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Abstract 

A discrete time model of financial markets is considered. It is assumed that the relative 
jumps of the risky security price are independent non-identically distributed random 
variables. In the focus of attention is the expected non-risky profit of the investor that arises 
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The considered discrete time model is approximated by a continuous time model that 
generalizes the classical geometrical Brownian motion. 
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1 Introduction
Consider the simplest financial market in which securities of two types are circulating.
The price evolution of the securities of the first type is given by the equations

bk = b0ρk, k = 0, 1, 2, . . . ,

where b0 > 0, ρk ≥ 1. The prices are registered at the equidistant moments of time
tk = a+ kh. With no loss of generality we put a = 0, h = 1, i.e. tk = k.

The price of the security of the second type at the moment k is represented as

sk = s0ξ1 · · · ξk, k = 0, 1, 2, . . . ,

where the relative jumps ξk are random.
The securities of the first type are riskless having the interest rates (ρk − 1) · 100%.

Let us call them conventionally bonds. It is clear that possessing the securities of the
second type is concerned with a risk of their devaluation. We call them conditionally
stocks.

Taken together in certain amounts β and γ the securities of both types constitute
a so-called portfolio (writer’s investment portfolio) whose worth at the time moment k
is βbk + γsk. Playing in the considered financial market consists of successive changing
of the portfolio content at the moments k = 1, 2, . . . , n − 1. The successive pairs
(β0, γ0), (β1, γ1), . . . , (βn−1, γn−1) constitute a so-called strategy of the game or a trading
strategy. Obviously, as a basis for choosing (βk, γk) serves the evolution of the stock
price up to this moment i. e. s0, s1, . . . , sk. In other words

βk = βk(s0, s1, . . . , sk), γk = γk(s0, s1, . . . , sk).

The player is called a writer (seller, investor).
A trading strategy is called self-financing if the changing of the portfolio content

does not affect its value i.e.

βkbk + γksk = βk−1bk + γk−1sk, k = 1, . . . , n− 1.

The final goal of the game is to meet the condition

xn = βn−1bn + γn−1sn ≥ f(sn) (1.1)

where f(s) is a so-called pay-off function of the simplest option of the European type
having n as a maturity date. For more about the mathematical and substantial aspects
of the option pricing theory see e.g. Shiryaev (1999).

Basic problems of the mathematical theory of options are the evaluation of the
so-called rational option price and a corresponding to it strategy leading to (1.1).
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Both the problems are easily solved within the framework of the so-called binary
model that is in the case where ρ = const ∈ (d, u) and ξk take only two values d and
u. In this case (see e.g. Ch. VI in Shiryaev (1999)),

x0 = ρ−n
n∑

k=0

Ck
np

k
∗(1− p∗)

n−kf(s0u
kdn−k) (1.2)

where
p∗ =

ρ− d

u− d
.

It is worth emphasizing that (1.2) does not assume any restrictions on the measure
which governs the evolution of the stock price (ξ1, . . . , ξn). Furthermore, there exists
the unique self-financing trading strategy (β0, γ0), (β1, γ1), . . . , (βn−1, γn−1) leading to
the equality

xn = βn−1bn + γn−1sn = f(sn). (1.3)

The strategy is defined by the formulae

βk =
ufk+1(skd)− dfk+1(sku)

ρbk(u− d)
(1.4)

and
γk =

fk+1(sku)− fk+1(skd)

sk(u− d)
(1.5)

where

fk(s) = ρ−(n−k)
n−k∑
j=0

Cj
n−kp

j
∗(1− p∗)

n−k−jf(sujdn−k−j). (1.6)

The successive values of the portfolio are

xk = fk(sk), k = 0, 1, . . . , n− 1.

In particular, x0 = f0(s0) is the rational or fair price. The rational option price is
the minimal initial capital x0 which always allows the investor to meet contract terms
under proper behavior. Note that any smaller initial capital never ensures the required
pay-off.

Now, assume that the market model is binary but d and u are not constant. More
precisely, assume that ξk takes the values dk and uk.

Proposition 1.1 In order to guarantee the equality

xn = f(sn) (1.7)

the investor must have at the preceding moment the capital

xn−1 = ρ−1
n (pnf(sn−1un) + (1− pn)f(sn−1dn))
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where
pn =

ρn − dn

un − dn

.

Furthermore, xn−1 must be distributed between bonds and stocks in the following way

βn−1 =
unf(sn−1dn)− dnf(sn−1un)

ρnbn−1(un − dn)
, γn−1 =

f(sn−1un)− f(sn−1dn)

sn−1(un − dn)
.

Proof. Let x and (β, γ) be respectively the investor capital and its distribution in the
portfolio at moment n− 1. For the sake of simplicity we omit the subscript n− 1. So,

x = βbn−1 + γsn−1.

The value of the potfolio at the moment n equals

xn = βbn + γsn = βbn−1ρ+ γsn−1ξn.

Taking into account the condistion (1.7) we obtain

f(sn−1ξn) = βbn−1ρn + γsn−1ξn

or 
f(sn−1un) = βbn−1ρn + γsn−1un

f(sn−1dn) = βbn−1ρn + γsn−1dn.

Solving the system we find out that

βn−1 =
unf(sn−1dn)− dnf(sn−1un)

ρnbn−1(un − dn)
, γn−1 =

f(sn−1un)− f(sn−1dn)

sn−1(un − dn)
. (1.8)

It is easily verified that this portfolio contains the capital

x = ρ−1
n

(
ρn − dn

un − dn

f(sn−1un) +
un − ρn

un − dn

f(sn−1dn)

)
= ρ−1

n (pnf(sn−1un)+(1−pn)f(sn−1dn)).

The proposition is proved.
Set

fn−1(s) = ρ−1
n (pnf(sun) + (1− pn)f(sdn)).

From Proposition 1.1 it follows that

xn−1 = fn−1(sn−1). (1.9)

So, we derived a pay-off function for a new European option with the maturity time
n − 1. By the proposition, in order to guarantee (1.9) the investor must have at the
moment n− 2 the capital

xn−2 = ρ−1
n−1(pnfn−1(sn−2un) + (1− pn)fn−1(sn−2dn))
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or substituting the formula for fn−1

xn−2 = ρ−1
n−1ρ

−1
n (pn−1pnf(sn−2un−1un) + pn−1(1− pn)f(sn−2un−1dn)+

(1− pn−1)pnf(sn−2dn−1un) + (1− pn−1)(1− pn)f(sn−2dn−1dn)) = fn−2(sn−2)

where

fn−2(s) = ρ−1
n−1ρ

−1
n (pn−1pnf(sun−1un) + pn−1(1− pn)f(sun−1dn)+

(1− pn−1)pnf(sdn−1un) + (1− pn−1)(1− pn)f(sdn−1dn)).

Obviously, in order to meet the contract obligations at the moment k the investor
must have the capital

xk = fk(sk) (1.10)

where
fk(s) = ρ−1

k+1 · · · ρ−1
n

∑
ik∈{0,1}n−k

p(ik)f(sa(ik)), (1.11)

while
ik = (ik+1, . . . , in)

and

a(ik) = u
ik+1

k+1d
1−ik+1

k+1 · · ·uin
n d

1−in
n , p(ik) = p

ik+1

k+1 (1− pk+1)
1−ik+1 · · · pin

n (1− pn)1−in .

This capital must be distributed in accordance with

βk =
uk+1fk+1(skdk+1)− dk+1fk+1(skuk+1)

ρk+1bk(uk+1 − dk+1)
, γk =

fk+1(skuk+1)− fk+1(skdk+1)

sk(uk+1 − dk+1)
.

(1.12)
In particular, the rational price is given by the formula

x0 = ρ−1
1 · · · ρ−1

n

∑
i0∈{0,1}n

p(i0)f(s0a(i0)) (1.13)

and the initial portfolio must be of the form

β0 =
u1f1(s0d1)− d1f1(s0u1)

ρb0(u1 − d1)
, γ0 =

f1(s0u1)− f1(s0d1)

s0(u1 − d1)
.

If ξk, k = 1, 2, . . . , n, take more than two values then it is impossible to guarantee
the desired relation (1.3) with probability 1. However, sometimes it is possible to
guarantee (1.1). For example, this is possible when f(s) = fn(s) is convex. If f(s)
is convex so are all the functions fk(s), k = 0, 1, . . . , n−1. If, furthermore, ξk ∈ [dk, uk]
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then the hedging capital sequence is evaluated by the same formulae (1.10), (1.11) and
(1.2).

This fact was, first, proven in Tessitore and Zabczyk (1996) for the case of constant
d and u by the methods of control theory (see also Zabczyk (1996) and Motoczyński
and Stettner (1998)). Later on in Shiryaev (1999) the rational price is derived as the
solution of a extreme problem (see Theorem V.1c.1 ibidem).

Consider the sequence

x̄k = fk(sk), k = 0, . . . , n− 1, (1.14)

and let (βk, γk) be defined as in (1.12).
Possessing after (k−1)−th step the capital x̄k−1 distributed in portfolio in accordance

with (1.12) at the next step k the investor gains the capital

xk = βk−1bk + γk−1sk =
uk − ξk
uk − dk

fk(sk−1dk) +
ξk − dk

uk − dk

fk(sk−1uk).

If ξk ∈ [dk, uk], k = 1, . . . , n, then due to convexity of fk(s) we have

δk = xk − x̄k = fk(sk−1dk)
uk − ξk
uk − dk

+ fk(sk−1uk)
ξk − dk

uk − dk

− fk(sk−1ξk) ≥ 0. (1.15)

If fk(sk−1ξ) is strictly convex in [dk, uk] then δk = 0 if and only if ξk = dk or ξk = uk.
Otherwise δk > 0. Thus, if ξk takes at least one value lying in (dk, uk) then a profit can
arise. If the extreme values dk and uk belong to the support of the distribution of ξk
then x̄k−1 is the minimal capital that allows such a profit. It implies that

x̄0 = ρ−1
1 · · · ρ−1

n

∑
i0∈{0,1}n

p(i0)f(s0a(i0)) (1.16)

is the minimal starting capital that allows the investor to meet his contract obligations
with probability 1 provided he follows the strategy determined by (1.4) and (1.5). This
strategy forms the so-called upper hedge. It determines the sequence (x̄0, x̄1, . . . , x̄n−1)
of the hedging capitals. Here, x̄0 is called the upper rational price.

The investor may dispose of the so arisen profit in various ways. The simplest one
is to withdraw from the game the superfluous quota δk which to the maturity date
acquires the value δkρk+1 · · · ρn. So, the self-financing condition is fulfilled only in the
part which bans any capital inflow.

Having withdrawn unnecessary quota one should follow the "binary" optimal strategy
determined by (1.4) and (1.5). As a result to the maturity date the investor accumulates
a riskless profit

∆n = δ1ρ2 . . . ρn + δ2ρ3 . . . ρn + · · ·+ δn. (1.17)

It should be emphasized that the upper hedge admits an arbitrage opportunity in
the sense that the investor always meet his obligations, i.e.

P(xn ≥ f(sn)) = 1,

5



and may have a riskless profit in the sense that

P(∆n > 0) > 0.

It seems hopeless to find an acceptable formula for the expected value of riskless
profit E∆n. So, the question arises how to approximate it. It is one of such approximations
that is a basic goal of the paper.

It is worth emphasizing that a similar problem was studied in A. Nagaev and S.
Nagaev (2003) (see also S. Nagaev (2003)). In these papers the authors considered the
simplest case where the random variables ξk, k = 1, 2, . . . , n, were i.i.d. Here, if the
pay-off function is not smooth then chaotic phenomena arise. The typical example of
such a function is provided by the call option. Unfortunately, the considered models do
not take into account such intrinsic property of the stock price evolution as volatility.
The basic goal of the present paper is to extend the main results of the latter work to
the case where the stock price jumps are non-identically distributed.

The paper is organized as follows. In Section 2 the basic results concerning the
expected value of the riskless profit under selling the call and put options are formulated.
The "local" profit in the case where the model converges to a geometrical Gaussian
process with independent increments is studied in Section 3. In Section 4 the limit value
for the expected value of the total riskless profit is established. The limit value for the
upper rational price is given in Section 5. Auxiliary facts concerning limit theorems for
sums of independent variables are given in Section 6.

2 Basic results
In what follows we consider the simplest case of the standard call and put options
determined, respectively, by the pay-off functions

f(s) = (s−K)+, f(s) = (K − s)+. (2.18)

Since the random variables ξk, k = 1, 2, . . . , n, are not identically distributed it
is convenient to build an approximation based on a small parameter. This parameter
should be linked with the maturity time. Let ε be such that

ε→ 0, nε→ T, 0 < T <∞.

Assume that

ξk = ξk,ε = exp(h(kε)ε+ ηk,εε
1/2), k = 1, 2, . . . , n, (2.19)

where independent random variables ηk,ε ∈ [−y, x] and h(t) is a function continuous in
[0, T ]. Further, x and y are positive constants. Obviously, ξk,ε ∈ [dk,ε, uk,ε], where

uk = uk,ε exp(h(kε)ε+xε1/2) dk = dk,ε = exp(h(kε)ε−yε1/2), k = 1, 2, . . . , n, (2.20)
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and
sk = sk,n = s0ξ1,ε · · · ξk,ε, k = 1, 2, . . . , n. (2.21)

Consider the random process

xn(t) =
k−1∑
j=1

h(jε)ε+ ε1/2
k−1∑
j=1

ηj,ε,
k − 1

n
≤ t <

k

n
, k = 1, 2, . . . , n. (2.22)

It is easily seen that the trajectories of the process belong to D[0, 1].

Definition 2.1 We say that the sequence of independent variables η1,ε, η2,ε, . . . , ηn,ε,
satisfies Condition A if:

(A1)
Eηk,ε = 0, k = 1, 2, . . . , n;

(A2) there exists a strictly positive continuous function σ(t) defined on [0, T ] such that

Var ηk,ε = σ2(kε) + ωk,ε, k = 1, 2, . . . , n,

where
lim
ε→0

sup
1≤k≤n

|ωk,ε| = 0;

(A3) [−y, x] is the minimal interval that contains the supports of all the distributions
Fk,ε(u) = P(ηk,ε < u), k = 1, 2, . . . , n.

In particular, condition (A2) implies that for all sufficiently small ε we have

Var ηk,ε >
1

2
min

0≤t≤T
σ2(t) > 0.

If η1,ε, η2,ε, . . . , ηn,ε, satisfy Condition A then the Lindeberg condition holds and,
therefore, by the Central Limit Theorem the finite dimensional distributions of the
process xn(t) converge to those of the process

x(t) =

tT∫
0

h(u)du+ y(tT ), 0 ≤ t ≤ 1,

7



where y(t) is the Gaussian process such that

y(0) = 0, Ey(t) ≡ 0, Ey(s)y(t) = B(t, s) =

min(s,t)∫
0

σ2(u)du.

It is easily seen that y(t) has independent increments.
Actually, the process xn(t) weakly converges to x(t) inD[0, 1]. However, dealing with

the expected value of the total profit ∆n it suffices to have the weaker convergence.
Consider the sums

ζk,ε =
k∑

j=1

ηj,ε, k = 1, . . . , n.

It is evident that as k →∞

Var ζk,ε = b2k,ε(1 + o(1)).

where

b2k,ε =
k∑

j=1

σ2(jε).

As in Nagaev and S. Nagaev (2003), the following form of the local limit theorem plays
a crucial role. There exists ε0 such that as k →∞

bk,εP(z ≤ ζk,ε < z + h) = hϕ(z/bk,ε) + o(1) (2.23)

uniformly in z ∈ IR1, ε ∈ [0, ε0] and h, 0 < h′ ≤ h ≤ h′′ <∞. Here, ϕ(z) is the density
of the standard normal law.

The most general, though not very convenient, condition guaranteeing (2.23) is the
following: for all sufficiently small ε

sup
1≤k≤n

sup
0<δ≤|t|≤∆<∞

|Eeıtηk,ε| = ρ(δ,∆) < 1. (2.24)

In Section 6 we discuss more convenient conditions stated in terms of the distribution
functions Fk,ε(u).

In addition to (2.20) and (2.19) assume that

ρk = ρk,ε = exp(α(kε)ε) (2.25)

where α(t) ≥ 0 is continuous in [0, T ]. Let ∆n = ∆n,ε be determined by (1.15) and
(1.17) with uk, dk, ρk, ξk and sk replaced, respectively, uk,ε, dk,ε, ρk,ε, ξk,ε and sk,ε.

Define for t ∈ [0, 1]

ψ(t, z) =
x+ y√

xyT (1− t)
ϕ


lnK − z −

T∫
tT
α(u)du+ 1

2

√
xy(1− t)T√

xy(1− t)T

 (2.26)
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and for t ∈ [0, T ]

I(t) = 1
x+y

Eψ(t, x(t/T ) + ln s0) =

1√
B(t,t)+xy(T−t)

ϕ

 ln(K/s0)−
t∫
0

h(u)du−
T∫
t

α(u)du+ 1
2
(T−t)xy

√
B(t,t)+xy(T−t)

 .
(2.27)

The following theorem contains the basic result of the present paper.

Theorem 2.2 Assume that the sequence ηj,ε, j = 1, 2, . . . , n, satisfies Condition A. If
(2.23) is also fulfilled, then as ε→ 0, nε→ T

E∆n,ε =
K

2

T∫
0

(xy − σ2(t))I(t)dt+ o(1)

where K is the strike price from (2.18).

It is worth reminding that if the random variables η1, η2, . . . are independent then
σπ = σ.

Note that Var ηk,ε ≤ xy, k = 1, 2, . . . , n. This implies that sup
0≤t≤T

σ2(t) ≤ xy. So,

the limit value of the sequence E∆n is non-negative. It should be emphasized that this
limit value depends on x and y through xy. Furthermore, in the case of the call option,
the upper rational price corresponding to x and y as n→∞ converges to (see (5.47))

x̄0 → c(xy) =

s0Φ

 ln(s0/K)+
T∫
0

α(t)dt+Txy/2

√
Txy

−K exp

(
−

T∫
0
α(t)dt

)
Φ

 ln(s0/K)+
T∫
0

α(t)dt−Txy/2

√
Txy

 .
As to the lower rational price given by the formula

x0 = ρ−1
1 · · · ρ−1

n (s0ρ1 · · · ρn −K)+

it converges to

c(0) = s0

1− K

s0

· exp

− T∫
0

α(t)dt


+

.

So, the interval of the rational prices converges as n→∞ to (c(0), c(xy)).
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3 "Local" profit of investor
Let us denote by c any positive constant whose concrete value is of no importance.
Under such a convention we have e.g. c + c = c, c2 = c etc. By θ we denote any
variable taking values in [−1, 1].

Denote

pk,ε =
ρk,ε − dk,ε

uk,ε − dk,ε

, λk,ε =
ξk,ε − dk,ε

uk,ε − dk,ε

.

From (1.6) it follows that the discounted "local" profit of the investor takes the
form
∆k,n = δk,nρk+1,ε · · · ρn,ε =

∑
ik∈{0,1}n−k

p(ik)(λk,εf(sk−1,εuk,εa(ik)) + (1− λk,ε)f(sk−1,εdk,εa(ik))−

−f(sk−1,εξk,εa(ik)),
(3.28)

where p(ik) and a(ik) are as in (1.11). For the time being we suppress the dependence
of λk, d, u, ξk and sk on ε.

Let, first, f(s) = (s−K)+. Consider ik such that sk−1dka(ik) > K. Then

λkf(sk−1uka(ik))+(1−λk)f(sk−1dka(ik))−f(sk−1ξka(ik)) = sk−1(λkuk+(1−λk)dk−ξk)a(ik) = 0.

If sk−1dka(ik) ≤ K then

0 = f(sk−1uka(ik)) ≥ f(sk−1ξka(ik)) ≥ f(sk−1dka(ik)).

It is worth reminding that dk−1 ≤ ξk−1 ≤ uk−1. Thus,

∆k,n = δk,nρk+1 · · · ρn =
∑

(ik: sk−1dka(ik)≤K<sk−1dka(ik)
p(ik)(λk(sk−1uka(ik)−K)++

(1− λk)(sk−1dka(ik)−K)+ − (sk−1ξka(ik)−K)+).

Denote
|ik| = ik+1 + · · ·+ in.

Define for dk ≤ z ≤ uk

r̄n−k(z, Z) = (n− k)p+ ε−1/2R−1

Z − n∑
j=k

h(jε)ε

−R−1w

where
R = x+ y, p =

y

x+ y
, ln z = h(kε)ε+ wε1/2.

Let
rn−k(z) = r̄n−k(z, ln(K/sk−1)).

The following lemma plays an important role.

10



Lemma 3.1 Let ik and z satisfy the equation

sk−1za(ik) = K

where ln z = wε1/2+h(kε)ε, −y ≤ w ≤ x. If 0 < x′ ≤ min(x, y) ≤ max(x, y) ≤ x′′ <∞
Then

|ik| = rn−k(z) = [rn−k(dk)].

Proof. From the equation
sk−1za(ik) = K

it follows that

ln(K/sk−1) = ik+1 ln
uk+1

dk+1

+ · · ·+ in ln
un

dn

+ ln dk+1 + · · ·+ ln dn + ln z.

According to (2.20)
ln
uk

dk

= Rε1/2

and, therefore,

ln(K/sk−1) = ε1/2R(ik+1 + · · ·+ in)− (n− k)yε1/2 + wε1/2 +
n∑

j=k

h(jε)ε.

or
ln(K/sk−1) = ε1/2R|ik| − (n− k)yε1/2 + wε1/2 +

n∑
j=k

h(jε)ε.

So, |ik| = rn−k(z). If z varies within [dk, uk], then w stays in [−y, x]. It is easily seen
that rm(dk)− rm(uk) = 1. It implies that

#{j : rn−k(uk) < j ≤ rn−k(dk)} = 1. (3.29)

So, rn−k(z) = [rn−k(dk)]. The lemma is proved.
From the lemma it follows that

∆k,n = δk,nρk+1 · · · ρn =
∑

(ik: |ik|=[rn−k(dk)])
p(ik)(λk(sk−1uka(ik)−K)++

(1− λk)(sk−1dka(ik)−K)+ − (sk−1ξka(ik)−K)+).

Let zk = exp(wkε
1/2 + h(kε)ε) ∈ [dk, uk] be determined by the equality rn−k(zk) =

[rn−k(dk)]. It is easily seen that

p− {rn−k(dk)} = −wk

R
. (3.30)
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Furthermore,
sk−1uka(ik) = K exp((x− wk)ε

1/2)

and
sk−1dka(ik) = K exp(−(y + wk)ε

1/2).

Further,

∆k =
∑

(ik: |ik|=[rn−k(dk)], sk−1ξka(ik)>K)
p(ik)(λk(sk−1uka(ik)−K)− (sk−1ξka(ik)−K))+

λk
∑

(ik: |ik|=[rn−k(dk)]), sk−1ξka(ik)≤K)
p(ik)sk−1uka(ik −K) = ∆′

k + ∆′′
k.

(3.31)
Since λku− ξk = −d(1− λk) we conclude that

∆′
k = K(1− λk)(1− exp(−(y + wk)ε

1/2))
∑

(ik: |ik|=[rn−k(dk)], sk−1ξka(ik)>K)

p(ik) (3.32)

while

∆′′
k = Kλk(exp((x− wk)ε

1/2)− 1)
∑

(ik: |ik|=[rn−k(dk)]), sk−1ξka(ik)≤K)

p(ik). (3.33)

The inequality sk−1ξka(ik) > K is equivalent to ηk > wk. Taking into account (2.20)S
and (2.19) we conclude that

λk = R−1(ηk + y) +O(ε1/2), 1− λk = R−1(x− ηk) +O(ε1/2).

Then we obtain

∆k = Kε1/2(σ∗k +O(ε1/2))πk (3.34)

where
πk =

∑
|ik|=[rn−k(dk)]

p(ik)

and

σ∗k =


(x− ηk){rn−k(dk)} if ηk > R({rn−k(dk)} − p)

(ηk + y)(1− {rn−k(dk)}) otherwise.
(3.35)

Curiously, if f(s) = (K − s)+ then the asymptotic formula (3.34) remains valid. In
order to verify this one should slightly modify the calculations leading to (3.34).

Lemma 3.2 Let ψ(t, z) be defined as in (2.26). Under the conditions of Theorem 2.2

πk = ε1/2ψ(kn−1, ln sk−1) + o(ε1/2)

uniformly in k, k ≤ (1− δ)n.
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Proof. Consider independent variables ζk, k = 1, . . . , n such that

P(ζk = 1) = pk, P(ζk = 0) = 1− pk.

It is evident that
πk = P(ζk+1 + · · ·+ ζn = j)

where j = [rn−k(dk)].
Taking into account (2.20) we obtain

uk − dk = (x+ y)ε1/2 +
x2 − y2

2
ε+O(ε3/2)

while
ρk − dk = yε1/2 + (α(kε)− h(kε)− y2/2)ε+O(ε3/2).

Therefore,

pk = p+
α(kε)− h(kε)− xy/2

R
ε1/2 +O(ε).

Denote
ak = pk+1 + ·+ pn, b

2
k = pk+1(1− pk+1) + ·+ pn(1− pn).

Obviously,

ak = (n− k)p+ ε−1/2R−1

 n∑
j=k+1

α(jε)ε−
n∑

j=k+1

h(jε)ε− (n− k)xyε

2

+O(1)

and
b2k(n− k)p(1− p) +O(ε−1/2).

If n− k →∞ then by (5.44) we obtain

πk =
1

bk
ϕ

(
rn−k(dk)− ak

bk

)
+ o(b−1

k ).

By Lemma 3.1

rn−k(dk)− ak = ε−1/2R−1

ln(K/sk−1)−
n∑

j=k+1

α(jε)ε

+
(n− k)ε1/2xy

2R
+O(1)

and, therefore,

rn−k(dk)− ak

bk
=

1√
(n− k)εxy

ln(K/sk−1)−
n∑

j=k+1

α(jε)ε

+

√
(n− k)εxy

2
+O(ε1/2).
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Since nε→ T

rn−k(dk)− ak

bk
=

1√
T (1− kn−1)xy

ln(K/sk−1)−
T∫

kn−1T

α(u)du)

+

√
T (1− kn−1)xy

2
+o(1).

(3.36)
Since

bk = ε−1/2R−1
√

(n− k)εxy

it remains to recall (2.26). The lemma is proved.
From Lemma 3.2 and (3.34) it follows that

∆k = Kεψ(kn−1, ln sk−1)σ
∗
k + o(ε) (3.37)

uniformly in k, k ≤ (1− δ)n. This is the starting point for the proof of Th. 2.2.

4 Proof of Theorem 2.2
Represent the total profit ∆n as

∆n =
∑

1≤k<δn

∆k,n +
∑

δn≤k≤(1−δ)n

∆k,n +
∑

(1−δ)n≤k≤n

∆k,n = ∆′
n + ∆′′

n + ∆′′′
n (4.38)

and estimate the expectations E∆′
n, E∆′′

n and E∆′′′
n one after another.

According to (3.37) we have

E∆′′
n = Kε

∑
δn≤k≤(1−δ)n

Eψ(kn−1, ln sk−1,n)σ∗k + o(1)

or in view of (2.19)

E∆′′
n = KεEψ(kn−1, ε1/2(η1 + · · ·+ ηk−1) +

k−1∑
j=0

h(jε)ε+ ln s0)σ
∗
k.

Consider

A(u, v) = (x− v)uχ(u, v) + (v+ y)(1− u)(1−χ(u, v)), (u, v) ∈ [0, 1]× [−y, x], (4.39)

where

χ(u, v) =


1 if R(u− p) < v ≤ x, 0 ≤ u ≤ 1

0 if − y < v ≤ R(u− p), 0 ≤ u ≤ 1

In view of (3.35) we have

σ∗k = A({rn−k(dk)}, ηk).
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It is evident that χ(u, v) admits a monotone ε−approximation by means of χ+(u, v)
and χ−(u, v) where

χ+(u, v) =



v−R(u−p)
ε′

+ 1 if R(u− p)− ε′ ≤ v ≤ R(u− p), 0 ≤ u ≤ 1

0 if − y ≤ v ≤ R(u− p)− ε′, 0 ≤ u ≤ 1

1 if R(u− p) ≤ v ≤ x, 0 ≤ u ≤ 1

and

χ−(u, v) =



v−R(u−p)
ε′

if R(u− p) ≤ v ≤ R(u− p) + ε′, 0 ≤ u ≤ 1

0 if − y ≤ v ≤ R(u− p), 0 ≤ u ≤ 1

1 if R(u− p) + ε′ ≤ v ≤ x, 0 ≤ u ≤ 1.

Obviously, χ±(u, v) are continuous in [0, 1]× [−y, x] and

χ−(u, v) ≤ χ(u, v) ≤ χ+(u, v).

Furthermore,

0 ≤
∫

[0,1]×[−y,x]

(χ+(u, v)− χ−(u, v))dudFk(v) ≤
∫
Uε′

dudFk(v) ≤ (2ε′/R) (4.40)

where
Uε′ = ((u, v) : u ∈ (0, 1), −y < v < x, |v −R(u− p)| ≤ ε′).

Therefore,

Eψ(kn−1, ε1/2(η1 + · · ·+ ηk−1) +
k−1∑
j=0

h(jε)ε+ ln s0)A−({rn−k(dk)}, ηk) ≤

Eψ(kn−1, ε1/2(η1 + · · ·+ ηk−1) +
k−1∑
j=0

h(jε)ε+ ln s0)σ
∗
k =

Eψ(kn−1, ε1/2(η1 + · · ·+ ηk−1) +
k−1∑
j=0

h(jε)ε+ ln s0)A({rn−k(dk)}, ηk) ≤

Eψ(kn−1, ε1/2(η1 + · · ·+ ηk−1) +
k−1∑
j=0

h(jε)ε+ ln s0)A+({rn−k(dk)}, ηk)

where
A±(u, v) = (x− y)uχ±(u, v) + (y + x)(1− u)(1− χ∓(u, v)).
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Obviously, the family ψ(t, z), δ ≤ t ≤ 1 − δ, is contained in the class G defined in
Section 6. So, we may apply Corollary 6.4.

By the corollary

Eψ(kn−1, ε1/2(η1 + · · ·+ ηk−1) +
k−1∑
j=0

h(jε)ε+ ln s0)A±({rn−k(dk)}, ηk) =

Eψ(kn−1, ν
√
B(kε, kε) +

kε∫
0
h(u)du+ ln s0)

∫
[0,1]×[−y,x]

A±(u, v)dudFk(v) + o(1)

uniformly in k, δ ≤ kn−1 ≤ 1− δ. Here ν has the standard (0, 1)−normal distribution
and Fk is the distribution function of ηk.

In view of (4.40)∫
[0,1]×[−y,x]

A±(u, v)dudFk(v) =
∫

[0,1]×[−y,x]

A(u, v)dudFk(v) + 2θε′.

It is easily verified that∫
[0,1]×[−y,x]

A(u, v)dudFk(v) =
1

2(x+ y)
(xy − Var ηk) .

Since ε′ is arbitrary we obtain

Eψ

(
kn−1, ν

√
B(kε, kε) +

kε∫
0
h(u)du+ ln s0

)
σ∗k =

1
2(x+y)

(xy − Var ηk)Eψ

(
kn−1, ν

√
B(kε, kε) +

kε∫
0
h(u)du+ ln s0

)
+ o(1)

uniformly in k, δ ≤ kn−1 ≤ 1− δ.
Thus,

E∆′′
n =

Kε

2R

∑
δn≤k≤(1−δ)n

(xy−σ2(kε))Eψ

kn−1, ν
√
B(kε, kε) +

kε∫
0

h(u)du+ ln s0

+o(1)

or

E∆′′
n =

KT

2R

1−δ∫
δ

(xy − σ2(tT ))Eψ

t, ν√B(tT, tT ) +

tT∫
0

h(u)du+ ln s0

 .
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After simple calculations

Eψ

(
t, ν

√
B(tT, tT ) +

tT∫
0
h(u)du+ ln s0

)
=

R√
B(tT,T t)+xyT (1−t)

ϕ

 ln(K/s0)−
tT∫
0

h(u)du−
T∫
tT

α(u)du+ 1
2
T (1−t)xy

√
B(tT,tT )+xyT (1−t)

 = I(tT )

where I(t) is as in (2.27). Therefore,

E∆′′
n =

KT

2

1−δ∫
δ

(xy−σ2(tT ))I(tT )dt+o(1) =
K

2

(1−δ)T∫
δT

(xy−σ2(t))I(t)dt+o(1). (4.41)

Now, we are going to estimate E∆′′′
n .

For the extreme "local" profit ∆n,ε we obtain

∆n,ε = δn,ε = (sn−1,εdn,ε−K)+
un,ε − ξn,ε

un,ε − dn,ε

+(sn−1,εun,ε−K)+
ξn,ε − dn,ε

un,ε − dn,ε

−(sn−1,εξn,ε−K)+

whence

∆n,ε =


0 if sn−1,εun,ε ≤ K or sn−1,εdn,ε > K

θ(sn−1,εun,ε −K) if K/un,ε < sn−1,ε ≤ K/dn,ε.

Therefore,
∆n,ε ≤ K(un,ε/dn,ε − 1) ≤ cε1/2.

For m = n− k ≥ 1 in view of (3.31) – (3.33)

∆n−m,ε ≤ c
∑

(in−m: |in−m|=[rm(dn−m)])

p(in−m)((sn−m−1,εun−m,εa(in−m)−K)

or
∆n−m,ε ≤ c

∑
(in−m: |in−m|=[rm(dn−m)])

p(in−m)(exp((x− wn−m)ε1/2)− 1).

Taking into account (2.19) and (2.23) we obtain

∆n−m,ε ≤ cm−1/2ε1/2.

Thus, for all sufficiently small ε

∆′′′
n ≤ cε1/2

∑
0≤m≤δn

m−1/2 ≤ cδ1/2. (4.42)
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For 1 ≤ k ≤ δn we have

∆k,ε ≤ πk(sk−1,εuk,εa(ik)−K) = Kπk(exp((x− wn−m)ε1/2)− 1) ≤ cn−1/2ε1/2.

Thus,
∆′

n ≤ cδ. (4.43)

Since δ is arbitrary in view of (4.38), (4.41), (4.42) and (4.43) the theorem follows.

5 The limit value of the upper rational price
Let ξ1, ξ2, . . . , ξn be independent random variables such that

P(ξk = 1) = pk, P(ξk = 0) = 1− pk, k = 1, 2, . . . , n.

Let P (n) denote the measure on {0, 1}n, generated by ξ1, . . . , ξn. Consider the sum

ζn = ξ1 + · · ·+ ξn.

It is easily verified that (see e.g. Ch. 7 in Petrov (1975))

sup
δ≤p(1), p(n)≤1−δ

sup
k
|P (n)(ζn = k)− 1

bn
√
n
ϕ

(
k − an

bn
√
n

)
| = O(1/n), (5.44)

where ϕ(x) is the density function of the standard normal law,

p(1) = min
1≤k≤n

pj, p(n) = max
1≤j≤n

pj

and
an = E(n)ζn =

n∑
k=1

pk, b
2
n = Var(n)ζn =

n∑
k=1

pk(1− pk).

Here E(n) and Var(n) correspond to P (n).
Consider the moment generating function

fk(t) = Eet(ξk−pk) = pke
t(1−pk) + (1− pk)e

−tpk .

Let x0 be the root of the equation xex = 3. Then for |x| ≤ x0 we obtain

ex = 1 + x+ θx2

where θ ∈ [0, 1]. Then for

0 ≤ t ≤ T0 = x0 min

(
1

p(n)

,
1

1− p(1)

)
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we obtain
fk(t) ≤ 1 + pk(1− pk)θkt

2, θk ∈ [0, 1], k = 1, . . . , n.

Thus, for 0 ≤ t ≤ T we have

fk(t) ≤ 1 +
t2

4
≤ exp(t2/4).

Applying Th. III.16 in Petrov (1975) yields

P(n)(ζn − an ≥ u) ≤


exp(−n−1u2) if 0 ≤ u ≤ (T0/2)n

exp(−T0u/2) if u ≥ (T0/2)n.
(5.45)

Similarly,

P(n)(ζn − an ≤ −u) ≤


exp(−n−1u2) if 0 ≤ u ≤ (T0/2)n

exp(−T0u/2) if u ≥ (T0/2)n.
(5.46)

Lemma 5.1 Let ζn is defined as above. Let a non-negative function g(z) satisfy the
inequality g(z) ≤ ec|z| for some c > 0. If pk ∈ [δ, 1− δ], k = 1, . . . , n, then as n→∞

E(n)g

(
ζn − an

bn

)
→
∫
g(z)ϕ(z)dz.

Proof. Denote
Fn(z) = P(ζn − an < zbn).

From the Central Limit Theorem it follows that for any fixed Z > 0∫
|z|≤Z

g(z)dFn(z) →
∫

|z|≤Z

g(z)ϕ(z)dz.

Integrating by parts yields

I+ =
∫

z>Z

g(z)dFn(z) = (1− Fn(Z))ecZ +
∫

z>Z

g(z)(1− Fn(z))dz.

Note that ζn ≤ n. Utilizing (5.45) we obtain

I+ ≤ exp(cZ − n−1b2nZ
2) +

∫
z>Z

exp
(
cz − zbn min

(
n−1bnz,

T0

2

))
dz.
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It is easily seen that for all sufficiently large n we have I+ ≤ ω(Z) where lim
Z→∞

ω(Z) = 0.

Similarly, making use of (5.46) we obtain

I− =
∫

z<−Z

g(z)dFn(z) ≤ ω(Z).

These estimates implies the required convergence. The lemma is proven.
Let pk = pk,ε, k = 1, 2, . . . , n, where pk,ε are defined as in Section 3. Then (1.16) is

rewritten as

x̄0 = ρ−1
1 ρ−1

2 · · · ρ−1
n E(n)f(s0)a(ζn).

As in the proof of Lemma 3.2 we obtain

an = np+
ε−1/2

x+ y

n∑
j=1

(α(jε)− h(jε)− xy/2)ε+O(1)

and
b2n = np(1− p)(1 + o(1)) = nR−2xy(1 + o(1)).

Taking into account (2.19) we obtain

a(ζn) = exp

ζn − an

bn

√
nεxy +

n∑
j=1

α(jε)ε− nε · xy
2

+O(ε1/2)

 .
Since

f(s0a(ζn)) ≤ c exp

(
c
∣∣∣ζ ′n − an

bn

∣∣∣)
we may apply Lemma 5.1. Applying the lemma yields

x̄0 → exp

− T∫
0

α(t)dt

∫ ϕ(v)f(s0 exp(v
√
Txy +

T∫
0

α(t)dt− Txy/2))dv.

If f(s) = (s−K)+ then

x̄0 → c(xy) =

s0Φ

 ln(s0/K)+
T∫
0

α(t)dt+Txy/2

√
Txy

−K exp

(
−

T∫
0
α(t)dt

)
Φ

 ln(s0/K)+
T∫
0

α(t)dt−Txy/2

√
Txy

 .
(5.47)
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But if f(s) = (K − s)+ then

x̄0 → c1(xy) =

K exp

(
−

T∫
0
α(t)dt

)
Φ

 ln(K/s0)−
T∫
0

α(t)dt+Txy/2

√
Txy

− s0Φ

 ln(s0/K)−
T∫
0

α(t)dt−Txy/2

√
Txy

 .
(5.48)

6 The local limit theorem and its applications
First, consider the case where (2.24) is ensured by atoms.

Proposition 6.1 Let ηk,ε, k = 1, 2, . . . , n, take at least three values −y, 0, x so that

P(ηk,ε = 0) = pk0, P(ηk,ε = −y) = pk1, P(ηk,ε = x) = pk2

where
πk = pk0 + pk1 + pk2 ≤ 1, min(pk0, pk1, pk2) ≥ p0 > 0.

If the ratio y
x

is an irrational number then condition (2.24) is fulfilled.

Proof. Denote by ψk(t) the characteristic function of ηk,ε. Represent it as follows

ψk(t) = pk0 + pk1e
−ıty + pk2e

ıtx + ψk1(t)

where, obviously, |ψk1(t)| ≤ 1− πk. Denote

ψk0(t) = πk0 + πk1e
−ıty + πk2e

ıtx.

where
πk0 =

pk0

πk

, πk1 =
pk1

πk

, πk2 =
pk2

πk

.

Obviously,
min(πk0, πk1, πk2) > p0

and
|ψk(t)| ≤ πk|ψk0(t)|+ 1− πk.

It is easily seen that

1− |ψk0(t)|2 = 2πk0πk1(1− cos(yt)) + 2πk0πk2(1− cos(xt))+

2πk1πk2(1− cos((x+ y)t)) ≥ 4p2
0

(
1− cos(yt)+cos(xt)

2

)
.
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Since y
x

is irrational it follows that for all sufficiently small δ > 0 and for all δ < ∆ <∞

1 < sup
δ≤|t|≤∆

(cos(yt) + cos(xt)) = c(δ,∆) < 2. (6.49)

Assume that there exist t ∈ IR1 and m, l ∈ Z1
+ such that t = 2π

y
m = 2π

x
l. But this

would imply that y
x

is rational. So, (6.49) holds. Further,

sup
δ≤|t|≤∆

|ψk(t)| ≤ πk

(
1− 4p2

0

(
1− c(δ,∆)

2

))
+ 1− πk =

1− 4πkp
2
0

(
1− c(δ,∆)

2

)
≤ 1− 12p3

0

(
1− c(δ,∆)

2

)
= ρ(δ,∆) < 1.

It is worth noting that

0 < 12p3
0

(
1− c(δ,∆)

2

)
<

6

27
.

Thus, the proposition is proven.
In the following proposition the condition (2.24) is secured by the absolutely continuous

components.

Proposition 6.2 Let Fk,ε(u) contain an absolutely continuous component Rk(u) such
that

inf
u∈[ak,bk]

R′k(u) ≥ p0 > 0, bk − ak ≥ h > 0.

Then (2.24) holds.

Proof. Consider the density

pk(u) =
R′k(u)

Rk(bk)−Rk(ak)
1[ak,bk](u).

It is evident that that
pk(u) ≥ p0.

Consider the symmetrized density

p̄k(v) =

bk∫
ak

pk(v + u)pk(u)du, |v| ≤ bk − ak = hk.

Recall that p̄k(v) ≥ p0 for |v| ≤ hk. Denote

ψk0(t) =
∫
eıtupk(u)du.
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It is evident that

1− |ψk0(t)|2 = 2

hk∫
0

(1− cos(tu))p̄k(u)du ≥ 2p0

h∫
0

(1− cos(tu))du

and, therefore,

1− |ψk0(t)|2 ≥ 2p0h

(
1− sin(δh)

δh

)
= c(δ) > 0.

It implies that that
sup

1≤k≤n
sup
|t|≥δ

|ψk0(t)| ≤ c(δ) < 1.

As before, let ψk(t) be the characteristic function of ηk,ε. It is evident that

|ψk(t)| ≤ πk|ψk0(t)|+ 1− πk

where

πk ≥
bk∫
ak

pk(u)du ≥ p0(bk − ak) ≥ p0h.

So, (2.24) holds and, therefore, the proposition follows.
Under the conditions of the just proven propositions the relation (2.24) takes place,

i.e. the local limit theorem in the form (2.23) holds. In order to verify it one should
slightly modify the argument used, say, in Nagaev (1973).

Consider the sequence of the measures

Qk,ε(A) = bk,ε

√
2πP(ζk,ε ∈ A).

The statement (2.23) implies that Qk,ε weakly converge, as k → ∞ uniformly in ε ∈
[0, ε0] to the Lebesgue measure that is for any continuous compactly supported function
g(u)

sup
ε∈[0,ε0]

|
∫
g(u)Qk,ε(du)−

∫
g(u)du| → 0. (6.50)

Let G be the class of equicontinuous functions defined on (−∞,∞) such that

lim
t→∞

sup
g∈G

∫
|u|>t

|g(u)|du = 0.

It is easily seen that (6.50) holds uniformly in g ∈ G. More precisely,

lim
k→∞

sup
ε∈[0,ε0]

sup
g∈G

|
∫
g(u)Qk,ε(du)−

∫
g(u)du| = 0. (6.51)

Consider the family of the random variables τk,ε(a) = {λζk,ε +a} where a ∈ IR1 and
λ 6= 1 is constant. It is worth comparing the following statement with the basic result
in S. V. Nagaev and Mukhin (1966).
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Lemma 6.3 If (2.23) takes place then for any fixed u′, u′′, 0 < u′ < u′′ < 1 and
z′, z′′, −∞ < z′ < z′′ <∞ as k →∞

sup
a
|P(u′ ≤ τk,ε(a) < u′′, z′ ≤ b−1

k,εζk,ε < z′′)− (u′′ − u′) (Φ(z′′)− Φ(z′)) | = o(1).

Proof. Let k = k(a) = [a], θ = θ(a) = {a}. Suppose that λ > 0. It is easily seen that

Pk,ε = P(u′ ≤ τk,ε(a) < u′′, z′ ≤ b−1
k,εζk,ε < z′′) =

∑
j

P(j + u′ ≤ λζk,ε + a < j + u′′, z′bk,ε ≤ ζk,ε < z′′bk,ε) =

∑
j′≤j≤j′′

P( j+u′−θ
λ

≤ ζk,ε <
j+u′′−θ

λ
) + P( j′′+u′′−θ

λ
≤ ζk,ε < z′′bk,ε)+

P(z′bk,ε ≤ ζk,ε <
j′+u′−θ

λ
)

where

j′ = min(j :
j + u′ − θ

λ
≥ z′bk,ε), j

′′ = max(j :
j + u′′ − θ

λ
≤ z′′bk,ε).

According to (2.23)

Pk,ε =
u′′ − u′

λbk,ε

∑
j′≤j≤j′′

ϕ

(
j

λbk,ε

)
+ o(1).

It remains to recall that

j′ = z′λbk,ε(1 + o(1)), j′′ = z′′λbk,ε(1 + o(1)).

Lemma 6.3 has the following evident corollary (cf. Corollary 7.1 in A. Nagaev and
S. Nagaev (2003)).

Corollary 6.4 Let χ(u, v) be a bounded continuous function defined on [0, 1] × IR1.
Under the conditions of Theorem 2.2

lim
n→∞

sup
g∈G

sup
a
|Eg(b−1

k,εζk,ε)χ({λζk,ε + a}, ηk)−
∫
g(z)ϕ(z)dz

∫
[0,1]×IR1

χ(u, v)dudFk(v)| = 0

uniformly in k, k ≥ δn, δ > 0. Here, Fk is the distribution function of ηk,ε.
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