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Abstract 

In models that have a representation of the form   ),( xgy  the Wald test for ̂  

has systematically wrong size in finite samples when the indentifying parameter   is small 

relative to its estimation error. An alternative test based on linearization of (.)g  can be 

interpreted as an approximation to the exact test of Fieller (1954) for a ratio of regression 

coefficients, or as an LM test in the spirit of Breusch and Pagan (1980)., We show that this 

test has nearly correct size in non-linear regression, ARMA, GARCH, and Unobserved 

Components models where the Wald test performs poorly. 
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1. Introduction 

 

This paper is concerned with inference in the class of models that have a 

representation of the form  

                    Nixgy iii ,...,1;),(   .                          (1.1) 

The parameter of interest is   which is identified only if 0  . Additional regressors and 

parameters would often be present in practice. We assume that errors i  are i.i.d. N(0, 2 ) 

so that Maximum Likelihood estimates of ̂  and ̂  are obtained by non-linear least 

squares, given data y and x . In addition to non-linear regression models, this class 

includes the workhorse ARMA model, where data x are lagged observations. By 

extension, the GARCH model and Unobserved Components State Space models for trend 

and cycle decomposition fall into this class as well. What these models have in common 

is that standard inference based on asymptotic theory often works poorly in finite samples, 

essentially because the estimated standard error for ̂  depends on ̂ . Further, the 

distribution of ̂  will generally be displaced away from the true value. Nelson and Startz 

(2007) – hereafter NS - show that the estimated standard error for ̂  is generally too 

small. Although these two effects might seem to imply that the t-statistic would be over-

sized, NS show that size distortion may go either way. In this paper we demonstrate that 

the linear approximation of ( , )ig  x  is useful in understanding and predicting the 

direction of bias in ̂  as well as test size distortion, and it provides an alternative  t-test 

that works well in situations where the standard t-test performs poorly. 
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 The paper is organized as follows. Section 2 studies the case where ( , )ig x  is 

linear, the archetype of this class for which useful analytical results are available. We 

examine the sources of bias in ̂  and distortion in the size of the t-test, comparing its size 

and power with that of the reduced form test. Section 3 studies how well the findings in 

the linear case hold in non-linear models where the reduced form is only a linear 

approximation, in particular nonlinear regression, ARMA, Unobserved Components 

model of trend and cycle, and in GARCH models. Section 4 concludes. 

 

2. Bias and test size when g(.) is linear 

 In the case that g(.) in (1.1) is linear the model takes the form: 

iiii zxy   )(      (2.1) 

where ix  and iz  denote regressors. This model is not only an archetype of the class we 

are interested in, but is also of interest in practice, for example, the Phillips curve model 

of Staiger, Stock and Watson (1997) where y is the change in inflation, ( )ig x   , 

where x is actual unemployment and   is the natural rate. The reduced form of (2.1) is 

iiii zxy        (2.2) 

where   . The least squares estimate from (2.1) is equal to the indirect least 

squares estimate from the reduced form, thus  ˆ/ˆˆ  .  

 Although the moments of the ratio of normal random variables do not in general 

exist, see Fieller (1932) and Hinckley (1969), we can nevertheless draw some 

conclusions about the sampling distribution of ̂ . Noting that ̂  and ̂  are jointly 

Normal across samples, the conditional mean of the former given the latter implies: 
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v  ˆˆ      (2.3)  

where   and   are parameters and v is Normal and uncorrelated with ̂  by construction.  

To simplify exposition we focus on the case 0   and standardized regressors with 

sample correlation  . It is straightforward to show that   ,    , and the 

variance of v is 2 N . Making these substitutions and dividing by ̂  one obtains: 




ˆˆ
ˆ v









     (2.4) 

 Consider now how the distribution of ̂  is affected by  , which controls the 

amount of information in the data about , and by correlation between regressors  , for 

given sample size. A larger value of   means that the ratio ˆ   tends to be closer to 

unity, since the standard deviation of ̂ , given by 2 1 2(1 )N   , is not a function of

 . The second term in (2.4) will tend toward  , canceling out the first term, and the 

third term will be relatively small, so the sampling distribution of ̂  will be located more 

tightly around its true value, zero. However, a smaller value of   means that ˆ   will 

typically be small, thus locating the sampling distribution of ̂  around   but with 

greater dispersion since the third term will typically be large. Shifting now to the effect of

 , stronger correlation will increase sampling variation in ̂ , so the second and third 

terms will tend to be small, concentrating the distribution of ̂  around  . (In this paper 

we refer to these shifts of central tendency away from the true value as ‘bias’ for the sake 

of brevity.) These effects are apparent in the Monte Carlo results that follow.  
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 Turning now to hypothesis testing, the asymptotic variance of ̂  derived either 

from the information matrix for (2.1) under maximum likelihood, or using the ‘delta 

method’ for indirect least squares, is given by: 

2

22

2ˆ

21

xzzzxx

zzxzxx

mmm

mmm

N
V








    (2.5)  

where ‘m’ denotes the raw sample second moment of the subscripted variables. In 

practice the parameters are unknown and are replaced in standard software packages by 

the point estimates. Thus the reported t-statistic for ̂  is: 


















zzxzxx

xzzzxx

mmm

mmmN
t

2

2

2
22

0
2
ˆ ˆˆ2ˆ

ˆ)ˆ(


     (2.6) 

where the null hypothesis is 0  . We confine our attention to the case 0 0  , noting 

that a non-zero value of 0  simply corresponds to a transformed model. In the 

standardized regressors case the t-statistic for ̂  is given by: 

2

2

2

2
2

2
2
ˆ ˆˆ21

1
ˆˆ21

1
)1(

ˆ

ˆ







 



 tNt          (2.7) 

 Since the reduced form is a classical linear regression, ˆt


has correct size and so 

provides an alternative test of the null hypothesis 0   with correct size. Indeed this is 

the exact test of Fieller (1954) for any ratio of regression coefficients. As noted by NS, if 

the two explanatory variables are orthogonal, then in any given sample 2
ˆ

2
ˆ 

tt   since the 

last term must be less than one. In contrast, the effect of strong correlation between x and 

z, working through the concentration of ̂  around the value  , is to drive 

)ˆˆ21( 2   close to zero, making 2
ˆt


 arbitrarily larger than 2
ˆt


. Thus, whether test 
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size is too large or too small depends on the correlation between the regressors, strong 

correlation of either sign producing an over-sized t-test. 

 The identification condition 0  is a maintained hypothesis underlying the 

classical asymptotic standard error and t-statistic for ̂ . If it does not hold then the 

information matrix for the model is singular. Nevertheless, the reduced form test statistic 

ˆt


 still has an exact t-distribution because the reduced form regression is a properly 

specified classical regression regardless of the value of . However, since the data do not 

contain information about   the test has no power in that case.  

 To illustrate displacement of ̂  away from its true value in the direction of  , 

its concentration around that value, and the relative performance of ˆt


 and ˆt


, we report a 

series of Monte Carlo experiments where true 0  , the regressors have unit variance 

and are fixed in repeated samples, and errors are i.i.d. N(0,1). The size of the reduced 

form test ˆt


 is of course exactly its nominal size (we focus on .05) since the reduced form 

is a classical linear regression for this model, so we do not report its empirical size. 

Estimation is done in EViews™ using the non-linear regression routine, so the 

calculation of ˆt


 is representative of what would be reported in applied work. The 

number of replications is 10,000 in all experiments in this paper, and the standard 

deviation of estimated size is .002 when the true size is .05.   

 Table 1 explores the effect of   on inference when the regressors are orthogonal, 

the case where we do not expect to find displacement of ̂  away from zero or 

concentration, but we do expect the standard t-test to reject less frequently than its .05 
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nominal level. Since it is the magnitude of   relative to its sampling error that plays a 

critical role in inference, the second line reports the ratio ˆ/ V   as a metric for spurious 

inference. The next two lines present the median of ̂   and its inter-quartile range as 

measures of location and dispersion respectively.  The results confirm that ̂  is centered 

around zero and becomes less disperse for larger values of   as asymptotic theory 

becomes a better approximation to the actual distribution. The last row reports the 

empirical size of ˆt


, and confirms that it is undersized, becoming less so with larger 

values of the metric ˆ/ V . The fact that the distribution of ˆt


depends on the unknown 

true value of   means that it is non-pivotal in finite samples, its distribution depending 

on this nuisance parameter. As mentioned above, we do not report the empirical size of 

ˆt


since the actual size is exactly .05.  

 

Table 1: The Effect of  on the Distribution of ̂  and Size of ˆt


 with Orthogonal 

Regressors; N = 100 
 
True      .01  .10  .5  1.0 

Asymptotic ˆV   .1    1   5  10 

Median   ̂              .10            .03           -.00              -.00 

Range (.25, .75)    (-.95, 1.17)       (-.65, .68)          (-.14, .13)         (-.06, .06) 

Size of ˆt


          .0001        .0002           .038           .050 

 

 Table 2 explores the effect of correlation  between regressors on the distribution 

of ̂  and on the size of ˆt


 when the true value of   is a ‘moderate’ .10. Note that as the 
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metric ˆ/ V  is smaller for larger , the distribution of ̂  becomes more concentrated 

around a value closer to  , and test size goes from too small to excessive, as expected. 

 

Table 2: The Effect of Correlation  Between Regressors on Distribution of ̂  and 

on Size of ˆt


; .1  , N = 100 

 

Correlation     0  .50  .90  .99 

Asymptotic ˆV              1            .87            .44             .14 

Median   ̂           .03           -.21           -.71            -.96 

Range (.25, .75)           (-.65, .68)        (-.84, .54)     (-1.27, -.14)    (-1.17, -.75) 

Size of ˆt


                          .0002          0.019         .235            .565 

 

 Figure 1 explores the response of rejection frequencies for ˆt


 and ˆt


 to departures 

of the true value of   from the null value of zero when the true value of   is again .10, 

when the independent variables are, alternatively, orthogonal and strongly correlated. 

Since test size is not correct for ˆt


 this response can at best suggest whether the test 

conveys some information about the null hypothesis. For the case of orthogonal 

regressors, what we see is that the frequency of rejection for ˆt


increases very slowly as a 

function of the true  . In contrast, the power of the correctly sized test ˆt


 rises steeply as 

the true   departs from zero. The corresponding comparison when the independent 

variables are strongly correlated reveals that for ˆt


rejections become less frequent as the 

true value of   departs farther from the null of zero rather than more frequent. In 
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contrast, the power of the correctly sized reduced form test ˆt


 does increase as expected 

as the null departs from the true value. Thus we conclude that the standard test is not only 

poorly sized but contains little if any information about the null hypothesis. 

 

Figure 1: Rejection Frequencies for tests of 0 : 0H   , N = 100,   = .10 
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Asymptotic theory does take hold as sample size becomes large, albeit very 

slowly, as is evident in Table 3 below.  We note that the size of ˆt


 just approaches to its 

correct level only as the quantity ˆV  increases to 10, requiring a sample size as large 

as 10,000 for 1. , and 1,000,000 for 01. ! 

 

Table 3: The Effect of Sample Size N on the Distribution of ̂  and Size of ˆt


 with 

Orthogonal Regressors. 
 

Sample Size N             100            10,000   1,000,000   10,000 

True      .01    .01        .01        .1 

Asymptotic ˆV     .1      1        10        10 

Median   ̂              .10              .01              -.00                  .00 

Range (.25, .75)      (-.95, 1.17)          (-.64, .63)          (-.07, .07)        (-.07, .07) 

Size of ˆt


           .0001             .0006                 .043                  .045 

 

 

 To sum up, in the archetypal case where g(.) is linear it is clear how the 

displacement of ̂  away from the true value and distortion in the size of the standard t-

test depend on correlation between the regressors, while the reduced form test has exact 

size. The remainder of the paper is concerned with models where g(.) is not linear and the 

reduced form test is based on a linear approximation.  
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3. A reduced form test for non-linear g(.) and relative performance in 

four models 

 

3.0 The Reduced Form Test in a Linear Approximation 

 More generally g(.) will not be linear as in section 2 but a reduced form test can 

be based on the linear approximation of ( , )ig x  around 0 : 

iiii exgxgy  )],()(),([ 000      (3.0.1) 

where (.)g dg d   and ie  includes a remainder. The corresponding reduced form is:  

 0 0 0( , ) ( , ) ; where i i i iy g x g x e               .                         (3.0.2) 

The least squares estimate conditional on 0 in (3.0.2) is equivalent to the indirect least 

squares estimate   ˆˆˆ
0   and the implication of the null hypothesis 0   is 

0  . Intuitively, the first term captures the contribution of   to the model if the null is 

correct, the second term being required only if it is wrong. Following Breusch and Pagan 

(1980), this can also be viewed as an LM test based on the Wald test for 0   in the 

Gauss-Newton regression under the null hypothesis. Since the reduced form test cannot 

be expected to have exact size when (.)g  is not linear we use simulation to evaluate its 

performance relative to the standard t-test in four models of practical interest.  

 In Section 2 we showed that bias in ̂  as well as the size of the standard t-test 

depend on the correlation between (.)g  and (.)g  which are fixed in the linear case. In 

the non-linear case an estimation routine like Gauss-Newton iterates on 0  to obtain least 

squares estimates, the final standard errors and resulting t-statistic being based on 
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evaluation of (.)g  and (.)g  at ˆ  .  Thus the correlation between the ‘regressors’ is 

not fixed in the general case but rather depends on the provisional value of   at each 

iteration. As we see below, this co-determination affects the distribution of the point 

estimate and the size of the standard t-test., but not the reduced form test which relies on 

evaluation the (.)g  and (.)g  under the null hypothesis. 

 

3.1. Non-linear Regression: A Production Function 

Consider the Hicks-neutral Cobb-Douglas production function:  

  0;   
iii xy                (3.1.1) 

where iy  and ix  are per capita output and capital input respectively,   is Total Factor 

Productivity, and   the share of capital input. The linear reduced form approximation is 

iiiit exxxy  )log(00         (3.1.2) 

where )( 0  . Based on the analysis of the linear model we expect the point 

estimate ̂  and the size of the standard t-test to be biased in directions indicted by the 

correlation between 
ix  and )log( ii xx , corresponding to ( , )ig x  and ),( ixg  . The 

alternative test will be based on the reduced form coefficient   which we expect to have 

close to correct size. To see if these implications hold, we drew a sample of ix  from the 

log-normal distribution and pair it with 10,000 paths of standard Normal i , each of 

sample size 100. Estimation is done in EViews™ using the nonlinear regression routine.   

 Table 4 reports estimation results for values of   in the economically relevant 

range, zero to .9 with  =.01. The second line is the un-centered correlation between the 
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‘regressors’ in the linear reduced form, ix  and log( )i ix x . If the true value of   were .9, 

and the regressors were evaluated at .9, then the correlation is .92 and ̂  would be biased 

downward since correlation and bias vary inversely. In the iteration of Gauss-Newton, 

these regressors are re-evaluated at the successive provisional estimates until 

convergence is reached. As we see below, the point estimates are strongly biased 

downward as expected. Note also that the standard t-test rejects the null too infrequently 

when the true   is zero but rejects too often when true   is large. While the relation of 

size distortion to correlation is in the expected direction, it is not as dramatic as in section 

2 even as true   becomes as large. This attenuation is attributable to the fact that the 

correlation is attenuated when regressors are evaluated at the downward biased point 

estimates. Finally, we also report the size of the reduced form test of 0:0 H , in (3.1.2) 

which is close to correct in all cases. 

 

Table 4: Small Sample Distribution of ̂  and Test Size, True   = .01, N = 100 

 

True       0    .1   .5   .9   

)(),(  
 gg    .07                     .29                  .77         .92  

Asymptotic ˆV   .10   .10     .09              .11 

Median   ̂               -0.04  -0.09             -0.05  0.12 

Range (.25, .75)      (-.53, .50)            (-.59, .42)        (-.56, .48)       (-.41, .71) 

Size of ˆt


           0.027  0.037            0.114  0.179 

Size of 
̂t                        0.053  0.054            0.054  0.054 

 



 13

We report in Table 5 the corresponding results as   increases from .01 to 1 for a 

fixed value of true  at .5. As the key metric ˆV  approaches 10, the asymptotic 

distribution gradually takes hold and the actual size of the standard test is correct. We 

again find that a value of 10 for this metric seems to be a rough rule of thumb for correct 

size of the standard test. The reduced-form test, however, maintains about the correct size 

across the range of parameter values. 

 
Table 5: Small Sample Distribution of   and Test Size , N = 100, true   = .5 

 

True           .01     .1             1     

Asymptotic ˆV     .09    .91                 9.10  

Median   ̂                -.05         .27                 .50  

Range (.25, .75)                  (-.56, .48)                      (-.26, .64)   (.46, .54)   

Size of ˆt


                        .114         .103                   .052         

Size of 
̂

t                                     .054        .054      .054  

 

 The case that 0   corresponds to failure of the identification condition for , so 

the asymptotic theory underling the standard error and t-statistic for ̂  is not valid, 

However, the reduced form test does not depend on that assumption, and we find that its 

empirical size is 0.054, close both to its nominal size and what we observed over the 

range of   above. 

Figure 2 below presents a comparison about how well the reduced-form test and 

the standard t-test can detect the departure of true   walking away from the null 

5.:0 H   to both ends. The standard ˆt


-test starts with a higher level of rejection 
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frequency when the true   is .5, reflecting its size distortion and starts to decline as true 

  becomes higher than .5, only beginning climbing up as true   reaches as high as .9. 

The reduced form test using ˆt


, however, starts with a correct size and has a higher level 

of rejection frequency monotonically as true   deviates further away from the null. As 

true   heads toward the left of the null, rejections by the standard t-test rise but not 

significantly more rapidly than the reduced form test. Neither test is very sensitive to 

departure from the null in the direction of zero. We surmise that the non-linearity of the 

model accounts for this asymmetry. 

 

Figure 2: Rejection Frequencies for the test 5.:0 H , N = 100, True   = .1 
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3.2. The ARMA (1,1) Model 

 ARMA models also belong to the class we are interested in. We begin with the 

workhorse ARMA(1,1) and inference for the moving average coefficient. The results are 

then extended to the autoregressive coefficient and higher order models. Consider then:  

1||,1||),,0(...~

,...,1;
2

11



 





Ndii

Ttyy

t

tttt
    (3.2.1) 

Given invertibility of the moving average term, we may express it in the form: 

     (3.2.2) 

where,      , 






 

1

1
1 ),(

i
it

i
t yyg  

 and ,...),( 211   ttt yyy


.  NS show that when 

  is small relative to the sample variation the estimated standard error for either ̂  or ̂  

is too small and the standard t-test rejects the null too often.  

In light of the discussions in Section 2, we linearize the nonlinear g(.) around the 

null to achieve the reduced-form test for  : 

tttt eygygy   ),(),( 1010

   ,   (3.2.3) 

where 






 





2

21
1 )1(

),(
),(

i
it

it
t yi

yg
yg 









, )( 0   and ie  incorporates 

a remainder term.  If the null 0   is correct, the second term in reduced form 

regression (3.2.3) should not be significant.  In practice, to evaluate the regressors 

[ ),( 10 tyg
 , ),( 10 tyg

 ], we set ty  at its unconditional mean for all 0t .  To compare 

the reduced form test to the conventional t-test, we estimated the model in EViewsTM.    

Table 6 explores the effect of  for true   = 0 with a sample size T = 1000.  

Clearly, when  is small relative to sample variation as indicated by a small value of the 

ttt ygy    ),( 1






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metric  ˆV  the conventional t-test rejects the null too often. As   gets larger and the 

key metric  ˆV  approaches 10, asymptotic theory gradually takes hold and the size of 

conventional t-test gets closer to the nominal level 0.05. The fact that the sampling 

distribution of the conventional t-test statistic depends on the nuisance parameter   

implies again that the test is not pivotal. Note that the reduced-form test 
̂

t  in this case is 

equivalent to testing the second lag in an AR(2) regression, which is approximately the 

Box-Ljung Q-test with one lag for the residuals from an AR(1) regression. The estimated 

size of the reduced form test is correct within sampling error.  

One may wonder how the reduced-form test performs when true   is zero, 

corresponding to the failure of identification. As we pointed out, the reduced-form test is 

still well defined in this case and the estimated size of it in the Monte Carlo experiment is 

0.0509, close to correct. 

 

Table 6: Effect of   on Inference for ARMA (1,1), True   = 0, T = 1,000 

 

True ( )      .01   .1    .2   .3     

Asymptotic  ˆV    .32  3.16  6.32            9.49   

Median   ̂               -.02            -.01            -.00           -.00                  

Range (.25, .75)       (-.65, .64)          (-.26, .24)       (-.11, .11)       (-.07, .07)         

Size of 
̂t            0.4585           0.2237           0.1051          0.0734  

Size of 
̂

t                        0.0506          0.0518           0.0526          0.0522 
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We note that the median and inter-quartile range of ̂  suggest that the sampling 

distribution of ̂  is centered on zero.  However, the histogram of ̂  in Figure 3 for the 

case   = .01 shows that the estimates tend to be concentrated close to boundaries of the 

parameter space, reflecting the well-known ‘pile-up’ effect in ARMA models; see 

Hannan (1982) and Hauser, Pötscher, and Reschenhofer (1999). Figure 4 plots the un-

centered correlation   between the ‘regressors’ ),( 1tyg
  and ),( 1tyg

  as a function 

of provisional estimate  . At 0  the correlation is zero but becomes larger in absolute 

value as   moves away from zero in either direction and toward the boundaries where ̂  

occurs with greatest frequency. The excessive size of the test based on 
̂

t  reflects this 

strong correlation when ̂  falls far from zero, not simply the too-small standard error as 

surmised by NS. The relative success of the reduced form test comes from the fact that it 

evaluates the test statistic under the null hypothesis 0 0   instead of at ̂ .    
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Figure 3: Histogram of ̂  in the Monte Carlo. True   = .01,   = 0, T = 1,000 

 

Figure 4: Computed un-centered correlation between ),( 1tyg
  and ),( 1tyg

  

based on one sample draw. True   = .01,   = 0, T = 1,000 
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Table 7 explores the effect of increasing sample size when true   = .01.  

Asymptotic theory does take hold, but the conventional t-test approaches correct size 

very slowly (requiring a sample size as large as 10,000 for   = .1!). In contrast, the 

reduced form test consistently has correct size within sampling error. 

 

Table 7: Sample Size and Inference in the ARMA (1, 1), True   = 0. 

 
Sample size      100            1000            10,000           10,000 

True ( )      .01  .01   .01   .1   

Asymptotic  ˆV             0.1            0.32     1              10   

Median   ̂              -.04            -.02            -.02            -.00                  

Range (.25, .75)       (-.69, .67)         (-.65, .64)        (-.58, .55)       (-.07, .07)         

Size of 
̂

t            .483          .458           .399          .066  

Size of 
̂t                        .051          .051           .049          .048 

 

Often it is the AR root   that is of a greater economic interest since it measures 

persistence. For example, if consumption growth tg  follows an ARMA (1,1) process, a 

large value of   implies that any shock to the economy has a long-lasting impact to the 

economic agent’s conditional expectation of future consumption growth. Recently, 

Bansal and Yaron (2000, 2004) show that such a high level of persistence, interpreted as 

long-run risk, may explain the equity premium puzzle of Mehra and Prescott (1985). Ma 

(2007) finds that the estimated ARMA(1,1)  implies a small estimated   relative to its 

sampling variance and explores the implications of possible test size distortion in the 

conventional test as well as valid inference following the strategy suggested in this paper. 

The reduced-form test for  turns out to require an extra step and we offer details in the 
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Appendix A.1. For the case 0.1, 0     and T = 100 the rejection frequency of the 

reduced form test is 0.046 in contrast to 0.423 of the standard t-test.  

The reduced-form test can also be generalized to address an ARMA model of 

arbitrary order, of which we provide a general treatment in the Appendix A.2.  For the 

ARMA(2,2) model with parameter values 1 2 1 20.01, 0.01, 0, 0        and T = 100 

we find that the standard t-test for 1̂  and 2̂  has empirical sizes of 0.571 and 0.698. In 

contrast the reduced-form test gives rejection frequencies of 0.049 and 0.049 respectively. 

 

3.3. The Unobserved Component Model for Decomposing Trend and Cycle 

 The Unobserved Component model (hereafter UC) of Harvey (1985) and Clark 

(1987) is widely used to decompose the log of real GDP into trend and cycle. Thus: 

ttt cy   ,     (3.3.1) 

where trend is assumed to be a random walk with drift: 

2
1 , ~ . . . (0, )t t t t i i d N           ,   (3.3.2) 

and cycle has a stationary AR representation:  

    2( ) , ~ . . . (0, )t t tL c i i d N       .   (3.3.3) 

The UC model is estimated by maximizing the likelihood computed using the Kalman 

filter under the assumption that trend and cycle shocks are uncorrelated. In practice the 

largest AR root is estimated to be close to unity, implying that the cycle is very persistent, 

and the trend variance is estimated to be very small, implying that the trend is very 

smooth. The question we wish to investigate here is whether standard inference about 
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cycle persistence may be spurious and whether the approach in this paper can provide a 

correctly sized test.  

 To simplify we focus on the case that the cycle is AR(1). Following Morley, 

Nelson and Zivot (2003), we note that the univariate representation of this particular UC 

model is ARMA(1,1) with parameters implied by the equality: 

11 )1()1()1()1(   tttttt uuLyL    (3.3.4) 

Where 2~ . . . (0, )t uu i i d N  . Thus the AR coefficient of the ARMA(1,1) is simply  , while 

the MA parameter   is identified (under the restriction , 0   ) by matching the zero 

and first-order autocovariances of the equivalent MA parts:  

222222
0 )1()1(22)1( u     (3.3.5) 

2222
1 )1( u       (3.3.6) 

We may then solve for a unique   by imposing invertibility, obtaining: 
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  (3.3.7) 

It is straightforward to show that   becomes arbitrarily close to   as 





  approaches 

zero. By an analogy to the ARMA (1,1)  model, the estimated standard error for ̂  may 

be too small when 





  is small relative to sampling variation, and a t-test may be 

incorrectly sized. 

To visualize spurious inference in this case, we implement a Monte Carlo 

experiment. Data is generated from the UC model given by (3.3.1) – (3.3.3) with true 
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parameter values 2 20.8, 0, 0.95, 0.05           , corresponding roughly to quarterly 

U.S. GDP if almost all the variation were due to trend while the cycle is small with no 

persistence at all. Estimation is done in MATLAB 6.1 and the routine is available on 

request. Sample size T  is 200, approximately what is encountered in practice for postwar 

data. To avoid local maxima, various starting values are used.  

The standard t-test for ̂  indeed rejects the null much too often; size is 0.481. 

This is partly because the standard error for ̂  is underestimated; the median is 0.2852 

compared with its true value 1.4815. Furthermore, ̂  is upward biased as illustrated in 

Figure 5, its median being 0.58. Many s'̂  occur close to the positive boundary.  This is 

consistent with Nelson’s (1988) finding that a UC model with persistent cycle variation 

fits better than the true model even when all variation is due to stochastic trend, the case 

where 02  .  

At the same time, the cycle innovation variance estimate 2ˆ   is upward biased, 

having a median of .20, while the trend innovation variance estimate 2ˆ  is instead 

downward biased, with a median of .73. What is the underlying driving force for the 

upward bias of ̂  and 2ˆ   and the downward bias of 2ˆ ? The scatter plot in Figure 6 

shows that there is a positive co-movement between ̂  and 2ˆ  , thus persistence in the 

estimated cycle tends to occur in samples that also show large variance in the cycle. This 

is driven by the necessity that the model must account for the small amount of serial 

correlation in our data generating process for ty . Setting the auto-covariance at lag one 

equal to the true value for the sake of illustration, one obtains the restriction 
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21
.05

1 
 



   


. One solution is the combination of true values, 20; .05   , but 

another is 2.9; .95.   Thus 2ˆ   will be far greater than its true value when ̂  is close 

to its positive boundary, implying a dominating persistent cycle that tends to mimic the 

true underlying stochastic trend. Finally, Figures 5 and 6 show that large negative values 

of ̂  are possible but infrequent because positive variances place restrictions on the 

parameter space. 

In light of the connection between UC model and ARMA model we suggest 

implementing the reduced-form test in the following steps: first impose the null 0   

and estimate all other parameters in the UC model; secondly, impute from (3.3.7) the 

restricted estimate ~  and tu~  in the reduced-form ARMA(1,1) model; lastly, compute the 

reduce-form test statistic by following the strategy in Appendix A.1. Using the same set 

of simulated data as above for true parameter values 2 20.8, 0, 0.95, 0.05           , 

the rejection frequency of reduced-form test for   is 0.054.  

One may also be interested in the case when all variation is due to stochastic trend, 

i.e., 02  . For this case, the identification for    fails and the standard t-test is not 

well-defined. However, the reduced-form test works well and gives estimated size 0.0581 

in the Monte Carlo with true parameter values 0,1,0,8.0 22    . 

This reduced-form test can also be generalized to address a UC model with higher 

AR orders in the cycle by following the strategy discussed in Appendix A.2. 
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Figure 5: Plot of ̂  in the Monte Carlo Experiment with true parameter 

05.0,95.0,0,8.0 22     

 

 

Figure 6: Scatter Plot of ̂  and 2ˆ   in the Monte Carlo Experiment with true 

parameter 05.0,95.0,0,8.0 22     
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3.4. The GARCH(1,1) Model 

 The GARCH model developed by Bollerslev (1986) is perhaps one of the most 

popular approaches in capturing the time-varying volatility for time series data. The 

archetypal GARCH (1,1) may be written: 

)1,0(...~ , t Ndiih ttt       (3.4.1) 

1
2

1   ttt hh      (3.4.2) 

To see why GARCH is among the models we are concerned with, write out its ARMA 

representation and make an analogy to the ARMA (1,1) model: 

1
2

1
2 )(   tttt ww     (3.4.3) 

The innovation )1( 22  ttttt hhw   is a Martingale Difference Sequence (MDS) 

with time-varying variance,    and   correspond to the AR and MA roots 

respectively, and   controls the information about  . Ma, Nelson and Startz (2007) 

show that when   is small relative to its sampling variation, the standard error for ̂  is 

underestimated and the standard t-test rejects the null too often, implying a significant 

GARCH effect even when there is none.  

The reduced-form test can be easily extended to test the null . Defining  
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Taking a linear expansion of nonlinear g(.) around the null, defining

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)( 0    and 






 

2

222
1 )1(),(

i
it

i
t ig 


, we have: 
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10   ttt ggch  


   (3.4.5) 

The reduced-form test is the t-stat of the null 0  in (3.4.5).  

Table 8 presents the comparison of the reduced-form test and the standard t-test as 

  increases when the truth is 0  and sample size T = 1000 (the Matlab 6.1 code is 

available on request). When the key metric ˆV   is small, the standard t-test rejects 

the null too often. The reduced-form test however has consistently better size.  

 

Table 8: Reduced form and standard t-tests for GARCH(1,1): True   = 0, T = 1,000 

 
True ( )      .01   .05     .1    .2     

Asymptotic ˆV   0.32  1.59   3.19   6.60  

Median   ̂                0.33                0.08  -0.00   -0.01 

Range (.25, .75)         (-0.30,0.74)   (-0.31,0.49)     (-0.22,0.22)      (-0.11,0.09) 

Size of 
̂

t              0.470  0.344  0.198  0.106   

Size of 
̂

t                          0.078  0.074  0.076  0.096   

 

 

For the case 0  identification fails and the standard t-test does not have the 

usual asymptotic distribution. The reduced-form test, however, is still valid and has 

estimated size of 0.076 for true   = 0 and T = 1,000. 
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The sum   is of potentially greater economic interest since it measures the 

persistence of volatility in (3.4.3). Bansal and Yaron (2000, 2004) show that a large value 

of , interpreted as long run risk in uncertainty dynamics, may help to resolve the 

equity premium puzzle. Appendix B gives details about how to obtain a valid test for 

 ˆˆ   and evaluates its performance; see Ma (2007) for further discussion. 

In the following example we show how to apply the reduced-form test to a real 

dataset and obtain a confidence interval for ̂  to see if it gives a different result from the 

standard t-test. The monthly S&P 500 index return data is from the Eviews 5.1 DRI 

Database for the sample period January 1947 to September 1984 corresponding to 

Bollerslev (1987). The GARCH estimates along with the Bollerslev and Wooldridge’s 

(1992) robust standard errors (in parenthesis), after accounting for the “Working” effect 

(see Working (1960)), are reported below:  

)1014.0(1016.0ˆ 33   , )048.0(077.0ˆ  , )169.0(773.0ˆ     

The standard t-test implies a significant and large GARCH effect as indicated by 

the 95% confidence interval for  : [0.44, 1). However, the small value of ̂  (the upper 

bound for   at a 95% significance level 0.173) relative to the sample size T = 453, in 

light of our Monte Carlo results above, raises concern about the possibility of spurious 

inference for  . To numerically invert the reduced-form test statistic, we create a grid of 

s'0 , compute the corresponding st '
̂

 and plot the latter against the former in Figure 7. 

The resulting 95% confidence interval for   based on the reduced-form test is [-0.95, 

0.87], which covers almost the entire parameter space. That this can happen in practice 

should not surprise us, in light of the theorem of Dufour (1997) that the probability that a 

 

 
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valid confidence interval covers the entire parameter space must be greater than zero if 

identification is weak enough.  

 

Figure 7: The 95% Confidence Interval for ̂  based on the reduced-form test for 

the monthly S&P 500 stock return data 
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4. Summary and Conclusions 

This paper considers models of the form   ),( xgy , where   is the 

parameter of interest. This class includes not only the obvious non-linear regression 

model but also the workhorse ARMA model of time series and by extension GARCH and 

State Space models such as those used for decomposition into trend and cycle 

components. Inference is problematic because the standard error for ̂   depends on ̂ . 

Nelson and Startz (2007) showed that although that standard error is downward biased in 

a broad class of models including this one that satisfy the Zero-Information-Limit-

Condition, the t-statistic can be either too large or too small depending on the data 

generating process. In this paper we show that small sample inference in this class is 

usefully studied by working with the approximation 

),()(),(),( 000 xgxgxg    

and the corresponding reduced form regression model  

)(  where;),(),( 000    iiii exgxgy .  

 The distribution of ̂  is biased in a direction determined by the correlation 

between the ‘regressors’ in the reduced form, and the distribution becomes concentrated 

when that correlation is strong. The distribution of the standard t-statistic for ̂  based on 

asymptotic theory is also dependent on that correlation, as is the size of the t-test. Both of 

these distributions are also dependent on the true value of  , so the conventional t-test is 

not pivotal in finite samples. A reduced form test that exploits the fact that under the null 

hypothesis 0   then 0   is exact when  .g  is linear and we show that is has nearly 

correct size when the reduced form model is only an approximation. Further, its 
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distribution does not depend on the identifying restriction 0 . The paper illustrates 

this with examples from non-linear regression, ARMA, GARCH, and Unobserved 

Components models. 
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Appendix A.1 

 

To obtain the reduced-form test for , we may re-write the ARMA(1,1): 

ttt gy    ),( 1


     (A.1.1) 

Where  and ,...),( 211   ttt 


. Take a linear approximation of g(.) 

around the null, and the reduced-form test is a t-test for 0  in the following regression: 

   (A.1.2) 

Where 






 





2

21
1 )1(

),(
),(

i
it

it
t i

g
g 









, and )( 0  .   

 To make this test feasible, first obtain a consistent estimate for   through 

estimation under the restriction of null so as to evaluate the regressors. We generate data 

with true parameter values 1,0,1.0    and sample size T = 100.  Estimation is 

done in EViewsTM. The rejection frequency of the proposed test is 0.0461, at the nominal 

level 0.05, in contrast to 0.4233, that of the standard t-test.  

 

Appendix A.2 

 

Consider an ARMA(p,q) model: 

  ),0(...~,,...,1;)](1[)](1[ 2
 NdiiTtLyL ttqtp   (A.2.1) 

Where 
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
p
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i
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1

)(  , 



q

i

i
iq LL

1

)(  , and the roots for 0)(1  z  and 0)(1  z  

are all outside unit circle. A general representation similar to (3.2.2) may be obtained: 
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tmtmmtmt yLyLy   



 ]))(1[(]))(1[( 1

1
1

1    (A.2.2) 

Where mkkkk  1, , ),max( qpm  , and 0k  for mkp   or 0k  for 

mkq  . To test the null qkkk  1,0, , simply linearize the last term associated 

with mty   to obtain the following regression with q augmented terms: 

tqmtmqmtm

mtmmtmt

eyLyL

yLyLy
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






   (A.2.3) 

Where qkkkkk  1),( 0, . If the null is correct the first m terms on the right 

hand side of (A.2.3) are enough to capture the serial correlation. Note to compute the 

regressors for nonzero sk '0, , the coefficients sjl ',  in 2,1,))(1( 0,
0

,  



 lLL l

m
j

j
jl   

may be obtained as the (1,1) element of matrix j
lF )( , where lF  is the )( ml   by )( ml   

transition matrix 2,1,))(1( 0,  lL l
m  in the state-space representation of the ARMA 

model. 

We experiment this idea on the ARMA(2,2) model. With true parameter values 

1,0,0,01.0,01.0 2121    and sample size T = 100 we find that the 

standard t-test for 1̂  and 2̂  has empirical sizes of 0.5712 and 0.6981 at a nominal level 

0.05. In contrast the reduced-form test for 01   and 02   based on regression (A.2.3) 

gives rejection frequencies of 0.0491 and 0.0487 respectively. Notice here since the null 

is 01   and 02  , our proposed test is equivalent to testing the third and fourth lag in 

an AR(4) regression.  
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Appendix B 

 

To obtain a reduced-form test for  ˆˆ  , we may re-write the variance equation: 

),(
1 1


 tt wgh





    (B.1) 

Where   , ,...),( 211   ttt www


. Take a linear expansion of g(.) around the null: 

),(),(
1 10

*
10  


 ttt wgwgh

 



   (B.2) 

Where )( 0
*    and the reduced form test is the t-stat for * . To make the 

reduced form test feasible one needs to have a consistent estimate for tw  which is readily 

obtained through estimation under the restriction of null.  

Using simulated data with true 01.0,0    and T = 1,000, we find that the 

reduced-form test for ̂  has an empirical size 0.0723, close to the nominal level 0.05 

while the estimated size of standard t-test is 0.4690, suffering greatly from the size 

distortion of similar magnitudes to that of ̂ . 
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