are almost surely orthogonal with mean

zero and variance one. De�ne an asset market on the Loeb product space with the following

returns. Take t0 2 T and de�ne xt0 � � for some positive number �. For t 6= t0, let

xt(!) =  (t) +  (t)'(!) + et(!):

By Theorem 1, this market does not permit exact arbitrage. It is clear that h � 1 and �0 = 0.

Proposition 3 implies that there is no continuous functional that prices almost all assets, even

though there is a riskless individual asset xt0 .

Finally, we present an example of a market with �0 6= 0; which does not permit exact

arbitrage opportunities but in which there is no continuous cost functional pricing almost all

assets.

Example 7: Let � > 0; f n : 1 � n < 1g; f'n : 1 � n < 1g be collections of orthonormal

and centered random variables, and e a process on the Loeb product space such that the et's

30The existence of such almost surely orthogonal processes on atomless Loeb product spaces follows from
Theorem 6.2 in [42].
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are almost surely orthogonal with mean zero and variance one. De�ne an asset market on

the Loeb product space with the following returns. Take t0 2 T and de�ne xt0 � � for some

positive number �. For t 6= t0, let

xt(!) = �t +
1X
n=1

(1=n) n(t)'n(!) + e(t; !) and �t = �+
1X
n=1

(1=n) n(t);

By Theorem 1, this market does not permit exact arbitrage opportunities. Now, it is clear that

for this market h � 1; �0 = � > 0; and for all n � 1; �n = �n = (1=n) and sn = 0: Then

1X
n=1

((�n � �0sn)=�n)
2 =

1X
n=1

1 =1:

We now appeal to Proposition 3 to assert that there is no continuous functional C such that

C(xt) = 1 for �-almost all t 2 T:

3.2 Exact Arbitrage: An Asymptotic Version

As noted in [41], the asymptotic properties of stochastic processes on large �nite probability

spaces are in general equivalent to certain properties of processes on the Loeb product spaces.31

This metatheorem notwithstanding, one does get insight into the idealized limit case by trans-

lating the results presented above into the asymptotic setting. The motivation behind such an

exercise has by necessity to be illustrative { it would be tedious to translate each result, with

each of its associated formulas, into an approximate discrete setting of the asset space or the

sample space or both.

Towards this end, consider a sequence of markets Mn; n = 1; 2; � � � ; where in each

market Mn, there are n assets indexed by the set Tn = f1; 2; � � � ; ng; and endowed with the

uniform probability measure �n on Tn. Each asset t in the n-th market has a unit cost and a

one-period random return xnt; a real-valued random variable on a �xed common probability

space (
;A; P ): For notational simplicity, we shall regard xn as a process on the product space

(Tn � 
;Tn 
 A; �n 
 P ), where Tn is the power set on Tn. Note that the collection fxng
1
n=1

is also called a triangular array of random variables. We shall make the usual assumption of

uniform integrability on the processes x2n which we reproduce for the reader's convenience.

De�nition 9 A sequence of real-valued functions fgng
1
n=1 is said to be uniformly integrable32

if

lim
N!1

sup
n�1

Z
jgnj�N

jgnjd�n = 0:

31This is a technical assertion pertaining to the nonstandard extension whereby a result for the idealized
nonstandard model can be translated into a standard asymptotic one for a large but �nite setting.

32See, for example, Hidenbrand [17].
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A portfolio pn in the n-th market is simply a vector in IRn; but we can also regard it as

a function on Tn. Since our focus is on the asymptotic properties of a sequence of markets, the

de�nitions of cost and random return of a portfolio are phrased in terms of arithmetic averages

rather than sums { this is the usual practice, for example, in general equilibrium theory, [5],

[17], [2]. One can interpret the weight 1=n as a unit specifying a \small" amount needed to

purchase an asset t. We shall often use the notation of integration on Tn instead of summation

in order to emphasize that the results presented here are asymptotic interpretations of those

presented above for the idealized limit model. Thus, the cost C(pn) of a portfolio pn is simplyR
Tn
pn(t)d�n; and its random return Rpn(!) is

R
Tn
pn(t)xnt(!)d�n(t); and the expected return

E(pn) and the variance V (pn) of the portfolio are respectively the mean and variance of the

random return Rpn(!). For a random variable � on 
, we use k�k2 as before to denote the

square root of its second moment, i.e., k�k2 =
�R


 �
2dP

�1=2
. We shall only work with those

sequences fpng
1
n=1 of portfolios for which fp

2
ng
1
n=1 is uniformly integrable.

We can now present an asymptotic version of the absence of exact arbitrage { its di�erence

from the absence of asymptotic arbitrage opportunities in an idealized market (as presented in

De�nition 6 above) should be noted.

De�nition 10 We say that the sequence of markets does not permit uniformly-asymptotic arbi-

trage opportunities if for any sequence of uniformly square integrable portfolios, fpng
1
n=1; limn!1 V (pn) =

0 and limn!1C(pn) = 0 =) limn!1E(pn) = 0.

Next, we develop the notation to illustrate how one can proceed to provide an asymptotic

interpretation of Theorem 1. For a market with n assets,Mn, let the t-th asset have an expected

return �n(t) =
R

 xnt(!)dP; and assume that

xn(t; !) = �n(t) +
KX
i=1

�ni ni(t)'ni(!) + en(t; !); (10)

where K is a natural number, the factors f'nig
1
n=1 and the factor loadings f nig

1
n=1 are uni-

formly square integrable for each i, and for each n, f ni : 1 � i � Kg and f'ni : 1 � i � Kg

are orthonormal. In addition, assume that the residual terms feng
1
n=1 are uniformly square

integrable and approximately orthogonal in the sense that

lim
n!1

Z
t12Tn

Z
t22Tn

�Z
!2


ent1(!)ent2(!)dP

�2
d�nd�n = 0:

We can now present

Proposition 4 Assume that the sequence of markets does not permit uniformly-asymptotic

arbitrage opportunities. Then there exist sequences of real numbers f�nig
1
n=1 for i = 0; 1; : : : ;K;

such that

lim
n!1

k�n(t)� (�n0 +
KX
i=1

�ni ni(t))k2 = 0:
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The methodology underlying the proof of the above proposition is by now standard in

the literature on nonstandard analysis; see, for example, [2] and [42, Section 9]. We leave it

to the reader to compare this asymptotic version with its idealized counterpart embodied in

Theorem 1. We also refer her to [24, 25] for additional asymptotic interpretations of the results

for the idealized hyper�nite market.

3.3 Well-Diversi�ed Portfolios in Countable Asset Markets

Ross [36, pp. 195-197], in his original presentation of the APT, writes

We will develop such a theory without the additional baggage of mean-variance theory and
will ... refer to it as the arbitrage theory. Throughout we will assume that the number of
assets, n; is suÆciently large to permit our arguments to hold. We will also assume that
the noise vector is suÆciently independent to permit the law of large numbers to work. [In
particular,] we have assumed that the arbitrage portfolio is suÆciently well diversi�ed to
permit us to use the law of large numbers to eliminate the noise term, ... and in e�ect, to
eliminate the independent risk from the portfolio return.

The basic intuition then is to consider the limit of an equal weight n-asset portfolio and let

the number n go to in�nity so as to invoke the classical law of large numbers. However, in

a nutshell, the diÆculty with these heuristics is that Ross equates the error to zero and then

appeals to a purely linear-algebraic argument. As such, he presumably has an idealized limit

model in mind.33 The problem is that in any well-diversi�ed portfolio, we want to know the

relative amount being invested in each asset and it is far from clear how these amounts can be

discerned in a context when the number of assets n goes to in�nity!

In [6, Section 3, De�nition 1], Chamberlain focuses on the space of random returns and

refers to the limit of the returns from a sequence of �nite portfolios as the return of a well-

diversi�ed portfolio. However, unlike the treatment presented above, what is identi�ed in [6]

is not the portfolio itself but its random returns. It is precisely these considerations that are

resolved by De�nition 1 and the discussion following it.

We conclude this subsection by observing that a similar comment can be made regarding

the results reported in Werner [45]. Following DuÆe's [11, Exercise 9.8] suggestion to model a

\well-diversi�ed" portfolio in a market with a countable number of assets as a purely �nitely

additive measure on the set IN of natural numbers, Werner uses Pettis integration and, as in

[11], relies on the restatement in [13] of the classical law of large numbers (in terms of integrals

with respect to a purely �nitely additive measure on the set IN of natural numbers) to show that

\every perfectly diversi�ed portfolio has no idiosyncratic risk".34 The question again reduces

to the operational meaning of the limiting portfolio. It is well-known that a purely �nitely

33See [36, Footnote 11] in this connection. Also the quote from Chamberlain-Rothschild cited in the second
paragraph of the introduction to this paper.

34See [45, Theorem 2] for a precise formulation. We refer the reader to [44] for diÆculties pertaining to this
restatement.
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additive measure on IN takes zero values on each integer, and since IN represents the list of

asset names, such a measure �nesses the diÆculty of how to measure the relative amounts of

each asset in a portfolio. Here, of course, we make a point well-known and well-understood

both in general equilibrium and growth theory.35

3.4 APT in the Lebesgue Setting

In [27], the authors present a sustained, and in many ways, a decisive critique of an attempt to

construct an idealized limit model for the APT based on the unit Lebesgue interval as the set

of asset names. This critique has three aspects. The �rst concerns an exact pricing formula for

all assets except those in a set of zero Lebesgue measure. As delineated in [27, Section 3.2.3], in

a setting with �nite portfolios and in the absence of asymptotic arbitrage opportunities, such

a \result" is a simple and sole consequence of the linearity of the cost functional, and can be

seen, in a well-speci�ed and precise sense, as strengthening the assumptions and weakening the

conclusions of standard results in the APT literature; see Footnote 4 above. Indeed, based on

a straightforward generalization of the methods of Ross, Chamberlain-Rothschild and others,

one obtains a pricing result with bounded total square deviations for an arbitrary set of assets,

without any appeal to a measure-theoretic structure. As noted in Remarks 2 and 3, this asset

pricing statement can be weakened to some exact factor pricing statements.

The other two aspects of the critique go beyond a \so-called" exact APT pricing formula,

and concern attempts at a theory with a deeper reach, one with portfolios constituted by a

non-negligible set of assets.36 Here, the failure of the framework is total. This strong claim is

based on two overwhelming considerations [27, Section 3.2.1 and 3.2.2]: �rst, no meaning can

be given to the notions of the mean and variance of a well-diversi�ed portfolio; and second,

the speci�cation of a factor structure is not robust with respect to a permutation of the space

of asset names. Speci�cally, in the context of the Lebesgue unit interval as the space of asset

names, the authors furnish examples of a market (i) with a single factor in which the aggregate

of idiosyncratic risks can take arbitrarily given values as its mean and variance, (ii) with three

measure-theoretic factors, which under \renaming", emerges with either one or two measure-

theoretic factors. Thus, portfolio analysis is simply rendered incoherent.

The fundamental reason for such an incoherence is by now well-understood { it goes

back to Doob's 1937 warning that \the sample functions are too irregular to be useful",37

when non-trivial unsystematic risks are introduced for most assets. In fact, there is no exact

counterpart to the classical law of large numbers for a Lebesgue continuum of random variables,

35See [5] for the former, and [22] for the latter. The fact that the purely �nitely additive measure-theoretic
approach su�ers from a \lack of limiting properties" is also well-known (see [1] and [27, Section 3.1]). Also,
totally absurd results may be obtained in the purely �nitely additive setting (see [44]).

36Attention is limited to �nite portfolios in [1], and hence this attempt is not made there. The failure of the
Lebesgue setting due to basic measurability considerations is \bypassed".

37See [8, Theorem 2.2], [9, p. 67]; also [21], [13], [44].
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and therefore no way for the elimination of unsystematic risks. Indeed, the set of samples whose

corresponding sample functions are Lebesgue measurable is proven to have probability zero in

[44]. The reader has already seen in Section 2 that these pathologies totally disappear in the

Loeb measure-theoretic setting.38

We conclude this section by brie
y considering the commentary on the model presented

in this paper in Al-Najjar [1, pp. 242-243]. The author writes

Khan and Sun ... arrive at asset pricing and factor structure results which mirror the
substance and economic interpretation of the results �rst reported in this paper.39

As can be seen even on a �rst reading, the results reported in Section 2 are based on the notion

of the absence of exact (De�nition 4), and in the asymptotic context, of uniformly-asymptotic

arbitrage opportunities (De�nition 10). Since these concepts are new to the literature, and

certainly to [1], it is diÆcult to give a coherent meaning to his statement. Al-Najjar also singles

out the following four original contributions of his paper: (i) exact factor pricing for almost all

assets, (ii) optimal extraction of sets of factors based upon a \criterion of explanatory power",

(iii) the decomposition of risk into factor risk and idiosyncratic risk, (iv) the use of an in�nite-

dimensional analogue of the variance-covariance matrix to derive such a decomposition.40

We have already referred to (i) above, and (iii) is nothing but simply the starting as-

sumption of all factor models that the return generating process of assets can be written as a

summation of two components { the relevant point is that the term labeled idiosyncratic risk

is not idiosyncratic in the sense that it can be aggregated away in the Lebesgue setting. The

claims under (ii) and (iv) relate to the extraction and optimality of the factors. It is worth

noting that the result [41, Theorem 3] on the extraction of factors based on the eigenvalues of

an in�nite-dimensional analogue of the variance-covariance matrix (i.e., the associated autocor-

relation function R in Section 2.1 of this paper) had already been published two years before

[1].41 Such an extraction in the �nite case is nothing but well-known procedure of the classical

principal components model,42 and in the in�nite case, equally well-known continuous analogue,

called the Karhunen-Lo�eve biorthogonal expansion,43 generalized to the hyper�nite case in [41]

and [42]. Note that the procedure for the computation of eigenvalues and eigenfunctions even

38It is perhaps also worth noting that renaming of assets poses no diÆculty as in the �nite case since hyper�nite
sets have all the formal properties of �nite sets (see, for example, [20]). In particular, every meaningful bijection
on T is measure-preserving.

39However, Al-Najjar did not refer to two earlier papers [41] and [25] that are relevant to [1] and to this paper.
40For all these points, see [1, pp. 242-243].
41The earlier paper [41] was ignored in [1], while a restatement of the results in [41] as in part of Theorem A

here is claimed in [1] to \mirror" the results of [1].
42See, for example, the text book [15, Section 8.3] and [7]
43Indeed, this Karhunen-Lo�eve expansion is itself the continuous analogue of the classical principal compo-

nents model for a �nite population. The theorem has many applications in statistical factor analysis, pattern
recognition, and other �elds. For the theoretical development, see the textbooks [31, Chapter XI], [3, Appendix],
[4, Section 7.8]; and for applications, see, for example, [4], [14], [32] and their references.
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in the in�nite dimensional case is standard.44 The so-called \criterion of explanatory power" in

[1] is precisely a version of this standard procedure of �nding eigenfunctions successively. Note

that for a general asset return generating process in which a �nite factor structure may not

exist, Proposition 1 of this paper shows that the �rst m factors in Theorem A do provide an

optimal approximation procedure for any m. That is, if m factors are used for approximation,

then the optimal one is to use '1; : : : ; 'm. Such a kind of optimality result is not shown in [1]

even for the simple case in which the market has only �nitely many factors.45

Al-Najjar also cursorily comments on the results reported in Section 2 above. He writes

Khan and Sun note that asset prices are determined by their exposures to a benchmark
portfolio ... the existence of such a portfolio is a consequence of the continuity of the pricing
function.

This comment is presumably a consequence of the claim in [1, p. 240, last paragraph] that

continuity of the cost functional implies that it is constituted solely by factor risk. In the

example in [27, p. 246], the falsity of this claim is shown through a market with a continuum of

assets and a strict one-factor structure in which the associated price functional is constituted

only by idiosyncratic risks. A clari�cation on this score is also available in [7]. Here we

emphasize again that even though the usual assumption of no asymptotic arbitrage is closely

related to the existence of a continuous cost functional that prices all assets, our assumption

of no exact arbitrage is very di�erent from the existence of a continuous cost functional that

prices (even) almost all assets (see Examples 5-7 above).

4 Concluding Summary

The model of asset pricing presented in this paper furnishes a precise and fruitful formulation

of the notion of a \well-diversi�ed" portfolio under which the relative amounts invested in each

of a \large" number of assets can be speci�ed. The heuristics of such a notion are pervasive in

the �nance literature, but it has so far resisted a rigorous analytical treatment. The conceptual

vocabulary pertaining to the cost, expected return and the variance of a \well-diversi�ed"

portfolio then allows a rigorous formulation of an exact no-arbitrage assumption that is both

intuitively natural and analytically simple. This assumption is both necessary and suÆcient

for an APT pricing formula to hold.

44See, for example, the textbook [16, p. 281]. All these relevant results are ignored in [1].
45Note that Proposition 5 of [1] states that an optimal �nite \sub-factor structure" exists in a market which is

already assumed to have �nitely-many factors. It does not show that the �rst L factors, ~Æ�1 ; : : : ; ~Æ
�

L as extracted
in [1], are the ones that provide the optimal approximate L-factor structure. Note that the set f~Æ1; : : : ; ~ÆLg of
L factors in the proof of Proposition 5 of [1] is not the set of �rst L extracted factors f~Æ�1 ; : : : ; ~Æ

�

Lg. In addition,
one may refer to Footnote 12 in [1] where it is explicitly stated that the author has not \been able to prove
... a stronger version ... in which the assumption [of] a K-strict factor structure is eliminated." Thus, even
the existence of an optimal �nite \sub-factor structure" is not shown in [1] for the interesting case in which the
existence of a �nite factor structure in the continuum asset market is not already assumed.
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In the idealized limit model, an asset's rate of return can be decomposed into systematic

(factor) and idiosyncratic (non-factor) risk based on factors that are endogenously extracted

from the process of asset returns to obtain an analogue of the well-known Karhunen-Lo�eve

biorthogonal expansion of continuous time stochastic processes. The exact law of large numbers

allows the substantiation of the claim that \well-diversi�ed" portfolios exhibit no unsystematic

(non-factor) risk. The systematic (factor) risk can be further decomposed into essential and

non-essential risk through a \properly de�ned" set of factors, and a premium is paid to asset

risk only through the particular role of the factors in the de�nition of this essential risk. Thus,

three types of risks and their roles in a large �nancial market are exactly distinguished. This

explicit tri-variate decomposition allows us to sight previous work as being able to handle only

two of these three types of risks, one pair at one time and in di�erent settings. Finally, the

choice of factors as stated in Theorem A is also shown to satisfy an optimality property that

the �rst m factors always provide the best approximation.

These ideas are elaborated in the �rst part of the paper on \exact arbitrage, risk analysis

and asset pricing". In the second part on \conceptual rami�cations for the arbitrage pricing

theory", we do several things. First, as illustrated in Figure 1, we show that the new concept of

exact no-arbitrage is strictly weaker than the asymptotic no arbitrage assumption conventional

in the APT literature. This has novel implications for the continuity of the cost functional

as well as for various versions of the APT asset pricing formula. Second, we illustrate how

the concepts and results for the idealized measure-theoretic setting translate to markets with

a large but �nite number of assets. In this context, we identify the notion of no-uniformly-

asymptotic arbitrage as the relevant translation of the idealized no-exact arbitrage assumption.

Third, we recapitulate the inadequacies of the attempt to obtain an analytically viable notion

of a \well-diversi�ed" portfolio that is based on �nitely additive measures on the set of natural

numbers. Finally, we observe how the authors' critique of the Lebesgue setting, as developed

in [27], is totally blunted in the idealized context presented in this paper, both with regard to

the very de�nition of a \well-diversi�ed" portfolio as well to the robustness of the model with

respect to the permutation of asset names.
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5 Appendix

The proof of Proposition 1 hinges on the projections of the functions ai(�) and bi(�) on suitable subspaces
of the corresponding Hilbert spaces.

Proof of Proposition 1: We begin the proof by deriving the second expression from the �rst. Towards
this end, note from Lo�eve (1977 b; p. 16) that E(gjU) = 0 for a �xed g 2 L2(�
P ) implies E(ghjU ) = 0
for any h 2 L2(�
 P ); and therefore that

R R
T�


g:hd�
 P = 0: Hence

Z Z
T�


(g + h)2d�
 P =

Z Z
T�


g2d�
 P +

Z Z
T�


h2d�
 P:

From the equality E[(f � f jU)jU ] = 0; we obtain

Z Z
T�


[

mX
i=1

�iai(t)bi(!)� f(t; !)]2d�
 P =

Z Z
T�


[

mX
i=1

�iai(t)bi(!)�E(f jU )]
2d�
 P +

Z Z
T�


[f �E(f jU)]
2d�
 P:

Next, we show in three steps that � �
P
1

n=m+1 �
2
n:

Step 1: For each 1 � i � m; let
bi(!) = b0i(!) + b00i (!);

where b0i is the projection of bi on the space spanned by the 'n: Thus, for each i; b
00

i is orthogonal to all
the 'n: Hence

� =

Z Z
T�


"
mX
i=1

�iai(t)b
0

i(!)�
1X
n=1

�n'n(!) n(t) +
mX
i=1

�iai(t)b
00

i (!)

#2
d�
 P

=

Z
T

0
@Z




"
mX
i=1

�iai(t)b
0

i(!)�

1X
n=1

�n'n(!) n(t)

#2
dP

+

Z



"
mX
i=1

�iai(t)b
00

i (!)

#2
dP

1
A d�

�

Z
T

Z



"
mX
i=1

�iai(t)b
0

i(!)�E(f jU )

#2
dPd�:

Step 2: Take an orthonormal basis fd1; : : : ; dqg for the space sp[b01; � � � ; b
0
m]: Note that the b

0

i are not
assumed to be linearly independent and hence q � m: Hence we can write

mX
i=1

�iai(t)b
0

i(!) =

qX
i=1

�ici(t)di(!);

with fd1; : : : ; dqg orthonormal,
R
T
c2i (t)d� = 1; �i 2 IR for 1 � i � q: Since the di are in the space

spanned by the 'n; we have

di =

1X
n=1

(di; 'j)'j(!) where (di; 'j) =

Z



di(!)'j(!)d�:
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Hence we obtain

� �

Z
T

Z



2
4 qX
i=1

�ici(t)

1X
j=1

(di; 'j)'j(!)�

1X
n=1

�j'j(!) j(t)

3
5
2

dPd�

=

Z
T

Z



2
4 1X
j=1

 
qX

i=1

�i(di; 'j)ci(t)� �j j(t)

!
'j(!)

3
5 dPd�

=

Z
T

Z



1X
j=1

 
qX

i=1

�i(di; 'j)ci(t)� �j j(t)

!2

d�

=

1X
j=1

�2j

Z
T

 
 j(t)�

qX
i=1

�i(di; 'j)

�j
ci(t)

!2
d�:

Step 3: Take an orthonormal basis v1; � � � ; vp for the space sp[c1; � � � ; cq]: Then p � q; and we can write

qX
i=1

�i(di; 'j)

�j
ci(t) =

pX
i=1

�ji vi(t):

Now, note that

Z
T

 
 j(t)�

qX
i=1

�
j
ivi(t)

!2
d� �

Z
T

 
 j(t)�

pX
i=1

( j ; vi)vi(t)

!2
d�

=

Z
T

 2j (t)�

pX
i=1

( j ; vi)
2

Z
T

vi(t)
2d�

= 1�

pX
i=1

( j ; vi)
2:

Hence we obtain

� �

1X
j=1

�2j

"
1�

pX
i=1

( j ; vi)
2

#

=

pX
j=1

�2j

"
1�

pX
i=1

( j ; vi)
2

#
+

1X
j=p+1

�2j

"
1�

pX
i=1

( j ; vi)
2

#
: (11)

Since �1 � �2 � � � � �n � �n+1 � � � � ; we obtain

� �

pX
j=1

�2p

"
1�

pX
i=1

( j ; vi)
2

#
+

1X
j=p+1

�2j

2
41� pX

j=1

( j ; vi)
2

3
5 (12)

=

1X
j=p+1

�2j + �2p

pX
i=1

2
41� pX

j=1

( j ; vi)
2

3
5� 1X

j=p+1

�2j

pX
i=1

( j ; vi)
2

�

1X
j=p+1

�2j + �2p

pX
i=1

2
41� pX

j=1

( j ; vi)
2

3
5� 1X

j=p+1

�2p

pX
i=1

( j ; vi)
2 (13)
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=
1X

j=p+1

�2j + �2p

pX
i=1

2
41� 1X

j=1

( j ; vi)
2

3
5 :

Note that
P1

j=1 < vi;  j >  j is the projection of vi on the space spanned by the  n: Hence,

1 =
R
T
v2i (t)d� �

P1

j=1( j ; vi)
2: This implies that 1�

P1

j=1( j ; vi)
2 � 0 for 1 � i � p: Since p � m; we

obtain � �
P
1

j=p+1 �
2
j �

P
1

j=m+1 �
2
j : The proof of the assertion is

complete, and we turn to the uniqueness claim.
Note the fact that the minimum is achieved implies that all of the inequalities involved must

become equalities. In particular

� =

1X
j=m+1

�2p if and only if p = m and hence q = m:

Since �m�1 > �m > �m+1; we obtain from (12) that

mX
i=1

( j ; vi)
2 = 0 for j � m+ 1: (14)

Note that p = m; and �j < �m; for j � m+ 1: Furthermore, we obtain

Z
T

v2i (t)d� =
1X
j=1

< j ; vi>
2 for 1 � i � m: (15)

(14) and (15) imply that each vi; 1 � i � m; is in the space sp[ 1; � � � ;  m]: From (12) and (13), we
obtain

1 =

Z
T

 2j (t)d� =

mX
i=1

( j ; vi)
2 for 1 � j � m� 1 (16)

since for such a j; �j > �m: By (15) and (16), 1 =
Pm

j=1( j ; vi)
2 for 1 � i � m; which implies that

m =

mX
i=1

1X
j=1

( j ; vi)
2

=

mX
i=1

( m; vi)
2 +

m�1X
j=1

mX
i=1

( j ; vi)
2

=

mX
i=1

( m; vi)
2 +

m�1X
j=1

1 by (11)

=

mX
i=1

( m; vi)
2 +m� 1:

This implies that

1 =
mX
i=1

< m; vi>
2=

Z
T

 2m(t)d�: (17)

(16) and (17) imply that each of  1; � � � ;  m is in the space sp[v1; � � � ; vm]: Hence  1; � � � ;  m; span
the same space as v1; � � � ; vm; and hence c1; � � � ; cm; and hence a1; � � � ; am: Note that the ci are in the
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space spanned by a1; � � � ; am: Hence there is a nonsingular m �m matrix A such that (a1; � � � ; am) =
( 1; � � � ;  m)A: The function

�(t; !) = (a1; � � � ; am)

0
B@

�1b1
...

�mbm

1
CA = ( 1; � � � ;  m)A

0
B@

�1b1
...

�mbm

1
CA :

Now let

A

0
B@

�1b1
...

�mbm

1
CA =

0
B@

�1�1(!)
...

�m�m(!)

1
CA ;

where
R


�2i (!)dP = 1: Then

�(t; !) =
mX
i=1

�i i(t)�i(!):

Since the following integral is minimized,

Z Z
T�


 
1X
n=1

�n'n(!) n(t)�

mX
n=1

�n�n(!) n(t)

!2
d�
 P =

1X
n=m+1

�2n

=

Z
T

Z



 
mX
n=1

(�n'n(!)� �n�n(!)) n(t) +

1X
n=m+1

�n'n(!) n(t)

!2

dPd�

=

Z



 
mX
n=1

(�n'n(!)� �n�n(!))
2 +

1X
n=m+1

�2n'
2
n(!)

!
dP

=

mX
n=1

Z



(�n'n(!)� �n�n(!))
2dP +

1X
n=m+1

�2n: (18)

(18) follows by virtue of the 'n being orthonormal. Hence we obtain �n'n(!) = �n�n(!) for 1 � n � m:

Therefore �(t; !) =
Pm

n=1 �n'n(!) i(t); which is to say that the minimum is achieved at a unique
function.
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