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Abstract 

The rational expectations equilibrium has been criticized as an equilibrium concept in market 
game environments. Such an equilibrium may not exist generically, or it may introduce 
unrealistic assumptions about an economic agent's knowledge or computational ability. We 
define a rational expectations equilibrium as a probability measure over uncertain states of 
nature which exploits all available information in a market game, and which exists for almost 
all economies. Furthermore, if retrading is allowed, it is possible for agents to compute such 
a 'functional rational expectations equilibrium' using straightforward numerical fixed point 
algorithms. 
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1 Introduction

The application of the rational expectations equilibrium (REE) concept to market games

has not been unambiguously supported by researchers seeking to better understand, and

even define, an appropriate equilibrium selection criterion. Indeed, Dubey, Geanakoplos,

and Shubik [1987] criticize the concept of REE in market games (and more generally, in a

continuous, anonymous price formation mechanism). They focus instead upon equilibrium

selection according to the Nash equilibria (NE) of the market game. While NE are

available as solutions either generically (for a continuum of agents), or for an open set (for

a finite number of agents), REE cannot be implemented by price formation mechanisms

which generate these NE. Conversely, mechanisms which do admit REE (for example,

if traders submit their entire demand function to an auctioneer) are argued to be too

computationally complex to be realistic.

In addition, there is some evidence that NE alone may generate more realistic time

series properties of observed prices. Jackson and Peck [1999] examine an asymmetric

information, 2 period market game with an asset and a single consumption good. With

an infinite number of agents and no noise traders, they demonstrate that information is

not fully revealed in a (Bayesian) NE–instead, asset prices demonstrate excess volatility

relative to the dividend process of the asset. By contrast, REE cannot be obtained by

the price formation process.

The difficulties with using the REE concept in market games, as in the examples above,

usually hinge upon three main criticisms. First, the definition of an REE is circular: the

information content of prices is itself used to determine those prices. Second, as initially

examined by Grossman and Stiglitz [1980] and subsequently by many others, REE may

fail to exist when all agents are fully informed. In the absence of ‘noise’ or ‘liquidity’

traders, markets do not open. Finally, REE may be very difficult to find: if there is any

weight to the notion of bounded rationality, it is likely that normal, ‘real-world’ economic

participants will be unable to calculate any REE which might exist.

In this paper we extend the definition of an REE from the usual point representation
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to one of a ‘functional REE’, in a simple market game environment. Starting from a

similar model as Jackson and Peck [1999], but with a finite number of agents, a func-

tional relation is defined between the expectations of the agents (here, defined by prior

probability measures) and the ‘result’ of the economy, which is also given by a probability

measure. When expectations match the result of the economy, i.e. when the relation

possesses a functional fixed point, the economy is said to possesses a functional REE:

individual agent expectations about the economy’s law of motion are fulfilled, and all

available information is being used.

In addition, if retrading of assets is allowed, then this functional REE can be learned–

it is possible for agents to sample the functional relation by submitting many different

priors, and observing the outcome. It is shown how to design an algorithm which can

estimate the functional relation itself, and then find the REE probability measure by

applying standard numerical fixed point algorithms.

Section 2 introduces the market game environment, while Section 3 introduces the

functional REE as an equilibrium probability measure. Section 4 then demonstrates the

existence of an REE probability measure, and Section 5 shows one possible method for

numerically estimating such an REE. The final section concludes.

2 The Market Game

We consider a static game environment without retrading as in Jackson and Peck [1999]

(retrading will be examined in Section 5). There exist I < ∞ agents who trade in a single

consumption good, single asset economy. Each agent i possesses a preference relation

over the consumption good, which is assumed to be representable by an individual utility

function ui. The utility function is further assumed to be continuous, strictly increasing

and concave.

Each agent i also possesses an endowment ei of the consumption good and the asset,

defined as

ei := (b̄, q̄), 0 < b̄, q̄ < ∞.
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The asset pays a stochastic dividend d in the single good, drawn from a finite set

of M possible dividends D := {d1, . . . , dM}. Each agent i receives a random signal si

about the value of the dividend, drawn from a finite set of N signals S := {s1, . . . , sN}.

Each signal si is drawn from S according to an independently and identically distributed

(i.i.d.) process P(s|d) : S × D → [0, 1], which is the probability of observing a private

signal s conditional upon the dividend draw d ∈ D. It is assumed that this distribution is

common knowledge among all agents. The vector of all private signals drawn by the agents

is denoted s := (s1, . . . , sI). Occasionally, d is used to denote a ‘generic’ or representative

member of D, or will be used as an argument to emphasize a functional dependence (viz.

the prior probability measure πi(d) defined below).

The consumption good and the asset are traded at a series of ‘trading posts’, which

accept offers of the consumption good in return for the asset. These offers are denoted

‘bids’ bi of an agent i for the asset. In addition, a trading post will also accept offers of the

asset in return for the consumption good. For each agent i these offers are denoted ‘asks’

qi. We let b = (b1, . . . , bI) represent the vector of bids, and q = (q1, . . . , qI) represent the

vector of asks.

2.1 The Agent’s Problem

Each agent i seeks to maximize their expected utility of consumption, conditional upon

their private signal:

max
{bi,qi}

E[ui(ci)|si], (2.1)

where feasible bids and asks obey bi ∈ [0, b̄], qi ∈ [0, q̄]. Final consumption ci depends

upon both the realization of the dividend and the market clearing price (see below).
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2.1.1 Expectations Formation

Agents are endowed with a set of priors over D, denoted πi : D → [0, 1]. It is assumed

that these priors are non-zero everywhere, and

M∑
j=1

πi(d
j) = 1.

Since the conditional distribution of the signal si given any dividend value d ∈ D is known,

after observing the signal an agent updates their prior using Bayes’ Rule:

πi(d|si) =
π(si|d)πi(d)

πi(si)
, (2.2)

where

πi(s) :=
M∑

j=1

π(s|dj)πi(d
j) (2.3)

is agent i’s unconditional probability measure over the signal space S.

Using the posterior distribution πi(d|si), the agent’s problem (2.1) may also be written

as

max
{bi,qi}

M∑
j=1

ui(ci(d
j))πi(d

j|si). (2.4)

2.2 Market Clearing and Price Formation

The market environment is a market game–agents are assumed to trade at the trading

post in order to achieve their desired bundles. They submit bids and asks to the trading

post, which calculates the ratio of bids to asks and set this as the market clearing price:

p =

∑I
i=1 bi∑I
i=1 qi

=
B

Q
, (2.5)

where B =
∑I

i=1 bi is the aggregate bid, and Q =
∑I

i=1 qi is the aggregate ask. Note that

if B or Q is equal to 0 then p = 0.
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After submitting their bids and asks each agent i receives a share of the consumption

good equal to:

ci = b̄− bi + d̂

(
bi

p
+ q̄ − qi

)
+ pqi, (2.6)

where the right hand side denotes (in turn) the net consumption good trade b̄−bi, the pro-

ceeds from the asset trading once the dividend value d̂ has been realized, d̂
(

bi

p
+ q̄ − qi

)
,

and finally the payoff from assets held, pqi.

2.3 Optimal Bids and Asks

We proceed under the assumption that the individual consumers are intelligent enough

to understand what their bids and asks will depend upon, but do not have enough infor-

mation to completely specify this dependence.

From the consumer’s optimization problem, we have the following first order condi-

tions:

E
[
∂ui

∂ci

(
d

p
− 1 + bi

(
− d

p2

∂p

∂bi

))]
= 0, (2.7)

E
[
∂ui

∂ci

(
p− d + qi

∂p

∂qi

)]
= 0, (2.8)

which may be simplified using the fact that p = B/Q to

E
[
∂ui

∂ci

(
d

p
− 1 + bi

(
− d

p2

1

Q

))]
= 0, (2.9)

E
[
∂ui

∂ci

(
p− d− qi

p

Q

)]
= 0. (2.10)

Solving these implicit equations for (bi, qi) yields the dependence of the individual’s

optimal strategy of bids and asks upon the posterior distribution πi(d|si) and the price

level p:
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b∗i = bi(πi(d|si), p), q∗i = qi(πi(d|si), p).

Using the fact that the price level will be determined from the bids and asks of all other

agents, we can specify the ex ante dependence that the bid and ask functions will have

upon other agents:

b∗i = bi(π(d|s)), q∗i = qi(π(d|s)),

where for simplicity of exposition we have defined

π(d|s) := (π1(d|s1), . . . , πI(d|sI)) (2.11)

to be the vector of posterior probabilities over the dividend held by all consumers, con-

ditional upon the vector of signals s received. Note that as both D and S are finite sets,

π(d|s) is a list of I ×M ×N values.

For all but the entries corresponding to their own conditional probabilities and signal,

the posterior probabilities π(d|s) are unknown to each agent. Since the market game

stipulates that each consumer submit one bid and ask, to close the model consumers

must have some way of resolving this uncertainty about others’ expectations and signals.

3 The Functional REE Concept

The information usable to each agent is summarized in the signal si, in the signal’s

conditional distribution π(si|d), and in the prior probability distribution πi(d). As it is

assumed that each agent may have a different prior distribution, there is no ‘collapse’ of

the economy whereby prices are fully revealing and individuals either refuse to trade or

are indifferent to trade (see e.g. Grossman and Stiglitz [1980]). Rather, the price will in

general not be fully revealing (see Jackson and Peck [1999]), but will realistically reveal

something about the underlying distribution of dividends prior to the actual dividend

realization d̂ being announced.
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In fact, this revelation is sufficient to define a rational expectations in the following

way. Rather than focus solely upon the price outcome as being ‘fully revealing’ or not

(which is unrealistic), an agent can have an ex ante probability measure π(d) over the

dividend space D which turns out to be the ‘correct’ measure, according to all information

available to the agent. That is, after submitting bids and asks and observing the market

equilibrium price, the posterior probability over the dividend state after incorporating

the equilibrium price as new information is the same as the prior distribution which was

used when trades were submitted to the market. We call such a situation a ‘(functional)

rational expectations equilibrium’ (REE), where the term ‘functional’ is indicative of the

fact that the equilibrium is actually defined as a measure over all dividend states–here

such a ‘function’ is merely a set of numbers as D is discrete, but this may certainly be

generalized if D is continuous.

It is important that this equilibrium definition be consistent, i.e. that it be possible for

agents to construct their bids and asks in a logical, or even ‘optimal’ fashion, according to

their expectations. To this end, let us first define the available information that the agent

may use after the market has cleared, and back out from this the optimal expectations

which are to be used in the optimal bid and ask selection process.

Definition 1. A temporary equilibrium under heterogeneous priors is a price p∗ given by

p∗ := p(π(d|s)), (3.1)

where π(d|s) is as given in (2.11).

The appellation ‘temporary equilibrium’, which is used in dynamic models of learning and

convergence to REE, is actually more appropriate for Section 5 when retrading is allowed.

Here, of course, the model is static, so there is nothing ‘temporary’ about the equilibrium

price p∗. But we introduce the term here because the REE concept really only has power

in a dynamic environment where agents can potentially learn it–as the saying goes, an

REE is the equilibrium which is learned when all systematic learning errors have been

eliminated. This can only take place in a dynamic environment.
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We can now begin to add structure to the definition of an REE. If the equilibrium is

to contain all available information, and furthermore if it is to avoid systematic errors,

then the prior probability measure over the dividend which agents infer ex ante from

the economic system as a whole must equal the probability measure which the economic

system signals through the temporary equilibrium price. In other words, an REE is

precisely that prior probability measure π∗(d) which ensures that when πi = π∗∀i, all

agents are in fact observing this probability ex post, i.e. after updating their priors upon

observing the price level p∗. Note that this probability measure need not equal the actual

probability distribution over the dividend process π(d). In fact, it is inconsistent to restrict

the REE measure to the actual prior probability measure π(d)–there may be many REE,

depending upon how many prior probability measures are supported by the temporary

equilibrium price p∗.

Thus, an REE probability measure is a measure π∗(d) which obtains if all agents 1)

use π∗(d) as their prior measure for d ∈ D, 2) observe their private signal si and use

Bayes’ Rule to update this prior to πi(d|si; π
∗), 3) submit optimal bids and asks, and 4)

condition upon the resulting temporary equilibrium price to perform Bayes’ Rule once

more, such that

πi(d|p∗, si; π
∗
i ) = π∗(d) ∀i,∀d ∈ D.

4 Existence of an REE

The main result of the paper is that the set of REE probability measures π∗(d) may be

shown to exist, and may be found using relatively straightforward (but complex) compu-

tational techniques. We first show that there exists a set of REE probability measures

for every ‘well-behaved’ market game without the common prior, common knowledge as-

sumption. Second, using arguments developed for functional REE in Kelly and Shorish

[2000], we demonstrate how to find these REE probability measures using the temporary

equilibria and private signal data available to each agent.

To establish existence of an REE probability measure we return once more to the
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optimal bid and ask functions for a consumer i from Section 2.3:

b∗i = bi(π(d|s)), q∗i = qi(π(d|s)).

We first consider the optimal bid function (treatment of the optimal ask function

proceeds in the same fashion). The optimal bid function may be viewed as a function of

the set of all possible signals received by all other agents, the set of all possible conditional

probability measures, and the respective measures imposed upon these two sets.

Every agent i can form the probability that another agent (say agent j) observes a

signal sj, conditional upon observing their own signal si–this is because signals are iid

draws with conditional distribution π(si|d) ∀i, and all agents know this:

πi(sj|si) :=
M∑

k=1

π(sj|dk)πi(d
k|si). (4.1)

This probability measure defines the uncertainty a consumer has about the signals

received by other agents. On the other hand, there also exists uncertainty about the

conditional probability πj(d|sj) held by agent j, which also forms part of the optimal bid

function b∗i .

Definition 2. The conditional probability held by agent i about agent j’s unconditional

probability distribution over the dividend space D is 1

iπj(d) :=
N∑

k=1

πj(d|sk)πi(s
k|si) ∀d ∈ D. (4.2)

Armed with this definition we can start to form agent i’s expectations about agent j’s

conditional probability over the dividend space. First, using Bayes’ Rule once more we

can rewrite πj(d|sk) in the above definition:

πj(d|sk) =
π(sk|d)πj(d)∑M

m=1 π(sk|dm)πj(dm)
. (4.3)

1Note the superscripts here–the summation in (4.2) is performed over all possible signals that agent j
could have obtained, weighted by agent i’s conditional probability that agent j has received that signal.
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We next make the following observations. Although agent i does not know the prior

probability distribution πj(d) used by agent j, there is a best guess of this distribution

given by iπj(d) in (4.2). Hence, we can set πj(d) = iπj(d) in (4.3). In addition, agent i

wishes to solve out for πj(d|sk) in (4.2) and (4.3), i.e the agent wishes to find a number

iπj(d|sk) such that ∀k,

iπj(d|sk) =
π(sk|d)

(∑N
n=1

iπj(d|sn)πi(s
n|si)

)
∑M

m=1 π(sk|dm)
(∑N

n=1
iπj(dm|sn)πi(sn|si)

) , ∀k = 1 . . . N,∀d ∈ D. (4.4)

This is a set of M ×N equations in iπj(d|sk), which are (for each agent i and j) simply

a set of M × N unknowns. Since these equations are analytic in the unknowns, there

exists a solution iπ∗
j to (4.4). This solution is completely expressible in terms of the

prior probability πi(d) held by agent i, and the commonly known conditional probability

π(si|d), through both iπj(d) and πi(s|si).

From the above analysis we see that an agent can form consistent expectations about

other agents’ conditional probability distributions πj(d|sj), using only the publicly avail-

able information π(s|d) and the prior probability πi(d). This allows the agent to submit

an optimal bid (or ask) by forming the proper conditional expectations given in the con-

sumer’s problem of Section 2.

After the bids and asks have been submitted, the market clears and the temporary

equilibrium price p∗ is found. This price depends both upon the prior probability measures

πi(d) of all agents in the economy, and also upon all signals si received by agents and

conditioned upon when trades were submitted. In what follows, we shall suppress the

dependence of p∗ upon the prior measures and concentrate upon the signals, and let

p∗ = p(s) denote the temporary equilibrium price as a function of the vector of signals s.

Each agent now uses the temporary equilibrium price to update their probability

measure πi(d|si), again using Bayes’ Rule:

πi(d|p∗, si) =
πi(p

∗|d, si)πi(d, si)∑M
k=1 πi(p∗|dk, si)πi(dk, si)

. (4.5)
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It is straightforward to show that for a temporary equilibrium price p∗,

πi(p
∗ = p(s)|d, si) =

∑
s∈p−1(p∗)

I∏
j=1

π(sj|d), (4.6)

where the summation is over all signal vectors s ∈ S which are compatible with the

observed temporary equilibrium price p∗.

In addition, we also know that

πi(d, si) = π(si|d)πi(d). (4.7)

Substitution of (4.6) and (4.7) into (4.5) yields a posterior distribution over the divi-

dend space which is once more completely specified by π(si|d) and πi(d).

Definition 3. A rational expectations equilibrium (REE) probability measure is a measure

π∗(d) such that for every agent i = 1 . . . I,

πi(d) = π∗(d),

πi(d|p∗, si; π
∗(d)) = π∗(d),

where we have emphasized the dependence of the posterior probability measure πi(d|p∗, si)

on the prior probability measure π∗(d).

The existence of an REE probability measure is relatively easy to verify.

Theorem 4.1. For almost every economy, there exists a rational expectations equilibrium

probability measure (π1, . . . , πI) = (π∗, . . . , π∗) which is a fixed point of the mapping

T ◦ (π1, . . . , πI) := (π1(d|p(s), s1; π1), . . . , πI(d|p(s), sI ; πI)). (4.8)

The proof involves a straightforward application of the Knaster-Kuratowski-Mazurkiewicz

lemma–see Border [1985], Corollary 5.7 p. 27. The only restrictions are 1) that for each

prior probability measure πi(d), the set of posterior distributions be sufficiently rich to
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encompass any convex combination of prior probability measures for any subset of agents,

and 2) that there exists at least one possible prior probability measure π̂(d) and at least

one agent i so that the set of possible posteriors πi(d|p(s), si; π̂(d)) is compact. Because

the conditional expectations for the optimal bids and asks and the Bayesian updating of

the distributions involve analytic functions, their power series representations are nearly

always convergent and hence well-defined–the only possible problems occur when the nor-

malization of the Bayesian updating fails, i.e. when the prior places zero weight on a

possible dividend value, or when either bids or asks approach the lower boundary of the

endowment set for all agents (in which case there is no informative price as p∗ = 0).

5 Retrading and Functional REE

Having found that functional REE exist, i.e. that there almost always exist probability

measures which incorporate all available information and support prior expectations of

all agents, it remains to be shown that such equilibria can actually be learned. In order to

do so, we open the market up to retrading, so that agents live in a dynamic environment

which allows them to learn the mapping between their prior probability measure, and the

temporary equilibrium posterior measure.

Retrading means that agents can resubmit bids and asks to the market after each trade

has been completed. Once retrading is allowed, stationary equilibrium concepts have to

be adjusted. For example, Dubey [1980] has shown that the NE from finite player market

games are generically inefficient when retrading is allowed. This result was extended by

Dubey and Rogowski [1990], showing that NE efficiency only occurs if and only if initial

agent endowments are themselves efficient. Finally, if a continuum of agents is allowed,

Dubey, Sahi, and Shubik [1993] show that the NE regains its preeminence under retrading

prior to final consumption–in this case, NE are both efficient and Walrasian.

Although economies with a finite number of agents are inefficient, retrading does allow

agents to improve the efficiency of their individual outcomes—Ghosal and Morelli [2004]

show that agents have an incentive with retrading to recontract from the NE, in order to
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move closer to the Pareto-frontier. After a finite number of periods the Pareto-frontier

may not be reached, but any Pareto-efficient outcome may be approximated arbitrarily

closely if the number of retrading periods is ‘large enough’.

At this stage cannot explicitly address these efficiency issues in what follows–rather,

we consider the retrading environment as a ‘test ground’ for an agent to attempt to learn

the mapping which takes their prior probability measure as an input, and returns (via the

temporary equilibrium price) a posterior measure. The question of how convergence to

(or toward) the Pareto frontier may be obtained under the learning paradigm introduced

below is an interesting topic of future research.

We consider once more a finite agent market game, but now with a (finite or infinite)

number of retrading periods t = 1, 2, . . .. For agents to attempt to learn the REE, which

is a collection of functions representing the probability measure over the dividend space

D, we consider the following strategy adapted from Kelly and Shorish [2000]:

1. Agent i begins period t with a ‘prior’ probability measure πit. If this is the first

trading period then πi1 = πi(d|si), i.e. the updated prior probability measure πi(d)

after the signal si is observed.

2. At each trading point t, agent i submits optimal bid and ask strategies as in Section

2, conditional upon the prior πit.

3. Agents i observes the temporary equilibrium price p∗ and uses it to update the prior

as in Section 4, leading to the outcome T ◦ πit = πT
it := πi(d|p∗, si; πit(d)).

4. Agent i sets a new prior for period t + 1: this may be accomplished with either a

randomly selected probability measure, or else by setting πit+1 = πT
it .

5. After τ periods, the agent estimates the operator T using the data set (πit, π
T
it)t=1...τ .

6. Finally, standard numerical methods allow agents to find the fixed point of the

operator T–this is the (functional) REE of the economy, π∗.
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Agents thus use retrading as a way to sample the space of possible posterior distributions,

conditional upon the prior distributions they have submitted.

The main question to be answered is whether or not it is possible for agents to actually

implement this algorithm in practice. There are two requirements to ensure that this

algorithm is actually feasible:

Assumption 5.1. For all πit bounded (e.g. in the sup norm), πT
it is also bounded–that

is, the operator T sends bounded functions to bounded functions.

Assumption 5.2. Both πit and πT
it are Borel-measurable, that is, they possess at most a

finite number of discontinuities.

Assumption (5.1) simply states that the probability measures are well-defined. Note

that in a continuous space of dividends this excludes using a Dirac-type of distribution,

which is not implementable as a computable function except as a limit of integrable

functions (which are in fact bounded). Here, though, the discreteness of D ensures that

this assumption is automatically verified. Assumption (5.2) is also satisfied by probability

measures, as there are a finite number of dividends by assumption.

With these two assumptions in hand it is possible to implement the above algorithm,

with the assistance of a class of functions which can serve as a ‘basis’ for the probability

measures of interest. In Kelly and Shorish [2000], we explain in great detail how to

accomplish this implementation, for a general class of functional REE. Briefly, the class

of basis functions, known as ‘universal approximators’, allows an agent to use histogram

data from the operator T to estimate the posterior probability measure πT
it , for a given

prior probability measure πit, by fitting a parametric family of curves to the histogram.

By varying the prior probability measure used to compute bids and asks for the tem-

porary equilibrium (which is also expressed using the basis functions), an entire map of

(πit, π
T
it) pairs can be generated over the retrading sample t = 1 . . . τ . Using the same

class of universal approximators, it is possible to find the mapping which turns the prior

probability vector into the temporary equilibrium, posterior probability vector. This is a

representation of the functional operator T (call it T̂ ).
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Lastly, an agent can use a numerical fixed point algorithm of choice to compute the

fixed point (as a vector) of the representation T̂ . Using this vector fixed point, it is then

possible to construct the functional fixed point π∗.

Notice that the agent’s optimal decision-making is part of what builds the functional

fixed point to be estimated–in particular, the bids and asks must be rationally generated

from Bayes’ Rule. But the strategy used may be generated from other optimizing criteria,

or from strategic concerns (e.g. a Bayesian-Nash equilibrium; see Ghosal and Morelli

[2004]).

In addition, it is important to note that along the equilibrium path, while the func-

tional data set is generated, there is no point where trade ceases to exist. This is because

the agent needs to sample ‘enough’ points in the function space to get a good fit for the

functional mapping, and this will require submitting a (usually random) distribution of

prior probability measures. So the prior probabilities may not even be rationally chosen–

only the bids and asks, and the updating of the prior probability after the temporary

equilibrium price is revealed, need be rationally generated. This is the content of step 4

above.

Of course, sampling this probability space is both computationally expensive and also

expensive in terms of forgone gains to trade–the prior probability measures are not se-

lected with any optimality criteria until the functional fixed point of T is found. Therefore,

it may make sense for the agent to exploit the properties of the mapping T which may

speed convergence–if, for example, the mapping has properties which are consistent with

a contraction mapping, then it may make sense for the previously obtained posterior dis-

tribution πT
it to become next period’s prior πit+1. This argument is also strengthened due

to the way Bayes’ Rule functions–the ‘narrowing in on the truth’ toward the true dividend

distribution π(d) is facilitated by adopting the previous period’s posterior distribution as

the following period’s prior, and so convergence to the true dividend distribution (should

it be an REE!) may obtain under learning.
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6 Conclusion

For market games with a finite number of players and a finite number of uncertain states,

there is in general a rational expectations equilibrium (REE) which is defined as a prob-

ability measure over the states. Moreover, this REE may be found using a numerical

algorithm, which has the advantage of being stated in terms of computable components

(like Fourier coefficients). This allows agents to harness the enormous computing power

of the early 21st century to maximum advantage. Although it is an open question as to

whether or not an REE is a desirable equilibrium concept, the notion that ‘expectations

are fulfilled using all available information’ remains a compelling argument. In this envi-

ronment, far from obtaining a no-trade REE, ‘most’ economies have a lively exchange of

goods and assets as agents seek to both do the right thing (via optimization) and learn

as much as possible on the way toward finding the REE, a which point learning ceases.

It would be very interesting implement a market game in a computational environment,

to demonstrate the algorithm in a similar way as in Kelly and Shorish [2000], and this

is one topic of future research. For a continuum of agents, Shubik and Vriend [1999]

have shown that with piecewise linear utility functions a simulated economy using genetic

algorithms and classifier systems can numerically converge to stationary NE of market

games. Designing a simulation with many agents estimating a functional REE would

expand the applicability of simulation techniques to this finite agent environment.

Lastly, it is an open question as to whether or not it is ‘worth it’ to know the truth, i.e.

to find an REE for any market where trading takes place over many periods. The success of

‘rule of thumb’ strategies implies that, on some level, higher welfare gains are achieved by

using strategies which are not too complex. It may be that the REE computing algorithm

designed here carries a higher welfare cost than an alternative algorithm which does

not seek to find any equilibrium (e.g., a completely myopic, one-period-ahead strategy).

Finding a good measure of the welfare costs of algorithms, and the associated efficiency

of the REE itself, is another further direction of research.
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